modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
wietsedv/bert-base-multilingual-cased-finetuned-sonar-ner
247c6edf286841fa9c7476be35c6bba510571ff1
2021-05-20T09:15:08.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/bert-base-multilingual-cased-finetuned-sonar-ner
14
1
transformers
9,900
Entry not found
yechen/bert-base-chinese-jinyong
6c3ab99a0f88fb30447dc0611ad04547a8ebd4fc
2021-05-20T09:20:01.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "transformers", "autotrain_compatible" ]
fill-mask
false
yechen
null
yechen/bert-base-chinese-jinyong
14
null
transformers
9,901
--- language: zh ---
inovex/multi2convai-logistics-de-bert
a10d6b5a0cdcfec7cfdd0af294791f2b556e7e17
2022-03-01T08:53:44.000Z
[ "pytorch", "bert", "text-classification", "de", "transformers", "license:mit" ]
text-classification
false
inovex
null
inovex/multi2convai-logistics-de-bert
14
null
transformers
9,902
--- tags: - text-classification widget: - text: "Wo kann ich das Paket ablegen?" license: mit language: de --- # Multi2ConvAI-Logistics: finetuned Bert for German This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Logistics (more details about our use cases: ([en](https://multi2convai/en/blog/use-cases), [de](https://multi2convai/en/blog/use-cases))) - language: German (de) - model type: finetuned Bert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-logistics-de-bert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-logistics-de-bert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
ghadeermobasher/BC5CDR-Disease-Modified_biobert-v1.1
c2a32f7edfb3e46b7058802f5a333b7ac102b86a
2022-02-25T18:25:56.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Disease-Modified_biobert-v1.1
14
null
transformers
9,903
Entry not found
bookbot/distil-wav2vec2-adult-child-cls-52m
9d08da904f0bc62228591b5486fc7579a39406ca
2022-02-26T13:48:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "en", "arxiv:2006.11477", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
bookbot
null
bookbot/distil-wav2vec2-adult-child-cls-52m
14
null
transformers
9,904
--- language: en license: apache-2.0 tags: - audio-classification - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distil-wav2vec2-adult-child-cls-52m results: [] --- # DistilWav2Vec2 Adult/Child Speech Classifier 52M DistilWav2Vec2 Adult/Child Speech Classifier is an audio classification model based on the [wav2vec 2.0](https://arxiv.org/abs/2006.11477) architecture. This model is a distilled version of [wav2vec2-adult-child-cls](https://huggingface.co/bookbot/wav2vec2-adult-child-cls) on a private adult/child speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------------- | ------- | ----------- | ----------------------------------------- | | `distil-wav2vec2-adult-child-cls-52m` | 52M | wav2vec 2.0 | Adult/Child Speech Classification Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | Accuracy | F1 | | --------------------------------- | ------ | -------- | ------ | | Adult/Child Speech Classification | 0.1301 | 96.03% | 0.9639 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 3e-05 - `train_batch_size`: 32 - `eval_batch_size`: 32 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 128 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_ratio`: 0.1 - `num_epochs`: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | :-----------: | :---: | :--: | :-------------: | :------: | :----: | | 0.212 | 1.0 | 96 | 0.1561 | 0.9561 | 0.9596 | | 0.1523 | 2.0 | 192 | 0.1408 | 0.9575 | 0.9616 | | 0.0844 | 3.0 | 288 | 0.1301 | 0.9603 | 0.9639 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors DistilWav2Vec2 Adult/Child Speech Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Kaggle. ## Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
bullmount/hseBert-it-cased
17c2194c6c181634fba88ab1dad03e81e66ef5f7
2022-02-27T18:08:11.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "it", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
bullmount
null
bullmount/hseBert-it-cased
14
null
transformers
9,905
--- language: it license: mit widget: - text: "È stata pubblicata la [MASK] di conversione del D.L. 24 dicembre 2021 n. 221 ." - text: "La legge fornisce l’esatta [MASK] di Green pass base." - text: "Il datore di lavoro organizza e predispone i posti di lavoro di cui all'articolo 173, in [MASK] ai requisiti minimi di cui all'allegato XXXIV." - text: "Le principali novità riguardano la quarantena precauzionale e il [MASK] di autosorveglianza." --- # hseBERT **hseBert-it-cased** is a BERT model obtained by MLM adaptive-tuning [**bert-base-italian-xxl-cased**](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on texts of Italian regulation (Testo unico sulla sicurezza sul lavoro - D.lgs. 9 aprile 2008, n. 81, Codice dell'Ambiente - D.lgs. 3 aprile 2006, n. 152), approximately 7k sentences. # Usage ```python from transformers import AutoModel, AutoTokenizer model_name = "bullmount/hseBert-it-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ```
Kiran146/distilbert-base-uncased-finetuned-emotion
1b2749fa693e6ea2505de92cde014cf983883e4a
2022-02-28T17:30:35.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Kiran146
null
Kiran146/distilbert-base-uncased-finetuned-emotion
14
null
transformers
9,906
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9227765339978083 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2224 - Accuracy: 0.9225 - F1: 0.9228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.84 | 1.0 | 250 | 0.3133 | 0.909 | 0.9070 | | 0.2459 | 2.0 | 500 | 0.2224 | 0.9225 | 0.9228 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
ghadeermobasher/BC5CDR-Chem2-Modified_BiomedNLP-PubMedBERT-base-uncased-abstract
924e0949a0c8de63609e1199c399d6380f7242a7
2022-03-01T06:46:43.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem2-Modified_BiomedNLP-PubMedBERT-base-uncased-abstract
14
null
transformers
9,907
Entry not found
davanstrien/convnext_manuscript_iiif
6c2da8478fafd75d3b12e13badfeb6b1a1306b2f
2022-03-08T02:21:52.000Z
[ "pytorch", "convnext", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
davanstrien
null
davanstrien/convnext_manuscript_iiif
14
null
transformers
9,908
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - f1 model-index: - name: convnext_manuscript_iiif results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext_manuscript_iiif This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the davanstrien/iiif_manuscripts_label_ge_50 dataset. It achieves the following results on the evaluation set: - Loss: 5.5856 - F1: 0.0037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.5753 | 1.0 | 2038 | 6.4121 | 0.0016 | | 5.9865 | 2.0 | 4076 | 5.9466 | 0.0021 | | 5.6521 | 3.0 | 6114 | 5.7645 | 0.0029 | | 5.3123 | 4.0 | 8152 | 5.6890 | 0.0033 | | 5.0337 | 5.0 | 10190 | 5.6692 | 0.0034 | | 4.743 | 6.0 | 12228 | 5.5856 | 0.0037 | | 4.4387 | 7.0 | 14266 | 5.5969 | 0.0042 | | 4.1422 | 8.0 | 16304 | 5.6711 | 0.0043 | | 3.8372 | 9.0 | 18342 | 5.6761 | 0.0044 | | 3.5244 | 10.0 | 20380 | 5.8469 | 0.0042 | | 3.2321 | 11.0 | 22418 | 5.8774 | 0.0045 | | 2.9004 | 12.0 | 24456 | 6.1186 | 0.0047 | | 2.5937 | 13.0 | 26494 | 6.2398 | 0.0046 | | 2.2983 | 14.0 | 28532 | 6.3732 | 0.0049 | | 2.0611 | 15.0 | 30570 | 6.5024 | 0.0045 | | 1.8153 | 16.0 | 32608 | 6.6585 | 0.0047 | | 1.6075 | 17.0 | 34646 | 6.8333 | 0.0043 | | 1.4342 | 18.0 | 36684 | 6.9529 | 0.0044 | | 1.2614 | 19.0 | 38722 | 7.1129 | 0.0046 | | 1.1463 | 20.0 | 40760 | 7.1977 | 0.0039 | | 1.0387 | 21.0 | 42798 | 7.2700 | 0.0044 | | 0.9635 | 22.0 | 44836 | 7.3375 | 0.0040 | | 0.8872 | 23.0 | 46874 | 7.4003 | 0.0039 | | 0.8156 | 24.0 | 48912 | 7.4884 | 0.0039 | | 0.7544 | 25.0 | 50950 | 7.4764 | 0.0039 | | 0.6893 | 26.0 | 52988 | 7.5153 | 0.0042 | | 0.6767 | 27.0 | 55026 | 7.5427 | 0.0043 | | 0.6098 | 28.0 | 57064 | 7.5547 | 0.0042 | | 0.5871 | 29.0 | 59102 | 7.5533 | 0.0041 | | 0.5696 | 30.0 | 61140 | 7.5595 | 0.0041 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
Ayou/chinese_mobile_bert
34618c0214ac41f7e13d5ffc89ad634e16afb25a
2022-03-04T12:49:12.000Z
[ "pytorch", "mobilebert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Ayou
null
Ayou/chinese_mobile_bert
14
1
transformers
9,909
--- license: apache-2.0 --- 在2.5亿的中文语料上,进行mobie_bert进行预训练。在单卡-A100下迭代100万 steps,训练15天。
LukasStankevicius/ByT5-Lithuanian-gec-100h
3d2fc303c10482409f1b63adc030c5cefd1fd071
2022-07-28T05:55:59.000Z
[ "pytorch", "t5", "text2text-generation", "lt", "transformers", "byt5", "Lithuanian", "grammatical error correction", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
LukasStankevicius
null
LukasStankevicius/ByT5-Lithuanian-gec-100h
14
null
transformers
9,910
--- language: lt tags: - byt5 - Lithuanian - grammatical error correction widget: - text: 'Sveiki pardodu tvarkyngą "Audi" firmos automobylį. Kątik iš Amerikės. Viena savininka prižiurietas ir mylietas Automobylis. Dar turu patobulintą „Mersedes“ su automatinia greičių pavara už 4000 evrų (iš Amerikės). Taippat tvarkingas.' license: apache-2.0 --- This is *google/byt5-small* transformer model trained on Lithuanian text for ~100 hours. It was created during the work [**Towards Lithuanian Grammatical Error Correction**](https://link.springer.com/chapter/10.1007/978-3-031-09076-9_44), which was presented at [11th Computer Science On-line Conference 2022](https://csoc.openpublish.eu/). The model is yet in its infancy (we are planning to train 100x longer in the future). Nevertheless, it clearly shows the possibilities and capabilities. ## Usage Given the following corrupted text obtained from [https://www.diktantas.lt/pasitikrink-lietuviu-kalbos-zinias]: ``` text = 'Sveiki pardodu tvarkyngą "Audi" firmos automobylį. Kątik iš Amerikės. Viena savininka prižiurietas ir mylietas Automobylis. Dar turu patobulintą „Mersedes“ su automatinia greičių pavara už 4000 evrų (iš Amerikės). Taippat tvarkingas.' ``` The correction can be obtained by: ```python from transformers import pipeline name= "LukasStankevicius/ByT5-Lithuanian-gec-100h" my_pipeline = pipeline(task="text2text-generation", model=name, framework="pt") corrected_text = my_pipeline(text)[0]["generated_text"] print(corrected_text) ``` Output from the above would be: Sveiki parduodu tvarkingą „Audi“ firmos automobilį. Ką tik iš Amerikės. Viena savininkas prižiūrintas ir mylimas automobilis. Dar turiu patobulintą „Mersedes“ su automatine greičių pavara už 4000 eurų (iš Amerikės). Taip pat tvarkingas. More information can be found in the accompanying [GitHub repository](https://github.com/LukasStankevicius/Towards-Lithuanian-Grammatical-Error-Correction) If you find our work useful, please cite the following paper: ``` latex @InProceedings{10.1007/978-3-031-09076-9_44, author="Stankevi{\v{c}}ius, Lukas and Luko{\v{s}}evi{\v{c}}ius, Mantas", editor="Silhavy, Radek", title="Towards Lithuanian Grammatical Error Correction", booktitle="Artificial Intelligence Trends in Systems", year="2022", publisher="Springer International Publishing", address="Cham", pages="490--503", abstract="Everyone wants to write beautiful and correct text, yet the lack of language skills, experience, or hasty typing can result in errors. By employing the recent advances in transformer architectures, we construct a grammatical error correction model for Lithuanian, the language rich in archaic features. We compare subword and byte-level approaches and share our best trained model, achieving F{\$}{\$}{\_}{\{}0.5{\}}=0.92{\$}{\$}0.5=0.92, and accompanying code, in an online open-source repository.", isbn="978-3-031-09076-9" } ```
saattrupdan/wav2vec2-xls-r-300m-ftspeech
73d80f53cfa83e395949f51673a58e07ac433679
2022-03-21T17:30:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "da", "dataset:ftspeech", "transformers", "license:other", "model-index" ]
automatic-speech-recognition
false
saattrupdan
null
saattrupdan/wav2vec2-xls-r-300m-ftspeech
14
null
transformers
9,911
--- language: - da license: other tasks: - automatic-speech-recognition datasets: - ftspeech metrics: - wer model-index: - name: wav2vec2-xls-r-300m-ftspeech results: - task: type: automatic-speech-recognition dataset: type: mozilla-foundation/common_voice_8_0 args: da name: Danish Common Voice 8.0 metrics: - type: wer value: 17.91 - task: type: automatic-speech-recognition dataset: type: Alvenir/alvenir_asr_da_eval name: Alvenir ASR test dataset metrics: - type: wer value: 13.84 --- # XLS-R-300m-FTSpeech ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [FTSpeech dataset](https://ftspeech.github.io/), being a dataset of 1,800 hours of transcribed speeches from the Danish parliament. ## Performance The model achieves the following WER scores (lower is better): | **Dataset** | **WER without LM** | **WER with 5-gram LM** | | :---: | ---: | ---: | | [Danish part of Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0/viewer/da/train) | 20.48 | 17.91 | | [Alvenir test set](https://huggingface.co/datasets/Alvenir/alvenir_asr_da_eval) | 15.46 | 13.84 | ## License The use of this model needs to adhere to [this license from the Danish Parliament](https://www.ft.dk/da/aktuelt/tv-fra-folketinget/deling-og-rettigheder).
gdario/distilbert-base-uncased-finetuned-emotion
eba29ac185b44875bc2f5a9a53db5f02f5c60c51
2022-06-25T09:24:49.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
gdario
null
gdario/distilbert-base-uncased-finetuned-emotion
14
null
transformers
9,912
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.8955 - name: F1 type: f1 value: 0.8918003951340884 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3662 - Accuracy: 0.8955 - F1: 0.8918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.5675 | 0.8265 | 0.8067 | | 0.7565 | 2.0 | 250 | 0.3662 | 0.8955 | 0.8918 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
gayanin/bart-paraphrasing-mlm
3ff29962918d3886b04c734943a314f915f6b853
2022-03-07T21:40:56.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/bart-paraphrasing-mlm
14
null
transformers
9,913
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-paraphrasing-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrasing-mlm This model is a fine-tuned version of [gayanin/bart-paraphrase-pubmed-1.1](https://huggingface.co/gayanin/bart-paraphrase-pubmed-1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5510 - Rouge2 Precision: 0.7148 - Rouge2 Recall: 0.5223 - Rouge2 Fmeasure: 0.5866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6799 | 1.0 | 13833 | 0.5982 | 0.7016 | 0.5122 | 0.5756 | | 0.5894 | 2.0 | 27666 | 0.5663 | 0.7093 | 0.5193 | 0.583 | | 0.5329 | 3.0 | 41499 | 0.5540 | 0.7129 | 0.5212 | 0.5853 | | 0.4953 | 4.0 | 55332 | 0.5510 | 0.7148 | 0.5223 | 0.5866 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
MikhailGalperin/distilbert-base-uncased-finetuned-ner
5b7d5feb69b6cc5bd95fcfadffd0bb806b4c1c96
2022-03-08T06:49:43.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
MikhailGalperin
null
MikhailGalperin/distilbert-base-uncased-finetuned-ner
14
null
transformers
9,914
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
davanstrien/dit-base-manuscripts
96f015a5b13b48267d031b93fb6b0cde838d9f24
2022-03-09T10:08:42.000Z
[ "pytorch", "tensorboard", "deit", "transformers", "masked-image-modeling", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
davanstrien
null
davanstrien/dit-base-manuscripts
14
null
transformers
9,915
--- license: apache-2.0 tags: - masked-image-modeling - generated_from_trainer model-index: - name: dit-base-manuscripts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dit-base-manuscripts This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the davanstrien/iiif_manuscripts_label_ge_50 dataset. It achieves the following results on the evaluation set: - Loss: 1.1266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1333 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1396 | 1.0 | 32 | 1.1261 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
mrm8488/spanish-TinyBERT-betito-finetuned-xnli-es
6613ab5adf4570fe7ed9291fe5aafcf0f1de7b8a
2022-03-09T07:29:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:xnli", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
mrm8488
null
mrm8488/spanish-TinyBERT-betito-finetuned-xnli-es
14
null
transformers
9,916
--- tags: - generated_from_trainer datasets: - xnli metrics: - accuracy model-index: - name: spanish-TinyBERT-betito-finetuned-xnli-es results: - task: name: Text Classification type: text-classification dataset: name: xnli type: xnli args: es metrics: - name: Accuracy type: accuracy value: 0.7475049900199601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanish-TinyBERT-betito-finetuned-xnli-es This model is a fine-tuned version of [mrm8488/spanish-TinyBERT-betito](https://huggingface.co/mrm8488/spanish-TinyBERT-betito) on the xnli dataset. It achieves the following results on the evaluation set: - Loss: 0.7104 - Accuracy: 0.7475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.50838112218154e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 13 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.7191 | 1.0 | 49399 | 0.6829 | 0.7112 | | 0.6323 | 2.0 | 98798 | 0.6527 | 0.7305 | | 0.5727 | 3.0 | 148197 | 0.6531 | 0.7465 | | 0.4964 | 4.0 | 197596 | 0.7079 | 0.7427 | | 0.4929 | 5.0 | 246995 | 0.7104 | 0.7475 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
zuppif/maskformer-swin-small-ade
f4097ad31123b84e35d4f9e977f746fa703c12ab
2022-07-06T07:24:51.000Z
[ "pytorch", "maskformer", "transformers", "object-detection", "COCO", "YOLO", "Darknet", "model-index" ]
object-detection
false
zuppif
null
zuppif/maskformer-swin-small-ade
14
null
transformers
9,917
--- tags: - object-detection - COCO - YOLO - Darknet model-index: - name: moon results: - metrics: - type: mAP value: 1 name: mAP task: type: object-detection name: object-detection dataset: name: COCO type: COCO ---
MrAnderson/bert-base-1024-full-trivia-copied-embeddings
dcafbe148e665eb18159d9248bfa71cb0d42037e
2022-03-11T22:05:33.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/bert-base-1024-full-trivia-copied-embeddings
14
null
transformers
9,918
Entry not found
StivenLancheros/Biobert-base-cased-v1.2-finetuned-ner-CRAFT_es_en
f65c87461ee480975a97674f1a47b4f43adca6cf
2022-03-12T11:40:00.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/Biobert-base-cased-v1.2-finetuned-ner-CRAFT_es_en
14
null
transformers
9,919
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Biobert-base-cased-v1.2-finetuned-ner-CRAFT_es_en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Biobert-base-cased-v1.2-finetuned-ner-CRAFT_es_en This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.1811 - Precision: 0.8555 - Recall: 0.8539 - F1: 0.8547 - Accuracy: 0.9706 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the [CRAFT](https://github.com/UCDenver-ccp/CRAFT/releases)(Colorado Richly Annotated Full Text) Corpus in Spanish and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.052 | 1.0 | 1360 | 0.1413 | 0.8300 | 0.8442 | 0.8370 | 0.9677 | | 0.0199 | 2.0 | 2720 | 0.1673 | 0.8461 | 0.8458 | 0.8459 | 0.9689 | | 0.011 | 3.0 | 4080 | 0.1647 | 0.8588 | 0.8528 | 0.8558 | 0.9704 | | 0.0031 | 4.0 | 5440 | 0.1811 | 0.8555 | 0.8539 | 0.8547 | 0.9706 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
negfir/distilbert-base-uncased-finetuned-cola
a7cddf4e81a9a44c899f81b98f5072b090df106d
2022-03-24T00:39:00.000Z
[ "pytorch", "tf", "tensorboard", "bert", "text-classification", "transformers", "generated_from_keras_callback", "model-index" ]
text-classification
false
negfir
null
negfir/distilbert-base-uncased-finetuned-cola
14
null
transformers
9,920
--- tags: - generated_from_keras_callback model-index: - name: negfir/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # negfir/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [negfir/uncased_L-12_H-128_A-2](https://huggingface.co/negfir/uncased_L-12_H-128_A-2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6077 - Validation Loss: 0.6185 - Train Matthews Correlation: 0.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.6116 | 0.6187 | 0.0 | 0 | | 0.6070 | 0.6190 | 0.0 | 1 | | 0.6077 | 0.6185 | 0.0 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
cambridgeltl/guardian_news_bert-base-uncased
7fa82b67d7680ca4026c56a730ba77ea48b3483b
2022-03-15T17:15:14.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
cambridgeltl
null
cambridgeltl/guardian_news_bert-base-uncased
14
null
transformers
9,921
Entry not found
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES
d7dcf9c3b374c4893ec6f0a50529bd70d0087638
2022-03-17T14:49:03.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES
14
null
transformers
9,922
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner-CRAFT_Augmented_ES This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2251 - Precision: 0.8276 - Recall: 0.8411 - F1: 0.8343 - Accuracy: 0.9676 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in Spanish (MT translated) and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Three datasets (original, augmented, MT translated CRAFT) were concatenated. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0549 | 1.0 | 4078 | 0.1673 | 0.8056 | 0.8112 | 0.8084 | 0.9640 | | 0.0233 | 2.0 | 8156 | 0.1733 | 0.8321 | 0.8244 | 0.8283 | 0.9662 | | 0.0101 | 3.0 | 12234 | 0.1972 | 0.8336 | 0.8391 | 0.8363 | 0.9678 | | 0.0036 | 4.0 | 16312 | 0.2251 | 0.8276 | 0.8411 | 0.8343 | 0.9676 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Amo/gpt-neo-125m-mlp-micro
30c914b11203da0db8a7404a4d947ba04bdc77b2
2022-03-19T08:51:57.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
Amo
null
Amo/gpt-neo-125m-mlp-micro
14
null
transformers
9,923
Entry not found
vinaykudari/distilGPT-ft-eli5
a58e57900a73910d982becbaeb2d284896b1bab7
2022-03-19T17:24:50.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
vinaykudari
null
vinaykudari/distilGPT-ft-eli5
14
null
transformers
9,924
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilGPT-ft-eli5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilGPT-ft-eli5 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.5643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 281 | 5.8277 | | 5.7427 | 2.0 | 562 | 5.7525 | | 5.7427 | 3.0 | 843 | 5.7016 | | 5.5614 | 4.0 | 1124 | 5.6593 | | 5.5614 | 5.0 | 1405 | 5.6273 | | 5.4408 | 6.0 | 1686 | 5.6029 | | 5.4408 | 7.0 | 1967 | 5.5855 | | 5.3522 | 8.0 | 2248 | 5.5739 | | 5.2948 | 9.0 | 2529 | 5.5670 | | 5.2948 | 10.0 | 2810 | 5.5643 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
ahmeddbahaa/t5-small-finetuned-xlsum-en
99e2f7d583ede30df3c82c8680fbf17655051779
2022-03-22T19:51:49.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/t5-small-finetuned-xlsum-en
14
1
transformers
9,925
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: t5-small-finetuned-xlsum-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: english metrics: - name: Rouge1 type: rouge value: 23.7508 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xlsum-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.6629 - Rouge1: 23.7508 - Rouge2: 5.5427 - Rougel: 18.6777 - Rougelsum: 18.652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.0789 | 1.0 | 1010 | 2.6881 | 22.6824 | 4.4735 | 17.6707 | 17.5485 | | 2.9223 | 2.0 | 2020 | 2.6629 | 23.7508 | 5.5427 | 18.6777 | 18.652 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Roshan777/finetuning-sentiment-model-300-samples
3a0f54c98fbeeb35054d634e073d200254ac494e
2022-03-26T12:54:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Roshan777
null
Roshan777/finetuning-sentiment-model-300-samples
14
null
transformers
9,926
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-300-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.6833333333333333 - name: F1 type: f1 value: 0.6153846153846154 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-300-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6567 - Accuracy: 0.6833 - F1: 0.6154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
vumichien/token-classification-bigbird-roberta-base-random
b34badb20694d2c9849c63b060f7a95e9296bbcd
2022-03-25T03:23:28.000Z
[ "pytorch", "big_bird", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
vumichien
null
vumichien/token-classification-bigbird-roberta-base-random
14
null
transformers
9,927
Entry not found
alefiury/wav2vec2-large-xlsr-53-coraa-brazilian-portuguese-gain-normalization-sna
3c219fa6ffd827bba2568eb19a1f9207c2c4b79e
2022-04-05T16:59:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:CORAA", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:voxforge", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
alefiury
null
alefiury/wav2vec2-large-xlsr-53-coraa-brazilian-portuguese-gain-normalization-sna
14
1
transformers
9,928
--- language: pt datasets: - CORAA - common_voice - mls - cetuc - voxforge metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Alef Iury XLSR Wav2Vec2 Large 53 Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test CORAA WER type: wer value: 24.89% --- # Wav2vec 2.0 trained with CORAA Portuguese Dataset and Open Portuguese Datasets This a the demonstration of a fine-tuned Wav2vec model for Portuguese using the following datasets: - [CORAA dataset](https://github.com/nilc-nlp/CORAA) - [CETUC](http://www02.smt.ufrj.br/~igor.quintanilha/alcaim.tar.gz). - [Multilingual Librispeech (MLS)](http://www.openslr.org/94/). - [VoxForge](http://www.voxforge.org/). - [Common Voice 6.1](https://commonvoice.mozilla.org/pt). ## Repository The repository that implements the model to be trained and tested is avaible [here](https://github.com/alefiury/SE-R_2022_Challenge_Wav2vec2).
manu/lilt-camembert-base
3e05da955eba893d4646c97cd7c44d1421626461
2022-03-30T14:49:30.000Z
[ "pytorch", "liltrobertalike", "fill-mask", "fr", "dataset:iit-cdip", "transformers", "token-classification", "license:mit", "autotrain_compatible" ]
token-classification
false
manu
null
manu/lilt-camembert-base
14
null
transformers
9,929
--- language: - fr tags: - token-classification - fill-mask license: mit datasets: - iit-cdip --- This model is the combined camembert-base model, with the pretrained lilt checkpoint from the paper "LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding". Original repository: https://github.com/jpWang/LiLT To use it, it is necessary to fork the modeling and configuration files from the original repository, and load the pretrained model from the corresponding classes (LiLTRobertaLikeConfig, LiLTRobertaLikeForRelationExtraction, LiLTRobertaLikeForTokenClassification, LiLTRobertaLikeModel). They can also be preloaded with the AutoConfig/model factories as such: ```python from transformers import AutoModelForTokenClassification, AutoConfig from path_to_custom_classes import ( LiLTRobertaLikeConfig, LiLTRobertaLikeForRelationExtraction, LiLTRobertaLikeForTokenClassification, LiLTRobertaLikeModel ) def patch_transformers(): AutoConfig.register("liltrobertalike", LiLTRobertaLikeConfig) AutoModel.register(LiLTRobertaLikeConfig, LiLTRobertaLikeModel) AutoModelForTokenClassification.register(LiLTRobertaLikeConfig, LiLTRobertaLikeForTokenClassification) # etc... ``` To load the model, it is then possible to use: ```python # patch_transformers() must have been executed beforehand tokenizer = AutoTokenizer.from_pretrained("camembert-base") model = AutoModel.from_pretrained("manu/lilt-camembert-base") model = AutoModelForTokenClassification.from_pretrained("manu/lilt-camembert-base") # to be fine-tuned on a token classification task ```
bdunnette/derbynames-aitextgen
186c941688e3f500996911570b36a2c9c7baff41
2022-04-04T19:27:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:cc-by-nc-sa-4.0" ]
text-generation
false
bdunnette
null
bdunnette/derbynames-aitextgen
14
null
transformers
9,930
--- license: cc-by-nc-sa-4.0 ---
abdusahmbzuai/ft-tatoeba-ar-en
851da8800d4877252a22e919c91105c38ca70288
2022-04-10T15:34:36.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "dataset:open_subtitles", "transformers", "translation", "generated_from_trainer", "model-index", "autotrain_compatible" ]
translation
false
abdusahmbzuai
null
abdusahmbzuai/ft-tatoeba-ar-en
14
null
transformers
9,931
--- tags: - translation - generated_from_trainer datasets: - open_subtitles model-index: - name: ft-tatoeba-ar-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ft-tatoeba-ar-en This model was trained from scratch on the open_subtitles dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
CAiRE/wav2vec2-large-xlsr-53-cantonese
000930f74d91d06cd347218c8413b9756a3be239
2022-06-09T10:55:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "zh-HK", "yue", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
CAiRE
null
CAiRE/wav2vec2-large-xlsr-53-cantonese
14
2
transformers
9,932
--- language: - zh-HK - yue datasets: - common_voice metrics: - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2-Large-XLSR-53-Cantonese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice zh-HK type: common_voice args: zh-HK metrics: - name: Test CER type: cer value: [18.55%] --- # Wav2Vec2-Large-XLSR-53-Cantonese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Cantonese using the [Common Voice Corpus 8.0](https://commonvoice.mozilla.org/en/datasets). When using this model, make sure that your speech input is sampled at 16kHz. The Common Voice's validated `train` and `dev` were used for training. The script used for training can be found at [https://github.com/holylovenia/wav2vec2-pretraining](https://github.com/holylovenia/wav2vec2-pretraining). ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "zh-HK", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") model = Wav2Vec2ForCTC.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the zh-HK test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "zh-HK", split="test") wer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") model = Wav2Vec2ForCTC.from_pretrained("CAiRE/wav2vec2-large-xlsr-53-cantonese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: CER: 18.55 % ## Citation If you use our code/model, please cite us: ``` @inproceedings{lovenia2022ascend, title={ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation}, author={Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others}, booktitle={Proceedings of the 13th Language Resources and Evaluation Conference (LREC)}, year={2022} } ```
obokkkk/kobigbird-bert-base-finetuned-klue
1f6083dfc29c4dc6b371b8a58b9850f0934eaeae
2022-04-12T10:07:16.000Z
[ "pytorch", "big_bird", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
obokkkk
null
obokkkk/kobigbird-bert-base-finetuned-klue
14
null
transformers
9,933
--- tags: - generated_from_trainer model-index: - name: kobigbird-bert-base-finetuned-klue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobigbird-bert-base-finetuned-klue This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.7262 | 0.17 | 500 | 3.1922 | | 2.2239 | 0.35 | 1000 | 1.5877 | | 1.602 | 0.52 | 1500 | 1.4144 | | 1.3619 | 0.69 | 2000 | 1.2172 | | 1.2611 | 0.86 | 2500 | 1.0703 | | 1.1354 | 1.04 | 3000 | 1.0719 | | 0.9851 | 1.21 | 3500 | 1.0052 | | 0.9205 | 1.38 | 4000 | 1.0223 | | 0.8753 | 1.55 | 4500 | 0.9671 | | 0.8751 | 1.73 | 5000 | 1.0368 | | 0.8535 | 1.9 | 5500 | 0.9146 | | 0.7376 | 2.07 | 6000 | 1.0462 | | 0.6256 | 2.24 | 6500 | 1.0606 | | 0.6041 | 2.42 | 7000 | 1.1533 | | 0.6403 | 2.59 | 7500 | 1.0871 | | 0.6208 | 2.76 | 8000 | 1.0743 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
westphal-jan/roberta-base-mnli
efdcedd0102c605cae84cd03b6619a5784e38791
2022-04-13T13:22:05.000Z
[ "pytorch", "tf", "roberta", "text-classification", "transformers" ]
text-classification
false
westphal-jan
null
westphal-jan/roberta-base-mnli
14
null
transformers
9,934
Entry not found
omar47/wav2vec2-large-xls-r-300m-urdu-colab-cv8
5779938327a2fbaf4067857f341c859e431a2b23
2022-04-20T02:57:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
omar47
null
omar47/wav2vec2-large-xls-r-300m-urdu-colab-cv8
14
null
transformers
9,935
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-urdu-colab-cv8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-urdu-colab-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.4651 - Wer: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 20.3271 | 1.27 | 32 | 20.3487 | 1.0 | | 11.0206 | 2.55 | 64 | 7.7343 | 1.0 | | 5.8023 | 3.82 | 96 | 5.4188 | 1.0 | | 4.5872 | 5.12 | 128 | 4.1428 | 1.0 | | 3.6691 | 6.39 | 160 | 3.4557 | 1.0 | | 3.3143 | 7.67 | 192 | 3.2663 | 1.0 | | 3.1689 | 8.94 | 224 | 3.1022 | 0.9982 | | 3.1472 | 10.24 | 256 | 3.0544 | 0.9993 | | 3.1091 | 11.51 | 288 | 3.0327 | 0.9978 | | 3.0437 | 12.78 | 320 | 3.0288 | 1.0 | | 2.9981 | 14.08 | 352 | 2.8645 | 1.0 | | 2.5244 | 15.35 | 384 | 2.0238 | 0.9686 | | 1.4962 | 16.63 | 416 | 1.5885 | 0.9118 | | 1.0138 | 17.9 | 448 | 1.3656 | 0.8155 | | 0.7655 | 19.2 | 480 | 1.4592 | 0.8125 | | 0.6267 | 20.47 | 512 | 1.4170 | 0.7867 | | 0.5127 | 21.75 | 544 | 1.3200 | 0.7716 | | 0.4422 | 23.04 | 576 | 1.4082 | 0.7727 | | 0.3482 | 24.31 | 608 | 1.3932 | 0.7432 | | 0.3128 | 25.59 | 640 | 1.4059 | 0.7432 | | 0.2762 | 26.86 | 672 | 1.4689 | 0.7336 | | 0.2451 | 28.16 | 704 | 1.4318 | 0.7207 | | 0.2104 | 29.43 | 736 | 1.4304 | 0.7399 | | 0.1858 | 30.71 | 768 | 1.4586 | 0.7225 | | 0.1779 | 31.98 | 800 | 1.4948 | 0.7284 | | 0.1546 | 33.27 | 832 | 1.4960 | 0.7173 | | 0.1457 | 34.55 | 864 | 1.4949 | 0.7077 | | 0.1333 | 35.82 | 896 | 1.4656 | 0.7085 | | 0.1212 | 37.12 | 928 | 1.5061 | 0.7033 | | 0.1162 | 38.39 | 960 | 1.4653 | 0.7055 | | 0.1043 | 39.67 | 992 | 1.4651 | 0.7 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.12.1
Manishkalra/finetuning-sentiment-model-3000-samples
6c2209e78818feded6f7617ff4394342bf0bb0e3
2022-04-14T11:04:35.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Manishkalra
null
Manishkalra/finetuning-sentiment-model-3000-samples
14
null
transformers
9,936
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8769716088328076 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3186 - Accuracy: 0.87 - F1: 0.8770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
stevems1/distilroberta-base-SmithsModel
58c4bf9998c1628775cf3ae0e8a1ecadd8184b93
2022-04-17T11:08:15.000Z
[ "pytorch", "tensorboard", "roberta", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
stevems1
null
stevems1/distilroberta-base-SmithsModel
14
null
transformers
9,937
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-SmithsModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-SmithsModel This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.6589 | 1.0 | 830 | 2.8652 | | 2.8362 | 2.0 | 1660 | 2.4309 | | 2.6291 | 3.0 | 2490 | 2.2826 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
ChrisZeng/electra-large-discriminator-nli-efl-tweeteval
3da15e375bcc1a4383a487d270380b1d3b1cbc58
2022-04-20T02:05:43.000Z
[ "pytorch", "electra", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ChrisZeng
null
ChrisZeng/electra-large-discriminator-nli-efl-tweeteval
14
null
transformers
9,938
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: electra-large-discriminator-nli-efl-tweeteval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-large-discriminator-nli-efl-tweeteval This model is a fine-tuned version of [ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli](https://huggingface.co/ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.7943 - F1: 0.7872 - Loss: 0.3004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:| | 0.4384 | 1.0 | 163 | 0.7444 | 0.7308 | 0.3962 | | 0.3447 | 2.0 | 326 | 0.7659 | 0.7552 | 0.3410 | | 0.3057 | 3.0 | 489 | 0.7750 | 0.7688 | 0.3234 | | 0.287 | 4.0 | 652 | 0.7857 | 0.7779 | 0.3069 | | 0.2742 | 5.0 | 815 | 0.7887 | 0.7822 | 0.3030 | | 0.2676 | 6.0 | 978 | 0.7939 | 0.7851 | 0.2982 | | 0.2585 | 7.0 | 1141 | 0.7909 | 0.7822 | 0.3002 | | 0.2526 | 8.0 | 1304 | 0.7943 | 0.7876 | 0.3052 | | 0.2479 | 9.0 | 1467 | 0.7939 | 0.7847 | 0.2997 | | 0.2451 | 10.0 | 1630 | 0.7956 | 0.7873 | 0.3014 | | 0.2397 | 11.0 | 1793 | 0.7943 | 0.7872 | 0.3004 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.12.0.dev20220417 - Datasets 2.1.0 - Tokenizers 0.10.3
zafercavdar/distilbert-base-turkish-cased-emotion
d10ad71ee7fca4c4c3462c968a839a388542a859
2022-04-19T22:03:18.000Z
[ "pytorch", "distilbert", "text-classification", "tr", "dataset:emotion (Translated to Turkish)", "transformers", "emotion" ]
text-classification
false
zafercavdar
null
zafercavdar/distilbert-base-turkish-cased-emotion
14
2
transformers
9,939
--- language: - tr thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4 tags: - text-classification - emotion - pytorch datasets: - emotion (Translated to Turkish) metrics: - Accuracy, F1 Score --- # distilbert-base-turkish-cased-emotion ## Model description: [Distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) finetuned on the emotion dataset (Translated to Turkish via Google Translate API) using HuggingFace Trainer with below Hyperparameters ``` learning rate 2e-5, batch size 64, num_train_epochs=8, ``` ## Model Performance Comparision on Emotion Dataset from Twitter: | Model | Accuracy | F1 Score | Test Sample per Second | | --- | --- | --- | --- | | [Distilbert-base-turkish-cased-emotion](https://huggingface.co/zafercavdar/distilbert-base-turkish-cased-emotion) | 83.25 | 83.17 | 232.197 | ## How to Use the model: ```python from transformers import pipeline classifier = pipeline("text-classification", model='zafercavdar/distilbert-base-turkish-cased-emotion', return_all_scores=True) prediction = classifier("Bu kütüphaneyi seviyorum, en iyi yanı kolay kullanımı.", ) print(prediction) """ Output: [ [ {'label': 'sadness', 'score': 0.0026786490343511105}, {'label': 'joy', 'score': 0.6600754261016846}, {'label': 'love', 'score': 0.3203163146972656}, {'label': 'anger', 'score': 0.004358913749456406}, {'label': 'fear', 'score': 0.002354539930820465}, {'label': 'surprise', 'score': 0.010216088965535164} ] ] """ ``` ## Dataset: [Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion). ## Eval results ```json { 'eval_accuracy': 0.8325, 'eval_f1': 0.8317301441160213, 'eval_loss': 0.5021793842315674, 'eval_runtime': 8.6167, 'eval_samples_per_second': 232.108, 'eval_steps_per_second': 3.714 } ```
mwong/climatebert-base-f-fever-evidence-related
9dbf55fb72a17bb33566384e44dd32876e2228fa
2022-06-24T03:31:36.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:mwong/fever-evidence-related", "transformers", "text classification", "fact checking", "license:mit" ]
text-classification
false
mwong
null
mwong/climatebert-base-f-fever-evidence-related
14
1
transformers
9,940
--- language: en license: mit tags: - text classification - fact checking datasets: - mwong/fever-evidence-related widget: - text: "Earth’s changing climate is a critical issue and poses the risk of significant environmental, social and economic disruptions around the globe.</s></s>Because of fears of climate change and adverse effects of drilling explosions and oil spills in the Gulf of Mexico, legislation has been considered, and governmental regulations and orders have been issued, which, combined with the local economic and employment conditions caused by both, could materially adversely impact the oil and gas industries and the economic health of areas in which a significant number of our stores are located." example_title: "Evidence related to claim" metrics: f1 --- # FeverBert-related FeverBert-related is a classifier model that predicts if climate related evidence is related to query claim. The model achieved F1 score of 91.23% with test dataset "mwong/fever-evidence-related". Using pretrained ClimateBert-f model, the classifier head is trained on Fever dataset.
RajaRang/distilbert-base-uncased-finetuned-emotion
b4b63d9f2005928910132fb323f15f8b6b545b44
2022-04-21T14:43:14.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
RajaRang
null
RajaRang/distilbert-base-uncased-finetuned-emotion
14
null
transformers
9,941
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9251264359849074 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2183 - Accuracy: 0.925 - F1: 0.9251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8002 | 1.0 | 250 | 0.3094 | 0.9065 | 0.9038 | | 0.2409 | 2.0 | 500 | 0.2183 | 0.925 | 0.9251 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Sarim24/distilbert-base-uncased-finetuned-emotion
045e24c0fd3ba6e841e9e7ff371e3e99e09baf4d
2022-07-13T13:03:09.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Sarim24
null
Sarim24/distilbert-base-uncased-finetuned-emotion
14
1
transformers
9,942
mrm8488/convnext-tiny-finetuned-beans
66af9fdbba4365ace630be92b147e3bc9a2c5e8d
2022-04-25T13:32:06.000Z
[ "pytorch", "tensorboard", "convnext", "image-classification", "dataset:beans", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
mrm8488
null
mrm8488/convnext-tiny-finetuned-beans
14
1
transformers
9,943
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: convnext-tiny-finetuned-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9609375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-finetuned-beans This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1255 - Accuracy: 0.9609 ![pic](https://huggingface.co/proxy-datasets-preview/assets/beans/--/default/test/96/image/image.jpg) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 7171 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 37 | 0.6175 | 0.8828 | | No log | 2.0 | 74 | 0.2307 | 0.9609 | | 0.5237 | 3.0 | 111 | 0.1406 | 0.9531 | | 0.5237 | 4.0 | 148 | 0.1165 | 0.9688 | | 0.5237 | 5.0 | 185 | 0.1255 | 0.9609 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
UT/BRTW
83508ba3e76bdb08b6612f690ed701336858bb38
2022-04-25T17:24:05.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
UT
null
UT/BRTW
14
null
transformers
9,944
Entry not found
yihsuan/best_model_0426_small
3e9347373c4981807c9cff6a2de6816a1755bea2
2022-04-27T06:04:35.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "zh", "transformers", "summarization", "mT5", "autotrain_compatible" ]
summarization
false
yihsuan
null
yihsuan/best_model_0426_small
14
null
transformers
9,945
--- tags: - summarization - mT5 language: - zh widget: - text: "專家稱維康桑格研究所(Wellcome Sanger Institute)的上述研究發現「令人震驚」而且「發人深省」。基因變異指關於我們身體成長和管理的相關指令,也就是DNA當中發生的變化。長期以來,變異一直被當作癌症的根源,但是數十年來關於變異是否對衰老有重要影響一直存在爭論。桑格研究所的研究人員說他們得到了「第一個試驗性證據」,證明了兩者的關係。他們分析了預期壽命各異的物種基因變異的不同速度。研究人員分析了貓、黑白疣猴、狗、雪貂、長頸鹿、馬、人、獅子、裸鼴鼠、兔子、老鼠、環尾狐猴和老虎等十幾種動物的DNA。發表在《自然》雜誌上的研究顯示,老鼠在短暫的生命當中每年經歷了將近800次變異,老鼠的壽命一般不到4年。" ---
dmjimenezbravo/electricidad-small-finetuned-restaurant-sentiment-analysis-usElectionTweets1Jul11Nov-spanish
f4d475bae8125d2d4d38b0e72b4df972f9a1f9f2
2022-04-27T17:01:40.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
dmjimenezbravo
null
dmjimenezbravo/electricidad-small-finetuned-restaurant-sentiment-analysis-usElectionTweets1Jul11Nov-spanish
14
null
transformers
9,946
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: electricidad-small-finetuned-restaurant-sentiment-analysis-usElectionTweets1Jul11Nov-spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electricidad-small-finetuned-restaurant-sentiment-analysis-usElectionTweets1Jul11Nov-spanish This model is a fine-tuned version of [mrm8488/electricidad-small-finetuned-restaurant-sentiment-analysis](https://huggingface.co/mrm8488/electricidad-small-finetuned-restaurant-sentiment-analysis) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3534 - Accuracy: 0.7585 - F1: 0.7585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.8145 | 1.0 | 1222 | 0.7033 | 0.7168 | 0.7168 | | 0.7016 | 2.0 | 2444 | 0.5936 | 0.7731 | 0.7731 | | 0.6183 | 3.0 | 3666 | 0.5190 | 0.8046 | 0.8046 | | 0.5516 | 4.0 | 4888 | 0.4678 | 0.8301 | 0.8301 | | 0.4885 | 5.0 | 6110 | 0.3670 | 0.8713 | 0.8713 | | 0.4353 | 6.0 | 7332 | 0.3119 | 0.8987 | 0.8987 | | 0.3957 | 7.0 | 8554 | 0.2908 | 0.9084 | 0.9084 | | 0.3386 | 8.0 | 9776 | 0.2108 | 0.9348 | 0.9348 | | 0.2976 | 9.0 | 10998 | 0.1912 | 0.9422 | 0.9422 | | 0.2828 | 10.0 | 12220 | 0.1496 | 0.9591 | 0.9591 | | 0.243 | 11.0 | 13442 | 0.1326 | 0.9639 | 0.9639 | | 0.2049 | 12.0 | 14664 | 0.1249 | 0.9693 | 0.9693 | | 0.2041 | 13.0 | 15886 | 0.1049 | 0.9752 | 0.9752 | | 0.1855 | 14.0 | 17108 | 0.0816 | 0.9798 | 0.9798 | | 0.1637 | 15.0 | 18330 | 0.0733 | 0.9836 | 0.9836 | | 0.1531 | 16.0 | 19552 | 0.0577 | 0.9880 | 0.9880 | | 0.1221 | 17.0 | 20774 | 0.0581 | 0.9895 | 0.9895 | | 0.1207 | 18.0 | 21996 | 0.0463 | 0.9903 | 0.9903 | | 0.1152 | 19.0 | 23218 | 0.0472 | 0.9908 | 0.9908 | | 0.1028 | 20.0 | 24440 | 0.0356 | 0.9936 | 0.9936 | | 0.1027 | 21.0 | 25662 | 0.0278 | 0.9957 | 0.9957 | | 0.0915 | 22.0 | 26884 | 0.0344 | 0.9946 | 0.9946 | | 0.0887 | 23.0 | 28106 | 0.0243 | 0.9954 | 0.9954 | | 0.0713 | 24.0 | 29328 | 0.0208 | 0.9969 | 0.9969 | | 0.0749 | 25.0 | 30550 | 0.0198 | 0.9964 | 0.9964 | | 0.0699 | 26.0 | 31772 | 0.0153 | 0.9969 | 0.9969 | | 0.0567 | 27.0 | 32994 | 0.0144 | 0.9972 | 0.9972 | | 0.0613 | 28.0 | 34216 | 0.0105 | 0.9982 | 0.9982 | | 0.0567 | 29.0 | 35438 | 0.0117 | 0.9982 | 0.9982 | | 0.0483 | 30.0 | 36660 | 0.0072 | 0.9985 | 0.9985 | | 0.0469 | 31.0 | 37882 | 0.0063 | 0.9987 | 0.9987 | | 0.0485 | 32.0 | 39104 | 0.0067 | 0.9985 | 0.9985 | | 0.0464 | 33.0 | 40326 | 0.0020 | 0.9995 | 0.9995 | | 0.0472 | 34.0 | 41548 | 0.0036 | 0.9995 | 0.9995 | | 0.0388 | 35.0 | 42770 | 0.0016 | 0.9995 | 0.9995 | | 0.0248 | 36.0 | 43992 | 0.0047 | 0.9990 | 0.9990 | | 0.0396 | 37.0 | 45214 | 0.0004 | 0.9997 | 0.9997 | | 0.0331 | 38.0 | 46436 | 0.0020 | 0.9995 | 0.9995 | | 0.0292 | 39.0 | 47658 | 0.0000 | 1.0 | 1.0 | | 0.0253 | 40.0 | 48880 | 0.0001 | 1.0 | 1.0 | | 0.0285 | 41.0 | 50102 | 0.0000 | 1.0 | 1.0 | | 0.0319 | 42.0 | 51324 | 0.0000 | 1.0 | 1.0 | | 0.0244 | 43.0 | 52546 | 0.0000 | 1.0 | 1.0 | | 0.0261 | 44.0 | 53768 | 0.0001 | 1.0 | 1.0 | | 0.0256 | 45.0 | 54990 | 0.0000 | 1.0 | 1.0 | | 0.0258 | 46.0 | 56212 | 0.0000 | 1.0 | 1.0 | | 0.0173 | 47.0 | 57434 | 0.0000 | 1.0 | 1.0 | | 0.0253 | 48.0 | 58656 | 0.0000 | 1.0 | 1.0 | | 0.0241 | 49.0 | 59878 | 0.0000 | 1.0 | 1.0 | | 0.019 | 50.0 | 61100 | 0.0000 | 1.0 | 1.0 | | 0.0184 | 51.0 | 62322 | 0.0000 | 1.0 | 1.0 | | 0.0139 | 52.0 | 63544 | 0.0000 | 1.0 | 1.0 | | 0.0159 | 53.0 | 64766 | 0.0000 | 1.0 | 1.0 | | 0.0119 | 54.0 | 65988 | 0.0000 | 1.0 | 1.0 | | 0.0253 | 55.0 | 67210 | 0.0000 | 1.0 | 1.0 | | 0.0166 | 56.0 | 68432 | 0.0000 | 1.0 | 1.0 | | 0.0125 | 57.0 | 69654 | 0.0000 | 1.0 | 1.0 | | 0.0155 | 58.0 | 70876 | 0.0000 | 1.0 | 1.0 | | 0.0106 | 59.0 | 72098 | 0.0000 | 1.0 | 1.0 | | 0.0083 | 60.0 | 73320 | 0.0000 | 1.0 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
BigSalmon/Concise
a2dfe50d64305ef9c5e596fa4137202c47fce0dd
2022-05-01T01:33:50.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
BigSalmon
null
BigSalmon/Concise
14
null
transformers
9,947
how to start prompt: ``` wordy: ``` example: ``` wordy: the ndp has turned into the country's darling of the young. ``` output: ``` the ndp is youth-driven. ```
patrickvonplaten/wav2vec2-conformer-rope-large-960h-ft-4-gram
b285424449c311a867bb87d57645c8d58a527149
2022-05-24T11:10:41.000Z
[ "pytorch", "wav2vec2-conformer", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "transformers", "speech", "audio", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-conformer-rope-large-960h-ft-4-gram
14
null
transformers
9,948
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-conformer-rope-large-960h-ft-4-gram results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 1.88 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 3.57 --- # Wav2Vec2-Conformer-Large-960h with Rotary Position Embeddings + 4-gram This model is identical to [Facebook's wav2vec2-conformer-rope-large-960h-ft](https://huggingface.co/facebook/wav2vec2-conformer-rope-large-960h-ft), but is augmented with an English 4-gram. The `4-gram.arpa.gz` of [Librispeech's official ngrams](https://www.openslr.org/11) is used. ## Evaluation This code snippet shows how to evaluate **patrickvonplaten/wav2vec2-conformer-rope-large-960h-ft-4-gram** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torch from jiwer import wer model_id = "patrickvonplaten/wav2vec2-conformer-rope-large-960h-ft-4-gram" librispeech_eval = load_dataset("librispeech_asr", "other", split="test") model = AutoModelForCTC.from_pretrained(model_id).to("cuda") processor = AutoProcessor.from_pretrained(model_id) def map_to_pred(batch): inputs = processor(batch["audio"]["array"], sampling_rate=16_000, return_tensors="pt") inputs = {k: v.to("cuda") for k,v in inputs.items()} with torch.no_grad(): logits = model(**inputs).logits transcription = processor.batch_decode(logits.cpu().numpy()).text[0] batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, remove_columns=["audio"]) print(wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 1.88 | 3.57 |
nloc2578/pegasus-question-generator
cdca805f3ef6323f09db4ad4b19a2c5a5f363f67
2022-05-02T15:09:37.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
nloc2578
null
nloc2578/pegasus-question-generator
14
null
transformers
9,949
--- tags: - generated_from_trainer model-index: - name: pegasus-question-generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-question-generator This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.161 | 0.5 | 4000 | 2.0183 | | 1.9513 | 1.0 | 8000 | 1.8741 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
enimai/mbart-large-50-paraphrase-finetuned-for-de
9f477e27191e453e4e04454925fce94f8c6670e3
2022-05-03T16:53:49.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
enimai
null
enimai/mbart-large-50-paraphrase-finetuned-for-de
14
null
transformers
9,950
--- license: apache-2.0 ---
svalabs/twitter-xlm-roberta-crypto-spam
101aee11e6fce970064619ac728a0ad759acbe7c
2022-05-04T13:47:31.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
svalabs
null
svalabs/twitter-xlm-roberta-crypto-spam
14
null
transformers
9,951
Entry not found
CarlCochet/trajectory-transformer-hopper-medium-expert-v2
81424ac7fe308cef789534a7987fd4c2efe681a7
2022-05-12T17:04:17.000Z
[ "pytorch", "trajectory_transformer", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
CarlCochet
null
CarlCochet/trajectory-transformer-hopper-medium-expert-v2
14
null
transformers
9,952
--- license: mit ---
airi/bert-finetuned-ner
d9a98ad8fd36df5e4e7bc07d52319eb7c5fcb90d
2022-05-08T08:59:35.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
airi
null
airi/bert-finetuned-ner
14
null
transformers
9,953
--- tags: - generated_from_trainer model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [Davlan/bert-base-multilingual-cased-ner-hrl](https://huggingface.co/Davlan/bert-base-multilingual-cased-ner-hrl) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 87 | 0.0594 | 0.7613 | 0.8779 | 0.8154 | 0.9873 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Jiexing/spider_relation_t5_3b-3392
904314792e4bdc0ba6149ae30c719e149339cb2e
2022-05-08T04:04:57.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Jiexing
null
Jiexing/spider_relation_t5_3b-3392
14
null
transformers
9,954
Entry not found
Jeevesh8/bert_ft_qqp-5
cf32fe6192160ff900765602e6d152c71ef88afe
2022-05-09T09:42:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-5
14
null
transformers
9,955
Entry not found
peter2000/roberta-base-finetuned-osdg
36863192d713fc744c592267badb4ecdaf71e726
2022-05-12T15:58:50.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
peter2000
null
peter2000/roberta-base-finetuned-osdg
14
null
transformers
9,956
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-osdg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-osdg This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.8286 - eval_Acc: 0.7746 - eval_runtime: 27.6597 - eval_samples_per_second: 116.126 - eval_steps_per_second: 3.652 - epoch: 1.0 - step: 904 ## Model description The model is trained on the data from OSDG (https://osdg.ai/) More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
uaritm/df_lik_n_mg_221
7f9e49cf776e679c026cac2aca76d8317e6b2c22
2022-05-09T18:37:49.000Z
[ "pytorch", "t5", "text2text-generation", "ru", "uk", "transformers", "russian", "ukrainian", "license:mit", "autotrain_compatible" ]
text2text-generation
false
uaritm
null
uaritm/df_lik_n_mg_221
14
null
transformers
9,957
--- language: ["ru", "uk"] tags: - russian - ukrainian license: mit --- # A little about the model The model is trained to answer questions about health topics (Open-book question answering-comprehend). cointegrated/rut5-base-multitask For training, a compact T5 model was used: cointegrated/rut5-base-multitask The training was conducted on a small set out of 220 thousand pairs of question-answer sentences, so it still does not work as correctly as we would like. The model is not a medical application and it is strongly discouraged to use the model for medical purposes!
eslamxm/mt5-base-finetuned-urdu
533d98cdd18b22febc73192a11289c87bd79e7fe
2022-06-14T18:12:44.000Z
[ "pytorch", "mt5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "urdu", "ur", "Abstractive Summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/mt5-base-finetuned-urdu
14
null
transformers
9,958
--- license: apache-2.0 tags: - summarization - urdu - ur - mt5 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetuned-urdu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-urdu This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on Urdu subset the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.8954 - Rouge-1: 28.84 - Rouge-2: 13.87 - Rouge-l: 25.63 - Gen Len: 19.0 - Bertscore: 71.31 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 3.6205 | 1.0 | 2114 | 3.0871 | 26.45 | 11.4 | 23.26 | 19.0 | 70.76 | | 3.2169 | 2.0 | 4228 | 2.9830 | 27.19 | 11.91 | 23.95 | 19.0 | 70.92 | | 3.0787 | 3.0 | 6342 | 2.9284 | 27.9 | 12.57 | 24.62 | 18.99 | 71.13 | | 2.9874 | 4.0 | 8456 | 2.9049 | 28.28 | 12.91 | 24.99 | 18.99 | 71.28 | | 2.9232 | 5.0 | 10570 | 2.8954 | 28.65 | 13.17 | 25.32 | 18.99 | 71.39 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
CEBaB/bert-base-uncased.CEBaB.sa.3-class.exclusive.seed_77
ac500cd5e07cb38da8f2cd805c74931314516d74
2022-05-11T01:22:57.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.sa.3-class.exclusive.seed_77
14
null
transformers
9,959
Entry not found
ncfrey/ChemGPT-19M
08876002a3a2e6f47cc454ba4153c6cffb6dd206
2022-06-15T15:19:57.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers", "chemistry" ]
text-generation
false
ncfrey
null
ncfrey/ChemGPT-19M
14
null
transformers
9,960
--- tags: - chemistry --- # ChemGPT 19M ChemGPT is based on the GPT-Neo model and was introduced in the paper [Neural Scaling of Deep Chemical Models](https://chemrxiv.org/engage/chemrxiv/article-details/627bddd544bdd532395fb4b5). ## Model description ChemGPT is a transformers model for generative molecular modeling, which was pretrained on the PubChem10M dataset. ## Intended uses & limitations ### How to use You can use this model directly from the 🤗/transformers library. ### Limitations and bias This model was trained on a subset of molecules from PubChem. You can use this model to generate molecules, but it is mostly intended to be used for investigations of the effects of pre-training and fine-tuning on downstream datasets. ## Training data PubChem10M, a dataset of SMILES strings from PubChem, available via [DeepChem](https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/pubchem_10m.txt.zip). ## Training procedure ### Preprocessing SMILES strings were converted to SELFIES using version 1.0.4 of the SELFIES library. ### Pretraining See code in the [LitMatter repository](https://github.com/ncfrey/litmatter/blob/main/lit_models/lit_chemgpt.py). ### BibTeX entry and citation info ``` @article{frey_soklaski_axelrod_samsi_gomez-bombarelli_coley_gadepally_2022, place={Cambridge}, title={Neural Scaling of Deep Chemical Models}, DOI={10.26434/chemrxiv-2022-3s512}, journal={ChemRxiv}, publisher={Cambridge Open Engage}, author={Frey, Nathan and Soklaski, Ryan and Axelrod, Simon and Samsi, Siddharth and Gomez-Bombarelli, Rafael and Coley, Connor and Gadepally, Vijay}, year={2022}} This content is a preprint and has not been peer-reviewed. ``` ``` Frey, Nathan, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. "Neural Scaling of Deep Chemical Models." ChemRxiv (2022). Print. This content is a preprint and has not been peer-reviewed. ```
beltran/finetuning-sentiment-model-3000-samples
79d04ba49ea0e08c173e6f6c21ec693cb0c3ef95
2022-05-13T10:29:10.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
beltran
null
beltran/finetuning-sentiment-model-3000-samples
14
null
transformers
9,961
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8566666666666667 - name: F1 type: f1 value: 0.8571428571428571 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3185 - Accuracy: 0.8567 - F1: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
edwardgowsmith/roberta-base-unigram-prime
dce8af31825cf0e44c8e8fb69b976b4e38acb718
2022-05-13T12:31:41.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
edwardgowsmith
null
edwardgowsmith/roberta-base-unigram-prime
14
null
transformers
9,962
Entry not found
buehlpa/bert-finetuned-ner
26bb02495e29b23b169d080feac9355cb8f0cf2f
2022-05-14T11:06:59.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
buehlpa
null
buehlpa/bert-finetuned-ner
14
null
transformers
9,963
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9308580858085809 - name: Recall type: recall value: 0.9493436553349041 - name: F1 type: f1 value: 0.9400099983336112 - name: Accuracy type: accuracy value: 0.9862541943839407 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 - Precision: 0.9309 - Recall: 0.9493 - F1: 0.9400 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0855 | 1.0 | 1756 | 0.0632 | 0.9191 | 0.9386 | 0.9287 | 0.9832 | | 0.0414 | 2.0 | 3512 | 0.0572 | 0.9264 | 0.9475 | 0.9368 | 0.9855 | | 0.0198 | 3.0 | 5268 | 0.0607 | 0.9309 | 0.9493 | 0.9400 | 0.9863 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
reallycarlaost/emobert-valence-5
160420ad23055846e681c23c5993467400e342f7
2022-05-14T17:18:33.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
reallycarlaost
null
reallycarlaost/emobert-valence-5
14
null
transformers
9,964
Entry not found
Tititun/consumer_super
ed4d3071ffc7b1e3068970eebd6f01c395c2cd8c
2022-05-16T04:46:12.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Tititun
null
Tititun/consumer_super
14
null
transformers
9,965
--- license: mit tags: - generated_from_trainer model-index: - name: consumer_super results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # consumer_super This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
MrBananaHuman/prompt_gpt2
8216283d4d6c768a60964e1371d2f2865aa4d5fb
2022-05-17T12:25:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
MrBananaHuman
null
MrBananaHuman/prompt_gpt2
14
null
transformers
9,966
Entry not found
charsiu/g2p_multilingual_byT5_tiny_16_layers
4f069a19c28b65f9caea87d2aa8b3869742f0a26
2022-05-19T05:02:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
charsiu
null
charsiu/g2p_multilingual_byT5_tiny_16_layers
14
null
transformers
9,967
Entry not found
MrVicente/bart_qa_assistant
5e454d81c6e3659aafc9b64bade437d6be63ce7f
2022-05-24T18:40:43.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:eli5", "dataset:stackexchange(pets, cooking, gardening, diy, crafts)", "transformers", "generative qa", "autotrain_compatible" ]
text2text-generation
false
MrVicente
null
MrVicente/bart_qa_assistant
14
null
transformers
9,968
--- language: en tags: - generative qa datasets: - eli5 - stackexchange(pets, cooking, gardening, diy, crafts) --- Work by [Frederico Vicente](https://huggingface.co/mrvicente) & [Diogo Tavares](https://huggingface.co/d-c-t). We finetuned BART Large for the task of generative question answering. It was trained on eli5, askScience and stackexchange using the following forums: pets, cooking, gardening, diy, crafts. Check demo: https://huggingface.co/spaces/unlisboa/bart_qa_assistant ### Usage ```python from transformers import ( BartForConditionalGeneration, BartTokenizer ) import torch import json def read_json_file_2_dict(filename, store_dir='.'): with open(f'{store_dir}/{filename}', 'r', encoding='utf-8') as file: return json.load(file) def get_device(): # If there's a GPU available... if torch.cuda.is_available(): device = torch.device("cuda") n_gpus = torch.cuda.device_count() first_gpu = torch.cuda.get_device_name(0) print(f'There are {n_gpus} GPU(s) available.') print(f'GPU gonna be used: {first_gpu}') else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") return device model_name = 'unlisboa/bart_qa_assistant' tokenizer = BartTokenizer.from_pretrained(model_name) device = get_device() model = BartForConditionalGeneration.from_pretrained(model_name).to(device) model.eval() model_input = tokenizer(question, truncation=True, padding=True, return_tensors="pt") generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device),attention_mask=model_input["attention_mask"].to(device), force_words_ids=None, min_length=1, max_length=100, do_sample=True, early_stopping=True, num_beams=4, temperature=1.0, top_k=None, top_p=None, # eos_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=2, num_return_sequences=1, return_dict_in_generate=True, output_scores=True) response = tokenizer.batch_decode(generated_answers_encoded['sequences'], skip_special_tokens=True,clean_up_tokenization_spaces=True) print(response) ``` Have fun!
aiola/roberta-large-corener
2c46b4e538608a6e7246e0ad1e70d3da1f069022
2022-07-03T14:16:17.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:Ontonotes", "dataset:CoNLL04", "transformers", "NER", "named entity recognition", "RE", "relation extraction", "entity mention detection", "EMD", "coreference resolution", "license:afl-3.0", "autotrain_compatible" ]
fill-mask
false
aiola
null
aiola/roberta-large-corener
14
null
transformers
9,969
--- language: - en tags: - NER - named entity recognition - RE - relation extraction - entity mention detection - EMD - coreference resolution license: afl-3.0 datasets: - Ontonotes - CoNLL04 --- # CoReNer ## Demo We released an online demo so you can easily play with the model. Check it out: [http://corener-demo.aiola-lab.com](http://corener-demo.aiola-lab.com). The demo uses the [aiola/roberta-base-corener](https://huggingface.co/aiola/roberta-base-corener) model. ## Model description A multi-task model for named-entity recognition, relation extraction, entity mention detection, and coreference resolution. We model NER as a span classification task and relation extraction as a multi-label classification of (NER) span tuples. Similarly, model EMD as a span classification task and CR as a binary classification of (EMD) span tuples. To construct the CR clusters, we keep the top antecedent of each mention, then compute the connected components of the mentions' undirected graph. The model was trained to recognize: - Entity types: GPE, ORG, PERSON, DATE, NORP, CARDINAL, MONEY, PERCENT, WORK_OF_ART, ORDINAL, EVENT, LOC, TIME, FAC, QUANTITY, LAW, PRODUCT, LANGUAGE. - Relation types: Kill, Live_In, Located_In, OrgBased_In, Work_For. ## Usage example See additional details and usage examples at: https://github.com/aiola-lab/corener. ```python import json from transformers import AutoTokenizer from corener.models import Corener, ModelOutput from corener.data import MTLDataset from corener.utils.prediction import convert_model_output tokenizer = AutoTokenizer.from_pretrained("aiola/roberta-large-corener") model = Corener.from_pretrained("aiola/roberta-large-corener") model.eval() examples = [ "Apple Park is the corporate headquarters of Apple Inc., located in Cupertino, California, United States. It was opened to employees in April 2017, while construction was still underway, and superseded the original headquarters at 1 Infinite Loop, which opened in 1993." ] dataset = MTLDataset( types=model.config.types, tokenizer=tokenizer, train_mode=False, ) dataset.read_dataset(examples) example = dataset.get_example(0) # get first example output: ModelOutput = model( input_ids=example.encodings, context_masks=example.context_masks, entity_masks=example.entity_masks, entity_sizes=example.entity_sizes, entity_spans=example.entity_spans, entity_sample_masks=example.entity_sample_masks, inference=True, ) print(json.dumps(convert_model_output(output=output, batch=example, dataset=dataset), indent=2)) ```
Andyrasika/distilbert-base-uncased-finetuned-emotion
56e71813e2cc36c55060cf8d4f48ea8ea6937b6a
2022-05-27T16:20:09.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Andyrasika
null
Andyrasika/distilbert-base-uncased-finetuned-emotion
14
1
transformers
9,970
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9175 - name: F1 type: f1 value: 0.917868093658934 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2301 - Accuracy: 0.9175 - F1: 0.9179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8386 | 1.0 | 250 | 0.3275 | 0.904 | 0.9011 | | 0.2572 | 2.0 | 500 | 0.2301 | 0.9175 | 0.9179 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
reemalyami/AraRoBERTa_Poem_classification
26e33b8ca0e2307b612d3125e91c94757a97e3d6
2022-05-29T21:00:22.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
reemalyami
null
reemalyami/AraRoBERTa_Poem_classification
14
null
transformers
9,971
Entry not found
shafin/distilbert-base-uncased-finetuned-cust-similarity-2
46e79ba2e1ba26576317dbd8d31f8f492a4e5e38
2022-05-29T12:12:09.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
shafin
null
shafin/distilbert-base-uncased-finetuned-cust-similarity-2
14
1
sentence-transformers
9,972
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # shafin/distilbert-base-uncased-finetuned-cust-similarity-2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('shafin/distilbert-base-uncased-finetuned-cust-similarity-2') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=shafin/distilbert-base-uncased-finetuned-cust-similarity-2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4375 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (3): Dense({'in_features': 256, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
PrimeQA/t5-base-table-question-generator
3e90424ecfb46ee16447a4addda0808c2c2c130a
2022-06-29T13:20:57.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
PrimeQA
null
PrimeQA/t5-base-table-question-generator
14
null
transformers
9,973
--- license: apache-2.0 --- # Model description This is an [t5-base](https://huggingface.co/t5-base) model, finetuned to generate questions given a table using [WikiSQL](https://huggingface.co/datasets/wikisql) dataset. It was trained to take the SQL, answer and column header of a table as input to generate questions. For more information check our T3QA [paper](https://aclanthology.org/2021.emnlp-main.342/) from EMNLP 2021. # Overview *Language model*: t5-base \ *Language*: English \ *Task*: Table Question Generation \ *Data*: WikiSQL # Intented use and limitations One can use this model to generate questions given a table. Biases associated with pre-training of T5 and WikiSQL dataset may be present. ## Usage One can use this model directly in the [PrimeQA](https://github.com/primeqa/primeqa) framework as in this example [notebook](https://github.com/primeqa/primeqa/blob/tableqg/notebooks/qg/tableqg_inference.ipynb). ## Citation ```bibtex @inproceedings{chemmengath2021topic, title={Topic Transferable Table Question Answering}, author={Chemmengath, Saneem and Kumar, Vishwajeet and Bharadwaj, Samarth and Sen, Jaydeep and Canim, Mustafa and Chakrabarti, Soumen and Gliozzo, Alfio and Sankaranarayanan, Karthik}, booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, pages={4159--4172}, year={2021} } ```
Cole/distilbert-base-uncased-finetuned-emotion
4e25c8b6380612d6786807fbd41a834d7be3a2f7
2022-07-26T16:51:59.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Cole
null
Cole/distilbert-base-uncased-finetuned-emotion
14
null
transformers
9,974
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9274111800508488 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2148 - Accuracy: 0.9275 - F1: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8308 | 1.0 | 250 | 0.3053 | 0.9075 | 0.9053 | | 0.2421 | 2.0 | 500 | 0.2148 | 0.9275 | 0.9274 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
arrandi/distilbert-base-uncased-finetuned-emotion
4d6ed1093496c2ccd9c8b34e54fb2c2d8b9fbe70
2022-05-31T15:20:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
arrandi
null
arrandi/distilbert-base-uncased-finetuned-emotion
14
null
transformers
9,975
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.934 - name: F1 type: f1 value: 0.9341704717427723 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1652 - Accuracy: 0.934 - F1: 0.9342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2606 | 1.0 | 250 | 0.1780 | 0.9285 | 0.9284 | | 0.1486 | 2.0 | 500 | 0.1652 | 0.934 | 0.9342 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
caldana/distilbert-base-uncased-finetuned-emotion
d218b2bb15f2de4f6b6f3f7a6814f4d9a8f1c58c
2022-05-31T23:07:12.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
caldana
null
caldana/distilbert-base-uncased-finetuned-emotion
14
null
transformers
9,976
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.927055679622598 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2236 - Accuracy: 0.927 - F1: 0.9271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8251 | 1.0 | 250 | 0.3264 | 0.9015 | 0.8981 | | 0.2534 | 2.0 | 500 | 0.2236 | 0.927 | 0.9271 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
KM4STfulltext/SSCI-SciBERT-e4
2f2970495c81d40d07513154fe54319f0df8f9b4
2022-06-01T09:25:24.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
KM4STfulltext
null
KM4STfulltext/SSCI-SciBERT-e4
14
1
transformers
9,977
--- license: apache-2.0 --- # SSCI-BERT: A pretrained language model for social scientific text ## Introduction The research for social science texts needs the support natural language processing tools. The pre-trained language model has greatly improved the accuracy of text mining in general texts. At present, there is an urgent need for a pre-trained language model specifically for the automatic processing of scientific texts in social science. We used the abstract of social science research as the training set. Based on the deep language model framework of BERT, we constructed [SSCI-BERT and SSCI-SciBERT](https://github.com/S-T-Full-Text-Knowledge-Mining/SSCI-BERT) pre-training language models by [transformers/run_mlm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py). We designed four downstream tasks of Text Classification on different social scientific article corpus to verify the performance of the model. - SSCI-BERT and SSCI-SciBERT are trained on the abstract of articles published in SSCI journals from 1986 to 2021. The training set involved in the experiment included a total of `503910614 words`. - Based on the idea of Domain-Adaptive Pretraining, `SSCI-BERT` and `SSCI-SciBERT` combine a large amount of abstracts of scientific articles based on the BERT structure, and continue to train the BERT and SSCI-SciBERT models respectively to obtain pre-training models for the automatic processing of Social science research texts. ## News - 2022-03-24 : SSCIBERT and SSCI-SciBERT has been put forward for the first time. ## How to use ### Huggingface Transformers The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain SSCI-BERT and SSCI-SciBERT models online. - SSCI-BERT ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/SSCI-BERT-e2") model = AutoModel.from_pretrained("KM4STfulltext/SSCI-BERT-e2") ``` - SSCI-SciBERT ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/SSCI-SciBERT-e2") model = AutoModel.from_pretrained("KM4STfulltext/SSCI-SciBERT-e2") ``` ### Download Models - The version of the model we provide is `PyTorch`. ### From Huggingface - Download directly through Huggingface's official website. - [KM4STfulltext/SSCI-BERT-e2](https://huggingface.co/KM4STfulltext/SSCI-BERT-e2) - [KM4STfulltext/SSCI-SciBERT-e2](https://huggingface.co/KM4STfulltext/SSCI-SciBERT-e2) - [KM4STfulltext/SSCI-BERT-e4 ](https://huggingface.co/KM4STfulltext/SSCI-BERT-e4) - [KM4STfulltext/SSCI-SciBERT-e4](https://huggingface.co/KM4STfulltext/SSCI-SciBERT-e4) ### From Google Drive We have put the model on Google Drive for users. | Model | DATASET(year) | Base Model | | ------------------------------------------------------------ | ------------- | ---------------------- | | [SSCI-BERT-e2](https://drive.google.com/drive/folders/1xEDnovlwGO2JxqCaf3rdjS2cB6DOxhj4?usp=sharing) | 1986-2021 | Bert-base-cased | | [SSCI-SciBERT-e2](https://drive.google.com/drive/folders/16DtIvnHvbrR_92MwgthRRsULW6An9te1?usp=sharing) (recommended) | 1986-2021 | Scibert-scivocab-cased | | [SSCI-BERT-e4](https://drive.google.com/drive/folders/1sr6Av8p904Jrjps37g7E8aj4HnAHXSxW?usp=sharing) | 1986-2021 | Bert-base-cased | | [SSCI-SciBERT-e4](https://drive.google.com/drive/folders/1ty-b4TIFu8FbilgC4VcI7Bgn_O5MDMVe?usp=sharing) | 1986-2021 | Scibert-scivocab-cased | ## Evaluation & Results - We use SSCI-BERT and SSCI-SciBERT to perform Text Classificationon different social science research corpus. The experimental results are as follows. Relevant data sets are available for download in the **Verification task datasets** folder of this project. #### JCR Title Classify Dataset | Model | accuracy | macro avg | weighted avg | | ---------------------- | -------- | --------- | ------------ | | Bert-base-cased | 28.43 | 22.06 | 21.86 | | Scibert-scivocab-cased | 38.48 | 33.89 | 33.92 | | SSCI-BERT-e2 | 40.43 | 35.37 | 35.33 | | SSCI-SciBERT-e2 | 41.35 | 37.27 | 37.25 | | SSCI-BERT-e4 | 40.65 | 35.49 | 35.40 | | SSCI-SciBERT-e4 | 41.13 | 36.96 | 36.94 | | Support | 2300 | 2300 | 2300 | #### JCR Abstract Classify Dataset | Model | accuracy | macro avg | weighted avg | | ---------------------- | -------- | --------- | ------------ | | Bert-base-cased | 48.59 | 42.8 | 42.82 | | Scibert-scivocab-cased | 55.59 | 51.4 | 51.81 | | SSCI-BERT-e2 | 58.05 | 53.31 | 53.73 | | SSCI-SciBERT-e2 | 59.95 | 56.51 | 57.12 | | SSCI-BERT-e4 | 59.00 | 54.97 | 55.59 | | SSCI-SciBERT-e4 | 60.00 | 56.38 | 56.90 | | Support | 2200 | 2200 | 2200 | #### JCR Mixed Titles and Abstracts Dataset | **Model** | **accuracy** | **macro avg** | **weighted avg** | | ---------------------- | ------------ | -------------- | ----------------- | | Bert-base-cased | 58.24 | 57.27 | 57.25 | | Scibert-scivocab-cased | 59.58 | 58.65 | 58.68 | | SSCI-BERT-e2 | 60.89 | 60.24 | 60.30 | | SSCI-SciBERT-e2 | 60.96 | 60.54 | 60.51 | | SSCI-BERT-e4 | 61.00 | 60.48 | 60.43 | | SSCI-SciBERT-e4 | 61.24 | 60.71 | 60.75 | | Support | 4500 | 4500 | 4500 | #### SSCI Abstract Structural Function Recognition (Classify Dataset) | | Bert-base-cased | SSCI-BERT-e2 | SSCI-BERT-e4 | support | | ------------ | -------------------------- | ------------------- | ------------------- | ----------- | | B | 63.77 | 64.29 | 64.63 | 224 | | P | 53.66 | 57.14 | 57.99 | 95 | | M | 87.63 | 88.43 | 89.06 | 323 | | R | 86.81 | 88.28 | **88.47** | 419 | | C | 78.32 | 79.82 | 78.95 | 316 | | accuracy | 79.59 | 80.9 | 80.97 | 1377 | | macro avg | 74.04 | 75.59 | 75.82 | 1377 | | weighted avg | 79.02 | 80.32 | 80.44 | 1377 | | | **Scibert-scivocab-cased** | **SSCI-SciBERT-e2** | **SSCI-SciBERT-e4** | **support** | | B | 69.98 | **70.95** | **70.95** | 224 | | P | 58.89 | **60.12** | 58.96 | 95 | | M | 89.37 | **90.12** | 88.11 | 323 | | R | 87.66 | 88.07 | 87.44 | 419 | | C | 80.7 | 82.61 | **82.94** | 316 | | accuracy | 81.63 | **82.72** | 82.06 | 1377 | | macro avg | 77.32 | **78.37** | 77.68 | 1377 | | weighted avg | 81.6 | **82.58** | 81.92 | 1377 | ## Cited - If our content is helpful for your research work, please quote our research in your article. - If you want to quote our research, you can use this url (https://github.com/S-T-Full-Text-Knowledge-Mining/SSCI-BERT) as an alternative before our paper is published. ## Disclaimer - The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to random number seeds and computing equipment. - **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.** ## Acknowledgment - SSCI-BERT was trained based on [BERT-Base-Cased]([google-research/bert: TensorFlow code and pre-trained models for BERT (github.com)](https://github.com/google-research/bert)). - SSCI-SciBERT was trained based on [scibert-scivocab-cased]([allenai/scibert: A BERT model for scientific text. (github.com)](https://github.com/allenai/scibert))
MadFace/t5-cnn
0214db82331d763598634e9d5144e9c4814ebcb4
2022-06-05T06:11:02.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
MadFace
null
MadFace/t5-cnn
14
null
transformers
9,978
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-cnn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-cnn This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4562 - Rouge1: 25.1836 - Rouge2: 12.0806 - Rougel: 20.818 - Rougelsum: 23.6868 - Gen Len: 18.9986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:------:|:---------:|:-------:| | 1.4286 | 1.0 | 50000 | 1.4562 | 25.1836 | 12.0806 | 20.818 | 23.6868 | 18.9986 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RUCAIBox/mtl-open-dialog
f1cb197098502d76475494fccc335ce303789356
2022-06-27T02:27:15.000Z
[ "pytorch", "mvp", "en", "arxiv:2206.12131", "transformers", "text-generation", "text2text-generation", "conversational", "license:apache-2.0" ]
text2text-generation
false
RUCAIBox
null
RUCAIBox/mtl-open-dialog
14
null
transformers
9,979
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - conversational pipeline_tag: text2text-generation widget: - text: "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?" example_title: "Example1" - text: "Given the dialog: i used to scare for darkness [X_SEP] it feels like hitting to blank wall when i see the darkness [SEP] Oh ya? I don't really see how [SEP] dont you feel so.. its a wonder [SEP] I do actually hit blank walls a lot of times but i get by" example_title: "Example2" --- # MTL-open-dialog The MTL-open-dialog model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-open-dialog is supervised pre-trained using a mixture of labeled open dialogue system datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-open-dialog is specially designed for open dialogue system (conversation) tasks, such as chitchat (PersonaChat, DailyDialog), knowledge grounded conversation (Topical-Chat, Wizard of Wikipedia) and visual dialog (DSTC7-AVSD). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-open-dialog") >>> inputs = tokenizer( ... "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Yes he won the Hong Kong Cha Cha championship in 1958'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
prajdabre/morisien_english
96af0505897f13345c0e220e45f8679297c580ed
2022-06-07T09:55:36.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
prajdabre
null
prajdabre/morisien_english
14
1
transformers
9,980
--- license: mit widget: - text: Kan bann mor pou releve, bann dimoun pa pou marie. </s> <2cr> ---
csebuetnlp/banglishbert_generator
6175a1e02224b65e8bce257c85becdf3e5f00872
2022-06-07T12:12:59.000Z
[ "pytorch", "electra", "fill-mask", "bn", "en", "arxiv:2101.00204", "transformers", "autotrain_compatible" ]
fill-mask
false
csebuetnlp
null
csebuetnlp/banglishbert_generator
14
null
transformers
9,981
--- language: - bn - en licenses: - cc-by-nc-sa-4.0 --- # BanglishBERT This repository contains the pretrained generator checkpoint of the model [**BanglishBERT**](). This is an [ELECTRA](https://openreview.net/pdf?id=r1xMH1BtvB) generator model pretrained with the Masked Language Modeling (MLM) objective on large amounts of Bengali and English corpora. **Note**: This model was pretrained using a specific normalization pipeline available [here](https://github.com/csebuetnlp/normalizer). ## Using this model for MLM in `transformers` (tested on 4.11.0.dev0) ```python from normalizer import normalize # pip install git+https://github.com/csebuetnlp/normalizer from transformers import pipeline fill_mask = pipeline( "fill-mask", model="csebuetnlp/banglishbert_generator", tokenizer="csebuetnlp/banglishbert_generator" ) print( fill_mask( normalize(f"Paris is the {fill_mask.tokenizer.mask_token} of France.") ) ) ``` If you use this model, please cite the following paper: ``` @inproceedings{bhattacharjee-etal-2022-banglabert, title = {BanglaBERT: Lagnuage Model Pretraining and Benchmarks for Low-Resource Language Understanding Evaluation in Bangla}, author = "Bhattacharjee, Abhik and Hasan, Tahmid and Mubasshir, Kazi and Islam, Md. Saiful and Uddin, Wasi Ahmad and Iqbal, Anindya and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Findings of the North American Chapter of the Association for Computational Linguistics: NAACL 2022", month = july, year = {2022}, url = {https://arxiv.org/abs/2101.00204}, eprinttype = {arXiv}, eprint = {2101.00204} } ``` If you use the normalization module, please cite the following paper: ``` @inproceedings{hasan-etal-2020-low, title = "Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for {B}engali-{E}nglish Machine Translation", author = "Hasan, Tahmid and Bhattacharjee, Abhik and Samin, Kazi and Hasan, Masum and Basak, Madhusudan and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.207", doi = "10.18653/v1/2020.emnlp-main.207", pages = "2612--2623", abstract = "Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.", } ```
ObamaCodingReal/DialoGPT-large-NickGERai
a3bb895c4ba66a4bd4bdd38c6d241920595ebe8a
2022-06-09T01:41:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ObamaCodingReal
null
ObamaCodingReal/DialoGPT-large-NickGERai
14
null
transformers
9,982
--- tags: - conversational --- # horrendous amalgamation of several friends
ThaisBeham/distilbert-base-uncased-finetuned-fira
fc92333ed41991cf2b52ced672a372215e7db5e2
2022-06-07T10:44:12.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
ThaisBeham
null
ThaisBeham/distilbert-base-uncased-finetuned-fira
14
null
transformers
9,983
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-fira results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-fira This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 200 | 2.9963 | | No log | 2.0 | 400 | 2.7457 | | 3.0576 | 3.0 | 600 | 2.7687 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
eslamxm/mbert2mbert-finetuned-ar-xlsum
c8091bfbed1fb632bce6692c6df15a2fe6e1c2ce
2022-06-14T19:25:14.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "ar", "mbert", "Abstractive Summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/mbert2mbert-finetuned-ar-xlsum
14
null
transformers
9,984
--- tags: - summarization - ar - encoder-decoder - mbert - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mbert2mbert-finetuned-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert2mbert-finetuned-ar-xlsum This model is a fine-tuned version of [](https://huggingface.co/) on the xlsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
kevincstowe/concept2seq-srl
3b6d01d56c5c143139efe602e5a3eeec5078acb5
2022-06-08T13:35:04.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kevincstowe
null
kevincstowe/concept2seq-srl
14
null
transformers
9,985
Entry not found
Clody0071/camembert-base-finetuned-paraphrase
65a4510c8267ef797e59f2758d295e90f2caad1b
2022-06-10T18:05:49.000Z
[ "pytorch", "tensorboard", "camembert", "text-classification", "dataset:pawsx", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Clody0071
null
Clody0071/camembert-base-finetuned-paraphrase
14
null
transformers
9,986
--- license: mit tags: - generated_from_trainer datasets: - pawsx metrics: - accuracy - f1 model-index: - name: camembert-base-finetuned-paraphrase results: - task: name: Text Classification type: text-classification dataset: name: pawsx type: pawsx args: fr metrics: - name: Accuracy type: accuracy value: 0.9085 - name: F1 type: f1 value: 0.9088724090678741 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-paraphrase This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the pawsx dataset. It achieves the following results on the evaluation set: - Loss: 0.2708 - Accuracy: 0.9085 - F1: 0.9089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3918 | 1.0 | 772 | 0.3211 | 0.869 | 0.8696 | | 0.2103 | 2.0 | 1544 | 0.2448 | 0.9075 | 0.9077 | | 0.1622 | 3.0 | 2316 | 0.2577 | 0.9055 | 0.9059 | | 0.1344 | 4.0 | 3088 | 0.2708 | 0.9085 | 0.9089 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
louisdeco/camembert-base-finetuned-RankLineCause
5dc6b4968f1de481df82fc7541a6f089186587a7
2022-06-11T12:50:01.000Z
[ "pytorch", "tensorboard", "camembert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
louisdeco
null
louisdeco/camembert-base-finetuned-RankLineCause
14
null
transformers
9,987
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: camembert-base-finetuned-RankLineCause results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-RankLineCause This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3138 - Accuracy: 0.8152 - F1: 0.8297 - Recall: 0.8152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:| | 0.3471 | 1.0 | 10019 | 0.3191 | 0.8156 | 0.8137 | 0.8156 | | 0.317 | 2.0 | 20038 | 0.3138 | 0.8152 | 0.8297 | 0.8152 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
spuun/kekbot-beta-4-medium
e8af8b0e4e12da1680a287720590a9dccdd28d68
2022-06-12T21:36:45.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "conversational", "license:cc-by-nc-sa-4.0", "co2_eq_emissions" ]
conversational
false
spuun
null
spuun/kekbot-beta-4-medium
14
null
transformers
9,988
--- language: - en tags: - conversational co2_eq_emissions: emissions: "840" source: "mlco2.github.io" training_type: "fine-tuning" geographical_location: "West Java, Indonesia" hardware_used: "1 Tesla P100" license: cc-by-nc-sa-4.0 widget: - text: "Hey kekbot! What's up?" example_title: "Asking what's up" - text: "Hey kekbot! How r u?" example_title: "Asking how he is" --- > THIS MODEL IS IN PUBLIC BETA, PLEASE DO NOT EXPECT ANY FORM OF STABILITY IN ITS CURRENT STATE. # Art Union server chatbot Based on a DialoGPT-medium (`kekbot-beta-3-medium`) model, fine-tuned to a select subset (65k<= messages) of Art Union's general-chat channel chat history. ### Current issues (Which hopefully will be fixed in future iterations) Include, but not limited to: - Limited turns, after ~20 turns output may break for no apparent reason. - Inconsistent variance, acts like an overfitted model from time to time for no reason whatsoever.
ahmeddbahaa/xlmroberta2xlmroberta-finetuned-ar-wikilingua
3104a1c9a13d4b1ff19358730efc192f64ba2abe
2022-06-14T20:55:49.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:wiki_lingua", "transformers", "summarization", "ar", "roberta", "xlmroberta2xlmroberta", "Abstractive Summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/xlmroberta2xlmroberta-finetuned-ar-wikilingua
14
null
transformers
9,989
--- tags: - summarization - ar - encoder-decoder - roberta - xlmroberta2xlmroberta - Abstractive Summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: xlmroberta2xlmroberta-finetuned-ar-wikilingua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta2xlmroberta-finetuned-ar-wikilingua This model is a fine-tuned version of [](https://huggingface.co/) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 4.7757 - Rouge-1: 11.2 - Rouge-2: 1.96 - Rouge-l: 10.28 - Gen Len: 19.8 - Bertscore: 66.27 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 8.03 | 1.0 | 312 | 7.3208 | 0.19 | 0.0 | 0.19 | 20.0 | 54.84 | | 7.2309 | 2.0 | 624 | 7.1107 | 1.17 | 0.03 | 1.16 | 20.0 | 60.0 | | 7.0752 | 3.0 | 936 | 7.0061 | 2.58 | 0.15 | 2.55 | 20.0 | 63.52 | | 6.7538 | 4.0 | 1248 | 6.4189 | 5.75 | 0.46 | 5.55 | 19.95 | 62.83 | | 6.1513 | 5.0 | 1560 | 5.8402 | 8.46 | 1.04 | 8.08 | 19.2 | 64.25 | | 5.6639 | 6.0 | 1872 | 5.3938 | 8.62 | 1.17 | 8.16 | 19.28 | 64.81 | | 5.2857 | 7.0 | 2184 | 5.0719 | 9.34 | 1.41 | 8.61 | 19.71 | 65.29 | | 5.027 | 8.0 | 2496 | 4.9047 | 10.42 | 1.52 | 9.57 | 19.57 | 65.75 | | 4.8747 | 9.0 | 2808 | 4.8032 | 10.79 | 1.71 | 9.91 | 19.42 | 66.2 | | 4.7855 | 10.0 | 3120 | 4.7757 | 11.01 | 1.73 | 10.04 | 19.55 | 66.24 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ghadeermobasher/BC4CHEMD-Chem-Original-SciBERT-384
f8709ce37dd3363a38cff652a238c7c776bb4bc7
2022-06-14T18:32:19.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Original-SciBERT-384
14
null
transformers
9,990
Entry not found
ghadeermobasher/BC4CHEMD-Chem-Original-BlueBERT-384
d8462a1232961bfc71af46c551594f58f32c7978
2022-06-14T19:06:41.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Original-BlueBERT-384
14
null
transformers
9,991
Entry not found
Deborah/bertimbau-finetuned-pos-accelerate3
b4053b2abfc50289fa98730a0e36a08cafb6dda3
2022-06-14T22:33:09.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Deborah
null
Deborah/bertimbau-finetuned-pos-accelerate3
14
null
transformers
9,992
Entry not found
dexay/reDs3others
e8581f17923feaea2f3b0de88f39ed6cc2ead9ed
2022-06-14T23:58:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
dexay
null
dexay/reDs3others
14
null
transformers
9,993
Entry not found
Alireza1044/mobilebert_sst2
bf7878338b499f4f45db7e68191f5167babdf6e9
2022-06-15T11:12:07.000Z
[ "pytorch", "tensorboard", "mobilebert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Alireza1044
null
Alireza1044/mobilebert_sst2
14
null
transformers
9,994
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9036697247706422 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sst2 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 1.1730 - Accuracy: 0.9037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft
e227d7005daa2ea6f44280accbb8b9c0c04295a1
2022-07-09T06:15:06.000Z
[ "pytorch", "swinv2", "transformers" ]
null
false
microsoft
null
microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft
14
null
transformers
9,995
Entry not found
huggingtweets/rihanna
0a7a27c0995ad549b19b2ef425ff4314a50ab81b
2022-06-20T17:21:51.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rihanna
14
null
transformers
9,996
--- language: en thumbnail: http://www.huggingtweets.com/rihanna/1655745706641/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1133109643734130688/BwioAwkz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rihanna</div> <div style="text-align: center; font-size: 14px;">@rihanna</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rihanna. | Data | Rihanna | | --- | --- | | Tweets downloaded | 3175 | | Retweets | 224 | | Short tweets | 735 | | Tweets kept | 2216 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/menb3plh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rihanna's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3o6y7vof) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3o6y7vof/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rihanna') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Nonzerophilip/bert-finetuned-ner_swedish_test
f44ec223952c85df17b1b6f316edfe40b42280ab
2022-06-17T08:57:37.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
Nonzerophilip
null
Nonzerophilip/bert-finetuned-ner_swedish_test
14
null
transformers
9,997
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner_swedish_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner_swedish_test This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-ner](https://huggingface.co/KBLab/bert-base-swedish-cased-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0916 - Precision: 0.6835 - Recall: 0.6391 - F1: 0.6606 - Accuracy: 0.9788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 128 | 0.0980 | 0.6121 | 0.5976 | 0.6048 | 0.9749 | | No log | 2.0 | 256 | 0.0914 | 0.7255 | 0.6568 | 0.6894 | 0.9779 | | No log | 3.0 | 384 | 0.0916 | 0.6835 | 0.6391 | 0.6606 | 0.9788 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.7.1 - Datasets 2.2.2 - Tokenizers 0.12.1
valurank/finetuned-distilbert-adult-content-detection
5383ff56775d99bc851ead9622eccb6103918c8d
2022-06-25T06:58:36.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-classification
false
valurank
null
valurank/finetuned-distilbert-adult-content-detection
14
null
transformers
9,998
--- license: other tags: - generated_from_trainer model-index: - name: finetuned-distilbert-adult-content-detection results: [] --- ### finetuned-distilbert-news-article-catgorization This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the adult_content dataset. It achieves the following results on the evaluation set: - Loss: 0.0065 - F1_score(weighted): 0.90 ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data The model was trained on some subset of the adult_content dataset and it was validated on the remaining subset of the data ### Training procedure More information needed ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-5 - train_batch_size: 5 - eval_batch_size: 5 - seed: 17 - optimizer: AdamW(lr=1e-5 and epsilon=1e-08) - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0 - num_epochs: 2 ### Training results | Training Loss | Epoch | Validation Loss | f1 score | |:-------------:|:-----:|:---------------: |:------:| | 0.1414 | 1.0 | 0.4585 | 0.9058 | | 0.1410 | 2.0 | 0.4584 | 0.9058 |
linuxcoder/distilbert-base-uncased-finetuned-emotion
f23ffd948b098c7c013a3145f4050a018a66114b
2022-07-13T12:59:22.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
linuxcoder
null
linuxcoder/distilbert-base-uncased-finetuned-emotion
14
1
transformers
9,999
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.924047984825329 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2294 - Accuracy: 0.924 - F1: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3316 | 0.9025 | 0.8985 | | No log | 2.0 | 500 | 0.2294 | 0.924 | 0.9240 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1