modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
βŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
βŒ€
likes
float64
0
712
βŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
uer/roberta-small-wwm-chinese-cluecorpussmall
f61672c1a9b3b841a1b83313cdf35f33d348dc36
2022-07-18T05:43:57.000Z
[ "pytorch", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/roberta-small-wwm-chinese-cluecorpussmall
15
null
transformers
9,700
--- language: zh datasets: CLUECorpusSmall widget: - text: "εŒ—δΊ¬ζ˜―[MASK]ε›½ηš„ι¦–ιƒ½γ€‚" --- # Chinese Whole Word Masking RoBERTa Miniatures ## Model description This is the set of 6 Chinese Whole Word Masking RoBERTa models pre-trained by [UER-py](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 6 Chinese Whole Word Masking RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and word segmentation tool, and provided all training details. You can download the 6 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **Tiny** | [**2/128 (Tiny)**][2_128] | | **Mini** | [**4/256 (Mini)**][4_256] | | **Small** | [**4/512 (Small)**][4_512] | | **Medium** | [**8/512 (Medium)**][8_512] | | **Base** | [**12/768 (Base)**][12_768] | | **Large** | [**24/1024 (Large)**][24_1024] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | ------------------ | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny-WWM | 72.1 | 82.8 | 91.8 | 81.8 | 62.1 | 55.4 | 58.6 | | RoBERTa-Mini-WWM | 76.1 | 84.9 | 93.0 | 86.8 | 64.4 | 58.7 | 68.8 | | RoBERTa-Small-WWM | 77.3 | 86.8 | 93.8 | 87.2 | 65.2 | 59.6 | 71.4 | | RoBERTa-Medium-WWM | 78.4 | 88.2 | 94.4 | 88.8 | 66.0 | 59.9 | 73.2 | | RoBERTa-Base-WWM | 80.1 | 90.0 | 95.8 | 89.4 | 67.5 | 61.8 | 76.2 | | RoBERTa-Large-WWM | 81.0 | 90.4 | 95.8 | 90.0 | 68.5 | 62.1 | 79.1 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/roberta-tiny-wwm-chinese-cluecorpussmall') >>> unmasker("εŒ—δΊ¬ζ˜―[MASK]ε›½ηš„ι¦–ιƒ½γ€‚") [ {'score': 0.294228732585907, 'token': 704, 'token_str': 'δΈ­', 'sequence': 'εŒ— δΊ¬ 是 δΈ­ ε›½ ηš„ ι¦– 都 。'}, {'score': 0.19691626727581024, 'token': 1266, 'token_str': 'εŒ—', 'sequence': 'εŒ— δΊ¬ 是 εŒ— ε›½ ηš„ ι¦– 都 。'}, {'score': 0.1070084273815155, 'token': 7506, 'token_str': '韩', 'sequence': 'εŒ— δΊ¬ 是 韩 ε›½ ηš„ ι¦– 都 。'}, {'score': 0.031527262181043625, 'token': 2769, 'token_str': 'ζˆ‘', 'sequence': 'εŒ— δΊ¬ 是 ζˆ‘ ε›½ ηš„ ι¦– 都 。'}, {'score': 0.023054633289575577, 'token': 1298, 'token_str': '南', 'sequence': 'εŒ— δΊ¬ 是 南 ε›½ ηš„ ι¦– 都 。'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = BertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "η”¨δ½ ε–œζ¬’ηš„δ»»δ½•ζ–‡ζœ¬ζ›Ώζ’ζˆ‘γ€‚" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = TFBertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "η”¨δ½ ε–œζ¬’ηš„δ»»δ½•ζ–‡ζœ¬ζ›Ώζ’ζˆ‘γ€‚" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. [jieba](https://github.com/fxsjy/jieba) is used as word segmentation tool. Taking the case of Whole Word Masking RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/roberta-tiny-wwm-chinese-cluecorpussmall [4_256]:https://huggingface.co/uer/roberta-mini-wwm-chinese-cluecorpussmall [4_512]:https://huggingface.co/uer/roberta-small-wwm-chinese-cluecorpussmall [8_512]:https://huggingface.co/uer/roberta-medium-wwm-chinese-cluecorpussmall [12_768]:https://huggingface.co/uer/roberta-base-wwm-chinese-cluecorpussmall [24_1024]:https://huggingface.co/uer/roberta-large-wwm-chinese-cluecorpussmall
uer/roberta-base-wwm-chinese-cluecorpussmall
6b014f1b0ba595f776e8c6a7b26da78685304b92
2022-07-18T05:50:31.000Z
[ "pytorch", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/roberta-base-wwm-chinese-cluecorpussmall
15
null
transformers
9,701
--- language: zh datasets: CLUECorpusSmall widget: - text: "εŒ—δΊ¬ζ˜―[MASK]ε›½ηš„ι¦–ιƒ½γ€‚" --- # Chinese Whole Word Masking RoBERTa Miniatures ## Model description This is the set of 6 Chinese Whole Word Masking RoBERTa models pre-trained by [UER-py](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 6 Chinese Whole Word Masking RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and word segmentation tool, and provided all training details. You can download the 6 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **Tiny** | [**2/128 (Tiny)**][2_128] | | **Mini** | [**4/256 (Mini)**][4_256] | | **Small** | [**4/512 (Small)**][4_512] | | **Medium** | [**8/512 (Medium)**][8_512] | | **Base** | [**12/768 (Base)**][12_768] | | **Large** | [**24/1024 (Large)**][24_1024] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | ------------------ | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny-WWM | 72.1 | 82.8 | 91.8 | 81.8 | 62.1 | 55.4 | 58.6 | | RoBERTa-Mini-WWM | 76.1 | 84.9 | 93.0 | 86.8 | 64.4 | 58.7 | 68.8 | | RoBERTa-Small-WWM | 77.3 | 86.8 | 93.8 | 87.2 | 65.2 | 59.6 | 71.4 | | RoBERTa-Medium-WWM | 78.4 | 88.2 | 94.4 | 88.8 | 66.0 | 59.9 | 73.2 | | RoBERTa-Base-WWM | 80.1 | 90.0 | 95.8 | 89.4 | 67.5 | 61.8 | 76.2 | | RoBERTa-Large-WWM | 81.0 | 90.4 | 95.8 | 90.0 | 68.5 | 62.1 | 79.1 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/roberta-tiny-wwm-chinese-cluecorpussmall') >>> unmasker("εŒ—δΊ¬ζ˜―[MASK]ε›½ηš„ι¦–ιƒ½γ€‚") [ {'score': 0.294228732585907, 'token': 704, 'token_str': 'δΈ­', 'sequence': 'εŒ— δΊ¬ 是 δΈ­ ε›½ ηš„ ι¦– 都 。'}, {'score': 0.19691626727581024, 'token': 1266, 'token_str': 'εŒ—', 'sequence': 'εŒ— δΊ¬ 是 εŒ— ε›½ ηš„ ι¦– 都 。'}, {'score': 0.1070084273815155, 'token': 7506, 'token_str': '韩', 'sequence': 'εŒ— δΊ¬ 是 韩 ε›½ ηš„ ι¦– 都 。'}, {'score': 0.031527262181043625, 'token': 2769, 'token_str': 'ζˆ‘', 'sequence': 'εŒ— δΊ¬ 是 ζˆ‘ ε›½ ηš„ ι¦– 都 。'}, {'score': 0.023054633289575577, 'token': 1298, 'token_str': '南', 'sequence': 'εŒ— δΊ¬ 是 南 ε›½ ηš„ ι¦– 都 。'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = BertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "η”¨δ½ ε–œζ¬’ηš„δ»»δ½•ζ–‡ζœ¬ζ›Ώζ’ζˆ‘γ€‚" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = TFBertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "η”¨δ½ ε–œζ¬’ηš„δ»»δ½•ζ–‡ζœ¬ζ›Ώζ’ζˆ‘γ€‚" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. [jieba](https://github.com/fxsjy/jieba) is used as word segmentation tool. Taking the case of Whole Word Masking RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/roberta-tiny-wwm-chinese-cluecorpussmall [4_256]:https://huggingface.co/uer/roberta-mini-wwm-chinese-cluecorpussmall [4_512]:https://huggingface.co/uer/roberta-small-wwm-chinese-cluecorpussmall [8_512]:https://huggingface.co/uer/roberta-medium-wwm-chinese-cluecorpussmall [12_768]:https://huggingface.co/uer/roberta-base-wwm-chinese-cluecorpussmall [24_1024]:https://huggingface.co/uer/roberta-large-wwm-chinese-cluecorpussmall
anahitapld/dbd_electra
b9a5333f6a2d64ca551ab2181596d3b274d189fc
2022-07-18T09:05:12.000Z
[ "pytorch", "electra", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
anahitapld
null
anahitapld/dbd_electra
15
null
transformers
9,702
--- license: apache-2.0 ---
anahitapld/dbd_Roberta
7418bc8d2412875b72045d42a2da3ad5a299e968
2022-07-18T09:16:48.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
anahitapld
null
anahitapld/dbd_Roberta
15
null
transformers
9,703
--- license: apache-2.0 ---
translationtech/nllb_distilled
8bb35f68a86604f3f99ea3bf7667c9017b9fecea
2022-07-18T15:42:02.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:cc-by-nc-4.0", "autotrain_compatible" ]
text2text-generation
false
translationtech
null
translationtech/nllb_distilled
15
null
transformers
9,704
--- license: cc-by-nc-4.0 ---
Evelyn18/roberta-base-spanish-squades-modelo-robertav1
f984c2c4aa73fc78af3adad55152839e7e6a31f2
2022-07-19T18:29:08.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-modelo-robertav1
15
null
transformers
9,705
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-modelo-robertav1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-modelo-robertav1 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.4358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 1.8825 | | No log | 2.0 | 12 | 1.7787 | | No log | 3.0 | 18 | 2.0521 | | No log | 4.0 | 24 | 2.2991 | | No log | 5.0 | 30 | 2.4029 | | No log | 6.0 | 36 | 2.4358 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
cep-ter/fine-tune-MonoTransQuest-fa
945a4c7dbae58b1f12976f064793790a27abc10b
2022-07-20T03:20:41.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
cep-ter
null
cep-ter/fine-tune-MonoTransQuest-fa
15
null
transformers
9,706
Entry not found
commanderstrife/bc4chemd_ner-Bio_ClinicalBERT-finetuned-ner
6a7aa37ee883b3b1a855a5351f4517c9208ba211
2022-07-20T12:03:10.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:bc4chemd_ner", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
commanderstrife
null
commanderstrife/bc4chemd_ner-Bio_ClinicalBERT-finetuned-ner
15
null
transformers
9,707
--- license: mit tags: - generated_from_trainer datasets: - bc4chemd_ner metrics: - precision - recall - f1 - accuracy model-index: - name: bc4chemd_ner-Bio_ClinicalBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: bc4chemd_ner type: bc4chemd_ner args: bc4chemd metrics: - name: Precision type: precision value: 0.8944236722550557 - name: Recall type: recall value: 0.8777321865383098 - name: F1 type: f1 value: 0.8859993229654115 - name: Accuracy type: accuracy value: 0.9908228496683563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bc4chemd_ner-Bio_ClinicalBERT-finetuned-ner This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the bc4chemd_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0641 - Precision: 0.8944 - Recall: 0.8777 - F1: 0.8860 - Accuracy: 0.9908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.006 | 1.0 | 1918 | 0.0310 | 0.8697 | 0.8510 | 0.8602 | 0.9894 | | 0.0097 | 2.0 | 3836 | 0.0345 | 0.8855 | 0.8637 | 0.8745 | 0.9898 | | 0.0058 | 3.0 | 5754 | 0.0359 | 0.8733 | 0.8836 | 0.8784 | 0.9902 | | 0.0014 | 4.0 | 7672 | 0.0440 | 0.8723 | 0.8842 | 0.8782 | 0.9903 | | 0.0005 | 5.0 | 9590 | 0.0539 | 0.8862 | 0.8673 | 0.8766 | 0.9903 | | 0.0001 | 6.0 | 11508 | 0.0558 | 0.8939 | 0.8628 | 0.8781 | 0.9904 | | 0.0001 | 7.0 | 13426 | 0.0558 | 0.8846 | 0.8729 | 0.8787 | 0.9903 | | 0.0012 | 8.0 | 15344 | 0.0635 | 0.8935 | 0.8696 | 0.8814 | 0.9905 | | 0.0 | 9.0 | 17262 | 0.0624 | 0.8897 | 0.8831 | 0.8864 | 0.9908 | | 0.0002 | 10.0 | 19180 | 0.0641 | 0.8944 | 0.8777 | 0.8860 | 0.9908 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jaeyeon/korean-aihub-learning-2
b5f2690421054e629d81a386d1c129e841816c61
2022-07-20T08:31:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jaeyeon
null
jaeyeon/korean-aihub-learning-2
15
null
transformers
9,708
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: korean-aihub-learning-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # korean-aihub-learning-2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9945 - Wer: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.99 | 35 | 46.3840 | 1.0 | | No log | 1.99 | 70 | 26.0949 | 1.0 | | 37.1581 | 2.99 | 105 | 19.0168 | 1.0 | | 37.1581 | 3.99 | 140 | 13.3294 | 1.0 | | 37.1581 | 4.99 | 175 | 7.9410 | 1.0 | | 12.5054 | 5.99 | 210 | 5.0323 | 1.0 | | 12.5054 | 6.99 | 245 | 4.6242 | 1.0 | | 12.5054 | 7.99 | 280 | 4.6206 | 1.0 | | 4.8394 | 8.99 | 315 | 4.5820 | 1.0 | | 4.8394 | 9.99 | 350 | 4.5629 | 1.0 | | 4.8394 | 10.99 | 385 | 4.5385 | 1.0 | | 4.6489 | 11.99 | 420 | 4.5627 | 1.0 | | 4.6489 | 12.99 | 455 | 4.5276 | 1.0 | | 4.6489 | 13.99 | 490 | 4.5292 | 1.0 | | 4.5654 | 14.99 | 525 | 4.5179 | 1.0 | | 4.5654 | 15.99 | 560 | 4.4928 | 1.0 | | 4.5654 | 16.99 | 595 | 4.4791 | 1.0 | | 4.521 | 17.99 | 630 | 4.4649 | 1.0 | | 4.521 | 18.99 | 665 | 4.4588 | 1.0 | | 4.3529 | 19.99 | 700 | 4.3632 | 1.0 | | 4.3529 | 20.99 | 735 | 4.2990 | 1.0 | | 4.3529 | 21.99 | 770 | 4.2326 | 0.9988 | | 4.1301 | 22.99 | 805 | 4.0843 | 1.0 | | 4.1301 | 23.99 | 840 | 3.9784 | 0.9975 | | 4.1301 | 24.99 | 875 | 3.7876 | 1.0 | | 3.7047 | 25.99 | 910 | 3.6109 | 0.9988 | | 3.7047 | 26.99 | 945 | 3.4049 | 0.9828 | | 3.7047 | 27.99 | 980 | 3.1913 | 0.9606 | | 3.006 | 28.99 | 1015 | 3.0567 | 0.9508 | | 3.006 | 29.99 | 1050 | 2.9945 | 0.9533 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Sameen53/CV_bn_trained_on_Train_0.3
6648f4491c3892aea6b1fbf4c3c792923b2c88c5
2022-07-30T07:46:54.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
Sameen53
null
Sameen53/CV_bn_trained_on_Train_0.3
15
null
transformers
9,709
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: CV_bn_trained_on_Train_0.3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CV_bn_trained_on_Train_0.3 This model is a fine-tuned version of [Lancelot53/CV_bn_trained_on_Validation](https://huggingface.co/Lancelot53/CV_bn_trained_on_Validation) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.3415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0435 | 1.22 | 4000 | inf | 0.3415 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Professor/wav2vec2-base-960h-finetuned
168d24dad032f62780ea3009502378b06a87c829
2022-07-21T03:00:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
Professor
null
Professor/wav2vec2-base-960h-finetuned
15
null
transformers
9,710
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-960h-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-960h-finetuned This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1430 - Accuracy: 0.6516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5958 | 1.0 | 203 | 2.4754 | 0.2714 | | 2.0809 | 2.0 | 406 | 1.9972 | 0.3930 | | 1.8486 | 3.0 | 609 | 1.6918 | 0.4658 | | 1.5857 | 4.0 | 812 | 1.5089 | 0.5186 | | 1.4819 | 5.0 | 1015 | 1.4027 | 0.5508 | | 1.3859 | 6.0 | 1218 | 1.3146 | 0.5867 | | 1.3448 | 7.0 | 1421 | 1.2078 | 0.6281 | | 1.2551 | 8.0 | 1624 | 1.1600 | 0.6447 | | 1.1506 | 9.0 | 1827 | 1.1595 | 0.6512 | | 1.2435 | 10.0 | 2030 | 1.1430 | 0.6516 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Ahmed007/mt5-small-ibn-Shaddad-v4
c7bec6a31bc0766ca3b54595b1db06e7e5756be3
2022-07-21T05:04:38.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "Poet", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Ahmed007
null
Ahmed007/mt5-small-ibn-Shaddad-v4
15
null
transformers
9,711
--- license: apache-2.0 tags: - Poet - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-ibn-Shaddad-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-ibn-Shaddad-v4 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9233 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 5.0001 | 1.0 | 935 | 3.1102 | 0.0 | 0.0 | 0.0 | 0.0 | | 3.4066 | 2.0 | 1870 | 2.9836 | 0.0 | 0.0 | 0.0 | 0.0 | | 3.2832 | 3.0 | 2805 | 2.9384 | 0.0 | 0.0 | 0.0 | 0.0 | | 3.2334 | 4.0 | 3740 | 2.9233 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
dl4nlp/distilbert-base-uncased-nq-short-for-square
1fd46acdc80c7af2688f8a95b8ef82506f6b3aeb
2022-07-22T20:26:54.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
dl4nlp
null
dl4nlp/distilbert-base-uncased-nq-short-for-square
15
null
transformers
9,712
Entry not found
jcashmoney123/autotrain-amazon-summarization-1170943400
60d89b59a2ab4ea2f6de0534f378ac6ba5289d99
2022-07-23T18:06:12.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:jcashmoney123/autotrain-data-amazon-summarization", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
jcashmoney123
null
jcashmoney123/autotrain-amazon-summarization-1170943400
15
null
transformers
9,713
--- tags: autotrain language: en widget: - text: "I love AutoTrain πŸ€—" datasets: - jcashmoney123/autotrain-data-amazon-summarization co2_eq_emissions: 25.718350806012065 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1170943400 - CO2 Emissions (in grams): 25.718350806012065 ## Validation Metrics - Loss: 2.569204092025757 - Rouge1: 21.072 - Rouge2: 6.2072 - RougeL: 18.9156 - RougeLsum: 18.8997 - Gen Len: 10.7165 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/jcashmoney123/autotrain-amazon-summarization-1170943400 ```
SIMAS-UN/blaming_vulnerability
59e219e164dc36f6b8965dc9e98a8859fee5e298
2022-07-24T04:07:32.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
SIMAS-UN
null
SIMAS-UN/blaming_vulnerability
15
null
transformers
9,714
Entry not found
ccdv/lsg-xlm-roberta-base-4096
90fb5adb207bd5d0d7e54bcffc7e2f4eb3bfe895
2022-07-26T20:14:38.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "en", "arxiv:2105.00572", "transformers", "long context", "autotrain_compatible" ]
fill-mask
false
ccdv
null
ccdv/lsg-xlm-roberta-base-4096
15
null
transformers
9,715
--- language: en tags: - xlm-roberta - long context pipeline_tag: fill-mask --- # LSG model **Transformers >= 4.18.0**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** * [Usage](#usage) * [Parameters](#parameters) * [Sparse selection type](#sparse-selection-type) * [Tasks](#tasks) * [Training global tokens](#training-global-tokens) This model is adapted from [XLM-RoBERTa-base](https://huggingface.co/xlm-roberta-base) model without additional pretraining yet. It uses the same number of parameters/layers and the same tokenizer. This model can handle long sequences but faster and more efficiently than Longformer or BigBird (from Transformers) and relies on Local + Sparse + Global attention (LSG). The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). \ Support encoder-decoder but I didnt test it extensively.\ Implemented in PyTorch. ![attn](attn.png) ## Usage The model relies on a custom modeling file, you need to add trust_remote_code=True to use it. ```python: from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/lsg-xlm-roberta-base-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-xlm-roberta-base-4096") ``` ## Parameters You can change various parameters like : * the number of global tokens (num_global_tokens=1) * local block size (block_size=128) * sparse block size (sparse_block_size=128) * sparsity factor (sparsity_factor=2) * mask_first_token (mask first token since it is redundant with the first global token) * see config.json file Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix. ```python: from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/lsg-xlm-roberta-base-4096", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True ) ``` ## Sparse selection type There are 5 different sparse selection patterns. The best type is task dependent. \ Note that for sequences with length < 2*block_size, the type has no effect. * sparsity_type="norm", select highest norm tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="pooling", use average pooling to merge tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="lsh", use the LSH algorithm to cluster similar tokens * Works best for a large sparsity_factor (4+) * LSH relies on random projections, thus inference may differ slightly with different seeds * Additional parameters: * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids * sparsity_type="stride", use a striding mecanism per head * Each head will use different tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads * sparsity_type="block_stride", use a striding mecanism per head * Each head will use block of tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads ## Tasks Fill mask example: ```python: from transformers import FillMaskPipeline, AutoModelForMaskedLM, AutoTokenizer model = AutoModelForMaskedLM.from_pretrained("ccdv/lsg-xlm-roberta-base-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-xlm-roberta-base-4096") SENTENCES = ["Paris is the <mask> of France."] pipeline = FillMaskPipeline(model, tokenizer) output = pipeline(SENTENCES, top_k=1) output = [o[0]["sequence"] for o in output] > ['Paris is the capital of France.'] ``` Classification example: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-xlm-roberta-base-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-xlm-roberta-base-4096") SENTENCE = "This is a test for sequence classification. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None) ``` ## Training global tokens To train global tokens and the classification head only: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-xlm-roberta-base-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token num_global_tokens=16 ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-xlm-roberta-base-4096") for name, param in model.named_parameters(): if "global_embeddings" not in name: param.requires_grad = False else: param.required_grad = True ``` **XLM-RoBERTa** ``` @article{DBLP:journals/corr/abs-2105-00572, author = {Naman Goyal and Jingfei Du and Myle Ott and Giri Anantharaman and Alexis Conneau}, title = {Larger-Scale Transformers for Multilingual Masked Language Modeling}, journal = {CoRR}, volume = {abs/2105.00572}, year = {2021}, url = {https://arxiv.org/abs/2105.00572}, eprinttype = {arXiv}, eprint = {2105.00572}, timestamp = {Wed, 12 May 2021 15:54:31 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-00572.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
MiriUll/distilbert-german-text-complexity
1a1b02707747331fd5c6ecda8e7e34c85f7b56fa
2022-07-25T13:55:29.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
MiriUll
null
MiriUll/distilbert-german-text-complexity
15
null
transformers
9,716
language: de This is a version of "distilbert-base-german-cased" fine-tuned for text complexity prediction on a scale between 1 and 7.
mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_empathy_classifier
683570f63b6c53eccc0098e6900cf9657a9a090f
2022-07-25T15:10:08.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
mmillet
null
mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_empathy_classifier
15
null
transformers
9,717
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-cased-conversational-v1_single_finetuned_empathy_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-cased-conversational-v1_single_finetuned_empathy_classifier This model is a fine-tuned version of [DeepPavlov/distilrubert-tiny-cased-conversational-v1](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0183 - Accuracy: 0.6218 - F1: 0.6262 - Precision: 0.6318 - Recall: 0.6218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.0456 | 1.0 | 9 | 0.9718 | 0.4958 | 0.4197 | 0.6526 | 0.4958 | | 0.9042 | 2.0 | 18 | 0.8920 | 0.5882 | 0.5769 | 0.5784 | 0.5882 | | 0.7923 | 3.0 | 27 | 0.8427 | 0.6134 | 0.5861 | 0.5935 | 0.6134 | | 0.7544 | 4.0 | 36 | 0.8400 | 0.6387 | 0.6234 | 0.6344 | 0.6387 | | 0.6675 | 5.0 | 45 | 0.8410 | 0.6303 | 0.6095 | 0.6184 | 0.6303 | | 0.6091 | 6.0 | 54 | 0.9095 | 0.6050 | 0.6041 | 0.6396 | 0.6050 | | 0.6279 | 7.0 | 63 | 0.8596 | 0.6723 | 0.6692 | 0.6725 | 0.6723 | | 0.4968 | 8.0 | 72 | 0.8725 | 0.6303 | 0.6274 | 0.6253 | 0.6303 | | 0.4459 | 9.0 | 81 | 0.9120 | 0.6387 | 0.6395 | 0.6426 | 0.6387 | | 0.4122 | 10.0 | 90 | 0.9478 | 0.6303 | 0.6262 | 0.6248 | 0.6303 | | 0.3244 | 11.0 | 99 | 0.9746 | 0.6387 | 0.6375 | 0.6381 | 0.6387 | | 0.3535 | 12.0 | 108 | 1.0183 | 0.6218 | 0.6262 | 0.6318 | 0.6218 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Evelyn18/roberta-base-spanish-squades-becasIncentivos4
9f9262320dd011230216dcceafb80edac51eefac
2022-07-27T16:52:12.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-becasIncentivos4
15
null
transformers
9,718
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-becasIncentivos4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-becasIncentivos4 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 1.7734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 11 | 1.8136 | | No log | 2.0 | 22 | 1.7734 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
anzorq/kbd_lat-ru_char_tokenizer
36b7ccef5d7de91dbe5b202da358f33763f1fd23
2022-07-30T04:19:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
anzorq
null
anzorq/kbd_lat-ru_char_tokenizer
15
null
transformers
9,719
Entry not found
Aastha/wav2vec2-large-xls-r-1b-hi
8f2124b031a266b4f410f1e3d77f1203a82d349b
2022-02-05T03:46:42.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Aastha
null
Aastha/wav2vec2-large-xls-r-1b-hi
14
null
transformers
9,720
Entry not found
Alexander-Learn/bert-finetuned-ner
e689b6a614c2578786bc150d878f082caedcb6c7
2022-01-28T08:29:45.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Alexander-Learn
null
Alexander-Learn/bert-finetuned-ner
14
null
transformers
9,721
Entry not found
ArBert/roberta-base-finetuned-ner-kmeans
d3cd105407f27522a59504f2c5a2c7f4262379b5
2022-02-12T16:54:18.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ArBert
null
ArBert/roberta-base-finetuned-ner-kmeans
14
null
transformers
9,722
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 model-index: - name: roberta-base-finetuned-ner-kmeans results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.955868544600939 - name: Recall type: recall value: 0.9614658103513412 - name: F1 type: f1 value: 0.9586590074394953 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner-kmeans This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Precision: 0.9559 - Recall: 0.9615 - F1: 0.9587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.0248 | 1.0 | 878 | 0.0609 | 0.9507 | 0.9561 | 0.9534 | | 0.0163 | 2.0 | 1756 | 0.0640 | 0.9515 | 0.9578 | 0.9546 | | 0.0089 | 3.0 | 2634 | 0.0592 | 0.9559 | 0.9615 | 0.9587 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
BSC-TeMU/roberta-large-bne-capitel-ner
ee42a198b1b798b7bfc3a617e2e24d0d568b07bf
2021-10-21T10:31:30.000Z
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "ner", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
BSC-TeMU
null
BSC-TeMU/roberta-large-bne-capitel-ner
14
null
transformers
9,723
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "ner" datasets: - "bne" - "capitel" metrics: - "f1" --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne-capitel-ner # Spanish RoBERTa-large trained on BNE finetuned for CAPITEL Named Entity Recognition (NER) dataset. RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-large-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 1). ## Evaluation and results F1 Score: 0.8998 For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Barkavi/totto-t5-base-bert-score-121K
8b2149134039af9c40680a9e0eef55431300c14b
2022-06-23T09:27:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Barkavi
null
Barkavi/totto-t5-base-bert-score-121K
14
null
transformers
9,724
**Dataset** ToTTo is an open-domain English Table-to-Text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table, a set of highlighted table cells, page title and section title as inputs, it produces a one-sentence description summarising the key details from the inputs. This dataset can be taken from hugging face (https://huggingface.co/datasets/totto). **Model** The pre-trained Text-to-Text "t5-base" model is fine-tuned with the Table-to-Text ToTTo dataset(downstream task) for the complete train dataset split of around 120,761 examples. During the fine-tuning process for this downstream task, BertScore metric was used as an evaluation metric instead of the standard BLEU metric.
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-egy
7f7956b74338213d5f8f8b68216bd4b3a4fbd56c
2021-10-18T10:15:57.000Z
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-egy
14
null
transformers
9,725
--- language: - ar license: apache-2.0 widget: - text: 'ΨΉΨ§Ω…Ω„ Ψ§ΩŠΩ‡ ؟' --- # CAMeLBERT-Mix POS-EGY Model ## Model description **CAMeLBERT-Mix POS-EGY Model** is a Egyptian Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the ARZTB dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix POS-EGY model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-egy') >>> text = 'ΨΉΨ§Ω…Ω„ Ψ§ΩŠΩ‡ ؟' >>> pos(text) [{'entity': 'adj', 'score': 0.9972628, 'index': 1, 'word': 'ΨΉΨ§Ω…Ω„', 'start': 0, 'end': 4}, {'entity': 'pron_interrog', 'score': 0.9525163, 'index': 2, 'word': 'Ψ§ΩŠΩ‡', 'start': 5, 'end': 8}, {'entity': 'punc', 'score': 0.99869114, 'index': 3, 'word': '؟', 'start': 9, 'end': 10}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
Davlan/mT5_base_yoruba_adr
9a6c4a7ba523ea0c6f6e5acc67592b454204e384
2021-04-20T21:16:26.000Z
[ "pytorch", "mt5", "text2text-generation", "yo", "dataset:JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt)", "arxiv:2003.10564", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
false
Davlan
null
Davlan/mT5_base_yoruba_adr
14
null
transformers
9,726
Hugging Face's logo --- language: yo datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mT5_base_yoruba_adr ## Model description **mT5_base_yoruba_adr** is a **automatic diacritics restoration** model for YorΓΉbΓ‘ language based on a fine-tuned mT5-base model. It achieves the **state-of-the-art performance** for adding the correct diacritics or tonal marks to YorΓΉbΓ‘ texts. Specifically, this model is a *mT5_base* model that was fine-tuned on JW300 YorΓΉbΓ‘ corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for ADR. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("") model = AutoModelForTokenClassification.from_pretrained("") nlp = pipeline("", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 YorΓΉbΓ‘ corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (BLEU score) 64.63 BLEU on [Global Voices test set](https://arxiv.org/abs/2003.10564) 70.27 BLEU on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) ### BibTeX entry and citation info By Jesujoba Alabi and David Adelani ``` ```
EasthShin/Emotion-Classification-bert-base
f010408833eb76cc3c12373c5aaadc241bddc8bd
2021-07-26T09:36:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EasthShin
null
EasthShin/Emotion-Classification-bert-base
14
null
transformers
9,727
Entry not found
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-russian
84a5dc0cd8e013c41c738fd457e54f3f7bc815a4
2022-07-17T17:38:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:Common Voice", "arxiv:2204.00618", "transformers", "audio", "speech", "Russian-speech-corpus", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Edresson
null
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-russian
14
2
transformers
9,728
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - Russian-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Russian results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 36.59 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Russian [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Russian using a single-speaker dataset plus a data augmentation method based on TTS and voice conversion. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-russian") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-russian") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resampl(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("Ò€ℒ", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
GermanT5/german-t5-oscar-ep1-prompted-germanquad
5176afcca863ecca7862a17eaee4415f1b6ab44d
2022-01-25T09:03:14.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
GermanT5
null
GermanT5/german-t5-oscar-ep1-prompted-germanquad
14
null
transformers
9,729
--- tags: - generated_from_trainer widget: - text: | Philipp ist 26 Jahre alt und lebt in NΓΌrnberg, Deutschland. Derzeit arbeitet er als Machine Learning Engineer und Tech Lead bei Hugging Face, um kΓΌnstliche Intelligenz durch Open Source und Open Science zu demokratisieren. Welches Ziel hat Hugging Face? model-index: - name: test-german-t5-prompted-germanquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-german-t5-prompted-germanquad eval_loss = 0.5907255411148071 eval_rouge1 = 62.0922 eval_rouge2 = 47.2761 eval_rougeL = 61.7706 eval_rougeLsum = 61.8036 eval_runtime = 4501.8065 eval_samples_per_second = 5.487 eval_steps_per_second = 2.743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.18.0 - Tokenizers 0.11.0
GroNLP/bert-base-dutch-cased-frisian
84b8d9d28470f188a14ba2d58efaac361a8b8c8d
2021-05-18T20:20:35.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "fy", "arxiv:2105.02855", "transformers", "BERTje", "autotrain_compatible" ]
fill-mask
false
GroNLP
null
GroNLP/bert-base-dutch-cased-frisian
14
1
transformers
9,730
--- language: fy tags: - BERTje --- Wietse de Vries β€’ Martijn Bartelds β€’ Malvina Nissim β€’ Martijn Wieling # Adapting Monolingual Models: Data can be Scarce when Language Similarity is High This model is part of this paper + code: - πŸ“ [Paper](https://arxiv.org/abs/2105.02855) - πŸ’» [Code](https://github.com/wietsedv/low-resource-adapt) ## Models The best fine-tuned models for Gronings and West Frisian are available on the HuggingFace model hub: ### Lexical layers These models are identical to [BERTje](https://github.com/wietsedv/bertje), but with different lexical layers (`bert.embeddings.word_embeddings`). - πŸ€— [`GroNLP/bert-base-dutch-cased`](https://huggingface.co/GroNLP/bert-base-dutch-cased) (Dutch; source language) - πŸ€— [`GroNLP/bert-base-dutch-cased-gronings`](https://huggingface.co/GroNLP/bert-base-dutch-cased-gronings) (Gronings) - πŸ€— [`GroNLP/bert-base-dutch-cased-frisian`](https://huggingface.co/GroNLP/bert-base-dutch-cased-frisian) (West Frisian) ### POS tagging These models share the same fine-tuned Transformer layers + classification head, but with the retrained lexical layers from the models above. - πŸ€— [`GroNLP/bert-base-dutch-cased-upos-alpino`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino) (Dutch) - πŸ€— [`GroNLP/bert-base-dutch-cased-upos-alpino-gronings`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino-gronings) (Gronings) - πŸ€— [`GroNLP/bert-base-dutch-cased-upos-alpino-frisian`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino-frisian) (West Frisian)
Hate-speech-CNERG/deoffxlmr-mono-malyalam
d88bde766cbfe7fffe40a13abf19ce69f27dd885
2021-09-25T14:01:42.000Z
[ "pytorch", "xlm-roberta", "text-classification", "ml", "transformers", "license:apache-2.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/deoffxlmr-mono-malyalam
14
null
transformers
9,731
--- language: ml license: apache-2.0 --- This model is used to detect **Offensive Content** in **Malayalam Code-Mixed language**. The mono in the name refers to the monolingual setting, where the model is trained using only Malayalam(pure and code-mixed) data. The weights are initialized from pretrained XLM-Roberta-Base and pretrained using Masked Language Modelling on the target dataset before fine-tuning using Cross-Entropy Loss. This model is the best of multiple trained for **EACL 2021 Shared Task on Offensive Language Identification in Dravidian Languages**. Genetic-Algorithm based ensembled test predictions got the highest weighted F1 score at the leaderboard (Weighted F1 score on hold out test set: This model - 0.97, Ensemble - 0.97) ### For more details about our paper Debjoy Saha, Naman Paharia, Debajit Chakraborty, Punyajoy Saha, Animesh Mukherjee. "[Hate-Alert@DravidianLangTech-EACL2021: Ensembling strategies for Transformer-based Offensive language Detection](https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38/)". ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @inproceedings{saha-etal-2021-hate, title = "Hate-Alert@{D}ravidian{L}ang{T}ech-{EACL}2021: Ensembling strategies for Transformer-based Offensive language Detection", author = "Saha, Debjoy and Paharia, Naman and Chakraborty, Debajit and Saha, Punyajoy and Mukherjee, Animesh", booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages", month = apr, year = "2021", address = "Kyiv", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38", pages = "270--276", abstract = "Social media often acts as breeding grounds for different forms of offensive content. For low resource languages like Tamil, the situation is more complex due to the poor performance of multilingual or language-specific models and lack of proper benchmark datasets. Based on this shared task {``}Offensive Language Identification in Dravidian Languages{''} at EACL 2021; we present an exhaustive exploration of different transformer models, We also provide a genetic algorithm technique for ensembling different models. Our ensembled models trained separately for each language secured the first position in Tamil, the second position in Kannada, and the first position in Malayalam sub-tasks. The models and codes are provided.", } ~~~
Helsinki-NLP/opus-mt-bem-fi
61e1a5e55e425e7319da8807f50a3c9db95f10d3
2021-09-09T21:27:10.000Z
[ "pytorch", "marian", "text2text-generation", "bem", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bem-fi
14
null
transformers
9,732
--- tags: - translation license: apache-2.0 --- ### opus-mt-bem-fi * source languages: bem * target languages: fi * OPUS readme: [bem-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bem-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/bem-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bem-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bem-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bem.fi | 22.8 | 0.439 |
Helsinki-NLP/opus-mt-ber-en
14e47c430cec91689c36c2ff3170353ab9ed9d1d
2021-09-09T21:27:21.000Z
[ "pytorch", "marian", "text2text-generation", "ber", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ber-en
14
null
transformers
9,733
--- tags: - translation license: apache-2.0 --- ### opus-mt-ber-en * source languages: ber * target languages: en * OPUS readme: [ber-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ber-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/ber-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ber.en | 37.3 | 0.566 |
Helsinki-NLP/opus-mt-bzs-es
b03449222edb29b8497af1df03c30782995912f5
2021-09-09T21:28:02.000Z
[ "pytorch", "marian", "text2text-generation", "bzs", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bzs-es
14
null
transformers
9,734
--- tags: - translation license: apache-2.0 --- ### opus-mt-bzs-es * source languages: bzs * target languages: es * OPUS readme: [bzs-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bzs-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/bzs-es/opus-2020-01-15.zip) * test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bzs-es/opus-2020-01-15.test.txt) * test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bzs-es/opus-2020-01-15.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bzs.es | 28.1 | 0.464 |
Helsinki-NLP/opus-mt-da-ru
133f5847df6d5e352d37d86416db133636851c7a
2021-01-18T07:57:17.000Z
[ "pytorch", "marian", "text2text-generation", "da", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-da-ru
14
null
transformers
9,735
--- language: - da - ru tags: - translation license: apache-2.0 --- ### dan-rus * source group: Danish * target group: Russian * OPUS readme: [dan-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/dan-rus/README.md) * model: transformer-align * source language(s): dan * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/dan-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/dan-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/dan-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.dan.rus | 52.5 | 0.715 | ### System Info: - hf_name: dan-rus - source_languages: dan - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/dan-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['da', 'ru'] - src_constituents: {'dan'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/dan-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/dan-rus/opus-2020-06-17.test.txt - src_alpha3: dan - tgt_alpha3: rus - short_pair: da-ru - chrF2_score: 0.715 - bleu: 52.5 - brevity_penalty: 0.991 - ref_len: 10480.0 - src_name: Danish - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: da - tgt_alpha2: ru - prefer_old: False - long_pair: dan-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-de-ca
e335cb19fc68854e5f55ad84f1ade5c38567b10b
2021-01-18T07:58:09.000Z
[ "pytorch", "marian", "text2text-generation", "de", "ca", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-ca
14
null
transformers
9,736
--- language: - de - ca tags: - translation license: apache-2.0 --- ### deu-cat * source group: German * target group: Catalan * OPUS readme: [deu-cat](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-cat/README.md) * model: transformer-align * source language(s): deu * target language(s): cat * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-cat/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-cat/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-cat/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.deu.cat | 37.4 | 0.582 | ### System Info: - hf_name: deu-cat - source_languages: deu - target_languages: cat - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-cat/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['de', 'ca'] - src_constituents: {'deu'} - tgt_constituents: {'cat'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-cat/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-cat/opus-2020-06-16.test.txt - src_alpha3: deu - tgt_alpha3: cat - short_pair: de-ca - chrF2_score: 0.5820000000000001 - bleu: 37.4 - brevity_penalty: 0.956 - ref_len: 5507.0 - src_name: German - tgt_name: Catalan - train_date: 2020-06-16 - src_alpha2: de - tgt_alpha2: ca - prefer_old: False - long_pair: deu-cat - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-de-da
bccfbee95d55ba1333fd447f67574453eba5d948
2021-09-09T21:30:32.000Z
[ "pytorch", "marian", "text2text-generation", "de", "da", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-da
14
null
transformers
9,737
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-da * source languages: de * target languages: da * OPUS readme: [de-da](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-da/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-29.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-da/opus-2020-01-29.zip) * test set translations: [opus-2020-01-29.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-da/opus-2020-01-29.test.txt) * test set scores: [opus-2020-01-29.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-da/opus-2020-01-29.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.de.da | 57.2 | 0.730 |
Helsinki-NLP/opus-mt-el-fi
aef52d8c3cc2129847cf9ea84c62a5e7b9bb41bc
2021-09-09T21:33:47.000Z
[ "pytorch", "marian", "text2text-generation", "el", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-el-fi
14
null
transformers
9,738
--- tags: - translation license: apache-2.0 --- ### opus-mt-el-fi * source languages: el * target languages: fi * OPUS readme: [el-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/el-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/el-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/el-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/el-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.el.fi | 25.3 | 0.517 |
Helsinki-NLP/opus-mt-en-CELTIC
69fe75e42d848a1b30f968800ff94783e3ed8fe2
2021-09-09T21:33:58.000Z
[ "pytorch", "marian", "text2text-generation", "en", "cel", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-CELTIC
14
null
transformers
9,739
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-INSULAR_CELTIC * source languages: en * target languages: ga,cy,br,gd,kw,gv * OPUS readme: [en-ga+cy+br+gd+kw+gv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ga+cy+br+gd+kw+gv/README.md) * dataset: opus+techiaith+bt * model: transformer-align * pre-processing: normalization + SentencePiece * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus+techiaith+bt-2020-04-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ga+cy+br+gd+kw+gv/opus+techiaith+bt-2020-04-24.zip) * test set translations: [opus+techiaith+bt-2020-04-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ga+cy+br+gd+kw+gv/opus+techiaith+bt-2020-04-24.test.txt) * test set scores: [opus+techiaith+bt-2020-04-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ga+cy+br+gd+kw+gv/opus+techiaith+bt-2020-04-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.en.ga | 22.8 | 0.404 |
Helsinki-NLP/opus-mt-en-lu
46019cac051a37cc5b65765c14f26ce600a1709b
2021-09-09T21:37:04.000Z
[ "pytorch", "marian", "text2text-generation", "en", "lu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-lu
14
null
transformers
9,740
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-lu * source languages: en * target languages: lu * OPUS readme: [en-lu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-lu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-lu/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-lu/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-lu/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.lu | 34.1 | 0.564 |
Helsinki-NLP/opus-mt-en-pag
051bcacbbb35a4418e46906d02716606f59a7c91
2021-09-09T21:38:25.000Z
[ "pytorch", "marian", "text2text-generation", "en", "pag", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-pag
14
null
transformers
9,741
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-pag * source languages: en * target languages: pag * OPUS readme: [en-pag](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-pag/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-pag/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-pag/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-pag/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.pag | 37.9 | 0.598 |
Helsinki-NLP/opus-mt-es-da
661ce74f5258d3bf2f848527d55e3dc33c5793dc
2021-09-09T21:41:49.000Z
[ "pytorch", "marian", "text2text-generation", "es", "da", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-da
14
null
transformers
9,742
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-da * source languages: es * target languages: da * OPUS readme: [es-da](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-da/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-da/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-da/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-da/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.es.da | 55.7 | 0.712 |
Helsinki-NLP/opus-mt-es-ee
42f028f43c4aad6eed8ffd96ce928b8badc2014c
2021-09-09T21:41:57.000Z
[ "pytorch", "marian", "text2text-generation", "es", "ee", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-ee
14
null
transformers
9,743
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-ee * source languages: es * target languages: ee * OPUS readme: [es-ee](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ee/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ee/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ee/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ee/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.ee | 25.6 | 0.470 |
Helsinki-NLP/opus-mt-es-eu
f1b18888a188e4eb000c074075dc6ade3f33072a
2021-01-18T08:23:58.000Z
[ "pytorch", "marian", "text2text-generation", "es", "eu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-eu
14
1
transformers
9,744
--- language: - es - eu tags: - translation license: apache-2.0 --- ### spa-eus * source group: Spanish * target group: Basque * OPUS readme: [spa-eus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-eus/README.md) * model: transformer-align * source language(s): spa * target language(s): eus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-eus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-eus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-eus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.spa.eus | 37.0 | 0.638 | ### System Info: - hf_name: spa-eus - source_languages: spa - target_languages: eus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-eus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['es', 'eu'] - src_constituents: {'spa'} - tgt_constituents: {'eus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-eus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-eus/opus-2020-06-17.test.txt - src_alpha3: spa - tgt_alpha3: eus - short_pair: es-eu - chrF2_score: 0.638 - bleu: 37.0 - brevity_penalty: 0.983 - ref_len: 10945.0 - src_name: Spanish - tgt_name: Basque - train_date: 2020-06-17 - src_alpha2: es - tgt_alpha2: eu - prefer_old: False - long_pair: spa-eus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-srn
3ba24c7ae9f834b1696f7b7a0f53ddc79d583ce4
2021-09-09T21:44:49.000Z
[ "pytorch", "marian", "text2text-generation", "es", "srn", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-srn
14
null
transformers
9,745
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-srn * source languages: es * target languages: srn * OPUS readme: [es-srn](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-srn/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-srn/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-srn/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-srn/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.srn | 28.7 | 0.487 |
Helsinki-NLP/opus-mt-es-tzo
2fd911169180598677e1b5f42438cc847e145799
2021-09-09T21:45:27.000Z
[ "pytorch", "marian", "text2text-generation", "es", "tzo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-tzo
14
null
transformers
9,746
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-tzo * source languages: es * target languages: tzo * OPUS readme: [es-tzo](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-tzo/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-tzo/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-tzo/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-tzo/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.tzo | 22.6 | 0.469 |
Helsinki-NLP/opus-mt-fi-bzs
d5b30084df6c669c73224be1ca0f4116c6bdd9b0
2021-09-09T21:46:45.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "bzs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-bzs
14
null
transformers
9,747
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-bzs * source languages: fi * target languages: bzs * OPUS readme: [fi-bzs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-bzs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-bzs/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-bzs/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-bzs/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.bzs | 27.2 | 0.459 |
Helsinki-NLP/opus-mt-fi-el
214d53d289e8e90c6b8f65a5813460df95778c31
2021-09-09T21:47:21.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "el", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-el
14
null
transformers
9,748
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-el * source languages: fi * target languages: el * OPUS readme: [fi-el](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-el/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-el/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-el/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-el/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.el | 27.1 | 0.490 |
Helsinki-NLP/opus-mt-fi-is
321972a9ee7a0fb0af9687d5cd5422d7565ae101
2021-09-09T21:48:40.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "is", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-is
14
null
transformers
9,749
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-is * source languages: fi * target languages: is * OPUS readme: [fi-is](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-is/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-is/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-is/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-is/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.is | 25.2 | 0.452 |
Helsinki-NLP/opus-mt-fr-ee
40ac7fa7a28e1d4a8b07bed9703e0f7911a027e7
2021-09-09T21:53:27.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "ee", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-ee
14
null
transformers
9,750
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-ee * source languages: fr * target languages: ee * OPUS readme: [fr-ee](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-ee/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-ee/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ee/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ee/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.ee | 26.3 | 0.466 |
Helsinki-NLP/opus-mt-fr-ha
ea7bb19a61b650a3c06bc96fb0fbed28c905ad49
2021-09-09T21:54:06.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "ha", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-ha
14
null
transformers
9,751
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-ha * source languages: fr * target languages: ha * OPUS readme: [fr-ha](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-ha/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-ha/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ha/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ha/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.ha | 24.4 | 0.447 |
Helsinki-NLP/opus-mt-fr-swc
71d83f817cb7cea1ec60779a48bae15c65632fca
2021-09-09T21:57:11.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "swc", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-swc
14
null
transformers
9,752
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-swc * source languages: fr * target languages: swc * OPUS readme: [fr-swc](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-swc/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-swc/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-swc/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-swc/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.swc | 28.2 | 0.499 |
Helsinki-NLP/opus-mt-hu-fi
c46fede8bed71dd3b278d868c078508da856ddd1
2021-09-09T22:10:56.000Z
[ "pytorch", "marian", "text2text-generation", "hu", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-hu-fi
14
null
transformers
9,753
--- tags: - translation license: apache-2.0 --- ### opus-mt-hu-fi * source languages: hu * target languages: fi * OPUS readme: [hu-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hu-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/hu-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.hu.fi | 48.2 | 0.700 |
Helsinki-NLP/opus-mt-iir-iir
f102b809778f107349c12a9ff0ec33cc03dc3cf5
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "bn", "or", "gu", "mr", "ur", "hi", "ps", "os", "as", "si", "iir", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-iir-iir
14
null
transformers
9,754
--- language: - bn - or - gu - mr - ur - hi - ps - os - as - si - iir tags: - translation license: apache-2.0 --- ### iir-iir * source group: Indo-Iranian languages * target group: Indo-Iranian languages * OPUS readme: [iir-iir](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/iir-iir/README.md) * model: transformer * source language(s): asm hin mar urd zza * target language(s): asm hin mar urd zza * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/iir-iir/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/iir-iir/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/iir-iir/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.asm-hin.asm.hin | 3.5 | 0.202 | | Tatoeba-test.asm-zza.asm.zza | 12.4 | 0.014 | | Tatoeba-test.hin-asm.hin.asm | 6.2 | 0.238 | | Tatoeba-test.hin-mar.hin.mar | 27.0 | 0.560 | | Tatoeba-test.hin-urd.hin.urd | 21.4 | 0.507 | | Tatoeba-test.mar-hin.mar.hin | 13.4 | 0.463 | | Tatoeba-test.multi.multi | 17.7 | 0.460 | | Tatoeba-test.urd-hin.urd.hin | 13.4 | 0.363 | | Tatoeba-test.zza-asm.zza.asm | 5.3 | 0.000 | ### System Info: - hf_name: iir-iir - source_languages: iir - target_languages: iir - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/iir-iir/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir'] - src_constituents: {'pnb', 'gom', 'ben', 'hif_Latn', 'ori', 'guj', 'pan_Guru', 'snd_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur_Arab', 'tgk_Cyrl', 'hin', 'kur_Latn', 'pes_Thaa', 'pus', 'san_Deva', 'oss', 'tly_Latn', 'jdt_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes_Latn', 'awa', 'sin'} - tgt_constituents: {'pnb', 'gom', 'ben', 'hif_Latn', 'ori', 'guj', 'pan_Guru', 'snd_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur_Arab', 'tgk_Cyrl', 'hin', 'kur_Latn', 'pes_Thaa', 'pus', 'san_Deva', 'oss', 'tly_Latn', 'jdt_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes_Latn', 'awa', 'sin'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/iir-iir/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/iir-iir/opus-2020-07-27.test.txt - src_alpha3: iir - tgt_alpha3: iir - short_pair: iir-iir - chrF2_score: 0.46 - bleu: 17.7 - brevity_penalty: 1.0 - ref_len: 4992.0 - src_name: Indo-Iranian languages - tgt_name: Indo-Iranian languages - train_date: 2020-07-27 - src_alpha2: iir - tgt_alpha2: iir - prefer_old: False - long_pair: iir-iir - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-is-de
eddbb688bad72d607a739bfd0c67ffff2db219c1
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "is", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-is-de
14
null
transformers
9,755
--- language: - is - de tags: - translation license: apache-2.0 --- ### isl-deu * source group: Icelandic * target group: German * OPUS readme: [isl-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-deu/README.md) * model: transformer-align * source language(s): isl * target language(s): deu * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-deu/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-deu/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-deu/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.isl.deu | 49.2 | 0.661 | ### System Info: - hf_name: isl-deu - source_languages: isl - target_languages: deu - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-deu/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['is', 'de'] - src_constituents: {'isl'} - tgt_constituents: {'deu'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-deu/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-deu/opus-2020-06-17.test.txt - src_alpha3: isl - tgt_alpha3: deu - short_pair: is-de - chrF2_score: 0.6609999999999999 - bleu: 49.2 - brevity_penalty: 0.998 - ref_len: 6265.0 - src_name: Icelandic - tgt_name: German - train_date: 2020-06-17 - src_alpha2: is - tgt_alpha2: de - prefer_old: False - long_pair: isl-deu - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ko-sv
a0ca94665e45cfc246a6cd64c817133d0252e4f4
2021-09-10T13:54:05.000Z
[ "pytorch", "marian", "text2text-generation", "ko", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ko-sv
14
null
transformers
9,756
--- tags: - translation license: apache-2.0 --- ### opus-mt-ko-sv * source languages: ko * target languages: sv * OPUS readme: [ko-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ko-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ko-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ko-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ko-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ko.sv | 26.5 | 0.468 |
Helsinki-NLP/opus-mt-ms-ms
5319301b7bf40f9bb3f1ca6127b30d2482ed9a58
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "ms", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ms-ms
14
null
transformers
9,757
--- language: - ms tags: - translation license: apache-2.0 --- ### msa-msa * source group: Malay (macrolanguage) * target group: Malay (macrolanguage) * OPUS readme: [msa-msa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/msa-msa/README.md) * model: transformer-align * source language(s): ind max_Latn min zlm_Latn zsm_Latn * target language(s): ind max_Latn min zlm_Latn zsm_Latn * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/msa-msa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/msa-msa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/msa-msa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.msa.msa | 18.6 | 0.418 | ### System Info: - hf_name: msa-msa - source_languages: msa - target_languages: msa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/msa-msa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ms'] - src_constituents: {'zsm_Latn', 'ind', 'max_Latn', 'zlm_Latn', 'min'} - tgt_constituents: {'zsm_Latn', 'ind', 'max_Latn', 'zlm_Latn', 'min'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/msa-msa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/msa-msa/opus-2020-06-17.test.txt - src_alpha3: msa - tgt_alpha3: msa - short_pair: ms-ms - chrF2_score: 0.418 - bleu: 18.6 - brevity_penalty: 1.0 - ref_len: 6029.0 - src_name: Malay (macrolanguage) - tgt_name: Malay (macrolanguage) - train_date: 2020-06-17 - src_alpha2: ms - tgt_alpha2: ms - prefer_old: False - long_pair: msa-msa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-no-nl
ac00f451982b347686785ac445e2d80acc07df1b
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "no", "nl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-no-nl
14
null
transformers
9,758
--- language: - no - nl tags: - translation license: apache-2.0 --- ### nor-nld * source group: Norwegian * target group: Dutch * OPUS readme: [nor-nld](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/nor-nld/README.md) * model: transformer-align * source language(s): nob * target language(s): nld * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-nld/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-nld/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-nld/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.nor.nld | 40.2 | 0.596 | ### System Info: - hf_name: nor-nld - source_languages: nor - target_languages: nld - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/nor-nld/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['no', 'nl'] - src_constituents: {'nob', 'nno'} - tgt_constituents: {'nld'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/nor-nld/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/nor-nld/opus-2020-06-17.test.txt - src_alpha3: nor - tgt_alpha3: nld - short_pair: no-nl - chrF2_score: 0.596 - bleu: 40.2 - brevity_penalty: 0.9590000000000001 - ref_len: 1535.0 - src_name: Norwegian - tgt_name: Dutch - train_date: 2020-06-17 - src_alpha2: no - tgt_alpha2: nl - prefer_old: False - long_pair: nor-nld - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-nso-es
c7b2c4a81468174a13eb8052a13810d2433bd5a4
2021-09-10T13:59:33.000Z
[ "pytorch", "marian", "text2text-generation", "nso", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-nso-es
14
null
transformers
9,759
--- tags: - translation license: apache-2.0 --- ### opus-mt-nso-es * source languages: nso * target languages: es * OPUS readme: [nso-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nso-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/nso-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nso-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nso-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.nso.es | 29.5 | 0.485 |
Helsinki-NLP/opus-mt-sk-fi
aaf7099a8ac22d19361eb8120b174410b8298312
2021-09-10T14:03:28.000Z
[ "pytorch", "marian", "text2text-generation", "sk", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sk-fi
14
null
transformers
9,760
--- tags: - translation license: apache-2.0 --- ### opus-mt-sk-fi * source languages: sk * target languages: fi * OPUS readme: [sk-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sk-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sk-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sk-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sk-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sk.fi | 27.6 | 0.544 |
Helsinki-NLP/opus-mt-sv-sl
c9f797a7e609a8c507ce93c0ffa1ebb3d37d8d97
2021-09-10T14:09:20.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "sl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-sl
14
null
transformers
9,761
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-sl * source languages: sv * target languages: sl * OPUS readme: [sv-sl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-sl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-sl/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-sl/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-sl/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.sl | 25.1 | 0.487 |
Helsinki-NLP/opus-mt-tc-base-gmw-gmw
d688a46d3b297c8509a6f3d449a739d25d7270ee
2022-06-01T13:10:42.000Z
[ "pytorch", "marian", "text2text-generation", "af", "de", "en", "fy", "gmw", "gos", "hrx", "lb", "nds", "nl", "pdc", "yi", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-base-gmw-gmw
14
null
transformers
9,762
--- language: - af - de - en - fy - gmw - gos - hrx - lb - nds - nl - pdc - yi tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-base-gmw-gmw results: - task: name: Translation afr-deu type: translation args: afr-deu dataset: name: flores101-devtest type: flores_101 args: afr deu devtest metrics: - name: BLEU type: bleu value: 21.6 - task: name: Translation afr-eng type: translation args: afr-eng dataset: name: flores101-devtest type: flores_101 args: afr eng devtest metrics: - name: BLEU type: bleu value: 46.8 - task: name: Translation deu-afr type: translation args: deu-afr dataset: name: flores101-devtest type: flores_101 args: deu afr devtest metrics: - name: BLEU type: bleu value: 21.4 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: flores101-devtest type: flores_101 args: deu eng devtest metrics: - name: BLEU type: bleu value: 33.8 - task: name: Translation eng-afr type: translation args: eng-afr dataset: name: flores101-devtest type: flores_101 args: eng afr devtest metrics: - name: BLEU type: bleu value: 33.8 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: flores101-devtest type: flores_101 args: eng deu devtest metrics: - name: BLEU type: bleu value: 29.1 - task: name: Translation eng-nld type: translation args: eng-nld dataset: name: flores101-devtest type: flores_101 args: eng nld devtest metrics: - name: BLEU type: bleu value: 21.0 - task: name: Translation nld-eng type: translation args: nld-eng dataset: name: flores101-devtest type: flores_101 args: nld eng devtest metrics: - name: BLEU type: bleu value: 25.6 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: multi30k_test_2016_flickr type: multi30k-2016_flickr args: deu-eng metrics: - name: BLEU type: bleu value: 32.2 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: multi30k_test_2016_flickr type: multi30k-2016_flickr args: eng-deu metrics: - name: BLEU type: bleu value: 28.8 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: multi30k_test_2017_flickr type: multi30k-2017_flickr args: deu-eng metrics: - name: BLEU type: bleu value: 32.7 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: multi30k_test_2017_flickr type: multi30k-2017_flickr args: eng-deu metrics: - name: BLEU type: bleu value: 27.6 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: multi30k_test_2017_mscoco type: multi30k-2017_mscoco args: deu-eng metrics: - name: BLEU type: bleu value: 25.5 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: multi30k_test_2017_mscoco type: multi30k-2017_mscoco args: eng-deu metrics: - name: BLEU type: bleu value: 22.0 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: multi30k_test_2018_flickr type: multi30k-2018_flickr args: deu-eng metrics: - name: BLEU type: bleu value: 30.0 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: multi30k_test_2018_flickr type: multi30k-2018_flickr args: eng-deu metrics: - name: BLEU type: bleu value: 25.3 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: news-test2008 type: news-test2008 args: deu-eng metrics: - name: BLEU type: bleu value: 23.8 - task: name: Translation afr-deu type: translation args: afr-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: afr-deu metrics: - name: BLEU type: bleu value: 48.1 - task: name: Translation afr-eng type: translation args: afr-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: afr-eng metrics: - name: BLEU type: bleu value: 58.8 - task: name: Translation afr-nld type: translation args: afr-nld dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: afr-nld metrics: - name: BLEU type: bleu value: 54.5 - task: name: Translation deu-afr type: translation args: deu-afr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: deu-afr metrics: - name: BLEU type: bleu value: 52.4 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: deu-eng metrics: - name: BLEU type: bleu value: 42.1 - task: name: Translation deu-nld type: translation args: deu-nld dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: deu-nld metrics: - name: BLEU type: bleu value: 48.7 - task: name: Translation eng-afr type: translation args: eng-afr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-afr metrics: - name: BLEU type: bleu value: 56.5 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-deu metrics: - name: BLEU type: bleu value: 35.9 - task: name: Translation eng-nld type: translation args: eng-nld dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-nld metrics: - name: BLEU type: bleu value: 48.3 - task: name: Translation fry-eng type: translation args: fry-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fry-eng metrics: - name: BLEU type: bleu value: 32.5 - task: name: Translation fry-nld type: translation args: fry-nld dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fry-nld metrics: - name: BLEU type: bleu value: 43.1 - task: name: Translation hrx-deu type: translation args: hrx-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hrx-deu metrics: - name: BLEU type: bleu value: 24.7 - task: name: Translation hrx-eng type: translation args: hrx-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hrx-eng metrics: - name: BLEU type: bleu value: 20.4 - task: name: Translation ltz-deu type: translation args: ltz-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ltz-deu metrics: - name: BLEU type: bleu value: 37.2 - task: name: Translation ltz-eng type: translation args: ltz-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ltz-eng metrics: - name: BLEU type: bleu value: 32.4 - task: name: Translation ltz-nld type: translation args: ltz-nld dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ltz-nld metrics: - name: BLEU type: bleu value: 39.3 - task: name: Translation nds-deu type: translation args: nds-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nds-deu metrics: - name: BLEU type: bleu value: 34.5 - task: name: Translation nds-eng type: translation args: nds-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nds-eng metrics: - name: BLEU type: bleu value: 29.9 - task: name: Translation nds-nld type: translation args: nds-nld dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nds-nld metrics: - name: BLEU type: bleu value: 42.3 - task: name: Translation nld-afr type: translation args: nld-afr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nld-afr metrics: - name: BLEU type: bleu value: 58.8 - task: name: Translation nld-deu type: translation args: nld-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nld-deu metrics: - name: BLEU type: bleu value: 50.4 - task: name: Translation nld-eng type: translation args: nld-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nld-eng metrics: - name: BLEU type: bleu value: 53.1 - task: name: Translation nld-fry type: translation args: nld-fry dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nld-fry metrics: - name: BLEU type: bleu value: 25.1 - task: name: Translation nld-nds type: translation args: nld-nds dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nld-nds metrics: - name: BLEU type: bleu value: 21.4 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2009 type: wmt-2009-news args: deu-eng metrics: - name: BLEU type: bleu value: 23.4 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2010 type: wmt-2010-news args: deu-eng metrics: - name: BLEU type: bleu value: 25.8 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: newstest2010 type: wmt-2010-news args: eng-deu metrics: - name: BLEU type: bleu value: 20.7 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2011 type: wmt-2011-news args: deu-eng metrics: - name: BLEU type: bleu value: 23.7 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2012 type: wmt-2012-news args: deu-eng metrics: - name: BLEU type: bleu value: 24.8 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2013 type: wmt-2013-news args: deu-eng metrics: - name: BLEU type: bleu value: 27.7 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: newstest2013 type: wmt-2013-news args: eng-deu metrics: - name: BLEU type: bleu value: 22.5 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2014-deen type: wmt-2014-news args: deu-eng metrics: - name: BLEU type: bleu value: 27.3 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: newstest2014-deen type: wmt-2014-news args: eng-deu metrics: - name: BLEU type: bleu value: 22.0 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2015-deen type: wmt-2015-news args: deu-eng metrics: - name: BLEU type: bleu value: 28.6 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: newstest2015-ende type: wmt-2015-news args: eng-deu metrics: - name: BLEU type: bleu value: 25.7 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2016-deen type: wmt-2016-news args: deu-eng metrics: - name: BLEU type: bleu value: 33.3 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: newstest2016-ende type: wmt-2016-news args: eng-deu metrics: - name: BLEU type: bleu value: 30.0 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2017-deen type: wmt-2017-news args: deu-eng metrics: - name: BLEU type: bleu value: 29.5 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: newstest2017-ende type: wmt-2017-news args: eng-deu metrics: - name: BLEU type: bleu value: 24.1 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2018-deen type: wmt-2018-news args: deu-eng metrics: - name: BLEU type: bleu value: 36.1 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: newstest2018-ende type: wmt-2018-news args: eng-deu metrics: - name: BLEU type: bleu value: 35.4 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2019-deen type: wmt-2019-news args: deu-eng metrics: - name: BLEU type: bleu value: 32.3 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: newstest2019-ende type: wmt-2019-news args: eng-deu metrics: - name: BLEU type: bleu value: 31.2 - task: name: Translation deu-eng type: translation args: deu-eng dataset: name: newstest2020-deen type: wmt-2020-news args: deu-eng metrics: - name: BLEU type: bleu value: 32.0 - task: name: Translation eng-deu type: translation args: eng-deu dataset: name: newstest2020-ende type: wmt-2020-news args: eng-deu metrics: - name: BLEU type: bleu value: 23.9 --- # opus-mt-tc-base-gmw-gmw Neural machine translation model for translating from West Germanic languages (gmw) to West Germanic languages (gmw). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2021-02-23 * source language(s): afr deu eng fry gos hrx ltz nds nld pdc yid * target language(s): afr deu eng fry nds nld * valid target language labels: >>afr<< >>ang_Latn<< >>deu<< >>eng<< >>fry<< >>ltz<< >>nds<< >>nld<< >>sco<< >>yid<< * model: transformer (base) * data: opus ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opus-2021-02-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2021-02-23.zip) * more information released models: [OPUS-MT gmw-gmw README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmw-gmw/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>afr<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>nld<< You need help.", ">>afr<< I love your son." ] model_name = "pytorch-models/opus-mt-tc-base-gmw-gmw" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Je hebt hulp nodig. # Ek is lief vir jou seun. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-gmw-gmw") print(pipe(>>nld<< You need help.)) # expected output: Je hebt hulp nodig. ``` ## Benchmarks * test set translations: [opus-2021-02-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2021-02-23.test.txt) * test set scores: [opus-2021-02-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2021-02-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | afr-deu | tatoeba-test-v2021-08-07 | 0.674 | 48.1 | 1583 | 9105 | | afr-eng | tatoeba-test-v2021-08-07 | 0.728 | 58.8 | 1374 | 9622 | | afr-nld | tatoeba-test-v2021-08-07 | 0.711 | 54.5 | 1056 | 6710 | | deu-afr | tatoeba-test-v2021-08-07 | 0.696 | 52.4 | 1583 | 9507 | | deu-eng | tatoeba-test-v2021-08-07 | 0.609 | 42.1 | 17565 | 149462 | | deu-nds | tatoeba-test-v2021-08-07 | 0.442 | 18.6 | 9999 | 76137 | | deu-nld | tatoeba-test-v2021-08-07 | 0.672 | 48.7 | 10218 | 75235 | | eng-afr | tatoeba-test-v2021-08-07 | 0.735 | 56.5 | 1374 | 10317 | | eng-deu | tatoeba-test-v2021-08-07 | 0.580 | 35.9 | 17565 | 151568 | | eng-nds | tatoeba-test-v2021-08-07 | 0.412 | 16.6 | 2500 | 18264 | | eng-nld | tatoeba-test-v2021-08-07 | 0.663 | 48.3 | 12696 | 91796 | | fry-eng | tatoeba-test-v2021-08-07 | 0.500 | 32.5 | 220 | 1573 | | fry-nld | tatoeba-test-v2021-08-07 | 0.633 | 43.1 | 260 | 1854 | | gos-nld | tatoeba-test-v2021-08-07 | 0.405 | 15.6 | 1852 | 9903 | | hrx-deu | tatoeba-test-v2021-08-07 | 0.484 | 24.7 | 471 | 2805 | | hrx-eng | tatoeba-test-v2021-08-07 | 0.362 | 20.4 | 221 | 1235 | | ltz-deu | tatoeba-test-v2021-08-07 | 0.556 | 37.2 | 347 | 2208 | | ltz-eng | tatoeba-test-v2021-08-07 | 0.485 | 32.4 | 293 | 1840 | | ltz-nld | tatoeba-test-v2021-08-07 | 0.534 | 39.3 | 292 | 1685 | | nds-deu | tatoeba-test-v2021-08-07 | 0.572 | 34.5 | 9999 | 74564 | | nds-eng | tatoeba-test-v2021-08-07 | 0.493 | 29.9 | 2500 | 17589 | | nds-nld | tatoeba-test-v2021-08-07 | 0.621 | 42.3 | 1657 | 11490 | | nld-afr | tatoeba-test-v2021-08-07 | 0.755 | 58.8 | 1056 | 6823 | | nld-deu | tatoeba-test-v2021-08-07 | 0.686 | 50.4 | 10218 | 74131 | | nld-eng | tatoeba-test-v2021-08-07 | 0.690 | 53.1 | 12696 | 89978 | | nld-fry | tatoeba-test-v2021-08-07 | 0.478 | 25.1 | 260 | 1857 | | nld-nds | tatoeba-test-v2021-08-07 | 0.462 | 21.4 | 1657 | 11711 | | afr-deu | flores101-devtest | 0.524 | 21.6 | 1012 | 25094 | | afr-eng | flores101-devtest | 0.693 | 46.8 | 1012 | 24721 | | afr-nld | flores101-devtest | 0.509 | 18.4 | 1012 | 25467 | | deu-afr | flores101-devtest | 0.534 | 21.4 | 1012 | 25740 | | deu-eng | flores101-devtest | 0.616 | 33.8 | 1012 | 24721 | | deu-nld | flores101-devtest | 0.516 | 19.2 | 1012 | 25467 | | eng-afr | flores101-devtest | 0.628 | 33.8 | 1012 | 25740 | | eng-deu | flores101-devtest | 0.581 | 29.1 | 1012 | 25094 | | eng-nld | flores101-devtest | 0.533 | 21.0 | 1012 | 25467 | | ltz-afr | flores101-devtest | 0.430 | 12.9 | 1012 | 25740 | | ltz-deu | flores101-devtest | 0.482 | 17.1 | 1012 | 25094 | | ltz-eng | flores101-devtest | 0.468 | 18.8 | 1012 | 24721 | | ltz-nld | flores101-devtest | 0.409 | 10.7 | 1012 | 25467 | | nld-afr | flores101-devtest | 0.494 | 16.8 | 1012 | 25740 | | nld-deu | flores101-devtest | 0.501 | 17.9 | 1012 | 25094 | | nld-eng | flores101-devtest | 0.551 | 25.6 | 1012 | 24721 | | deu-eng | multi30k_test_2016_flickr | 0.546 | 32.2 | 1000 | 12955 | | eng-deu | multi30k_test_2016_flickr | 0.582 | 28.8 | 1000 | 12106 | | deu-eng | multi30k_test_2017_flickr | 0.561 | 32.7 | 1000 | 11374 | | eng-deu | multi30k_test_2017_flickr | 0.573 | 27.6 | 1000 | 10755 | | deu-eng | multi30k_test_2017_mscoco | 0.499 | 25.5 | 461 | 5231 | | eng-deu | multi30k_test_2017_mscoco | 0.514 | 22.0 | 461 | 5158 | | deu-eng | multi30k_test_2018_flickr | 0.535 | 30.0 | 1071 | 14689 | | eng-deu | multi30k_test_2018_flickr | 0.547 | 25.3 | 1071 | 13703 | | deu-eng | newssyscomb2009 | 0.527 | 25.4 | 502 | 11818 | | eng-deu | newssyscomb2009 | 0.504 | 19.3 | 502 | 11271 | | deu-eng | news-test2008 | 0.518 | 23.8 | 2051 | 49380 | | eng-deu | news-test2008 | 0.492 | 19.3 | 2051 | 47447 | | deu-eng | newstest2009 | 0.516 | 23.4 | 2525 | 65399 | | eng-deu | newstest2009 | 0.498 | 18.8 | 2525 | 62816 | | deu-eng | newstest2010 | 0.546 | 25.8 | 2489 | 61711 | | eng-deu | newstest2010 | 0.508 | 20.7 | 2489 | 61503 | | deu-eng | newstest2011 | 0.524 | 23.7 | 3003 | 74681 | | eng-deu | newstest2011 | 0.493 | 19.2 | 3003 | 72981 | | deu-eng | newstest2012 | 0.532 | 24.8 | 3003 | 72812 | | eng-deu | newstest2012 | 0.493 | 19.5 | 3003 | 72886 | | deu-eng | newstest2013 | 0.548 | 27.7 | 3000 | 64505 | | eng-deu | newstest2013 | 0.517 | 22.5 | 3000 | 63737 | | deu-eng | newstest2014-deen | 0.548 | 27.3 | 3003 | 67337 | | eng-deu | newstest2014-deen | 0.532 | 22.0 | 3003 | 62688 | | deu-eng | newstest2015-deen | 0.553 | 28.6 | 2169 | 46443 | | eng-deu | newstest2015-ende | 0.544 | 25.7 | 2169 | 44260 | | deu-eng | newstest2016-deen | 0.596 | 33.3 | 2999 | 64119 | | eng-deu | newstest2016-ende | 0.580 | 30.0 | 2999 | 62669 | | deu-eng | newstest2017-deen | 0.561 | 29.5 | 3004 | 64399 | | eng-deu | newstest2017-ende | 0.535 | 24.1 | 3004 | 61287 | | deu-eng | newstest2018-deen | 0.610 | 36.1 | 2998 | 67012 | | eng-deu | newstest2018-ende | 0.613 | 35.4 | 2998 | 64276 | | deu-eng | newstest2019-deen | 0.582 | 32.3 | 2000 | 39227 | | eng-deu | newstest2019-ende | 0.583 | 31.2 | 1997 | 48746 | | deu-eng | newstest2020-deen | 0.604 | 32.0 | 785 | 38220 | | eng-deu | newstest2020-ende | 0.542 | 23.9 | 1418 | 52383 | | deu-eng | newstestB2020-deen | 0.598 | 31.2 | 785 | 37696 | | eng-deu | newstestB2020-ende | 0.532 | 23.3 | 1418 | 53092 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.12.3 * OPUS-MT git hash: e56a06b * port time: Sun Feb 13 14:42:10 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-ti-en
610176e10fde21d044d625ba8284095894b92a01
2021-09-11T10:48:05.000Z
[ "pytorch", "marian", "text2text-generation", "ti", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ti-en
14
null
transformers
9,763
--- tags: - translation license: apache-2.0 --- ### opus-mt-ti-en * source languages: ti * target languages: en * OPUS readme: [ti-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ti-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ti-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ti-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ti-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ti.en | 30.4 | 0.461 |
Helsinki-NLP/opus-mt-uk-sv
ccd53b0c75d1dc9367f29121202a0a8df67fae03
2021-09-11T10:51:29.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-sv
14
null
transformers
9,764
--- tags: - translation license: apache-2.0 --- ### opus-mt-uk-sv * source languages: uk * target languages: sv * OPUS readme: [uk-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/uk-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/uk-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/uk-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/uk-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.uk.sv | 27.8 | 0.474 |
Helsinki-NLP/opus-mt-uk-tr
ed2e1ff5a2fd011e4f337102bc08fea586f5ad0f
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "tr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-tr
14
null
transformers
9,765
--- language: - uk - tr tags: - translation license: apache-2.0 --- ### ukr-tur * source group: Ukrainian * target group: Turkish * OPUS readme: [ukr-tur](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-tur/README.md) * model: transformer-align * source language(s): ukr * target language(s): tur * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-tur/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-tur/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-tur/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ukr.tur | 39.3 | 0.655 | ### System Info: - hf_name: ukr-tur - source_languages: ukr - target_languages: tur - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-tur/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['uk', 'tr'] - src_constituents: {'ukr'} - tgt_constituents: {'tur'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-tur/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-tur/opus-2020-06-17.test.txt - src_alpha3: ukr - tgt_alpha3: tur - short_pair: uk-tr - chrF2_score: 0.655 - bleu: 39.3 - brevity_penalty: 0.934 - ref_len: 11844.0 - src_name: Ukrainian - tgt_name: Turkish - train_date: 2020-06-17 - src_alpha2: uk - tgt_alpha2: tr - prefer_old: False - long_pair: ukr-tur - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-yap-en
2c11ef76f03b654497b05cac46b09c8ba2821307
2021-09-11T10:52:34.000Z
[ "pytorch", "marian", "text2text-generation", "yap", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-yap-en
14
null
transformers
9,766
--- tags: - translation license: apache-2.0 --- ### opus-mt-yap-en * source languages: yap * target languages: en * OPUS readme: [yap-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yap-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yap-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yap.en | 30.2 | 0.452 |
Ilyes/wav2vec2-large-xlsr-53-french_punctuation
6039d1712c8160c5614feb7b19467e8b52ba426b
2021-07-05T14:28:11.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Ilyes
null
Ilyes/wav2vec2-large-xlsr-53-french_punctuation
14
null
transformers
9,767
--- language: fr datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-French_punctuation by Ilyes Rebai results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice args: fr metrics: - name: Test WER and CER on text and puctuation prediction types: [wer, cer] values: [19.47%, 6.66%] - name: Test WER and CER on text without punctuation types: [wer, cer] values: [17.88%, 6.37%] --- ## Evaluation on Common Voice FR Test ```python import re import torch import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) model_name = "Ilyes/wav2vec2-large-xlsr-53-french_punctuation" model = Wav2Vec2ForCTC.from_pretrained(model_name).to('cuda') processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("common_voice", "fr", split="test") chars_to_ignore_regex = '[\;\:\"\β€œ\%\β€˜\”\οΏ½\β€˜\’\’\’\β€˜\…\Β·\Ηƒ\Β«\β€Ή\Β»\β€Ίβ€œ\”\\ΚΏ\ΚΎ\β€ž\∞\\|\;\:\*\β€”\–\─\―\_\/\:\ː\;\=\Β«\Β»\β†’]' def normalize_text(text): text = text.lower().strip() text = re.sub('Ε“', 'oe', text) text = re.sub('Γ¦', 'ae', text) text = re.sub("’|Β΄|β€²|ΚΌ|β€˜|Κ»|`", "'", text) text = re.sub("'+ ", " ", text) text = re.sub(" '+", " ", text) text = re.sub("'$", " ", text) text = re.sub("' ", " ", text) text = re.sub("βˆ’|‐", "-", text) text = re.sub(" -", "", text) text = re.sub("- ", "", text) text = re.sub(chars_to_ignore_regex, '', text) return text def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = normalize_text(batch["sentence"]) return batch ds = ds.map(map_to_array) resampler = torchaudio.transforms.Resample(48_000, 16_000) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] # remove duplicates batch["target"] = re.sub('\.+', '.', batch["target"]) batch["target"] = re.sub('\?+', '?', batch["target"]) batch["target"] = re.sub('!+', '!', batch["target"]) batch["target"] = re.sub(',+', ',', batch["target"]) return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) wer = load_metric("wer") print(wer.compute(predictions=result["predicted"], references=result["target"])) ``` ## Some results | Reference | Prediction | | ------------- | ------------- | | il vΓ©cut Γ  new york et y enseigna une grande partie de sa vie. | il a vΓ©cu Γ  new york et y enseigna une grande partie de sa vie. | | au classement par nations, l'allemagne est la tenante du titre. | au classement der nation l'allemagne est la tenante du titre. | | voici un petit calcul pour fixer les idΓ©es. | voici un petit calcul pour fixer les idΓ©es. | | oh! tu dois Γͺtre beau avec | oh! tu dois Γͺtre beau avec. | | babochet vous le voulez? | baboche, vous le voulez? | | la commission est, par consΓ©quent, dΓ©favorable Γ  cet amendement. | la commission est, par consΓ©quent, dΓ©favorable Γ  cet amendement. | All the references and predictions of the test corpus are already available in this repository. ## Results text + punctuation WER=21.47% CER=7.21% text (without punctuation) WER=19.71% CER=6.91%
KoichiYasuoka/roberta-small-japanese-aozora
fdb370a3c684145416d8b4fd0ee204b3831ad1fc
2021-11-03T14:44:50.000Z
[ "pytorch", "roberta", "fill-mask", "ja", "transformers", "japanese", "masked-lm", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/roberta-small-japanese-aozora
14
null
transformers
9,768
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "ζ—₯ζœ¬γ«η€γ„γŸγ‚‰[MASK]γ‚’θ¨ͺねγͺさい。" --- # roberta-small-japanese-aozora ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with [Japanese-LUW-Tokenizer](https://github.com/KoichiYasuoka/Japanese-LUW-Tokenizer). You can fine-tune `roberta-small-japanese-aozora` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-luw-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora") ```
M47Labs/italian_news_classification_headlines
c41a7de361df020eeb2910d5b948e18d01ba2425
2021-09-07T15:09:53.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
M47Labs
null
M47Labs/italian_news_classification_headlines
14
null
transformers
9,769
Entry not found
MagicalCat29/model_save_test2
25f966a559f8257b47a3a19fd5b03587179aa7b3
2022-02-16T14:41:10.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:other", "autotrain_compatible" ]
token-classification
false
MagicalCat29
null
MagicalCat29/model_save_test2
14
null
transformers
9,770
--- license: other ---
Manishl7/xlm-roberta-large-language-detection
b6bd9814bb85ca220d98584a8406cd91e2d954dc
2021-10-20T05:20:44.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Manishl7
null
Manishl7/xlm-roberta-large-language-detection
14
1
transformers
9,771
Language Detection Model for Nepali, English, Hindi and Spanish Model fine tuned on xlm-roberta-large
MariamD/my-t5-qa-legal
c91ded2feb2e50c441517f10d24240a3bbeb0953
2021-10-17T13:20:41.000Z
[ "pytorch", "english", "dataset:legal dataset", "question-answering" ]
question-answering
false
MariamD
null
MariamD/my-t5-qa-legal
14
null
null
9,772
--- language: english datasets: - legal dataset pipeline_tag: question-answering ---
MaxVortman/bert-base-ukr-eng-rus-uncased
3b893995f39011b9b6c4d5df96fccd9dc7e17293
2021-07-21T12:05:26.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
MaxVortman
null
MaxVortman/bert-base-ukr-eng-rus-uncased
14
null
transformers
9,773
This repository shares smaller version of bert-base-multilingual-uncased that keeps only Ukrainian, English, and Russian tokens in the vocabulary. | Model | Num parameters | Size | | ----------------------------------------- | -------------- | --------- | | bert-base-multilingual-uncased | 167 million | ~650 MB | | MaxVortman/bert-base-ukr-eng-rus-uncased | 110 million | ~423 MB |
Media1129/keyword-tag-model-2000
cf96612e6d1f4079606d6965f2d287c7de7c12a1
2021-08-30T04:35:32.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Media1129
null
Media1129/keyword-tag-model-2000
14
null
transformers
9,774
Entry not found
MickyMike/0-GPT2SP-jirasoftware
4faf20db8607a6039692efbd376efa53136d14f5
2021-08-19T02:01:12.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/0-GPT2SP-jirasoftware
14
null
transformers
9,775
Entry not found
Muennighoff/SGPT-1.3B-weightedmean-nli
72a2b83739fcff05da3190fb49ead86866464bd2
2022-02-21T06:15:32.000Z
[ "pytorch", "gpt_neo", "feature-extraction", "arxiv:2202.08904", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
Muennighoff
null
Muennighoff/SGPT-1.3B-weightedmean-nli
14
null
sentence-transformers
9,776
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # SGPT-1.3B-weightedmean-nli ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 93941 with parameters: ``` {'batch_size': 6} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 9394, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 9395, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel (1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
RASMUS/wav2vec2-xlsr-1b-et
a72c8ad9eb48cbda84dcf8566c8cd090c144e997
2022-03-24T11:55:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "mozilla-foundation/common_voice_8_0", "audio", "speech", "robust-speech-event", "hf-asr-leaderboard", "model-index" ]
automatic-speech-recognition
false
RASMUS
null
RASMUS/wav2vec2-xlsr-1b-et
14
null
transformers
9,777
--- language: et datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer tags: - generated_from_trainer - mozilla-foundation/common_voice_8_0 - audio - automatic-speech-recognition - speech - robust-speech-event - hf-asr-leaderboard model-index: - name: XLS-R 1B Wav2Vec2 Estonian by Rasmus Toivanen results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: et metrics: - name: Test WER type: wer value: 20.12 - name: Test CER type: cer value: 3.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 40.77 - name: Test CER type: cer value: 12.32 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 41.97 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-et-lm-1B This model was finetuned with mozilla_foundation/common_voice_8_0 et with train+other+validation splits. It achieves the following results on the test set: (Loss reported with last eval step at step 2000/2040 during training) - Loss: 0.2150 - Wer: 0.2012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00005 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 1 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
RJ3vans/CMV1spanTagger
db91a06b31dc86cce3548ba0868404044ba459dd
2021-09-07T13:26:30.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
RJ3vans
null
RJ3vans/CMV1spanTagger
14
null
transformers
9,778
This model identifies compound verb phrases (including conjoins and coordinators) in an input sentence. Try the test sentence: John kicked the ball [and] chased after it. The model was derived using code adapted from an original program written by Dr. Le An Ha at the University of Wolverhampton.
Recognai/selectra_small
e45e0de5d6a68200c4b6894d06e16d7b3ef3ace4
2021-10-19T15:28:17.000Z
[ "pytorch", "electra", "pretraining", "es", "dataset:oscar", "transformers", "license:apache-2.0" ]
null
false
Recognai
null
Recognai/selectra_small
14
5
transformers
9,779
--- language: - es thumbnail: "url to a thumbnail used in social sharing" license: apache-2.0 datasets: - oscar --- # SELECTRA: A Spanish ELECTRA SELECTRA is a Spanish pre-trained language model based on [ELECTRA](https://github.com/google-research/electra). We release a `small` and `medium` version with the following configuration: | Model | Layers | Embedding/Hidden Size | Params | Vocab Size | Max Sequence Length | Cased | | --- | --- | --- | --- | --- | --- | --- | | **SELECTRA small** | **12** | **256** | **22M** | **50k** | **512** | **True** | | [SELECTRA medium](https://huggingface.co/Recognai/selectra_medium) | 12 | 384 | 41M | 50k | 512 | True | **SELECTRA small (medium) is about 5 (3) times smaller than BETO but achieves comparable results** (see Metrics section below). ## Usage From the original [ELECTRA model card](https://huggingface.co/google/electra-small-discriminator): "ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN." The discriminator should therefore activate the logit corresponding to the fake input token, as the following example demonstrates: ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast discriminator = ElectraForPreTraining.from_pretrained("Recognai/selectra_small") tokenizer = ElectraTokenizerFast.from_pretrained("Recognai/selectra_small") sentence_with_fake_token = "Estamos desayunando pan rosa con tomate y aceite de oliva." inputs = tokenizer.encode(sentence_with_fake_token, return_tensors="pt") logits = discriminator(inputs).logits.tolist()[0] print("\t".join(tokenizer.tokenize(sentence_with_fake_token))) print("\t".join(map(lambda x: str(x)[:4], logits[1:-1]))) """Output: Estamos desayun ##ando pan rosa con tomate y aceite de oliva . -3.1 -3.6 -6.9 -3.0 0.19 -4.5 -3.3 -5.1 -5.7 -7.7 -4.4 -4.2 """ ``` However, you probably want to use this model to fine-tune it on a downstream task. We provide models fine-tuned on the [XNLI dataset](https://huggingface.co/datasets/xnli), which can be used together with the zero-shot classification pipeline: - [Zero-shot SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small) - [Zero-shot SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium) ## Metrics We fine-tune our models on 3 different down-stream tasks: - [XNLI](https://huggingface.co/datasets/xnli) - [PAWS-X](https://huggingface.co/datasets/paws-x) - [CoNLL2002 - NER](https://huggingface.co/datasets/conll2002) For each task, we conduct 5 trials and state the mean and standard deviation of the metrics in the table below. To compare our results to other Spanish language models, we provide the same metrics taken from the [evaluation table](https://github.com/PlanTL-SANIDAD/lm-spanish#evaluation-) of the [Spanish Language Model](https://github.com/PlanTL-SANIDAD/lm-spanish) repo. | Model | CoNLL2002 - NER (f1) | PAWS-X (acc) | XNLI (acc) | Params | | --- | --- | --- | --- | --- | | SELECTRA small | 0.865 +- 0.004 | 0.896 +- 0.002 | 0.784 +- 0.002 | 22M | | SELECTRA medium | 0.873 +- 0.003 | 0.896 +- 0.002 | 0.804 +- 0.002 | 41M | | | | | | | | [mBERT](https://huggingface.co/bert-base-multilingual-cased) | 0.8691 | 0.8955 | 0.7876 | 178M | | [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) | 0.8759 | 0.9000 | 0.8130 | 110M | | [RoBERTa-b](https://huggingface.co/BSC-TeMU/roberta-base-bne) | 0.8851 | 0.9000 | 0.8016 | 125M | | [RoBERTa-l](https://huggingface.co/BSC-TeMU/roberta-large-bne) | 0.8772 | 0.9060 | 0.7958 | 355M | | [Bertin](https://huggingface.co/bertin-project/bertin-roberta-base-spanish/tree/v1-512) | 0.8835 | 0.8990 | 0.7890 | 125M | | [ELECTRICIDAD](https://huggingface.co/mrm8488/electricidad-base-discriminator) | 0.7954 | 0.9025 | 0.7878 | 109M | Some details of our fine-tuning runs: - epochs: 5 - batch-size: 32 - learning rate: 1e-4 - warmup proportion: 0.1 - linear learning rate decay - layerwise learning rate decay For all the details, check out our [selectra repo](https://github.com/recognai/selectra). ## Training We pre-trained our SELECTRA models on the Spanish portion of the [Oscar](https://huggingface.co/datasets/oscar) dataset, which is about 150GB in size. Each model version is trained for 300k steps, with a warm restart of the learning rate after the first 150k steps. Some details of the training: - steps: 300k - batch-size: 128 - learning rate: 5e-4 - warmup steps: 10k - linear learning rate decay - TPU cores: 8 (v2-8) For all details, check out our [selectra repo](https://github.com/recognai/selectra). **Note:** Due to a misconfiguration in the pre-training scripts the embeddings of the vocabulary containing an accent were not optimized. If you fine-tune this model on a down-stream task, you might consider using a tokenizer that does not strip the accents: ```python tokenizer = ElectraTokenizerFast.from_pretrained("Recognai/selectra_small", strip_accents=False) ``` ## Motivation Despite the abundance of excellent Spanish language models (BETO, BSC-BNE, Bertin, ELECTRICIDAD, etc.), we felt there was still a lack of distilled or compact Spanish language models and a lack of comparing those to their bigger siblings. ## Acknowledgment This research was supported by the Google TPU Research Cloud (TRC) program. ## Authors - David Fidalgo ([GitHub](https://github.com/dcfidalgo)) - Javier Lopez ([GitHub](https://github.com/javispp)) - Daniel Vila ([GitHub](https://github.com/dvsrepo)) - Francisco Aranda ([GitHub](https://github.com/frascuchon))
Rexhaif/rubert-base-srl
f6fffd572f1ec2765269cab48be3e3be3c3bd3d3
2021-11-10T22:17:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Rexhaif
null
Rexhaif/rubert-base-srl
14
null
transformers
9,780
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: rubert-base-srl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-base-srl This model is a fine-tuned version of [./ruBert-base/](https://huggingface.co/./ruBert-base/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2429 - F1: 0.9563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5816 | 1.0 | 57 | 0.3865 | 0.8371 | | 0.3685 | 2.0 | 114 | 0.1707 | 0.9325 | | 0.1057 | 3.0 | 171 | 0.0972 | 0.9563 | | 0.0964 | 4.0 | 228 | 0.1429 | 0.9775 | | 0.1789 | 5.0 | 285 | 0.2493 | 0.9457 | | 0.0016 | 6.0 | 342 | 0.1900 | 0.6349 | | 0.0013 | 7.0 | 399 | 0.2060 | 0.9563 | | 0.0008 | 8.0 | 456 | 0.2321 | 0.9563 | | 0.0006 | 9.0 | 513 | 0.2412 | 0.9563 | | 0.0006 | 10.0 | 570 | 0.2429 | 0.9563 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
Rostlab/prot_electra_discriminator_bfd
f62ae0934f54eff38f65ac892c0ea9ac6f2660ac
2020-12-18T20:10:21.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
Rostlab
null
Rostlab/prot_electra_discriminator_bfd
14
1
transformers
9,781
Entry not found
SEBIS/code_trans_t5_base_code_documentation_generation_python_transfer_learning_finetune
d22b5382c3336b622ec0a67a30eb530b837f0f8d
2021-06-23T04:48:38.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_python_transfer_learning_finetune
14
null
transformers
9,782
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the python function/method. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/python/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_source_code_summarization_csharp_multitask
d74e5428319130225ba1aa862dac021a52d5d766
2021-06-23T05:14:09.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_source_code_summarization_csharp_multitask
14
null
transformers
9,783
--- tags: - summarization widget: - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" --- # CodeTrans model for source code summarization csharp Pretrained model on programming language csharp using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_csharp_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_csharp_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/source%20code%20summarization/csharp/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 160,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_trans_sv_en
f8cfe534f0bbe4f4cdc27ad3f7cbf29e3d86c7a0
2021-06-23T10:08:13.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish English", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_sv_en
14
null
transformers
9,784
--- language: Swedish English tags: - translation Swedish English model datasets: - dcep europarl jrc-acquis widget: - text: "Om rΓ€ttsliga fΓΆrfaranden inleds rΓΆrande omstΓ€ndigheter som ombudsmannen utreder skall han avsluta Γ€rendet." --- # legal_t5_small_trans_sv_en model Model on translating legal text from Swedish to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_en is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to English. ### How to use Here is how to use this model to translate legal text from Swedish to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_en", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "Om rΓ€ttsliga fΓΆrfaranden inleds rΓΆrande omstΓ€ndigheter som ombudsmannen utreder skall han avsluta Γ€rendet." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_en model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_en | 52.025| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Sakil/distilbert_lazylearner_hatespeech_detection
cc07edc263e27a23453611d11d2d33caeaa5dce2
2022-02-20T15:00:43.000Z
[ "pytorch", "distilbert", "text-classification", "en", "transformers", "hate", "speech", "license:apache-2.0" ]
text-classification
false
Sakil
null
Sakil/distilbert_lazylearner_hatespeech_detection
14
null
transformers
9,785
--- license: apache-2.0 language: en tags: - hate - speech widget: - text: "RT @ShenikaRoberts: The shit you hear about me might be true or it might be faker than the bitch who told it to ya &#5736" --- # Dataset Collection: * The hatespeech dataset is collected from different open sources like Kaggle ,social media like Twitter. * The dataset has the two classes hatespeech and non hatespeech. * The class distribution is equal * Different strategies have been followed during the data gathering phase. * The dataset is collected from relevant sources. # distilbert-base-uncased model is fine-tuned for Hate Speech Detection * The model is fine-tuned on the dataset. * This model can be used to create the labels for academic purposes or for industrial purposes. * This model can be used for the inference purpose as well. # Data Fields: **label**: 0 - it is a hate speech, 1 - not a hate speech # Application: * This model is useful for the detection of hatespeech in the tweets. * There are numerous situations where we have tweet data but no labels, so this approach can be used to create labels. * You can fine-tune this model for your particular use cases. # Model Implementation # !pip install transformers[sentencepiece] from transformers import pipeline model_name="Sakil/distilbert_lazylearner_hatespeech_detection" classifier = pipeline("text-classification",model=model_name) classifier("!!! RT @mayasolovely: As a woman you shouldn't complain about cleaning up your house. &amp; as a man you should always take the trash out...") # Github: [Sakil Ansari](https://github.com/Sakil786/hate_speech_detection_pretrained_model)
SetFit/distilbert-base-uncased__TREC-QC__all-train
56da4b93982f9fbf65ab88350068a71e2f36ecec
2022-01-26T20:30:00.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__TREC-QC__all-train
14
null
transformers
9,786
Entry not found
Sora4762/DialoGPT-small-naruto
f6737e28cb5abf95fa60ea2d21a41a446d0e859e
2022-01-20T17:50:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Sora4762
null
Sora4762/DialoGPT-small-naruto
14
null
transformers
9,787
--- tags: - conversational --- # Naruto DialoGPT Model
Tatyana/rubert_conversational_cased_sentiment
95945f1fad53246fa0f47f8aff9a299ca9e367f7
2021-05-19T22:26:59.000Z
[ "pytorch", "bert", "ru", "dataset:Tatyana/ru_sentiment_dataset", "transformers", "sentiment", "text-classification" ]
text-classification
false
Tatyana
null
Tatyana/rubert_conversational_cased_sentiment
14
null
transformers
9,788
--- language: - ru tags: - sentiment - text-classification datasets: - Tatyana/ru_sentiment_dataset --- # Keras model with ruBERT conversational embedder for Sentiment Analysis Russian texts sentiment classification. Model trained on [Tatyana/ru_sentiment_dataset](https://huggingface.co/datasets/Tatyana/ru_sentiment_dataset) ## Labels meaning 0: NEUTRAL 1: POSITIVE 2: NEGATIVE ## How to use ```python !pip install tensorflow-gpu !pip install deeppavlov !python -m deeppavlov install squad_bert !pip install fasttext !pip install transformers !python -m deeppavlov install bert_sentence_embedder from deeppavlov import build_model model = build_model(Tatyana/rubert_conversational_cased_sentiment/custom_config.json) model(["БСгодня Ρ…ΠΎΡ€ΠΎΡˆΠ°Ρ ΠΏΠΎΠ³ΠΎΠ΄Π°", "Π― счастлив ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ с Ρ‚ΠΎΠ±ΠΎΡŽ врСмя", "МнС нравится эта ΠΌΡƒΠ·Ρ‹ΠΊΠ°Π»ΡŒΠ½Π°Ρ композиция"]) ```
Tsubasaz/clinical-pubmed-bert-base-128
73a95af29ac4204421b4ca5828297cc05d8f373a
2022-01-27T15:44:06.000Z
[ "pytorch", "bert", "fill-mask", "en", "dataset:MIMIC-III", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
Tsubasaz
null
Tsubasaz/clinical-pubmed-bert-base-128
14
null
transformers
9,789
--- language: - en license: mit datasets: - MIMIC-III widget: - text: "Due to shortness of breath, the patient is diagnosed with [MASK], and other respiratory problems." example_title: "Example 1" --- # ClinicalPubMedBERT ## Description A BERT model pre-trained on PubMed abstracts, and continual pre-trained on clinical notes ([MIMIC-III](https://mimic.physionet.org/)). We try combining two domains that have fewer overlaps with general knowledge text corpora: EHRs and biomedical papers. We hope this model can serve better results on clinical-related downstream tasks such as readmissions. This model is trained on 500000 clinical notes randomly sampled from MIMIC datasets, with 120k steps of training. We also used whole word masking to enhance the coherence of the language model. All notes are chunked into a length of 128 tokens. Pre-trained model: https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
Vaibhavbrkn/mbart-english-hindi
3c96d2df0c2dc55af2e1b31c97edb3dc62d872df
2021-06-12T03:41:52.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Vaibhavbrkn
null
Vaibhavbrkn/mbart-english-hindi
14
null
transformers
9,790
Entry not found
Yuchen/muril-large-cased-hita-qa
2062749a61d49a49b1e1af224f6c7f41acd5f80c
2022-07-23T07:01:06.000Z
[ "pytorch", "bert", "question-answering", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
Yuchen
null
Yuchen/muril-large-cased-hita-qa
14
null
transformers
9,791
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- # Question Answering model for Hindi and Tamil This model is part of the ensemble that ranked 4/943 in the [Hindi and Tamil Question Answering](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition held by Google Research India at Kaggle. ``` from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("Yuchen/muril-large-cased-hita-qa") model = AutoModelForQuestionAnswering.from_pretrained("Yuchen/muril-large-cased-hita-qa") ```
Zixtrauce/SelfAwareness
6183de34e056c91d0010af5fbe1a15e77dbf2d61
2022-01-02T04:38:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Zixtrauce
null
Zixtrauce/SelfAwareness
14
1
transformers
9,792
--- tags: - conversational --- #SelfAwareness
Zohar/distilgpt2-finetuned-restaurant-reviews
1be19e2016e8d06fd229b3da6f86d12a5676fd0f
2022-02-16T12:53:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Zohar
null
Zohar/distilgpt2-finetuned-restaurant-reviews
14
null
transformers
9,793
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-restaurant-reviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-restaurant-reviews This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on a subset of the Yelp restaurant reviews dataset. It achieves the following results on the evaluation set: - Loss: 3.4668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6331 | 1.0 | 2536 | 3.5280 | | 3.5676 | 2.0 | 5072 | 3.4793 | | 3.5438 | 3.0 | 7608 | 3.4668 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.11.0
aapot/wav2vec2-xlsr-1b-finnish-v2
40a3206c10975e73f04f947ac9fc259b017793b0
2022-03-28T17:49:48.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "transformers", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
aapot
null
aapot/wav2vec2-xlsr-1b-finnish-v2
14
null
transformers
9,794
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-1b-finnish-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 9.73 - name: Test CER type: cer value: 1.65 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). **Note**: there is a version with KenLM language model used in the decoding phase producing better transcriptions: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-v2/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. ## Training data This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.52 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.97 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.74 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.73 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.95 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.7778 | 0.17 | 500 | 0.2851 | 0.3572 | | 0.5506 | 0.34 | 1000 | 0.1595 | 0.2130 | | 0.6569 | 0.5 | 1500 | 0.1458 | 0.2046 | | 0.5997 | 0.67 | 2000 | 0.1374 | 0.1975 | | 0.542 | 0.84 | 2500 | 0.1390 | 0.1956 | | 0.4815 | 1.01 | 3000 | 0.1266 | 0.1813 | | 0.6982 | 1.17 | 3500 | 0.1441 | 0.1965 | | 0.4522 | 1.34 | 4000 | 0.1232 | 0.1822 | | 0.4655 | 1.51 | 4500 | 0.1209 | 0.1702 | | 0.4069 | 1.68 | 5000 | 0.1149 | 0.1688 | | 0.4226 | 1.84 | 5500 | 0.1121 | 0.1560 | | 0.3993 | 2.01 | 6000 | 0.1091 | 0.1557 | | 0.406 | 2.18 | 6500 | 0.1115 | 0.1553 | | 0.4098 | 2.35 | 7000 | 0.1144 | 0.1560 | | 0.3995 | 2.51 | 7500 | 0.1028 | 0.1476 | | 0.4101 | 2.68 | 8000 | 0.1129 | 0.1511 | | 0.3636 | 2.85 | 8500 | 0.1025 | 0.1517 | | 0.3534 | 3.02 | 9000 | 0.1068 | 0.1480 | | 0.3836 | 3.18 | 9500 | 0.1072 | 0.1459 | | 0.3531 | 3.35 | 10000 | 0.0928 | 0.1367 | | 0.3649 | 3.52 | 10500 | 0.1042 | 0.1426 | | 0.3645 | 3.69 | 11000 | 0.0979 | 0.1433 | | 0.3685 | 3.85 | 11500 | 0.0947 | 0.1346 | | 0.3325 | 4.02 | 12000 | 0.0991 | 0.1352 | | 0.3497 | 4.19 | 12500 | 0.0919 | 0.1358 | | 0.3303 | 4.36 | 13000 | 0.0888 | 0.1272 | | 0.3323 | 4.52 | 13500 | 0.0888 | 0.1277 | | 0.3452 | 4.69 | 14000 | 0.0894 | 0.1279 | | 0.337 | 4.86 | 14500 | 0.0917 | 0.1289 | | 0.3114 | 5.03 | 15000 | 0.0942 | 0.1313 | | 0.3099 | 5.19 | 15500 | 0.0902 | 0.1239 | | 0.3079 | 5.36 | 16000 | 0.0871 | 0.1256 | | 0.3293 | 5.53 | 16500 | 0.0861 | 0.1263 | | 0.3123 | 5.7 | 17000 | 0.0876 | 0.1203 | | 0.3093 | 5.86 | 17500 | 0.0848 | 0.1226 | | 0.2903 | 6.03 | 18000 | 0.0914 | 0.1221 | | 0.297 | 6.2 | 18500 | 0.0841 | 0.1185 | | 0.2797 | 6.37 | 19000 | 0.0858 | 0.1165 | | 0.2878 | 6.53 | 19500 | 0.0874 | 0.1161 | | 0.2974 | 6.7 | 20000 | 0.0835 | 0.1173 | | 0.3051 | 6.87 | 20500 | 0.0835 | 0.1178 | | 0.2941 | 7.04 | 21000 | 0.0852 | 0.1155 | | 0.258 | 7.21 | 21500 | 0.0832 | 0.1132 | | 0.2778 | 7.37 | 22000 | 0.0829 | 0.1110 | | 0.2751 | 7.54 | 22500 | 0.0822 | 0.1069 | | 0.2887 | 7.71 | 23000 | 0.0819 | 0.1103 | | 0.2509 | 7.88 | 23500 | 0.0787 | 0.1055 | | 0.2501 | 8.04 | 24000 | 0.0807 | 0.1076 | | 0.2399 | 8.21 | 24500 | 0.0784 | 0.1052 | | 0.2539 | 8.38 | 25000 | 0.0772 | 0.1075 | | 0.248 | 8.55 | 25500 | 0.0772 | 0.1055 | | 0.2689 | 8.71 | 26000 | 0.0763 | 0.1027 | | 0.2855 | 8.88 | 26500 | 0.0756 | 0.1035 | | 0.2421 | 9.05 | 27000 | 0.0771 | 0.0998 | | 0.2497 | 9.22 | 27500 | 0.0756 | 0.0971 | | 0.2367 | 9.38 | 28000 | 0.0741 | 0.0974 | | 0.2473 | 9.55 | 28500 | 0.0739 | 0.0982 | | 0.2396 | 9.72 | 29000 | 0.0756 | 0.0991 | | 0.2602 | 9.89 | 29500 | 0.0737 | 0.0975 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-v2 --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details πŸ€—
abdelkader/distilbert-base-uncased-finetuned-emotion
8cf56c72387bef639411e4850a118339e94f11c4
2022-01-04T23:18:05.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
abdelkader
null
abdelkader/distilbert-base-uncased-finetuned-emotion
14
null
transformers
9,795
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9215604730468001 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2162 - Accuracy: 0.9215 - F1: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8007 | 1.0 | 250 | 0.3082 | 0.907 | 0.9045 | | 0.2438 | 2.0 | 500 | 0.2162 | 0.9215 | 0.9216 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
addy88/wav2vec2-telugu-stt
b66519593f1d9ac1ac77b4607b190287b6e24566
2021-12-19T15:39:58.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-telugu-stt
14
null
transformers
9,796
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-telugu-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-telugu-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
ainize/gpt2-simpsons-script-large
898a39d4cc32a9e6252c93501a344cdfd312a81a
2021-05-21T12:13:28.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ainize
null
ainize/gpt2-simpsons-script-large
14
null
transformers
9,797
Entry not found
aloxatel/W2L
f8a6e3b403f24f0d1e2b3f1abffaa9cb3338d2f2
2021-05-20T14:04:23.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
aloxatel
null
aloxatel/W2L
14
null
transformers
9,798
Entry not found
annedirkson/BERT_embeddings_ADR_normalization
90551034d8d7b3510b35c99bafa21ce050768ea3
2022-03-02T13:57:14.000Z
[ "pytorch", "tf", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
annedirkson
null
annedirkson/BERT_embeddings_ADR_normalization
14
null
transformers
9,799
Entry not found