modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
RaghuramKol/distilbert-base-uncased-finetuned-emotion
1f124f372ea0c9d60f816da702877a2c2e4ba209
2022-03-15T19:56:43.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
RaghuramKol
null
RaghuramKol/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,700
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9271888946173477 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2218 - Accuracy: 0.927 - F1: 0.9272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8487 | 1.0 | 250 | 0.3274 | 0.906 | 0.9030 | | 0.2595 | 2.0 | 500 | 0.2218 | 0.927 | 0.9272 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
mikeadimech/bart-large-cnn-qmsum-meeting-summarization
989963e829b7f1e76bec83205a0a1d7f588c80e1
2022-03-18T19:00:43.000Z
[ "pytorch", "bart", "text2text-generation", "dataset:yawnick/QMSum", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
mikeadimech
null
mikeadimech/bart-large-cnn-qmsum-meeting-summarization
12
null
transformers
10,701
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-qmsum-meeting-summarization results: [] datasets: - yawnick/QMSum --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-qmsum-meeting-summarization This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.7578 - Rouge1: 37.9431 - Rouge2: 10.6366 - Rougel: 25.5782 - Rougelsum: 33.0209 - Gen Len: 72.7714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 500 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
cb2-kai/finetuning-sentiment-model-3000-samples
978f74804799a8a02dcbfc113279eb9a709edcd9
2022-03-21T18:34:27.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
cb2-kai
null
cb2-kai/finetuning-sentiment-model-3000-samples
12
null
transformers
10,702
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8679245283018867 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3568 - Accuracy: 0.86 - F1: 0.8679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Ameer05/distilbart-cnn-12-6-finetuned-resume-summarizer
0236fc2c55ae96171fe407186bba2038ea4e9914
2022-03-21T19:35:06.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
Ameer05
null
Ameer05/distilbart-cnn-12-6-finetuned-resume-summarizer
12
null
transformers
10,703
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: distilbart-cnn-12-6-finetuned-resume-summarizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-resume-summarizer This model is a fine-tuned version of [Ameer05/model-tokenizer-repo](https://huggingface.co/Ameer05/model-tokenizer-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1123 - Rouge1: 52.5826 - Rouge2: 34.3861 - Rougel: 41.8525 - Rougelsum: 51.0015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 3.2243 | 42.8593 | 24.8652 | 34.1789 | 41.406 | | No log | 1.91 | 10 | 2.6948 | 48.8571 | 28.6711 | 39.2648 | 46.188 | | No log | 2.91 | 15 | 2.4665 | 50.6085 | 30.4034 | 39.7406 | 48.5449 | | No log | 3.91 | 20 | 2.3329 | 52.2357 | 32.3398 | 41.574 | 49.4316 | | 3.6611 | 4.91 | 25 | 2.2362 | 52.0134 | 33.1612 | 41.3103 | 50.255 | | 3.6611 | 5.91 | 30 | 2.1833 | 51.5434 | 32.7045 | 40.5683 | 49.4238 | | 3.6611 | 6.91 | 35 | 2.1462 | 53.5144 | 35.4518 | 42.8615 | 51.4053 | | 3.6611 | 7.91 | 40 | 2.1518 | 52.0985 | 33.6754 | 41.5936 | 50.5159 | | 2.0326 | 8.91 | 45 | 2.1075 | 53.1401 | 34.9721 | 42.2973 | 51.8454 | | 2.0326 | 9.91 | 50 | 2.1123 | 52.5826 | 34.3861 | 41.8525 | 51.0015 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
asahi417/tner-roberta-large-tweet-2020
9f2d61fc46ffb48b627f79a536cdb70631a6b09f
2022-05-06T11:17:35.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
asahi417
null
asahi417/tner-roberta-large-tweet-2020
12
null
transformers
10,704
Entry not found
gayanin/t5-small-med-term-conditional-masking
f3dbc58d0e6311392d8b5a17dbcfe176bff97c50
2022-03-24T14:54:49.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/t5-small-med-term-conditional-masking
12
null
transformers
10,705
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-med-term-conditional-masking results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-med-term-conditional-masking This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6808 - Rouge2 Precision: 0.6855 - Rouge2 Recall: 0.486 - Rouge2 Fmeasure: 0.5507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.9303 | 1.0 | 15827 | 0.8262 | 0.6603 | 0.4698 | 0.5318 | | 0.8677 | 2.0 | 31654 | 0.7679 | 0.6695 | 0.4762 | 0.539 | | 0.8315 | 3.0 | 47481 | 0.7393 | 0.6741 | 0.4783 | 0.5418 | | 0.7999 | 4.0 | 63308 | 0.7194 | 0.6774 | 0.4811 | 0.5448 | | 0.7746 | 5.0 | 79135 | 0.7059 | 0.6804 | 0.4815 | 0.5459 | | 0.7785 | 6.0 | 94962 | 0.6958 | 0.6827 | 0.4841 | 0.5485 | | 0.7592 | 7.0 | 110789 | 0.6893 | 0.6841 | 0.4849 | 0.5494 | | 0.745 | 8.0 | 126616 | 0.6849 | 0.6846 | 0.4852 | 0.5498 | | 0.7443 | 9.0 | 142443 | 0.6818 | 0.6854 | 0.4865 | 0.551 | | 0.7417 | 10.0 | 158270 | 0.6808 | 0.6855 | 0.486 | 0.5507 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Helsinki-NLP/opus-mt-tc-big-zle-de
1cfb0609e012e563bd0778d589ef1b68de59456f
2022-06-01T13:09:52.000Z
[ "pytorch", "marian", "text2text-generation", "be", "de", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-de
12
null
transformers
10,706
--- language: - be - de - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-de results: - task: name: Translation rus-deu type: translation args: rus-deu dataset: name: flores101-devtest type: flores_101 args: rus deu devtest metrics: - name: BLEU type: bleu value: 26.1 - task: name: Translation ukr-deu type: translation args: ukr-deu dataset: name: flores101-devtest type: flores_101 args: ukr deu devtest metrics: - name: BLEU type: bleu value: 28.1 - task: name: Translation bel-deu type: translation args: bel-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bel-deu metrics: - name: BLEU type: bleu value: 44.8 - task: name: Translation rus-deu type: translation args: rus-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-deu metrics: - name: BLEU type: bleu value: 51.8 - task: name: Translation ukr-deu type: translation args: ukr-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-deu metrics: - name: BLEU type: bleu value: 54.7 - task: name: Translation rus-deu type: translation args: rus-deu dataset: name: newstest2013 type: wmt-2013-news args: rus-deu metrics: - name: BLEU type: bleu value: 25.2 --- # opus-mt-tc-big-zle-de Neural machine translation model for translating from East Slavic languages (zle) to German (de). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-19 * source language(s): bel rus ukr * target language(s): deu * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-19.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-deu/opusTCv20210807_transformer-big_2022-03-19.zip) * more information released models: [OPUS-MT zle-deu README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-deu/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Это был по-настоящему прекрасный день.", "Дождь кончился?" ] model_name = "pytorch-models/opus-mt-tc-big-zle-de" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Es war ein wirklich schöner Tag. # Ist der Regen vorbei? ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-de") print(pipe("Это был по-настоящему прекрасный день.")) # expected output: Es war ein wirklich schöner Tag. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-19.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-deu/opusTCv20210807_transformer-big_2022-03-19.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-19.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-deu/opusTCv20210807_transformer-big_2022-03-19.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bel-deu | tatoeba-test-v2021-08-07 | 0.63720 | 44.8 | 551 | 4182 | | rus-deu | tatoeba-test-v2021-08-07 | 0.69768 | 51.8 | 12800 | 98842 | | ukr-deu | tatoeba-test-v2021-08-07 | 0.70860 | 54.7 | 10319 | 64646 | | bel-deu | flores101-devtest | 0.47052 | 12.9 | 1012 | 25094 | | rus-deu | flores101-devtest | 0.56159 | 26.1 | 1012 | 25094 | | ukr-deu | flores101-devtest | 0.57251 | 28.1 | 1012 | 25094 | | rus-deu | newstest2012 | 0.49257 | 19.8 | 3003 | 72886 | | rus-deu | newstest2013 | 0.54015 | 25.2 | 3000 | 63737 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Wed Mar 23 22:16:45 EET 2022 * port machine: LM0-400-22516.local
agdsga/chinese-roberta-wwm-ext-large
4517ed210722c3f6594f54d7ee096a94e8461e82
2022-03-25T03:05:07.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
agdsga
null
agdsga/chinese-roberta-wwm-ext-large
12
null
transformers
10,707
Entry not found
TeamFnord/manga-ocr
1d0bb748d3b7551b2c556f406157459949ad32bc
2022-02-10T07:50:15.000Z
[ "pytorch", "vision-encoder-decoder", "ja", "dataset:manga109s", "transformers", "image-to-text", "license:apache-2.0" ]
image-to-text
false
TeamFnord
null
TeamFnord/manga-ocr
12
null
transformers
10,708
--- language: ja tags: - image-to-text license: apache-2.0 datasets: - manga109s --- # Manga OCR Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses [Vision Encoder Decoder](https://huggingface.co/docs/transformers/model_doc/visionencoderdecoder) framework. Manga OCR can be used as a general purpose printed Japanese OCR, but its main goal was to provide a high quality text recognition, robust against various scenarios specific to manga: - both vertical and horizontal text - text with furigana - text overlaid on images - wide variety of fonts and font styles - low quality images Code is available [here](https://github.com/kha-white/manga_ocr).
DMetaSoul/sbert-chinese-general-v1
a3bebbf20c355066c73ad1cb05f5342d254be9e2
2022-04-04T07:22:58.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "semantic-search", "chinese" ]
sentence-similarity
false
DMetaSoul
null
DMetaSoul/sbert-chinese-general-v1
12
null
sentence-transformers
10,709
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-general-v1 此模型基于 [bert-base-chinese](https://huggingface.co/bert-base-chinese) 版本 BERT 模型,在 NLI、PAWS-X、PKU-Paraphrase-Bank、STS 等语义相似数据集上进行训练,适用于**通用语义匹配**场景(此模型在 Chinese-STS 任务上效果较好,但在其它任务上效果并非最优,存在一定过拟合风险),比如文本特征抽取、文本向量聚类、文本语义搜索等业务场景。 注:此模型的[轻量化版本](https://huggingface.co/DMetaSoul/sbert-chinese-general-v1-distill),也已经开源啦! # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-general-v1') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-general-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数: | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | | ------------ | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | | **spearman** | 84.54% | 82.17% | 23.80% | 65.94% | 45.52% | 11.52% | 48.51% | ## Citing & Authors E-mail: [email protected]
DMetaSoul/sbert-chinese-qmc-domain-v1
25a28159ba2986912df1f5553c0d7b50202f9530
2022-04-04T07:24:17.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "semantic-search", "chinese" ]
sentence-similarity
false
DMetaSoul
null
DMetaSoul/sbert-chinese-qmc-domain-v1
12
null
sentence-transformers
10,710
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-qmc-domain-v1 此模型基于 [bert-base-chinese](https://huggingface.co/bert-base-chinese) 版本 BERT 模型,在百度知道问题匹配数据集([LCQMC](http://icrc.hitsz.edu.cn/Article/show/171.html))上进行训练调优,适用于**开放领域的问题匹配**场景,比如: - 洗澡用什么香皂好?vs. 洗澡用什么香皂好 - 大连哪里拍婚纱照好点? vs. 大连哪里拍婚纱照比较好 - 银行卡怎样挂失?vs. 银行卡丢了怎么挂失啊? 注:此模型的[轻量化版本](https://huggingface.co/DMetaSoul/sbert-chinese-qmc-domain-v1-distill),也已经开源啦! # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-domain-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-domain-v1') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-domain-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数: | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | | ------------------------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | | **sbert-chinese-qmc-domain-v1** | 80.90% | 76.63% | 34.51% | 77.06% | 52.96% | 12.98% | 59.48% | ## Citing & Authors E-mail: [email protected]
hackathon-pln-es/jurisbert-tsdae-sentence-transformer
6354a1034e0e83573469da0c22da5d6e422a6450
2022-03-30T16:47:04.000Z
[ "pytorch", "roberta", "feature-extraction", "es", "dataset:scjnugacj/scjn_dataset_corpus_tesis", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
hackathon-pln-es
null
hackathon-pln-es/jurisbert-tsdae-sentence-transformer
12
3
sentence-transformers
10,711
--- widget: - text: "interés superior del menor" - text: "interés superior del infante" - text: "interés superior de la niñez" pipeline_tag: sentence-similarity language: es datasets: scjnugacj/scjn_dataset_corpus_tesis tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # jurisbert-tsdae-sentence-transformer This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ['interés superior del menor', 'interés superior del infante'] model = SentenceTransformer('hackaton-pnl-es/jurisbert-tsdae-sentence-transformer') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['interés superior del menor', 'interés superior del infante'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('hackaton-pnl-es/jurisbert-tsdae-sentence-transformer') model = AutoModel.from_pretrained('hackaton-pnl-es/jurisbert-tsdae-sentence-transformer') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 25000 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "constantlr", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Equipo El equipo esta conformado por @gpalomeque @aurelipvs @cecilimacias @giomadariaga @cattsytabla
nikhedward/t5-small-finetuned-multi-news
a278da69a13f159e20323b140ce12c3d5b06b806
2022-03-26T04:31:49.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:multi_news", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
nikhedward
null
nikhedward/t5-small-finetuned-multi-news
12
null
transformers
10,712
--- license: apache-2.0 tags: - generated_from_trainer datasets: - multi_news metrics: - rouge model-index: - name: t5-small-finetuned-multi-news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: multi_news type: multi_news args: default metrics: - name: Rouge1 type: rouge value: 14.5549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-multi-news This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 2.7775 - Rouge1: 14.5549 - Rouge2: 4.5934 - Rougel: 11.1178 - Rougelsum: 12.8964 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.0211 | 1.0 | 1405 | 2.7775 | 14.5549 | 4.5934 | 11.1178 | 12.8964 | 19.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
avb/bert-base-uncased-finetuned-cola
ec6845f0c0f49023d4e77c47cb0a8fc1e8a3b08a
2022-04-05T22:52:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
avb
null
avb/bert-base-uncased-finetuned-cola
12
null
transformers
10,713
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5642446874338215 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8297 - Matthews Correlation: 0.5642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4869 | 1.0 | 535 | 0.5115 | 0.5134 | | 0.2872 | 2.0 | 1070 | 0.5523 | 0.5399 | | 0.1836 | 3.0 | 1605 | 0.7024 | 0.5619 | | 0.1249 | 4.0 | 2140 | 0.8297 | 0.5642 | | 0.0908 | 5.0 | 2675 | 0.9284 | 0.5508 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
rahulacj/bertweet-base-finetuned-sentiment-analysis
3fb8a77a51fbf049f42fbb2f5533dbd113d413ad
2022-03-31T16:21:16.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
rahulacj
null
rahulacj/bertweet-base-finetuned-sentiment-analysis
12
null
transformers
10,714
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bertweet-base-finetuned-sentiment-analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-finetuned-sentiment-analysis This model is a fine-tuned version of [cardiffnlp/bertweet-base-sentiment](https://huggingface.co/cardiffnlp/bertweet-base-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8458 - Accuracy: 0.6426 - F1: 0.6397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8904 | 1.0 | 630 | 0.8509 | 0.6381 | 0.6340 | | 0.7655 | 2.0 | 1260 | 0.8345 | 0.6579 | 0.6559 | | 0.66 | 3.0 | 1890 | 0.9199 | 0.6548 | 0.6514 | | 0.447 | 4.0 | 2520 | 1.0324 | 0.6429 | 0.6417 | | 0.3585 | 5.0 | 3150 | 1.1234 | 0.6452 | 0.6424 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.0
JNK789/distilbert-base-uncased-finetuned-emotion
a32fb3f537e2b5d71c08dec1d32e15a9f046bbff
2022-04-01T17:30:59.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
JNK789
null
JNK789/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,715
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9305 - name: F1 type: f1 value: 0.9307950942842982 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1712 - Accuracy: 0.9305 - F1: 0.9308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7721 | 1.0 | 250 | 0.2778 | 0.9145 | 0.9131 | | 0.2103 | 2.0 | 500 | 0.1818 | 0.925 | 0.9249 | | 0.1446 | 3.0 | 750 | 0.1712 | 0.9305 | 0.9308 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
hackathon-pln-es/roberta-base-bne-squad2-es
fa89a2130f209e946c6dc4ebef9a7f3ff9097cbd
2022-04-02T03:46:40.000Z
[ "pytorch", "roberta", "question-answering", "es", "dataset:squad_es", "transformers", "autotrain_compatible" ]
question-answering
false
hackathon-pln-es
null
hackathon-pln-es/roberta-base-bne-squad2-es
12
null
transformers
10,716
--- language: es datasets: - squad_es --- # roberta-base es for QA This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the [squad_es(v2)](https://huggingface.co/datasets/squad_es) training dataset. ## Hyperparameters The hyperparameters were chosen based on those used in [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2), an english-based model trained for similar purposes ``` --num_train_epochs 2 --learning_rate 3e-5 --max_seq_length 386 --doc_stride 128 ``` ## Performance Evaluated on the [squad_es(v2)](https://huggingface.co/datasets/squad_es) dev set. ``` eval_exact": 62.13526733007252, eval_f1": 69.38515019522332, eval_HasAns_exact": 53.07017543859649, eval_HasAns_f1": 67.57238714827123, eval_HasAns_total": 5928, eval_NoAns_exact": 71.19730185497471, eval_NoAns_f1": 71.19730185497471, eval_NoAns_total": 5930, ``` ## Team Santiago Maximo: [smaximo](https://huggingface.co/smaximo)
Denzil/distilbert-base-uncased-finetuned-emotion
7282904b942a2f42e38ae22c68972150dc114c72
2022-04-02T14:27:32.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Denzil
null
Denzil/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,717
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9239207626877816 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2169 - Accuracy: 0.924 - F1: 0.9239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8101 | 1.0 | 250 | 0.3068 | 0.905 | 0.9019 | | 0.2456 | 2.0 | 500 | 0.2169 | 0.924 | 0.9239 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
facebook/data2vec-audio-large-100h
b76675f9baf73c95727a01ac3fb53e4cdc53b9e3
2022-04-18T16:24:44.000Z
[ "pytorch", "data2vec-audio", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2202.03555", "transformers", "speech", "license:apache-2.0" ]
automatic-speech-recognition
false
facebook
null
facebook/data2vec-audio-large-100h
12
null
transformers
10,718
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # Data2Vec-Audio-Large-100h [Facebook's Data2Vec](https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learning-in-speech-vision-and-language/) The large model pretrained and fine-tuned on 100 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2202.03555) Authors: Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli **Abstract** While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches. The original model can be found under https://github.com/pytorch/fairseq/tree/main/examples/data2vec . # Pre-Training method ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/data2vec.png) For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555). # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Data2VecForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-large-100h") model = Data2VecForCTC.from_pretrained("facebook/data2vec-audio-large-100h") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"],, return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ```
LIA-AvignonUniversity/IWSLT2022-tamasheq-only
4794ce98aaf3e745e659420a6da5841bf68d88ed
2022-05-11T09:32:21.000Z
[ "pytorch", "wav2vec2", "pretraining", "arxiv:2201.05051", "transformers" ]
null
false
LIA-AvignonUniversity
null
LIA-AvignonUniversity/IWSLT2022-tamasheq-only
12
null
transformers
10,719
## Model and data descriptions This is a wav2vec 2.0 base model trained on 243 hours of Tamasheq speech from the corpus presented in [Boito et al., 2022](https://arxiv.org/abs/2201.05051). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. ## Referencing our IWSLT models ``` @article{boito2022trac, title={ON-TRAC Consortium Systems for the IWSLT 2022 Dialect and Low-resource Speech Translation Tasks}, author={Boito, Marcely Zanon and Ortega, John and Riguidel, Hugo and Laurent, Antoine and Barrault, Lo{\"\i}c and Bougares, Fethi and Chaabani, Firas and Nguyen, Ha and Barbier, Florentin and Gahbiche, Souhir and others}, journal={IWSLT}, year={2022} } ```
nielsr/segformer-finetuned-sidewalk
202fb6869965dc04c859449f942acc01a9691a8a
2022-04-06T13:38:20.000Z
[ "pytorch", "segformer", "dataset:segments/sidewalk-semantic", "transformers", "vision", "image-segmentation", "license:apache-2.0" ]
image-segmentation
false
nielsr
null
nielsr/segformer-finetuned-sidewalk
12
null
transformers
10,720
--- license: apache-2.0 tags: - vision - image-segmentation datasets: - segments/sidewalk-semantic widget: - src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg example_title: Brugge --- # Segformer-b0, fine-tuned on Sidewalk This repository contains the weights of a `SegFormerForSemanticSegmentation` model. It was trained using the example script.
GioReg/notiBERTo
024dce56175259f6734194dd063ab4217c062e43
2022-06-09T17:08:29.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GioReg
null
GioReg/notiBERTo
12
null
transformers
10,721
language: - it Si è creato un modello, chiamato notiBERTo, svolgendo la fase di addestramento e utilizzando per la creazione e il tuning dei pesi del modello l’algoritmo non supervisionato di masked-language modeling (MLM); questo non richiede l’utilizzo di testo con etichettatura. L’idea e stata quella di ottenere un modello BERT-based per la lingua italiana focalizzato sul linguaggio tipico utilizzato nei contesti dell’informazione giornalistica online che quindi potesse ricalcare lo stile, il lessico della stampa. Per i dati in input sono stati utilizzati database disponibili pubblicamente online organizzati dal portale “Wortschatz Leipzig” dell’universita di Lipsia. Il portale offre l’accesso ai “corpora collection Leipzig” dove si trovano 900 collezioni testuali divise per lingua - le lingue presenti sono 250 - e argomento, ottenuti principalmente attraverso data crawling dei siti internet. In particolare sono stati scelti database di collezioni di notizie ottenute attraverso feeds RSS rac colte su base giornaliera e database ottenuti attraverso crawling dai principali siti internet di notizie italiane, suddivisi in sottodatabase in base agli anni di raccolta. Per la creazione di “notiBERTo” sono stati utilizzati database relativi agli anni 2018, 2019, 2020 per un totale di circa 700MB.
vocab-transformers/distilbert-tokenizer_256k-MLM_1M
477ba8ed1a70b84a6a2703beb589a62134a3322e
2022-04-07T20:06:32.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/distilbert-tokenizer_256k-MLM_1M
12
null
transformers
10,722
# DistilBERT with 256k token embeddings This model was initialized with a word2vec token embedding matrix with 256k entries, but these token embeddings were updated during MLM. The word2vec was trained on 100GB data from C4, MSMARCO, News, Wikipedia, S2ORC, for 3 epochs. Then the model was trained on this dataset with MLM for 1M steps (batch size 64). The token embeddings were updated during MLM.
jaumefib/datathon-against-racism
b2eaf2e0bc03eee89ed0d7a45f895d98405293e9
2022-04-09T13:56:56.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
jaumefib
null
jaumefib/datathon-against-racism
12
1
transformers
10,723
--- license: mit language: es widget: - text: "Los mejores libros de Abdulrazak Gurnah, el ganador del Nobel de Literatura." example_title: "Non-racist example" - text: "Ya están detenidos dos rumanos señalados de cometer fraudes bancarios." example_title: "Racist example" --- Model that automatically classifies text messages as Racist or not Racist. * `LABEL_0` output indicates non-racist text * `LABEL_1` output indicates racist text # Data Tweets from Benítez-Andrades et al. (2022) dataset and the Datathon Against Racism tweets dataset.
course5i/SEAD-L-6_H-256_A-8-sst2
c192a4180ae57623bef4471d76a469b53afe2229
2022-06-12T19:43:45.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:sst2", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-256_A-8-sst2
12
null
transformers
10,724
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - sst2 --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-sst2 This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **sst2** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.9266 | 1.3676 | 637.636 | 20.475 | 0.2503 | 872 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
JminJ/koElectra_base_Bad_Sentence_Classifier
51a4437b0ed0920c0c41de4fb9e09dab50e1cdff
2022-04-11T01:50:27.000Z
[ "pytorch", "electra", "text-classification", "arxiv:2003.10555", "transformers" ]
text-classification
false
JminJ
null
JminJ/koElectra_base_Bad_Sentence_Classifier
12
null
transformers
10,725
# Bad_text_classifier ## Model 소개 인터넷 상에 퍼져있는 여러 댓글, 채팅이 민감한 내용인지 아닌지를 판별하는 모델을 공개합니다. 해당 모델은 공개데이터를 사용해 label을 수정하고 데이터들을 합쳐 구성해 finetuning을 진행하였습니다. 해당 모델이 언제나 모든 문장을 정확히 판단이 가능한 것은 아니라는 점 양해해 주시면 감사드리겠습니다. ``` NOTE) 공개 데이터의 저작권 문제로 인해 모델 학습에 사용된 변형된 데이터는 공개 불가능하다는 점을 밝힙니다. 또한 해당 모델의 의견은 제 의견과 무관하다는 점을 미리 밝힙니다. ``` ## Dataset ### data label * **0 : bad sentence** * **1 : not bad sentence** ### 사용한 dataset * [smilegate-ai/Korean Unsmile Dataset](https://github.com/smilegate-ai/korean_unsmile_dataset) * [kocohub/Korean HateSpeech Dataset](https://github.com/kocohub/korean-hate-speech) ### dataset 가공 방법 기존 이진 분류가 아니였던 두 데이터를 이진 분류 형태로 labeling을 다시 해준 뒤, Korean HateSpeech Dataset중 label 1(not bad sentence)만을 추려 가공된 Korean Unsmile Dataset에 합쳐 주었습니다. </br> **Korean Unsmile Dataset에 clean으로 labeling 되어있던 데이터 중 몇개의 데이터를 0 (bad sentence)으로 수정하였습니다.** * "~노"가 포함된 문장 중, "이기", "노무"가 포함된 데이터는 0 (bad sentence)으로 수정 * "좆", "봊" 등 성 관련 뉘앙스가 포함된 데이터는 0 (bad sentence)으로 수정 </br> ## Model Training * huggingface transformers의 ElectraForSequenceClassification를 사용해 finetuning을 수행하였습니다. * 한국어 공개 Electra 모델 중 3가지 모델을 사용해 각각 학습시켜주었습니다. ### use model * [Beomi/KcELECTRA](https://github.com/Beomi/KcELECTRA) * [monologg/koELECTRA](https://github.com/monologg/KoELECTRA) * [tunib/electra-ko-base](https://huggingface.co/tunib/electra-ko-base) ## How to use model? ```PYTHON from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained('JminJ/koElectra_base_Bad_Sentence_Classifier') tokenizer = AutoTokenizer.from_pretrained('JminJ/koElectra_base_Bad_Sentence_Classifier') ``` ## Model Valid Accuracy | mdoel | accuracy | | ---------- | ---------- | | kcElectra_base_fp16_wd_custom_dataset | 0.8849 | | tunibElectra_base_fp16_wd_custom_dataset | 0.8726 | | koElectra_base_fp16_wd_custom_dataset | 0.8434 | ``` Note) 모든 모델은 동일한 seed, learning_rate(3e-06), weight_decay lambda(0.001), batch_size(128)로 학습되었습니다. ``` ## Contact * [email protected] </br></br> ## Github * https://github.com/JminJ/Bad_text_classifier </br></br> ## Reference * [Beomi/KcELECTRA](https://github.com/Beomi/KcELECTRA) * [monologg/koELECTRA](https://github.com/monologg/KoELECTRA) * [tunib/electra-ko-base](https://huggingface.co/tunib/electra-ko-base) * [smilegate-ai/Korean Unsmile Dataset](https://github.com/smilegate-ai/korean_unsmile_dataset) * [kocohub/Korean HateSpeech Dataset](https://github.com/kocohub/korean-hate-speech) * [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://arxiv.org/abs/2003.10555)
CellsInACell/faster_rcnn_count_cho_cells
f4cfa5022ee206a8b7a782b2393ae9c8c64e290d
2022-04-11T10:57:01.000Z
[ "pytorch", "resnet", "transformers", "object-detection" ]
object-detection
false
CellsInACell
null
CellsInACell/faster_rcnn_count_cho_cells
12
null
transformers
10,726
--- tags: - object-detection - pytorch --- Model for counting CHO cells
Seethal/general_sentiment_model
fb00e5af49772a47e109c4ba952576d57663826a
2022-04-11T17:58:16.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Seethal
null
Seethal/general_sentiment_model
12
null
transformers
10,727
Entry not found
lewtun/sagemaker-distilbert-emotion
e2206a20be366ded280b7365cc5518c983dfbe18
2022-07-03T05:14:27.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
lewtun
null
lewtun/sagemaker-distilbert-emotion
12
null
transformers
10,728
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.921 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.921 verified: true - name: Precision Macro type: precision value: 0.8870419502496194 verified: true - name: Precision Micro type: precision value: 0.921 verified: true - name: Precision Weighted type: precision value: 0.9208079974712109 verified: true - name: Recall Macro type: recall value: 0.8688429370077566 verified: true - name: Recall Micro type: recall value: 0.921 verified: true - name: Recall Weighted type: recall value: 0.921 verified: true - name: F1 Macro type: f1 value: 0.87642650638535 verified: true - name: F1 Micro type: f1 value: 0.9209999999999999 verified: true - name: F1 Weighted type: f1 value: 0.9203938811554648 verified: true - name: loss type: loss value: 0.23216550052165985 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2322 - Accuracy: 0.921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9306 | 1.0 | 500 | 0.2322 | 0.921 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
Salesforce/codegen-6B-nl
f849d0d3e3b085afeba9e3c729836693fd69deda
2022-06-28T17:44:34.000Z
[ "pytorch", "codegen", "text-generation", "arxiv:2203.13474", "transformers", "license:bsd-3-clause" ]
text-generation
false
Salesforce
null
Salesforce/codegen-6B-nl
12
null
transformers
10,729
--- license: bsd-3-clause --- # CodeGen (CodeGen-NL 6B) ## Model description CodeGen is a family of autoregressive language models for **program synthesis** from the paper: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. The models are originally released in [this repository](https://github.com/salesforce/CodeGen), under 3 pre-training data variants (`NL`, `Multi`, `Mono`) and 4 model size variants (`350M`, `2B`, `6B`, `16B`). The checkpoint included in this repository is denoted as **CodeGen-NL 6B** in the paper, where "NL" means it is pre-trained on the Pile and "6B" refers to the number of trainable parameters. ## Training data This checkpoint (CodeGen-NL 6B) was pre-trained on [the Pile](https://github.com/EleutherAI/the-pile), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai/). Parts of the dataset include code data. ## Training procedure CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs. The family of models are trained using multiple TPU-v4-512 by Google, leveraging data and model parallelism. See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Evaluation results We evaluate our models on two code generation benchmark: HumanEval and MTPB. Please refer to the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Intended Use and Limitations As an autoregressive language model, CodeGen is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them. However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well. ## How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-6B-nl") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-6B-nl") text = "def hello_world():" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ## BibTeX entry and citation info ```bibtex @article{Nijkamp2022ACP, title={A Conversational Paradigm for Program Synthesis}, author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming}, journal={arXiv preprint}, year={2022} } ```
ABrinkmann/sbert_xtremedistil-l6-h256-uncased-mean-cosine-h32
f24845ed1345fce0b699406babc6f6bb31682e98
2022-04-13T15:45:07.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
ABrinkmann
null
ABrinkmann/sbert_xtremedistil-l6-h256-uncased-mean-cosine-h32
12
null
sentence-transformers
10,730
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # ABrinkmann/sbert_xtremedistil-l6-h256-uncased-mean-cosine-h32 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 32 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ABrinkmann/sbert_xtremedistil-l6-h256-uncased-mean-cosine-h32') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ABrinkmann/sbert_xtremedistil-l6-h256-uncased-mean-cosine-h32) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 251 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 26, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 16, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 256, 'out_features': 32, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Adrian/distilbert-base-uncased-finetuned-emotion
e57ae4c3dddd6af85d98dde9aad13a1440d75678
2022-04-14T22:11:34.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Adrian
null
Adrian/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,731
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.927345202022014 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2071 - Accuracy: 0.9275 - F1: 0.9273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8153 | 1.0 | 250 | 0.2942 | 0.9125 | 0.9102 | | 0.2406 | 2.0 | 500 | 0.2071 | 0.9275 | 0.9273 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Manishkalra/finetuning-sentiment-model-4000-samples
ce1155d930c025c1e9e134a7b8eacdf241b96ab2
2022-04-15T05:05:50.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Manishkalra
null
Manishkalra/finetuning-sentiment-model-4000-samples
12
null
transformers
10,732
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-4000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9 - name: F1 type: f1 value: 0.9038461538461539 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-4000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2706 - Accuracy: 0.9 - F1: 0.9038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
schhwmn/mt5-base-finetuned-ukr-gec
b0c565b77431bffa00cd680fe0f7f3b40a8e9e91
2022-05-23T07:56:33.000Z
[ "pytorch", "mt5", "text2text-generation", "uk", "arxiv:2103.16997", "transformers", "gec", "autotrain_compatible" ]
text2text-generation
false
schhwmn
null
schhwmn/mt5-base-finetuned-ukr-gec
12
1
transformers
10,733
--- language: uk tags: - gec widget: - text: "я й не думав що комп'ютерна лінгвістика це легкоо." --- This model was finetuned on errorful sentences from the `train` subset of [UA-GEC](https://github.com/grammarly/ua-gec) corpus, introduced in [UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language](https://arxiv.org/abs/2103.16997) paper. Only sentences containing errors were used; 8,874 sentences for training and 987 sentences for validation. The training arguments were defined as follows: ``` batch_size = 8 num_train_epochs = 6 learning_rate=5e-5 weight_decay=0.01 optim = "adafactor" ```
choondrise/antonio
a6c62faa669ed601f9910840d07f5d6bbc1cf35d
2022-04-16T10:36:34.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
choondrise
null
choondrise/antonio
12
null
transformers
10,734
Entry not found
Xuan-Rui/ipet-1000-all
da1f05062a28e0653800c81aded38cf32d1c85f8
2022-04-17T14:58:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/ipet-1000-all
12
null
transformers
10,735
Entry not found
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter4
52e4767cf21404859922d779752ec25eea378955
2022-04-18T19:59:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
4m1g0
null
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter4
12
null
transformers
10,736
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-gl-jupyter4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-gl-jupyter4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0970 - Wer: 0.0636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 45 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.492 | 3.36 | 400 | 0.3109 | 0.3158 | | 0.194 | 6.72 | 800 | 0.1279 | 0.1454 | | 0.0794 | 10.08 | 1200 | 0.1210 | 0.1240 | | 0.0565 | 13.44 | 1600 | 0.1209 | 0.1150 | | 0.041 | 16.8 | 2000 | 0.1186 | 0.1107 | | 0.0343 | 20.17 | 2400 | 0.1143 | 0.0933 | | 0.0283 | 23.53 | 2800 | 0.1067 | 0.0900 | | 0.0231 | 26.89 | 3200 | 0.1076 | 0.0812 | | 0.0176 | 30.25 | 3600 | 0.1094 | 0.0780 | | 0.0169 | 33.61 | 4000 | 0.1041 | 0.0766 | | 0.0138 | 36.97 | 4400 | 0.1012 | 0.0711 | | 0.0109 | 40.33 | 4800 | 0.0985 | 0.0655 | | 0.0099 | 43.69 | 5200 | 0.0970 | 0.0636 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
sujitpal/clip-imageclef
b01520a1986989f179bab4738f79f6fee256cda8
2022-04-18T22:24:45.000Z
[ "pytorch", "clip", "feature-extraction", "en", "transformers", "multimodal", "language", "vision", "image-search", "license:mit" ]
feature-extraction
false
sujitpal
null
sujitpal/clip-imageclef
12
1
transformers
10,737
--- language: - en tags: - multimodal - language - vision - image-search - pytorch license: - mit metrics: - MRR --- ### Model Card: clip-imageclef ### Model Details [OpenAI CLIP model](https://openai.com/blog/clip/) fine-tuned using image-caption pairs from the [Caption Prediction dataset](https://www.imageclef.org/2017/caption) provided for the ImageCLEF 2017 competition. The model was evaluated using before and after fine-tuning, MRR@10 were 0.57 and 0.88 respectively. ### Model Date September 6, 2021 ### Model Type The base model is the OpenAI CLIP model. It uses a ViT-B/32 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss. ### Fine-tuning The fine-tuning can be reproduced using code from the Github repository [elsevierlabs-os/clip-image-search]([https://github.com/elsevierlabs-os/clip-image-search#fine-tuning). ### Usage ```python from transformers import CLIPModel, CLIPProcessor model = CLIPModel.from_pretrained("sujitpal/clip-imageclef") processor = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") inputs = processor(text=captions, images=images, return_tensors="pt", padding=True) output = model(**inputs) ``` ### Performance | Model-name | k=1 | k=3 | k=5 | k=10 | k=20 | | -------------------------------- | ----- | ----- | ----- | ----- | ----- | | zero-shot CLIP (baseline) | 0.426 | 0.534 | 0.558 | 0.573 | 0.578 | | clip-imageclef (this model) | 0.802 | 0.872 | 0.877 | 0.879 | 0.880 |
Intel/bert-base-uncased-mrpc-int8-static
3241dc5bf9958c1576bfb6abaded5ce71da559e0
2022-06-10T02:40:01.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:mrpc", "transformers", "text-classfication", "int8", "Intel® Neural Compressor", "PostTrainingStatic", "license:apache-2.0" ]
text-classification
false
Intel
null
Intel/bert-base-uncased-mrpc-int8-static
12
null
transformers
10,738
--- language: en license: apache-2.0 tags: - text-classfication - int8 - Intel® Neural Compressor - PostTrainingStatic datasets: - mrpc metrics: - f1 --- # INT8 BERT base uncased finetuned MRPC ### Post-training static quantization This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc). The calibration dataloader is the train dataloader. The default calibration sampling size 300 isn't divisible exactly by batch size 8, so the real sampling size is 304. The linear module **bert.encoder.layer.9.output.dense, bert.encoder.layer.10.output.dense** falls back to fp32 to meet the 1% relative accuracy loss. ### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.8997|0.9042| | **Model size (MB)** |120|418| ### Load with Intel® Neural Compressor: ```python from neural_compressor.utils.load_huggingface import OptimizedModel int8_model = OptimizedModel.from_pretrained( 'Intel/bert-base-uncased-mrpc-int8-static', ) ```
nielsr/segformer-finetuned-sidewalk-10k-steps
afb242aa33339ebcec7481c977e23df9e72798ff
2022-04-20T15:43:58.000Z
[ "pytorch", "tensorboard", "segformer", "transformers", "image-segmentation", "vision", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-segmentation
false
nielsr
null
nielsr/segformer-finetuned-sidewalk-10k-steps
12
1
transformers
10,739
--- license: apache-2.0 tags: - image-segmentation - vision - generated_from_trainer model-index: - name: segformer-finetuned-sidewalk-50-epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-finetuned-sidewalk-50-epochs This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 0.6350 - Mean Iou: 0.3022 - Mean Accuracy: 0.3724 - Overall Accuracy: 0.8117 - Accuracy Unlabeled: nan - Accuracy Flat-road: 0.8240 - Accuracy Flat-sidewalk: 0.8308 - Accuracy Flat-crosswalk: 0.7789 - Accuracy Flat-cyclinglane: 0.9052 - Accuracy Flat-parkingdriveway: 0.3152 - Accuracy Flat-railtrack: nan - Accuracy Flat-curb: 0.4703 - Accuracy Human-person: 0.6444 - Accuracy Human-rider: 0.0 - Accuracy Vehicle-car: 0.9424 - Accuracy Vehicle-truck: 0.0 - Accuracy Vehicle-bus: 0.0 - Accuracy Vehicle-tramtrain: 0.0 - Accuracy Vehicle-motorcycle: 0.0 - Accuracy Vehicle-bicycle: 0.7116 - Accuracy Vehicle-caravan: 0.0 - Accuracy Vehicle-cartrailer: 0.0 - Accuracy Construction-building: 0.8716 - Accuracy Construction-door: 0.0 - Accuracy Construction-wall: 0.4736 - Accuracy Construction-fenceguardrail: 0.5408 - Accuracy Construction-bridge: 0.0 - Accuracy Construction-tunnel: nan - Accuracy Construction-stairs: 0.0048 - Accuracy Object-pole: 0.4202 - Accuracy Object-trafficsign: 0.0754 - Accuracy Object-trafficlight: 0.0 - Accuracy Nature-vegetation: 0.9437 - Accuracy Nature-terrain: 0.8196 - Accuracy Sky: 0.9525 - Accuracy Void-ground: 0.0 - Accuracy Void-dynamic: 0.1041 - Accuracy Void-static: 0.2872 - Accuracy Void-unclear: 0.0 - Iou Unlabeled: nan - Iou Flat-road: 0.7413 - Iou Flat-sidewalk: 0.7520 - Iou Flat-crosswalk: 0.7629 - Iou Flat-cyclinglane: 0.4453 - Iou Flat-parkingdriveway: 0.2976 - Iou Flat-railtrack: nan - Iou Flat-curb: 0.3701 - Iou Human-person: 0.4953 - Iou Human-rider: 0.0 - Iou Vehicle-car: 0.7962 - Iou Vehicle-truck: 0.0 - Iou Vehicle-bus: 0.0 - Iou Vehicle-tramtrain: 0.0 - Iou Vehicle-motorcycle: 0.0 - Iou Vehicle-bicycle: 0.4152 - Iou Vehicle-caravan: 0.0 - Iou Vehicle-cartrailer: 0.0 - Iou Construction-building: 0.6712 - Iou Construction-door: 0.0 - Iou Construction-wall: 0.3749 - Iou Construction-fenceguardrail: 0.4613 - Iou Construction-bridge: 0.0 - Iou Construction-tunnel: nan - Iou Construction-stairs: 0.0048 - Iou Object-pole: 0.2337 - Iou Object-trafficsign: 0.0753 - Iou Object-trafficlight: 0.0 - Iou Nature-vegetation: 0.8324 - Iou Nature-terrain: 0.7277 - Iou Sky: 0.9234 - Iou Void-ground: 0.0 - Iou Void-dynamic: 0.0913 - Iou Void-static: 0.1997 - Iou Void-unclear: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear | |:-------------:|:------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:| | 2.4745 | 1.85 | 100 | 1.7861 | 0.1056 | 0.1555 | 0.6397 | nan | 0.2287 | 0.9278 | 0.0 | 0.1406 | 0.0032 | nan | 0.0 | 0.0 | 0.0 | 0.7757 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8764 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8387 | 0.8794 | 0.3057 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.1931 | 0.6432 | 0.0 | 0.1380 | 0.0031 | nan | 0.0 | 0.0 | 0.0 | 0.5312 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4482 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6323 | 0.4860 | 0.3053 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7294 | 3.7 | 200 | 1.3129 | 0.1517 | 0.1996 | 0.7410 | nan | 0.7928 | 0.8830 | 0.0 | 0.6053 | 0.0089 | nan | 0.0 | 0.0 | 0.0 | 0.7837 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8530 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9138 | 0.7742 | 0.7740 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5519 | 0.7788 | 0.0 | 0.5131 | 0.0088 | nan | 0.0 | 0.0 | 0.0 | 0.5804 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5005 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6747 | 0.5247 | 0.7209 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4479 | 5.56 | 300 | 1.1309 | 0.1608 | 0.2113 | 0.7588 | nan | 0.7973 | 0.9008 | 0.0 | 0.7721 | 0.0269 | nan | 0.0 | 0.0 | 0.0 | 0.8744 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8581 | 0.0 | 0.0007 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8622 | 0.8707 | 0.7985 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5861 | 0.7816 | 0.0 | 0.5877 | 0.0261 | nan | 0.0 | 0.0 | 0.0 | 0.6119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5582 | 0.0 | 0.0007 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7024 | 0.5206 | 0.7706 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.2348 | 7.41 | 400 | 0.9644 | 0.1707 | 0.2170 | 0.7736 | nan | 0.8125 | 0.9218 | 0.0 | 0.7596 | 0.1081 | nan | 0.0000 | 0.0 | 0.0 | 0.9080 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8280 | 0.0 | 0.0334 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8856 | 0.8260 | 0.8612 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6003 | 0.7937 | 0.0 | 0.6538 | 0.0997 | nan | 0.0000 | 0.0 | 0.0 | 0.6189 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5731 | 0.0 | 0.0330 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7147 | 0.5601 | 0.8139 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0762 | 9.26 | 500 | 0.8819 | 0.1722 | 0.2159 | 0.7748 | nan | 0.7512 | 0.9353 | 0.0 | 0.7565 | 0.1204 | nan | 0.0016 | 0.0 | 0.0 | 0.9115 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8689 | 0.0 | 0.0565 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9098 | 0.7664 | 0.8303 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5993 | 0.7850 | 0.0 | 0.6536 | 0.1052 | nan | 0.0016 | 0.0 | 0.0 | 0.6377 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5767 | 0.0 | 0.0547 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7285 | 0.5709 | 0.7984 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.9933 | 11.11 | 600 | 0.8347 | 0.1814 | 0.2263 | 0.7822 | nan | 0.8064 | 0.9111 | 0.0 | 0.7880 | 0.1443 | nan | 0.0436 | 0.0 | 0.0 | 0.8944 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8970 | 0.0 | 0.1914 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9053 | 0.8080 | 0.8526 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6088 | 0.8045 | 0.0 | 0.6845 | 0.1255 | nan | 0.0419 | 0.0 | 0.0 | 0.6594 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5548 | 0.0 | 0.1585 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7440 | 0.6068 | 0.8176 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.9424 | 12.96 | 700 | 0.8428 | 0.1824 | 0.2271 | 0.7704 | nan | 0.6767 | 0.9270 | 0.0475 | 0.7655 | 0.1322 | nan | 0.2020 | 0.0189 | 0.0 | 0.8410 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9205 | 0.0 | 0.2568 | 0.0 | 0.0 | nan | 0.0 | 0.0023 | 0.0 | 0.0 | 0.8994 | 0.7347 | 0.8413 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5838 | 0.7914 | 0.0475 | 0.6091 | 0.1095 | nan | 0.1597 | 0.0185 | 0.0 | 0.6706 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5131 | 0.0 | 0.1872 | 0.0 | 0.0 | nan | 0.0 | 0.0023 | 0.0 | 0.0 | 0.7525 | 0.5837 | 0.8077 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8673 | 14.81 | 800 | 0.7934 | 0.2089 | 0.2509 | 0.7818 | nan | 0.6854 | 0.9394 | 0.7072 | 0.7240 | 0.1504 | nan | 0.2013 | 0.0186 | 0.0 | 0.9071 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9037 | 0.0 | 0.3110 | 0.0 | 0.0 | nan | 0.0 | 0.0108 | 0.0 | 0.0 | 0.8990 | 0.7171 | 0.8513 | 0.0 | 0.0 | 0.0013 | 0.0 | nan | 0.5914 | 0.7755 | 0.6900 | 0.6673 | 0.1340 | nan | 0.1542 | 0.0183 | 0.0 | 0.6792 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5639 | 0.0 | 0.2172 | 0.0 | 0.0 | nan | 0.0 | 0.0100 | 0.0 | 0.0 | 0.7615 | 0.6014 | 0.8192 | 0.0 | 0.0 | 0.0013 | 0.0 | | 0.8126 | 16.67 | 900 | 0.7484 | 0.2268 | 0.2784 | 0.7940 | nan | 0.6791 | 0.9397 | 0.7812 | 0.8009 | 0.1532 | nan | 0.3244 | 0.2962 | 0.0 | 0.9018 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8567 | 0.0 | 0.4772 | 0.0002 | 0.0 | nan | 0.0 | 0.0834 | 0.0 | 0.0 | 0.8992 | 0.8280 | 0.8837 | 0.0 | 0.0 | 0.0032 | 0.0 | nan | 0.6303 | 0.7968 | 0.7079 | 0.6095 | 0.1396 | nan | 0.2196 | 0.2638 | 0.0 | 0.7100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6016 | 0.0 | 0.2860 | 0.0002 | 0.0 | nan | 0.0 | 0.0570 | 0.0 | 0.0 | 0.7678 | 0.6211 | 0.8416 | 0.0 | 0.0 | 0.0032 | 0.0 | | 0.7989 | 18.52 | 1000 | 0.7241 | 0.2279 | 0.2803 | 0.8018 | nan | 0.7224 | 0.9402 | 0.7875 | 0.8234 | 0.1793 | nan | 0.3763 | 0.1974 | 0.0 | 0.9259 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8911 | 0.0 | 0.3994 | 0.0029 | 0.0 | nan | 0.0 | 0.0758 | 0.0 | 0.0 | 0.8619 | 0.8774 | 0.8854 | 0.0 | 0.0 | 0.0225 | 0.0 | nan | 0.6579 | 0.8292 | 0.7198 | 0.6924 | 0.1660 | nan | 0.2392 | 0.1794 | 0.0 | 0.6748 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5766 | 0.0 | 0.2654 | 0.0029 | 0.0 | nan | 0.0 | 0.0636 | 0.0 | 0.0 | 0.7582 | 0.5994 | 0.8455 | 0.0 | 0.0 | 0.0220 | 0.0 | | 0.7429 | 20.37 | 1100 | 0.7321 | 0.2276 | 0.2862 | 0.7876 | nan | 0.8321 | 0.8491 | 0.7958 | 0.8572 | 0.2216 | nan | 0.3030 | 0.2864 | 0.0 | 0.9456 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8668 | 0.0 | 0.3757 | 0.0040 | 0.0 | nan | 0.0 | 0.1140 | 0.0 | 0.0 | 0.8839 | 0.8499 | 0.9228 | 0.0 | 0.0 | 0.0505 | 0.0 | nan | 0.6678 | 0.7848 | 0.7342 | 0.5048 | 0.1995 | nan | 0.2316 | 0.2463 | 0.0 | 0.6379 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5916 | 0.0 | 0.2668 | 0.0040 | 0.0 | nan | 0.0 | 0.0820 | 0.0 | 0.0 | 0.7827 | 0.6428 | 0.8583 | 0.0 | 0.0 | 0.0465 | 0.0 | | 0.7131 | 22.22 | 1200 | 0.7231 | 0.2377 | 0.2995 | 0.7870 | nan | 0.8306 | 0.8458 | 0.7952 | 0.8505 | 0.2218 | nan | 0.3614 | 0.5001 | 0.0 | 0.9504 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7598 | 0.0 | 0.5317 | 0.0405 | 0.0 | nan | 0.0 | 0.1381 | 0.0 | 0.0 | 0.9284 | 0.7938 | 0.9110 | 0.0 | 0.0 | 0.1262 | 0.0 | nan | 0.7038 | 0.7740 | 0.7537 | 0.4538 | 0.1996 | nan | 0.2521 | 0.3853 | 0.0 | 0.6576 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6157 | 0.0 | 0.3046 | 0.0404 | 0.0 | nan | 0.0 | 0.0921 | 0.0 | 0.0 | 0.7846 | 0.6383 | 0.8588 | 0.0 | 0.0 | 0.0911 | 0.0 | | 0.6919 | 24.07 | 1300 | 0.6775 | 0.2361 | 0.2885 | 0.8013 | nan | 0.7728 | 0.9073 | 0.8010 | 0.8366 | 0.1547 | nan | 0.3070 | 0.3428 | 0.0 | 0.9272 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8568 | 0.0 | 0.5009 | 0.0736 | 0.0 | nan | 0.0 | 0.0975 | 0.0 | 0.0 | 0.9297 | 0.7567 | 0.8978 | 0.0 | 0.0 | 0.0682 | 0.0 | nan | 0.6564 | 0.7929 | 0.6932 | 0.6396 | 0.1438 | nan | 0.2385 | 0.2888 | 0.0 | 0.6807 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6085 | 0.0 | 0.3114 | 0.0729 | 0.0 | nan | 0.0 | 0.0803 | 0.0 | 0.0 | 0.7857 | 0.6403 | 0.8601 | 0.0 | 0.0 | 0.0610 | 0.0 | | 0.68 | 25.93 | 1400 | 0.6321 | 0.2575 | 0.3109 | 0.8181 | nan | 0.7851 | 0.9362 | 0.8041 | 0.8438 | 0.1694 | nan | 0.3956 | 0.5626 | 0.0 | 0.9306 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8313 | 0.0 | 0.5073 | 0.2728 | 0.0 | nan | 0.0 | 0.1741 | 0.0 | 0.0 | 0.9221 | 0.7899 | 0.9071 | 0.0 | 0.0 | 0.1157 | 0.0 | nan | 0.6781 | 0.8336 | 0.7386 | 0.7047 | 0.1564 | nan | 0.2789 | 0.4291 | 0.0 | 0.6934 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6062 | 0.0 | 0.3305 | 0.2579 | 0.0 | nan | 0.0 | 0.1228 | 0.0 | 0.0 | 0.7952 | 0.6651 | 0.8631 | 0.0 | 0.0 | 0.0865 | 0.0 | | 0.6644 | 27.78 | 1500 | 0.6568 | 0.2555 | 0.3132 | 0.8074 | nan | 0.7687 | 0.9014 | 0.7631 | 0.8302 | 0.1869 | nan | 0.4841 | 0.4880 | 0.0 | 0.9294 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.8139 | 0.0 | 0.5482 | 0.3042 | 0.0 | nan | 0.0 | 0.1974 | 0.0 | 0.0 | 0.9225 | 0.8543 | 0.9042 | 0.0 | 0.0 | 0.1259 | 0.0 | nan | 0.6723 | 0.8030 | 0.7443 | 0.5873 | 0.1742 | nan | 0.3013 | 0.3813 | 0.0 | 0.7117 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6159 | 0.0 | 0.3289 | 0.2810 | 0.0 | nan | 0.0 | 0.1295 | 0.0 | 0.0 | 0.8015 | 0.6848 | 0.8665 | 0.0 | 0.0 | 0.0931 | 0.0 | | 0.6153 | 29.63 | 1600 | 0.6157 | 0.2586 | 0.3131 | 0.8188 | nan | 0.8000 | 0.9242 | 0.7980 | 0.8445 | 0.1758 | nan | 0.4143 | 0.6256 | 0.0 | 0.9155 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.8792 | 0.0 | 0.4465 | 0.2182 | 0.0 | nan | 0.0 | 0.1970 | 0.0 | 0.0 | 0.9111 | 0.8171 | 0.9368 | 0.0 | 0.0 | 0.1136 | 0.0 | nan | 0.6844 | 0.8212 | 0.7565 | 0.6537 | 0.1636 | nan | 0.2857 | 0.4354 | 0.0 | 0.7222 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.6274 | 0.0 | 0.3217 | 0.2147 | 0.0 | nan | 0.0 | 0.1313 | 0.0 | 0.0 | 0.8082 | 0.6809 | 0.8737 | 0.0 | 0.0 | 0.0926 | 0.0 | | 0.6154 | 31.48 | 1700 | 0.6397 | 0.2621 | 0.3204 | 0.8117 | nan | 0.8357 | 0.8840 | 0.7908 | 0.8465 | 0.2590 | nan | 0.4050 | 0.5401 | 0.0 | 0.9393 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0105 | 0.0 | 0.0 | 0.8169 | 0.0 | 0.4733 | 0.3188 | 0.0 | nan | 0.0 | 0.2505 | 0.0 | 0.0 | 0.9181 | 0.8473 | 0.9287 | 0.0 | 0.0 | 0.1890 | 0.0 | nan | 0.6774 | 0.8042 | 0.7524 | 0.5662 | 0.2300 | nan | 0.2971 | 0.4050 | 0.0 | 0.6970 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0105 | 0.0 | 0.0 | 0.6489 | 0.0 | 0.3454 | 0.3058 | 0.0 | nan | 0.0 | 0.1441 | 0.0 | 0.0 | 0.8074 | 0.6913 | 0.8820 | 0.0 | 0.0 | 0.1224 | 0.0 | | 0.6305 | 33.33 | 1800 | 0.6131 | 0.2641 | 0.3212 | 0.8194 | nan | 0.8171 | 0.8984 | 0.8212 | 0.8462 | 0.2582 | nan | 0.5051 | 0.5504 | 0.0 | 0.9421 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0221 | 0.0 | 0.0 | 0.8777 | 0.0 | 0.3528 | 0.3169 | 0.0 | nan | 0.0 | 0.2249 | 0.0 | 0.0 | 0.9203 | 0.8499 | 0.9175 | 0.0 | 0.0 | 0.1587 | 0.0 | nan | 0.7209 | 0.8195 | 0.7546 | 0.6166 | 0.2267 | nan | 0.3408 | 0.4000 | 0.0 | 0.6906 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0221 | 0.0 | 0.0 | 0.6055 | 0.0 | 0.2823 | 0.3044 | 0.0 | nan | 0.0 | 0.1545 | 0.0 | 0.0 | 0.8124 | 0.6994 | 0.8799 | 0.0 | 0.0 | 0.1204 | 0.0 | | 0.6083 | 35.19 | 1900 | 0.6224 | 0.2646 | 0.3182 | 0.8171 | nan | 0.7473 | 0.9297 | 0.7826 | 0.8269 | 0.2162 | nan | 0.4556 | 0.4982 | 0.0 | 0.9169 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0865 | 0.0 | 0.0 | 0.9031 | 0.0 | 0.3618 | 0.3583 | 0.0 | nan | 0.0 | 0.2603 | 0.0 | 0.0 | 0.8966 | 0.8828 | 0.9016 | 0.0 | 0.0 | 0.1587 | 0.0 | nan | 0.6824 | 0.8210 | 0.7645 | 0.5950 | 0.2019 | nan | 0.3166 | 0.3895 | 0.0 | 0.7307 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0853 | 0.0 | 0.0 | 0.6063 | 0.0 | 0.2860 | 0.3200 | 0.0 | nan | 0.0 | 0.1659 | 0.0 | 0.0 | 0.8188 | 0.7017 | 0.8695 | 0.0 | 0.0 | 0.1113 | 0.0 | | 0.5847 | 37.04 | 2000 | 0.5906 | 0.2713 | 0.3209 | 0.8281 | nan | 0.7374 | 0.9612 | 0.7764 | 0.8195 | 0.2033 | nan | 0.4219 | 0.4950 | 0.0 | 0.9339 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0960 | 0.0 | 0.0 | 0.8434 | 0.0 | 0.4552 | 0.4437 | 0.0 | nan | 0.0 | 0.2250 | 0.0 | 0.0 | 0.9315 | 0.8612 | 0.9071 | 0.0 | 0.0 | 0.1567 | 0.0 | nan | 0.6883 | 0.8311 | 0.7525 | 0.6838 | 0.1851 | nan | 0.3228 | 0.3780 | 0.0 | 0.7236 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0944 | 0.0 | 0.0 | 0.6338 | 0.0 | 0.3408 | 0.3853 | 0.0 | nan | 0.0 | 0.1586 | 0.0 | 0.0 | 0.8104 | 0.6978 | 0.8800 | 0.0 | 0.0 | 0.1162 | 0.0 | | 0.5764 | 38.89 | 2100 | 0.6088 | 0.2752 | 0.3225 | 0.8255 | nan | 0.7525 | 0.9472 | 0.7709 | 0.8441 | 0.2134 | nan | 0.3932 | 0.5383 | 0.0 | 0.9030 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3470 | 0.0 | 0.0 | 0.9195 | 0.0 | 0.3310 | 0.3215 | 0.0 | nan | 0.0 | 0.2234 | 0.0 | 0.0 | 0.9289 | 0.7964 | 0.9280 | 0.0 | 0.0 | 0.1604 | 0.0 | nan | 0.6993 | 0.8276 | 0.7546 | 0.7234 | 0.1997 | nan | 0.3005 | 0.4222 | 0.0 | 0.7348 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3123 | 0.0 | 0.0 | 0.5918 | 0.0 | 0.2787 | 0.3037 | 0.0 | nan | 0.0 | 0.1585 | 0.0 | 0.0 | 0.8124 | 0.6781 | 0.8844 | 0.0 | 0.0 | 0.1247 | 0.0 | | 0.5787 | 40.74 | 2200 | 0.5706 | 0.2824 | 0.3351 | 0.8347 | nan | 0.8178 | 0.9369 | 0.8003 | 0.8511 | 0.2352 | nan | 0.4838 | 0.5417 | 0.0 | 0.9025 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3689 | 0.0 | 0.0 | 0.8739 | 0.0 | 0.4493 | 0.4040 | 0.0 | nan | 0.0 | 0.2524 | 0.0 | 0.0 | 0.9422 | 0.8182 | 0.9183 | 0.0 | 0.0 | 0.1276 | 0.0 | nan | 0.7292 | 0.8432 | 0.7669 | 0.6897 | 0.2161 | nan | 0.3484 | 0.4230 | 0.0 | 0.7519 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3045 | 0.0 | 0.0 | 0.6407 | 0.0 | 0.3373 | 0.3491 | 0.0 | nan | 0.0 | 0.1557 | 0.0 | 0.0 | 0.8080 | 0.6803 | 0.8850 | 0.0 | 0.0 | 0.1068 | 0.0 | | 0.5724 | 42.59 | 2300 | 0.7562 | 0.2740 | 0.3479 | 0.7662 | nan | 0.8734 | 0.7169 | 0.7809 | 0.8847 | 0.2838 | nan | 0.3742 | 0.6758 | 0.0 | 0.9339 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6048 | 0.0 | 0.0 | 0.8535 | 0.0 | 0.4435 | 0.4729 | 0.0 | nan | 0.0 | 0.2817 | 0.0 | 0.0 | 0.9149 | 0.8765 | 0.9329 | 0.0 | 0.0 | 0.2292 | 0.0 | nan | 0.7041 | 0.6683 | 0.7628 | 0.3371 | 0.2575 | nan | 0.2878 | 0.4639 | 0.0 | 0.7454 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4190 | 0.0 | 0.0 | 0.6387 | 0.0 | 0.3357 | 0.3997 | 0.0 | nan | 0.0 | 0.1776 | 0.0 | 0.0 | 0.8183 | 0.7106 | 0.8911 | 0.0 | 0.0 | 0.1516 | 0.0 | | 0.556 | 44.44 | 2400 | 0.7350 | 0.2665 | 0.3366 | 0.7813 | nan | 0.7897 | 0.7888 | 0.8022 | 0.8878 | 0.2389 | nan | 0.4270 | 0.4859 | 0.0 | 0.9401 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4618 | 0.0 | 0.0 | 0.8866 | 0.0 | 0.3979 | 0.5050 | 0.0 | nan | 0.0 | 0.2580 | 0.0 | 0.0 | 0.9097 | 0.8627 | 0.9337 | 0.0 | 0.0 | 0.1948 | 0.0 | nan | 0.6902 | 0.7286 | 0.7779 | 0.3964 | 0.2231 | nan | 0.3011 | 0.3626 | 0.0 | 0.7078 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3485 | 0.0 | 0.0 | 0.6171 | 0.0 | 0.3044 | 0.3372 | 0.0 | nan | 0.0 | 0.1812 | 0.0 | 0.0 | 0.8195 | 0.7011 | 0.8947 | 0.0 | 0.0 | 0.1378 | 0.0 | | 0.5599 | 46.3 | 2500 | 0.5949 | 0.2846 | 0.3464 | 0.8215 | nan | 0.7919 | 0.9145 | 0.7935 | 0.8679 | 0.2189 | nan | 0.3795 | 0.5589 | 0.0 | 0.9334 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5627 | 0.0 | 0.0 | 0.8536 | 0.0 | 0.4394 | 0.4730 | 0.0 | nan | 0.0 | 0.3260 | 0.0 | 0.0 | 0.9098 | 0.8344 | 0.9487 | 0.0 | 0.0 | 0.2801 | 0.0 | nan | 0.6901 | 0.8199 | 0.7749 | 0.5729 | 0.2084 | nan | 0.3034 | 0.4321 | 0.0 | 0.7422 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4230 | 0.0 | 0.0 | 0.6491 | 0.0 | 0.3237 | 0.3989 | 0.0 | nan | 0.0 | 0.1963 | 0.0 | 0.0 | 0.8232 | 0.7048 | 0.8949 | 0.0 | 0.0 | 0.1489 | 0.0 | | 0.5368 | 48.15 | 2600 | 0.6125 | 0.2829 | 0.3502 | 0.8211 | nan | 0.7798 | 0.9034 | 0.7913 | 0.9079 | 0.2587 | nan | 0.3407 | 0.6423 | 0.0 | 0.9351 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6794 | 0.0 | 0.0 | 0.8554 | 0.0 | 0.3996 | 0.4884 | 0.0 | nan | 0.0 | 0.2870 | 0.0 | 0.0 | 0.9271 | 0.8698 | 0.9424 | 0.0 | 0.0 | 0.1992 | 0.0 | nan | 0.6878 | 0.8122 | 0.7578 | 0.5597 | 0.2427 | nan | 0.2680 | 0.4737 | 0.0 | 0.7517 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3649 | 0.0 | 0.0 | 0.6557 | 0.0 | 0.3130 | 0.4117 | 0.0 | nan | 0.0 | 0.1847 | 0.0 | 0.0 | 0.8236 | 0.7137 | 0.8969 | 0.0 | 0.0 | 0.1361 | 0.0 | | 0.5391 | 50.0 | 2700 | 0.5993 | 0.2877 | 0.3507 | 0.8242 | nan | 0.8174 | 0.8948 | 0.8094 | 0.8896 | 0.2730 | nan | 0.4105 | 0.5570 | 0.0 | 0.9164 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5439 | 0.0 | 0.0 | 0.8772 | 0.0 | 0.5070 | 0.5443 | 0.0 | nan | 0.0 | 0.2691 | 0.0 | 0.0 | 0.9205 | 0.8660 | 0.8975 | 0.0 | 0.0 | 0.2294 | 0.0 | nan | 0.7059 | 0.8214 | 0.7578 | 0.5803 | 0.2537 | nan | 0.2892 | 0.4308 | 0.0 | 0.7548 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4363 | 0.0 | 0.0 | 0.6490 | 0.0 | 0.3579 | 0.4224 | 0.0 | nan | 0.0 | 0.1927 | 0.0 | 0.0 | 0.8239 | 0.7040 | 0.8748 | 0.0 | 0.0 | 0.1516 | 0.0 | | 0.5041 | 51.85 | 2800 | 0.5912 | 0.2859 | 0.3493 | 0.8264 | nan | 0.7593 | 0.9248 | 0.8029 | 0.8780 | 0.2945 | nan | 0.3718 | 0.6308 | 0.0 | 0.9078 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6667 | 0.0 | 0.0 | 0.8945 | 0.0 | 0.3362 | 0.4834 | 0.0 | nan | 0.0 | 0.3167 | 0.0 | 0.0 | 0.9255 | 0.8641 | 0.9382 | 0.0 | 0.0 | 0.1836 | 0.0 | nan | 0.6993 | 0.8205 | 0.7232 | 0.5789 | 0.2712 | nan | 0.2852 | 0.4872 | 0.0 | 0.7747 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3825 | 0.0 | 0.0 | 0.6382 | 0.0 | 0.2862 | 0.4138 | 0.0 | nan | 0.0 | 0.2019 | 0.0 | 0.0 | 0.8284 | 0.7271 | 0.8984 | 0.0 | 0.0 | 0.1316 | 0.0 | | 0.5007 | 53.7 | 2900 | 0.6220 | 0.2839 | 0.3577 | 0.8134 | nan | 0.7302 | 0.8903 | 0.8180 | 0.9098 | 0.3134 | nan | 0.3521 | 0.6870 | 0.0 | 0.9429 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7288 | 0.0 | 0.0 | 0.8340 | 0.0 | 0.5169 | 0.4700 | 0.0 | nan | 0.0 | 0.3105 | 0.0 | 0.0 | 0.9356 | 0.8318 | 0.9437 | 0.0 | 0.0003 | 0.2298 | 0.0 | nan | 0.6722 | 0.8034 | 0.7257 | 0.4922 | 0.2900 | nan | 0.2639 | 0.4741 | 0.0 | 0.7434 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4082 | 0.0 | 0.0 | 0.6635 | 0.0 | 0.3690 | 0.4172 | 0.0 | nan | 0.0 | 0.1981 | 0.0 | 0.0 | 0.8205 | 0.6936 | 0.9015 | 0.0 | 0.0003 | 0.1483 | 0.0 | | 0.4992 | 55.56 | 3000 | 0.5669 | 0.2928 | 0.3647 | 0.8317 | nan | 0.7826 | 0.9171 | 0.8018 | 0.9165 | 0.2758 | nan | 0.5273 | 0.6986 | 0.0 | 0.9410 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6836 | 0.0 | 0.0 | 0.8296 | 0.0 | 0.4717 | 0.4595 | 0.0 | nan | 0.0 | 0.3613 | 0.0 | 0.0 | 0.9272 | 0.8671 | 0.9424 | 0.0 | 0.0017 | 0.2669 | 0.0 | nan | 0.7196 | 0.8377 | 0.7464 | 0.6016 | 0.2573 | nan | 0.3367 | 0.4767 | 0.0 | 0.7565 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4237 | 0.0 | 0.0 | 0.6653 | 0.0 | 0.3438 | 0.4034 | 0.0 | nan | 0.0 | 0.1974 | 0.0 | 0.0 | 0.8287 | 0.7120 | 0.9031 | 0.0 | 0.0017 | 0.1565 | 0.0 | | 0.5151 | 57.41 | 3100 | 0.6131 | 0.2864 | 0.3598 | 0.8169 | nan | 0.7793 | 0.9005 | 0.7894 | 0.8762 | 0.2508 | nan | 0.3852 | 0.6197 | 0.0 | 0.9316 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6506 | 0.0 | 0.0 | 0.7819 | 0.0 | 0.5348 | 0.5782 | 0.0 | nan | 0.0 | 0.3853 | 0.0 | 0.0 | 0.9211 | 0.8624 | 0.9390 | 0.0 | 0.0 | 0.3278 | 0.0 | nan | 0.6967 | 0.8145 | 0.7436 | 0.5453 | 0.2362 | nan | 0.2992 | 0.4656 | 0.0 | 0.7549 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4221 | 0.0 | 0.0 | 0.6246 | 0.0 | 0.3873 | 0.3923 | 0.0 | nan | 0.0 | 0.1937 | 0.0 | 0.0 | 0.8257 | 0.7204 | 0.8994 | 0.0 | 0.0 | 0.1417 | 0.0 | | 0.4688 | 59.26 | 3200 | 0.7342 | 0.2674 | 0.3425 | 0.7758 | nan | 0.6724 | 0.8138 | 0.8211 | 0.8881 | 0.2106 | nan | 0.3435 | 0.4240 | 0.0 | 0.9345 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6881 | 0.0 | 0.0 | 0.8684 | 0.0 | 0.4808 | 0.5494 | 0.0 | nan | 0.0 | 0.2968 | 0.0 | 0.0 | 0.9269 | 0.8322 | 0.9291 | 0.0 | 0.0 | 0.2817 | 0.0 | nan | 0.6227 | 0.7395 | 0.7654 | 0.4008 | 0.1990 | nan | 0.2434 | 0.3473 | 0.0 | 0.7526 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3733 | 0.0 | 0.0 | 0.5567 | 0.0 | 0.3425 | 0.4056 | 0.0 | nan | 0.0 | 0.2033 | 0.0 | 0.0 | 0.8238 | 0.7088 | 0.8978 | 0.0 | 0.0 | 0.1748 | 0.0 | | 0.4657 | 61.11 | 3300 | 0.7162 | 0.2737 | 0.3487 | 0.7884 | nan | 0.6859 | 0.8395 | 0.7919 | 0.8974 | 0.2306 | nan | 0.4086 | 0.6012 | 0.0 | 0.9212 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7186 | 0.0 | 0.0 | 0.8738 | 0.0 | 0.4323 | 0.5271 | 0.0 | nan | 0.0 | 0.3163 | 0.0 | 0.0 | 0.9373 | 0.8107 | 0.9381 | 0.0 | 0.0 | 0.2280 | 0.0 | nan | 0.6253 | 0.7668 | 0.7584 | 0.4350 | 0.2180 | nan | 0.2835 | 0.4646 | 0.0 | 0.7649 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3505 | 0.0 | 0.0 | 0.5817 | 0.0 | 0.3184 | 0.4275 | 0.0 | nan | 0.0 | 0.1989 | 0.0 | 0.0 | 0.8181 | 0.6916 | 0.9021 | 0.0 | 0.0 | 0.1529 | 0.0 | | 0.4789 | 62.96 | 3400 | 0.6510 | 0.2824 | 0.3535 | 0.8065 | nan | 0.7245 | 0.8835 | 0.7760 | 0.8886 | 0.2720 | nan | 0.3709 | 0.6675 | 0.0 | 0.9351 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6668 | 0.0 | 0.0 | 0.8450 | 0.0 | 0.4917 | 0.5508 | 0.0 | nan | 0.0 | 0.3585 | 0.0 | 0.0 | 0.9367 | 0.7684 | 0.9321 | 0.0 | 0.0022 | 0.2404 | 0.0 | nan | 0.6754 | 0.7938 | 0.7682 | 0.4856 | 0.2514 | nan | 0.2841 | 0.4779 | 0.0 | 0.7566 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3801 | 0.0 | 0.0 | 0.6118 | 0.0 | 0.3623 | 0.4464 | 0.0 | nan | 0.0 | 0.1990 | 0.0 | 0.0 | 0.8150 | 0.6727 | 0.9029 | 0.0 | 0.0022 | 0.1516 | 0.0 | | 0.4718 | 64.81 | 3500 | 0.7369 | 0.2741 | 0.3491 | 0.7687 | nan | 0.7886 | 0.7455 | 0.8159 | 0.8865 | 0.2585 | nan | 0.3583 | 0.6014 | 0.0 | 0.9362 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6741 | 0.0 | 0.0 | 0.8728 | 0.0 | 0.4488 | 0.5138 | 0.0 | nan | 0.0 | 0.3533 | 0.0 | 0.0 | 0.9343 | 0.8363 | 0.9345 | 0.0 | 0.0002 | 0.2111 | 0.0 | nan | 0.6800 | 0.6730 | 0.7173 | 0.3412 | 0.2406 | nan | 0.2736 | 0.4651 | 0.0 | 0.7688 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3688 | 0.0 | 0.0 | 0.6494 | 0.0 | 0.3507 | 0.4403 | 0.0 | nan | 0.0 | 0.1950 | 0.0 | 0.0 | 0.8287 | 0.7216 | 0.9039 | 0.0 | 0.0002 | 0.1536 | 0.0 | | 0.4586 | 66.67 | 3600 | 0.7463 | 0.2799 | 0.3515 | 0.7620 | nan | 0.8497 | 0.6965 | 0.7931 | 0.9041 | 0.2737 | nan | 0.3983 | 0.5616 | 0.0 | 0.9365 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5892 | 0.0 | 0.0 | 0.8439 | 0.0 | 0.5213 | 0.4720 | 0.0 | nan | 0.0 | 0.3429 | 0.0 | 0.0 | 0.9332 | 0.8690 | 0.9431 | 0.0 | 0.0 | 0.3213 | 0.0 | nan | 0.7435 | 0.6450 | 0.7808 | 0.3120 | 0.2517 | nan | 0.3134 | 0.4378 | 0.0 | 0.7305 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4349 | 0.0 | 0.0 | 0.6399 | 0.0 | 0.3813 | 0.4243 | 0.0 | nan | 0.0 | 0.2097 | 0.0 | 0.0 | 0.8287 | 0.7225 | 0.9085 | 0.0 | 0.0 | 0.1926 | 0.0 | | 0.4506 | 68.52 | 3700 | 0.6409 | 0.2859 | 0.3587 | 0.8030 | nan | 0.7887 | 0.8394 | 0.8054 | 0.8912 | 0.2518 | nan | 0.3799 | 0.6292 | 0.0 | 0.9273 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7090 | 0.0 | 0.0 | 0.8655 | 0.0 | 0.4989 | 0.5447 | 0.0 | nan | 0.0 | 0.3519 | 0.0 | 0.0 | 0.9335 | 0.8362 | 0.9278 | 0.0 | 0.0 | 0.2975 | 0.0 | nan | 0.7248 | 0.7574 | 0.7649 | 0.4118 | 0.2326 | nan | 0.2996 | 0.4840 | 0.0 | 0.7856 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3424 | 0.0 | 0.0 | 0.6639 | 0.0 | 0.3766 | 0.4576 | 0.0 | nan | 0.0 | 0.2055 | 0.0 | 0.0 | 0.8284 | 0.7274 | 0.9032 | 0.0 | 0.0 | 0.1823 | 0.0 | | 0.4659 | 70.37 | 3800 | 0.6466 | 0.2884 | 0.3577 | 0.8081 | nan | 0.8256 | 0.8420 | 0.7982 | 0.8692 | 0.3484 | nan | 0.4035 | 0.4964 | 0.0 | 0.9489 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6461 | 0.0 | 0.0 | 0.8281 | 0.0 | 0.5593 | 0.5404 | 0.0 | nan | 0.0 | 0.3533 | 0.0 | 0.0 | 0.9345 | 0.7861 | 0.9426 | 0.0 | 0.0 | 0.3225 | 0.0 | nan | 0.7403 | 0.7665 | 0.7649 | 0.4456 | 0.2991 | nan | 0.3198 | 0.3976 | 0.0 | 0.7512 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4217 | 0.0 | 0.0 | 0.6537 | 0.0 | 0.3859 | 0.4470 | 0.0 | nan | 0.0 | 0.2219 | 0.0 | 0.0 | 0.8223 | 0.6908 | 0.9109 | 0.0 | 0.0 | 0.1898 | 0.0 | | 0.4416 | 72.22 | 3900 | 0.6944 | 0.2824 | 0.3648 | 0.7953 | nan | 0.8073 | 0.8044 | 0.8200 | 0.9039 | 0.2713 | nan | 0.4385 | 0.6632 | 0.0 | 0.9435 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7130 | 0.0 | 0.0 | 0.8448 | 0.0 | 0.5050 | 0.5552 | 0.0 | nan | 0.0 | 0.3791 | 0.0 | 0.0 | 0.9316 | 0.8332 | 0.9378 | 0.0 | 0.0047 | 0.3183 | 0.0 | nan | 0.7045 | 0.7445 | 0.6571 | 0.4107 | 0.2536 | nan | 0.3089 | 0.4711 | 0.0 | 0.7504 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3814 | 0.0 | 0.0 | 0.6468 | 0.0 | 0.3800 | 0.4413 | 0.0 | nan | 0.0 | 0.2243 | 0.0 | 0.0 | 0.8294 | 0.7257 | 0.9078 | 0.0 | 0.0047 | 0.1964 | 0.0 | | 0.4347 | 74.07 | 4000 | 0.5742 | 0.2960 | 0.3615 | 0.8319 | nan | 0.8135 | 0.9088 | 0.8067 | 0.8959 | 0.3006 | nan | 0.3611 | 0.6055 | 0.0 | 0.9354 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6851 | 0.0 | 0.0 | 0.8692 | 0.0 | 0.4956 | 0.5065 | 0.0 | nan | 0.0 | 0.3493 | 0.0 | 0.0 | 0.9264 | 0.8500 | 0.9368 | 0.0 | 0.0018 | 0.3210 | 0.0 | nan | 0.7436 | 0.8254 | 0.7615 | 0.5609 | 0.2797 | nan | 0.3045 | 0.4733 | 0.0 | 0.7745 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4006 | 0.0 | 0.0 | 0.6424 | 0.0 | 0.3800 | 0.4600 | 0.0 | nan | 0.0 | 0.2126 | 0.0 | 0.0 | 0.8296 | 0.7251 | 0.9085 | 0.0 | 0.0018 | 0.1876 | 0.0 | | 0.4191 | 75.93 | 4100 | 0.6454 | 0.2879 | 0.3671 | 0.8068 | nan | 0.7757 | 0.8432 | 0.8171 | 0.8803 | 0.3169 | nan | 0.4971 | 0.6474 | 0.0 | 0.9274 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7272 | 0.0 | 0.0 | 0.8520 | 0.0 | 0.4847 | 0.5414 | 0.0 | nan | 0.0 | 0.4113 | 0.0 | 0.0 | 0.9400 | 0.8335 | 0.9348 | 0.0 | 0.0167 | 0.3000 | 0.0 | nan | 0.7112 | 0.7615 | 0.6876 | 0.4533 | 0.2904 | nan | 0.3375 | 0.4768 | 0.0 | 0.7857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3483 | 0.0 | 0.0 | 0.6544 | 0.0 | 0.3636 | 0.4546 | 0.0 | nan | 0.0 | 0.2086 | 0.0 | 0.0 | 0.8293 | 0.7293 | 0.9093 | 0.0 | 0.0165 | 0.1938 | 0.0 | | 0.4355 | 77.78 | 4200 | 0.5871 | 0.2915 | 0.3601 | 0.8236 | nan | 0.6673 | 0.9324 | 0.8063 | 0.8730 | 0.2988 | nan | 0.5014 | 0.5734 | 0.0 | 0.9480 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6629 | 0.0 | 0.0 | 0.8653 | 0.0 | 0.4649 | 0.5559 | 0.0 | nan | 0.0 | 0.3890 | 0.0 | 0.0 | 0.9183 | 0.8681 | 0.9537 | 0.0 | 0.0088 | 0.2359 | 0.0 | nan | 0.6266 | 0.8175 | 0.7309 | 0.5730 | 0.2746 | nan | 0.3471 | 0.4465 | 0.0 | 0.7567 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4103 | 0.0 | 0.0 | 0.6684 | 0.0 | 0.3482 | 0.4615 | 0.0 | nan | 0.0 | 0.2062 | 0.0 | 0.0 | 0.8356 | 0.7347 | 0.9131 | 0.0 | 0.0088 | 0.1686 | 0.0 | | 0.431 | 79.63 | 4300 | 0.5778 | 0.2902 | 0.3540 | 0.8266 | nan | 0.8325 | 0.9042 | 0.7971 | 0.8575 | 0.2707 | nan | 0.4318 | 0.5731 | 0.0 | 0.9428 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6701 | 0.0 | 0.0 | 0.8781 | 0.0 | 0.4081 | 0.5480 | 0.0 | nan | 0.0 | 0.3573 | 0.0 | 0.0 | 0.9299 | 0.7480 | 0.9397 | 0.0 | 0.0343 | 0.2046 | 0.0 | nan | 0.7428 | 0.8112 | 0.7719 | 0.5907 | 0.2545 | nan | 0.3259 | 0.4272 | 0.0 | 0.7505 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4255 | 0.0 | 0.0 | 0.6496 | 0.0 | 0.3209 | 0.4384 | 0.0 | nan | 0.0 | 0.2061 | 0.0 | 0.0 | 0.8142 | 0.6646 | 0.9118 | 0.0 | 0.0338 | 0.1477 | 0.0 | | 0.4105 | 81.48 | 4400 | 0.7355 | 0.2837 | 0.3547 | 0.7802 | nan | 0.8194 | 0.7548 | 0.8125 | 0.9004 | 0.2421 | nan | 0.4411 | 0.5260 | 0.0 | 0.9344 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6628 | 0.0 | 0.0 | 0.9003 | 0.0 | 0.4114 | 0.5457 | 0.0 | nan | 0.0 | 0.3720 | 0.0 | 0.0 | 0.9386 | 0.8336 | 0.9269 | 0.0 | 0.0905 | 0.2364 | 0.0 | nan | 0.7295 | 0.6964 | 0.7754 | 0.3477 | 0.2325 | nan | 0.3336 | 0.4069 | 0.0 | 0.7641 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4284 | 0.0 | 0.0 | 0.6483 | 0.0 | 0.3512 | 0.4444 | 0.0 | nan | 0.0 | 0.2140 | 0.0 | 0.0 | 0.8260 | 0.7200 | 0.9047 | 0.0 | 0.0883 | 0.1667 | 0.0 | | 0.4102 | 83.33 | 4500 | 0.6431 | 0.2832 | 0.3550 | 0.8023 | nan | 0.6173 | 0.8926 | 0.8233 | 0.8684 | 0.3015 | nan | 0.4774 | 0.5853 | 0.0 | 0.9435 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7118 | 0.0 | 0.0 | 0.8678 | 0.0 | 0.4544 | 0.5288 | 0.0 | nan | 0.0 | 0.3435 | 0.0 | 0.0 | 0.9438 | 0.7934 | 0.9323 | 0.0 | 0.0264 | 0.2495 | 0.0 | nan | 0.5793 | 0.7784 | 0.7849 | 0.5220 | 0.2750 | nan | 0.3433 | 0.4263 | 0.0 | 0.7478 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3651 | 0.0 | 0.0 | 0.6236 | 0.0 | 0.3489 | 0.4347 | 0.0 | nan | 0.0 | 0.2243 | 0.0 | 0.0 | 0.8184 | 0.6879 | 0.9082 | 0.0 | 0.0258 | 0.1674 | 0.0 | | 0.4172 | 85.19 | 4600 | 0.6988 | 0.2875 | 0.3537 | 0.7940 | nan | 0.7505 | 0.8194 | 0.8168 | 0.9128 | 0.2640 | nan | 0.4022 | 0.4961 | 0.0 | 0.9391 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6453 | 0.0 | 0.0 | 0.8769 | 0.0 | 0.4600 | 0.5182 | 0.0 | nan | 0.0 | 0.3740 | 0.0 | 0.0 | 0.9378 | 0.8263 | 0.9455 | 0.0 | 0.0900 | 0.2436 | 0.0 | nan | 0.7048 | 0.7401 | 0.7654 | 0.3938 | 0.2454 | nan | 0.2874 | 0.3973 | 0.0 | 0.7572 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4779 | 0.0 | 0.0 | 0.6427 | 0.0 | 0.3531 | 0.4565 | 0.0 | nan | 0.0 | 0.2402 | 0.0 | 0.0 | 0.8333 | 0.7320 | 0.9149 | 0.0 | 0.0880 | 0.1706 | 0.0 | | 0.3885 | 87.04 | 4700 | 0.5978 | 0.2953 | 0.3647 | 0.8175 | nan | 0.8142 | 0.8718 | 0.8027 | 0.8554 | 0.3059 | nan | 0.3787 | 0.5867 | 0.0 | 0.9403 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6845 | 0.0 | 0.0 | 0.8471 | 0.0 | 0.5315 | 0.5788 | 0.0 | nan | 0.0 | 0.3874 | 0.0 | 0.0 | 0.9354 | 0.8156 | 0.9494 | 0.0 | 0.1221 | 0.2636 | 0.0 | nan | 0.7263 | 0.7825 | 0.7874 | 0.4784 | 0.2859 | nan | 0.2981 | 0.4480 | 0.0 | 0.7604 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3820 | 0.0 | 0.0 | 0.6694 | 0.0 | 0.3781 | 0.4545 | 0.0 | nan | 0.0 | 0.2385 | 0.0 | 0.0 | 0.8301 | 0.7216 | 0.9144 | 0.0 | 0.1131 | 0.1798 | 0.0 | | 0.3949 | 88.89 | 4800 | 0.5747 | 0.2961 | 0.3643 | 0.8282 | nan | 0.8129 | 0.8976 | 0.8121 | 0.8713 | 0.2894 | nan | 0.4694 | 0.5562 | 0.0 | 0.9391 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6947 | 0.0 | 0.0 | 0.8395 | 0.0 | 0.5260 | 0.5481 | 0.0 | nan | 0.0 | 0.3852 | 0.0 | 0.0 | 0.9428 | 0.8221 | 0.9365 | 0.0 | 0.0559 | 0.2580 | 0.0 | nan | 0.7394 | 0.8130 | 0.7924 | 0.5533 | 0.2658 | nan | 0.3447 | 0.4378 | 0.0 | 0.7620 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3851 | 0.0 | 0.0 | 0.6633 | 0.0 | 0.3722 | 0.4533 | 0.0 | nan | 0.0 | 0.2184 | 0.0 | 0.0 | 0.8217 | 0.7122 | 0.9124 | 0.0 | 0.0534 | 0.1742 | 0.0 | | 0.4158 | 90.74 | 4900 | 0.6449 | 0.2916 | 0.3657 | 0.8070 | nan | 0.8043 | 0.8271 | 0.8157 | 0.9192 | 0.3073 | nan | 0.4380 | 0.6344 | 0.0 | 0.9340 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7171 | 0.0 | 0.0 | 0.8572 | 0.0 | 0.5188 | 0.5406 | 0.0 | nan | 0.0 | 0.3852 | 0.0 | 0.0 | 0.9420 | 0.8552 | 0.9459 | 0.0 | 0.0450 | 0.2148 | 0.0 | nan | 0.6975 | 0.7564 | 0.7902 | 0.4563 | 0.2853 | nan | 0.3171 | 0.4654 | 0.0 | 0.7879 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3571 | 0.0 | 0.0 | 0.6623 | 0.0 | 0.3819 | 0.4583 | 0.0 | nan | 0.0 | 0.2243 | 0.0 | 0.0 | 0.8302 | 0.7431 | 0.9150 | 0.0 | 0.0421 | 0.1602 | 0.0 | | 0.3856 | 92.59 | 5000 | 0.7492 | 0.2796 | 0.3559 | 0.7680 | nan | 0.8020 | 0.7250 | 0.8248 | 0.9139 | 0.2500 | nan | 0.3621 | 0.5930 | 0.0 | 0.9411 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6964 | 0.0 | 0.0 | 0.9036 | 0.0 | 0.3460 | 0.5234 | 0.0 | nan | 0.0 | 0.4271 | 0.0 | 0.0 | 0.9255 | 0.8871 | 0.9524 | 0.0 | 0.0666 | 0.2471 | 0.0 | nan | 0.6954 | 0.6697 | 0.7878 | 0.3256 | 0.2365 | nan | 0.2864 | 0.4452 | 0.0 | 0.7724 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3838 | 0.0 | 0.0 | 0.6413 | 0.0 | 0.2968 | 0.4239 | 0.0 | nan | 0.0 | 0.2271 | 0.0 | 0.0 | 0.8382 | 0.7554 | 0.9171 | 0.0 | 0.0624 | 0.1808 | 0.0 | | 0.3915 | 94.44 | 5100 | 0.6402 | 0.2893 | 0.3608 | 0.8012 | nan | 0.7614 | 0.8406 | 0.7898 | 0.9029 | 0.3080 | nan | 0.3857 | 0.6328 | 0.0 | 0.9373 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7010 | 0.0 | 0.0 | 0.8626 | 0.0 | 0.5045 | 0.5235 | 0.0 | nan | 0.0 | 0.3802 | 0.0 | 0.0 | 0.9442 | 0.7561 | 0.9401 | 0.0 | 0.1133 | 0.2603 | 0.0 | nan | 0.6850 | 0.7546 | 0.7750 | 0.4451 | 0.2827 | nan | 0.3049 | 0.4715 | 0.0 | 0.7694 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3810 | 0.0 | 0.0 | 0.6626 | 0.0 | 0.3832 | 0.4394 | 0.0 | nan | 0.0 | 0.2214 | 0.0 | 0.0 | 0.8125 | 0.6725 | 0.9138 | 0.0 | 0.1034 | 0.1797 | 0.0 | | 0.3732 | 96.3 | 5200 | 0.7308 | 0.2840 | 0.3598 | 0.7795 | nan | 0.7534 | 0.7741 | 0.8137 | 0.9035 | 0.2614 | nan | 0.4308 | 0.6431 | 0.0 | 0.9315 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7293 | 0.0 | 0.0 | 0.8884 | 0.0 | 0.4166 | 0.5225 | 0.0 | nan | 0.0 | 0.3992 | 0.0 | 0.0 | 0.9329 | 0.8517 | 0.9519 | 0.0 | 0.0756 | 0.2354 | 0.0 | nan | 0.6723 | 0.6942 | 0.7836 | 0.3665 | 0.2474 | nan | 0.3333 | 0.4669 | 0.0 | 0.7857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3545 | 0.0 | 0.0 | 0.6375 | 0.0 | 0.3443 | 0.4311 | 0.0 | nan | 0.0 | 0.2377 | 0.0 | 0.0 | 0.8346 | 0.7428 | 0.9173 | 0.0 | 0.0659 | 0.1722 | 0.0 | | 0.3843 | 98.15 | 5300 | 0.6580 | 0.2864 | 0.3556 | 0.7962 | nan | 0.7254 | 0.8440 | 0.7996 | 0.8889 | 0.2696 | nan | 0.4320 | 0.6399 | 0.0 | 0.9285 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6708 | 0.0 | 0.0 | 0.8872 | 0.0 | 0.4070 | 0.5262 | 0.0 | nan | 0.0 | 0.3791 | 0.0 | 0.0 | 0.9423 | 0.7462 | 0.9487 | 0.0 | 0.1269 | 0.2159 | 0.0 | nan | 0.6660 | 0.7540 | 0.7836 | 0.4484 | 0.2521 | nan | 0.3307 | 0.4691 | 0.0 | 0.7963 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3896 | 0.0 | 0.0 | 0.6071 | 0.0 | 0.3185 | 0.4568 | 0.0 | nan | 0.0 | 0.2206 | 0.0 | 0.0 | 0.8138 | 0.6608 | 0.9170 | 0.0 | 0.1163 | 0.1644 | 0.0 | | 0.3903 | 100.0 | 5400 | 0.6288 | 0.2881 | 0.3541 | 0.8086 | nan | 0.7763 | 0.8567 | 0.8240 | 0.8951 | 0.2446 | nan | 0.4334 | 0.5553 | 0.0 | 0.9354 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6738 | 0.0 | 0.0 | 0.8901 | 0.0 | 0.4777 | 0.5458 | 0.0 | nan | 0.0 | 0.3297 | 0.0 | 0.0 | 0.9417 | 0.7702 | 0.9457 | 0.0 | 0.0457 | 0.1907 | 0.0 | nan | 0.6906 | 0.7727 | 0.7923 | 0.4705 | 0.2358 | nan | 0.3295 | 0.4509 | 0.0 | 0.7755 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3981 | 0.0 | 0.0 | 0.6528 | 0.0 | 0.3644 | 0.4573 | 0.0 | nan | 0.0 | 0.2197 | 0.0 | 0.0 | 0.8176 | 0.6797 | 0.9157 | 0.0 | 0.0444 | 0.1500 | 0.0 | | 0.355 | 101.85 | 5500 | 0.7112 | 0.2860 | 0.3563 | 0.7844 | nan | 0.7834 | 0.7947 | 0.8123 | 0.8807 | 0.2262 | nan | 0.3408 | 0.6020 | 0.0 | 0.9382 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6759 | 0.0 | 0.0 | 0.8838 | 0.0 | 0.4491 | 0.5845 | 0.0 | nan | 0.0 | 0.4029 | 0.0 | 0.0 | 0.9295 | 0.7890 | 0.9477 | 0.0 | 0.1045 | 0.2564 | 0.0 | nan | 0.7086 | 0.7078 | 0.7825 | 0.3607 | 0.2168 | nan | 0.2792 | 0.4624 | 0.0 | 0.7767 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4366 | 0.0 | 0.0 | 0.6667 | 0.0 | 0.3443 | 0.4351 | 0.0 | nan | 0.0 | 0.2386 | 0.0 | 0.0 | 0.8283 | 0.7060 | 0.9167 | 0.0 | 0.1000 | 0.1847 | 0.0 | | 0.3729 | 103.7 | 5600 | 0.6849 | 0.2835 | 0.3591 | 0.7887 | nan | 0.8150 | 0.7790 | 0.8122 | 0.8834 | 0.2787 | nan | 0.4506 | 0.6270 | 0.0 | 0.9253 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7408 | 0.0 | 0.0 | 0.9180 | 0.0 | 0.3273 | 0.5197 | 0.0 | nan | 0.0 | 0.4167 | 0.0 | 0.0 | 0.9358 | 0.8379 | 0.9406 | 0.0 | 0.0480 | 0.2345 | 0.0 | nan | 0.6989 | 0.7189 | 0.7862 | 0.3939 | 0.2648 | nan | 0.3292 | 0.4851 | 0.0 | 0.7976 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3286 | 0.0 | 0.0 | 0.6202 | 0.0 | 0.2779 | 0.4371 | 0.0 | nan | 0.0 | 0.2402 | 0.0 | 0.0 | 0.8321 | 0.7297 | 0.9140 | 0.0 | 0.0437 | 0.1749 | 0.0 | | 0.3895 | 105.56 | 5700 | 0.6917 | 0.2909 | 0.3669 | 0.7881 | nan | 0.8520 | 0.7575 | 0.8037 | 0.9006 | 0.2858 | nan | 0.4909 | 0.6331 | 0.0 | 0.9365 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6811 | 0.0 | 0.0 | 0.8525 | 0.0 | 0.5087 | 0.5374 | 0.0 | nan | 0.0 | 0.3766 | 0.0 | 0.0 | 0.9432 | 0.8426 | 0.9479 | 0.0 | 0.0982 | 0.2931 | 0.0 | nan | 0.7338 | 0.7000 | 0.7834 | 0.3764 | 0.2683 | nan | 0.3430 | 0.4719 | 0.0 | 0.7841 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3792 | 0.0 | 0.0 | 0.6627 | 0.0 | 0.3815 | 0.4454 | 0.0 | nan | 0.0 | 0.2245 | 0.0 | 0.0 | 0.8273 | 0.7311 | 0.9183 | 0.0 | 0.0894 | 0.1885 | 0.0 | | 0.3602 | 107.41 | 5800 | 0.5475 | 0.3042 | 0.3685 | 0.8353 | nan | 0.7641 | 0.9319 | 0.8055 | 0.8737 | 0.3132 | nan | 0.4868 | 0.6244 | 0.0 | 0.9407 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6873 | 0.0 | 0.0 | 0.8810 | 0.0 | 0.4631 | 0.5387 | 0.0 | nan | 0.0 | 0.4382 | 0.0 | 0.0 | 0.9298 | 0.7866 | 0.9486 | 0.0 | 0.1344 | 0.2454 | 0.0 | nan | 0.7121 | 0.8270 | 0.7806 | 0.6491 | 0.2900 | nan | 0.3497 | 0.4700 | 0.0 | 0.7753 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4480 | 0.0 | 0.0 | 0.6577 | 0.0 | 0.3509 | 0.4582 | 0.0 | nan | 0.0 | 0.2281 | 0.0 | 0.0 | 0.8267 | 0.6946 | 0.9179 | 0.0 | 0.1213 | 0.1782 | 0.0 | | 0.3674 | 109.26 | 5900 | 0.6421 | 0.2919 | 0.3540 | 0.8016 | nan | 0.6932 | 0.8577 | 0.8144 | 0.9018 | 0.3136 | nan | 0.3961 | 0.5655 | 0.0 | 0.9370 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6563 | 0.0 | 0.0 | 0.9140 | 0.0 | 0.3656 | 0.4891 | 0.0 | nan | 0.0 | 0.3775 | 0.0 | 0.0 | 0.9373 | 0.8204 | 0.9427 | 0.0 | 0.1378 | 0.2090 | 0.0 | nan | 0.6366 | 0.7503 | 0.7829 | 0.4541 | 0.2884 | nan | 0.3050 | 0.4442 | 0.0 | 0.7727 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4780 | 0.0 | 0.0 | 0.6644 | 0.0 | 0.3163 | 0.4511 | 0.0 | nan | 0.0 | 0.2316 | 0.0 | 0.0 | 0.8321 | 0.7257 | 0.9157 | 0.0 | 0.1268 | 0.1636 | 0.0 | | 0.3657 | 111.11 | 6000 | 0.5813 | 0.2955 | 0.3637 | 0.8277 | nan | 0.7870 | 0.8975 | 0.7014 | 0.8566 | 0.3741 | nan | 0.4469 | 0.6219 | 0.0 | 0.9403 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7185 | 0.0 | 0.0 | 0.8827 | 0.0 | 0.4503 | 0.5681 | 0.0 | nan | 0.0 | 0.3815 | 0.0 | 0.0 | 0.9397 | 0.8275 | 0.9484 | 0.0 | 0.0968 | 0.1999 | 0.0 | nan | 0.7203 | 0.8097 | 0.6881 | 0.5693 | 0.3405 | nan | 0.3293 | 0.4754 | 0.0 | 0.7846 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3863 | 0.0 | 0.0 | 0.6346 | 0.0 | 0.3557 | 0.4385 | 0.0 | nan | 0.0 | 0.2181 | 0.0 | 0.0 | 0.8287 | 0.7172 | 0.9189 | 0.0 | 0.0846 | 0.1578 | 0.0 | | 0.367 | 112.96 | 6100 | 0.6609 | 0.2897 | 0.3661 | 0.7984 | nan | 0.7903 | 0.8284 | 0.8039 | 0.9016 | 0.2212 | nan | 0.4163 | 0.6816 | 0.0 | 0.9453 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7209 | 0.0 | 0.0 | 0.8372 | 0.0 | 0.4577 | 0.5511 | 0.0 | nan | 0.0 | 0.4283 | 0.0 | 0.0 | 0.9390 | 0.7875 | 0.9493 | 0.0 | 0.1399 | 0.3157 | 0.0 | nan | 0.7203 | 0.7408 | 0.7738 | 0.4105 | 0.2117 | nan | 0.3182 | 0.4784 | 0.0 | 0.7828 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3859 | 0.0 | 0.0 | 0.6672 | 0.0 | 0.3588 | 0.4378 | 0.0 | nan | 0.0 | 0.2244 | 0.0 | 0.0 | 0.8282 | 0.7032 | 0.9187 | 0.0 | 0.1137 | 0.1958 | 0.0 | | 0.3638 | 114.81 | 6200 | 0.7997 | 0.2803 | 0.3592 | 0.7547 | nan | 0.8092 | 0.6782 | 0.8102 | 0.9284 | 0.2905 | nan | 0.3691 | 0.6185 | 0.0 | 0.9403 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7520 | 0.0 | 0.0 | 0.8609 | 0.0 | 0.4178 | 0.5567 | 0.0 | nan | 0.0 | 0.3931 | 0.0 | 0.0 | 0.9474 | 0.8770 | 0.9435 | 0.0000 | 0.0667 | 0.2347 | 0.0 | nan | 0.7091 | 0.6261 | 0.7837 | 0.2942 | 0.2753 | nan | 0.2928 | 0.4552 | 0.0 | 0.7808 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3801 | 0.0 | 0.0 | 0.6648 | 0.0 | 0.3421 | 0.4315 | 0.0 | nan | 0.0 | 0.2152 | 0.0 | 0.0 | 0.8297 | 0.7448 | 0.9168 | 0.0000 | 0.0595 | 0.1680 | 0.0 | | 0.3654 | 116.67 | 6300 | 0.6019 | 0.2956 | 0.3645 | 0.8175 | nan | 0.8244 | 0.8533 | 0.6788 | 0.8927 | 0.3058 | nan | 0.4950 | 0.6003 | 0.0 | 0.9396 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6930 | 0.0 | 0.0 | 0.8964 | 0.0 | 0.3647 | 0.5196 | 0.0 | nan | 0.0 | 0.4113 | 0.0 | 0.0 | 0.9257 | 0.8551 | 0.9594 | 0.0 | 0.1310 | 0.3167 | 0.0 | nan | 0.7337 | 0.7732 | 0.6601 | 0.4748 | 0.2853 | nan | 0.3520 | 0.4685 | 0.0 | 0.7868 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4121 | 0.0 | 0.0 | 0.6708 | 0.0 | 0.3117 | 0.4434 | 0.0 | nan | 0.0 | 0.2326 | 0.0 | 0.0 | 0.8405 | 0.7541 | 0.9187 | 0.0 | 0.1205 | 0.2201 | 0.0 | | 0.3652 | 118.52 | 6400 | 0.5981 | 0.2967 | 0.3649 | 0.8205 | nan | 0.7551 | 0.8909 | 0.6342 | 0.9054 | 0.3093 | nan | 0.4234 | 0.6313 | 0.0 | 0.9387 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6751 | 0.0 | 0.0 | 0.8700 | 0.0 | 0.4187 | 0.5633 | 0.0 | nan | 0.0 | 0.4465 | 0.0 | 0.0 | 0.9262 | 0.8528 | 0.9534 | 0.0002 | 0.1437 | 0.3398 | 0.0 | nan | 0.6956 | 0.7948 | 0.6246 | 0.4963 | 0.2861 | nan | 0.3171 | 0.4870 | 0.0 | 0.7941 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4467 | 0.0 | 0.0 | 0.6719 | 0.0 | 0.3338 | 0.4473 | 0.0 | nan | 0.0 | 0.2377 | 0.0 | 0.0 | 0.8417 | 0.7531 | 0.9198 | 0.0002 | 0.1302 | 0.2180 | 0.0 | | 0.3559 | 120.37 | 6500 | 0.5780 | 0.3026 | 0.3668 | 0.8256 | nan | 0.7517 | 0.9024 | 0.8103 | 0.8905 | 0.3788 | nan | 0.3990 | 0.5648 | 0.0 | 0.9522 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6491 | 0.0 | 0.0 | 0.8623 | 0.0 | 0.5208 | 0.5227 | 0.0 | nan | 0.0 | 0.4095 | 0.0 | 0.0 | 0.9315 | 0.8073 | 0.9531 | 0.0 | 0.1367 | 0.2937 | 0.0 | nan | 0.6917 | 0.8084 | 0.7831 | 0.5645 | 0.3365 | nan | 0.3195 | 0.4446 | 0.0 | 0.7603 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4620 | 0.0 | 0.0 | 0.6310 | 0.0 | 0.3859 | 0.4599 | 0.0 | nan | 0.0 | 0.2286 | 0.0 | 0.0 | 0.8329 | 0.7236 | 0.9192 | 0.0 | 0.1259 | 0.2064 | 0.0 | | 0.3348 | 122.22 | 6600 | 0.5522 | 0.3023 | 0.3735 | 0.8379 | nan | 0.8289 | 0.9088 | 0.6882 | 0.8947 | 0.3594 | nan | 0.4373 | 0.6918 | 0.0 | 0.9448 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7098 | 0.0 | 0.0 | 0.8356 | 0.0 | 0.5156 | 0.5832 | 0.0 | nan | 0.0 | 0.4059 | 0.0 | 0.0 | 0.9417 | 0.8359 | 0.9578 | 0.0009 | 0.1308 | 0.2812 | 0.0 | nan | 0.7433 | 0.8257 | 0.6716 | 0.5930 | 0.3306 | nan | 0.3517 | 0.4956 | 0.0 | 0.7897 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3747 | 0.0 | 0.0 | 0.6736 | 0.0 | 0.3802 | 0.4271 | 0.0 | nan | 0.0 | 0.2180 | 0.0 | 0.0 | 0.8323 | 0.7373 | 0.9200 | 0.0008 | 0.1171 | 0.1906 | 0.0 | | 0.3653 | 124.07 | 6700 | 0.6070 | 0.2986 | 0.3679 | 0.8216 | nan | 0.6919 | 0.9133 | 0.8114 | 0.8786 | 0.3306 | nan | 0.4558 | 0.6517 | 0.0 | 0.9455 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7183 | 0.0 | 0.0 | 0.8672 | 0.0 | 0.5019 | 0.5472 | 0.0 | nan | 0.0 | 0.4162 | 0.0 | 0.0 | 0.9390 | 0.8019 | 0.9414 | 0.0 | 0.0957 | 0.2664 | 0.0 | nan | 0.6394 | 0.8000 | 0.7821 | 0.6011 | 0.3025 | nan | 0.3359 | 0.4969 | 0.0 | 0.7887 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3803 | 0.0 | 0.0 | 0.6386 | 0.0 | 0.3855 | 0.4427 | 0.0 | nan | 0.0 | 0.2268 | 0.0 | 0.0 | 0.8298 | 0.7136 | 0.9170 | 0.0 | 0.0886 | 0.1861 | 0.0 | | 0.3216 | 125.93 | 6800 | 0.6091 | 0.3003 | 0.3729 | 0.8176 | nan | 0.8300 | 0.8429 | 0.8233 | 0.9193 | 0.3587 | nan | 0.4900 | 0.6837 | 0.0 | 0.9439 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7272 | 0.0 | 0.0 | 0.8781 | 0.0 | 0.4143 | 0.5307 | 0.0 | nan | 0.0 | 0.4051 | 0.0116 | 0.0 | 0.9314 | 0.8400 | 0.9539 | 0.0 | 0.0921 | 0.2558 | 0.0 | nan | 0.7584 | 0.7706 | 0.7892 | 0.4626 | 0.3268 | nan | 0.3678 | 0.5054 | 0.0 | 0.7811 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3947 | 0.0 | 0.0 | 0.6604 | 0.0 | 0.3306 | 0.4515 | 0.0 | nan | 0.0 | 0.2265 | 0.0116 | 0.0 | 0.8386 | 0.7409 | 0.9204 | 0.0 | 0.0850 | 0.1887 | 0.0 | | 0.358 | 127.78 | 6900 | 0.5287 | 0.3110 | 0.3729 | 0.8465 | nan | 0.8062 | 0.9359 | 0.8173 | 0.8927 | 0.3346 | nan | 0.4527 | 0.6392 | 0.0 | 0.9354 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6945 | 0.0 | 0.0 | 0.8722 | 0.0 | 0.4896 | 0.5317 | 0.0 | nan | 0.0 | 0.4070 | 0.0 | 0.0 | 0.9436 | 0.8467 | 0.9449 | 0.0 | 0.1243 | 0.2646 | 0.0 | nan | 0.7567 | 0.8356 | 0.7873 | 0.6388 | 0.3087 | nan | 0.3575 | 0.4948 | 0.0 | 0.7958 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4146 | 0.0 | 0.0 | 0.6798 | 0.0 | 0.3797 | 0.4630 | 0.0 | nan | 0.0 | 0.2283 | 0.0 | 0.0 | 0.8356 | 0.7467 | 0.9182 | 0.0 | 0.1175 | 0.1940 | 0.0 | | 0.3402 | 129.63 | 7000 | 0.6208 | 0.2946 | 0.3637 | 0.8141 | nan | 0.7658 | 0.8754 | 0.8158 | 0.9118 | 0.2322 | nan | 0.4017 | 0.6637 | 0.0 | 0.9438 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6933 | 0.0 | 0.0 | 0.8763 | 0.0 | 0.3895 | 0.5601 | 0.0 | nan | 0.0 | 0.4252 | 0.0043 | 0.0 | 0.9423 | 0.7810 | 0.9448 | 0.0000 | 0.1253 | 0.2865 | 0.0 | nan | 0.7060 | 0.7779 | 0.7885 | 0.4813 | 0.2236 | nan | 0.3133 | 0.4921 | 0.0 | 0.7863 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4236 | 0.0 | 0.0 | 0.6817 | 0.0 | 0.3292 | 0.4440 | 0.0 | nan | 0.0 | 0.2236 | 0.0043 | 0.0 | 0.8247 | 0.6964 | 0.9178 | 0.0000 | 0.1163 | 0.1976 | 0.0 | | 0.3218 | 131.48 | 7100 | 0.5444 | 0.3108 | 0.3748 | 0.8443 | nan | 0.8296 | 0.9244 | 0.8276 | 0.8878 | 0.2774 | nan | 0.4782 | 0.6750 | 0.0 | 0.9366 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6983 | 0.0 | 0.0 | 0.8664 | 0.0 | 0.4743 | 0.5451 | 0.0 | nan | 0.0 | 0.4187 | 0.0113 | 0.0 | 0.9391 | 0.8642 | 0.9558 | 0.0 | 0.1166 | 0.2684 | 0.0 | nan | 0.7636 | 0.8260 | 0.7984 | 0.6281 | 0.2647 | nan | 0.3705 | 0.5066 | 0.0 | 0.8001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4217 | 0.0 | 0.0 | 0.6783 | 0.0 | 0.3686 | 0.4581 | 0.0 | nan | 0.0 | 0.2178 | 0.0113 | 0.0 | 0.8396 | 0.7666 | 0.9213 | 0.0 | 0.1113 | 0.1943 | 0.0 | | 0.3413 | 133.33 | 7200 | 0.5473 | 0.3063 | 0.3680 | 0.8412 | nan | 0.8038 | 0.9272 | 0.7396 | 0.8885 | 0.2742 | nan | 0.4489 | 0.5761 | 0.0 | 0.9434 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6970 | 0.0 | 0.0 | 0.8722 | 0.0 | 0.5185 | 0.5545 | 0.0 | nan | 0.0 | 0.4060 | 0.0241 | 0.0 | 0.9384 | 0.8611 | 0.9453 | 0.0 | 0.1082 | 0.2489 | 0.0 | nan | 0.7450 | 0.8245 | 0.7280 | 0.6104 | 0.2595 | nan | 0.3532 | 0.4660 | 0.0 | 0.7846 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4313 | 0.0 | 0.0 | 0.6807 | 0.0 | 0.3896 | 0.4684 | 0.0 | nan | 0.0 | 0.2284 | 0.0241 | 0.0 | 0.8397 | 0.7610 | 0.9186 | 0.0 | 0.1022 | 0.1871 | 0.0 | | 0.3463 | 135.19 | 7300 | 0.6341 | 0.2922 | 0.3603 | 0.8106 | nan | 0.8087 | 0.8519 | 0.8052 | 0.9145 | 0.2425 | nan | 0.3711 | 0.5676 | 0.0 | 0.9336 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7046 | 0.0 | 0.0 | 0.8888 | 0.0 | 0.3923 | 0.5815 | 0.0 | nan | 0.0 | 0.4055 | 0.0319 | 0.0 | 0.9344 | 0.8036 | 0.9503 | 0.0 | 0.1152 | 0.2276 | 0.0 | nan | 0.7410 | 0.7674 | 0.7870 | 0.4522 | 0.2330 | nan | 0.3152 | 0.4495 | 0.0 | 0.7851 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4247 | 0.0 | 0.0 | 0.6553 | 0.0 | 0.3108 | 0.4330 | 0.0 | nan | 0.0 | 0.2290 | 0.0319 | 0.0 | 0.8273 | 0.7106 | 0.9198 | 0.0 | 0.1051 | 0.1720 | 0.0 | | 0.317 | 137.04 | 7400 | 0.5689 | 0.2996 | 0.3673 | 0.8346 | nan | 0.8380 | 0.9048 | 0.7202 | 0.8874 | 0.2300 | nan | 0.4682 | 0.6001 | 0.0 | 0.9282 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7278 | 0.0 | 0.0 | 0.8811 | 0.0 | 0.4430 | 0.5714 | 0.0 | nan | 0.0 | 0.4115 | 0.0148 | 0.0 | 0.9311 | 0.8477 | 0.9517 | 0.0 | 0.1019 | 0.2961 | 0.0 | nan | 0.7600 | 0.8107 | 0.7092 | 0.5843 | 0.2243 | nan | 0.3634 | 0.4741 | 0.0 | 0.7839 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3683 | 0.0 | 0.0 | 0.6667 | 0.0 | 0.3433 | 0.4519 | 0.0 | nan | 0.0 | 0.2331 | 0.0148 | 0.0 | 0.8387 | 0.7448 | 0.9201 | 0.0 | 0.0930 | 0.2020 | 0.0 | | 0.3241 | 138.89 | 7500 | 0.5921 | 0.3030 | 0.3698 | 0.8264 | nan | 0.7560 | 0.9038 | 0.8054 | 0.8993 | 0.2921 | nan | 0.4358 | 0.6497 | 0.0 | 0.9426 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6843 | 0.0 | 0.0 | 0.8596 | 0.0 | 0.4666 | 0.5531 | 0.0 | nan | 0.0014 | 0.4125 | 0.0280 | 0.0 | 0.9419 | 0.8345 | 0.9468 | 0.0005 | 0.1478 | 0.2726 | 0.0 | nan | 0.6935 | 0.8021 | 0.7869 | 0.5437 | 0.2719 | nan | 0.3428 | 0.4933 | 0.0 | 0.7917 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4134 | 0.0 | 0.0 | 0.6707 | 0.0 | 0.3632 | 0.4528 | 0.0 | nan | 0.0014 | 0.2150 | 0.0280 | 0.0 | 0.8367 | 0.7422 | 0.9203 | 0.0005 | 0.1346 | 0.1914 | 0.0 | | 0.3341 | 140.74 | 7600 | 0.5641 | 0.3038 | 0.3702 | 0.8325 | nan | 0.7624 | 0.9172 | 0.8114 | 0.8959 | 0.2940 | nan | 0.5063 | 0.6105 | 0.0 | 0.9434 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7179 | 0.0 | 0.0 | 0.8732 | 0.0 | 0.5230 | 0.5420 | 0.0 | nan | 0.0 | 0.4148 | 0.0425 | 0.0 | 0.9411 | 0.7719 | 0.9528 | 0.0 | 0.0840 | 0.2431 | 0.0 | nan | 0.7064 | 0.8174 | 0.7877 | 0.6132 | 0.2760 | nan | 0.3594 | 0.4823 | 0.0 | 0.7859 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4116 | 0.0 | 0.0 | 0.6715 | 0.0 | 0.3953 | 0.4613 | 0.0 | nan | 0.0 | 0.2236 | 0.0425 | 0.0 | 0.8241 | 0.6840 | 0.9219 | 0.0 | 0.0790 | 0.1794 | 0.0 | | 0.3135 | 142.59 | 7700 | 0.5712 | 0.3062 | 0.3709 | 0.8300 | nan | 0.7952 | 0.8986 | 0.8100 | 0.8619 | 0.3084 | nan | 0.4715 | 0.6006 | 0.0 | 0.9439 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6837 | 0.0 | 0.0 | 0.8669 | 0.0 | 0.5083 | 0.5475 | 0.0 | nan | 0.0 | 0.4053 | 0.0384 | 0.0 | 0.9443 | 0.8124 | 0.9524 | 0.0 | 0.1181 | 0.3029 | 0.0 | nan | 0.7270 | 0.8042 | 0.7907 | 0.5385 | 0.2877 | nan | 0.3610 | 0.4689 | 0.0 | 0.7784 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4431 | 0.0 | 0.0 | 0.6764 | 0.0 | 0.3905 | 0.4659 | 0.0 | nan | 0.0 | 0.2280 | 0.0384 | 0.0 | 0.8312 | 0.7224 | 0.9227 | 0.0 | 0.1114 | 0.2117 | 0.0 | | 0.2985 | 144.44 | 7800 | 0.5705 | 0.3063 | 0.3739 | 0.8331 | nan | 0.7844 | 0.9061 | 0.8011 | 0.8987 | 0.3105 | nan | 0.4674 | 0.6336 | 0.0 | 0.9448 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7174 | 0.0 | 0.0 | 0.8645 | 0.0 | 0.4836 | 0.5414 | 0.0 | nan | 0.0 | 0.4277 | 0.0445 | 0.0 | 0.9390 | 0.8448 | 0.9518 | 0.0003 | 0.1004 | 0.3014 | 0.0 | nan | 0.7238 | 0.8110 | 0.7871 | 0.5506 | 0.2869 | nan | 0.3545 | 0.4901 | 0.0 | 0.7879 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4047 | 0.0 | 0.0 | 0.6872 | 0.0 | 0.3776 | 0.4572 | 0.0 | nan | 0.0 | 0.2263 | 0.0445 | 0.0 | 0.8392 | 0.7464 | 0.9226 | 0.0003 | 0.0950 | 0.2101 | 0.0 | | 0.3083 | 146.3 | 7900 | 0.6255 | 0.3029 | 0.3735 | 0.8173 | nan | 0.7919 | 0.8576 | 0.8118 | 0.9101 | 0.3017 | nan | 0.4374 | 0.6462 | 0.0 | 0.9461 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7137 | 0.0 | 0.0 | 0.8706 | 0.0 | 0.5111 | 0.5445 | 0.0 | nan | 0.0001 | 0.4282 | 0.0589 | 0.0 | 0.9317 | 0.8537 | 0.9628 | 0.0000 | 0.1030 | 0.2713 | 0.0 | nan | 0.7389 | 0.7675 | 0.7857 | 0.4623 | 0.2774 | nan | 0.3477 | 0.4815 | 0.0 | 0.7777 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4220 | 0.0 | 0.0 | 0.6797 | 0.0 | 0.3926 | 0.4652 | 0.0 | nan | 0.0001 | 0.2292 | 0.0588 | 0.0 | 0.8421 | 0.7549 | 0.9219 | 0.0000 | 0.0939 | 0.1926 | 0.0 | | 0.3132 | 148.15 | 8000 | 0.6407 | 0.2987 | 0.3697 | 0.8084 | nan | 0.8056 | 0.8366 | 0.8045 | 0.9187 | 0.2881 | nan | 0.3901 | 0.6494 | 0.0 | 0.9456 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7065 | 0.0 | 0.0 | 0.8674 | 0.0 | 0.4835 | 0.5578 | 0.0 | nan | 0.0 | 0.4107 | 0.0690 | 0.0 | 0.9364 | 0.8069 | 0.9579 | 0.0 | 0.1392 | 0.2549 | 0.0 | nan | 0.7400 | 0.7511 | 0.7860 | 0.4288 | 0.2705 | nan | 0.3211 | 0.4907 | 0.0 | 0.7845 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4064 | 0.0 | 0.0 | 0.6776 | 0.0 | 0.3750 | 0.4463 | 0.0 | nan | 0.0 | 0.2323 | 0.0689 | 0.0 | 0.8346 | 0.7221 | 0.9215 | 0.0 | 0.1189 | 0.1827 | 0.0 | | 0.3227 | 150.0 | 8100 | 0.6215 | 0.3010 | 0.3747 | 0.8154 | nan | 0.8072 | 0.8523 | 0.7987 | 0.9122 | 0.3387 | nan | 0.4049 | 0.6521 | 0.0 | 0.9464 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7268 | 0.0 | 0.0 | 0.8526 | 0.0 | 0.5301 | 0.5632 | 0.0 | nan | 0.0015 | 0.4353 | 0.0597 | 0.0 | 0.9352 | 0.8036 | 0.9574 | 0.0 | 0.1202 | 0.2916 | 0.0 | nan | 0.7319 | 0.7712 | 0.7839 | 0.4639 | 0.3115 | nan | 0.3235 | 0.4815 | 0.0 | 0.7813 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3954 | 0.0 | 0.0 | 0.6800 | 0.0 | 0.3930 | 0.4522 | 0.0 | nan | 0.0015 | 0.2349 | 0.0596 | 0.0 | 0.8319 | 0.7106 | 0.9225 | 0.0 | 0.1071 | 0.1947 | 0.0 | | 0.3041 | 151.85 | 8200 | 0.6365 | 0.2982 | 0.3695 | 0.8091 | nan | 0.7813 | 0.8516 | 0.8100 | 0.9057 | 0.2989 | nan | 0.4138 | 0.6557 | 0.0 | 0.9422 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7155 | 0.0 | 0.0 | 0.8717 | 0.0 | 0.5273 | 0.5454 | 0.0 | nan | 0.0 | 0.4293 | 0.0595 | 0.0 | 0.9354 | 0.7484 | 0.9557 | 0.0 | 0.1301 | 0.2483 | 0.0 | nan | 0.7117 | 0.7612 | 0.7891 | 0.4543 | 0.2787 | nan | 0.3305 | 0.4950 | 0.0 | 0.7874 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4007 | 0.0 | 0.0 | 0.6772 | 0.0 | 0.3923 | 0.4632 | 0.0 | nan | 0.0 | 0.2342 | 0.0594 | 0.0 | 0.8230 | 0.6691 | 0.9227 | 0.0 | 0.1142 | 0.1800 | 0.0 | | 0.3295 | 153.7 | 8300 | 0.5763 | 0.3064 | 0.3745 | 0.8319 | nan | 0.8091 | 0.9000 | 0.8155 | 0.8927 | 0.3048 | nan | 0.4385 | 0.6734 | 0.0 | 0.9391 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7114 | 0.0 | 0.0 | 0.8707 | 0.0 | 0.4884 | 0.5694 | 0.0 | nan | 0.0032 | 0.4179 | 0.0581 | 0.0 | 0.9385 | 0.8107 | 0.9552 | 0.0006 | 0.1316 | 0.2550 | 0.0 | nan | 0.7460 | 0.8059 | 0.7926 | 0.5582 | 0.2844 | nan | 0.3545 | 0.5009 | 0.0 | 0.7892 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4184 | 0.0 | 0.0 | 0.6741 | 0.0 | 0.3769 | 0.4455 | 0.0 | nan | 0.0032 | 0.2317 | 0.0581 | 0.0 | 0.8317 | 0.7120 | 0.9232 | 0.0005 | 0.1162 | 0.1807 | 0.0 | | 0.3057 | 155.56 | 8400 | 0.6602 | 0.2967 | 0.3669 | 0.8053 | nan | 0.7862 | 0.8400 | 0.8012 | 0.9083 | 0.2761 | nan | 0.3977 | 0.6548 | 0.0 | 0.9399 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7262 | 0.0 | 0.0 | 0.8830 | 0.0 | 0.4582 | 0.5390 | 0.0 | nan | 0.0 | 0.4382 | 0.0696 | 0.0 | 0.9380 | 0.7676 | 0.9517 | 0.0 | 0.1204 | 0.2454 | 0.0 | nan | 0.7257 | 0.7493 | 0.7832 | 0.4331 | 0.2603 | nan | 0.3344 | 0.4909 | 0.0 | 0.7899 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4164 | 0.0 | 0.0 | 0.6631 | 0.0 | 0.3619 | 0.4610 | 0.0 | nan | 0.0 | 0.2358 | 0.0695 | 0.0 | 0.8268 | 0.6858 | 0.9224 | 0.0 | 0.1038 | 0.1798 | 0.0 | | 0.3152 | 157.41 | 8500 | 0.6195 | 0.2986 | 0.3661 | 0.8115 | nan | 0.7876 | 0.8570 | 0.7994 | 0.8920 | 0.2891 | nan | 0.4035 | 0.6056 | 0.0 | 0.9417 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7090 | 0.0 | 0.0 | 0.8719 | 0.0 | 0.4959 | 0.5413 | 0.0 | nan | 0.0 | 0.4136 | 0.0566 | 0.0 | 0.9414 | 0.7717 | 0.9517 | 0.0 | 0.1198 | 0.2672 | 0.0 | nan | 0.7263 | 0.7633 | 0.7814 | 0.4550 | 0.2715 | nan | 0.3352 | 0.4721 | 0.0 | 0.7820 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4233 | 0.0 | 0.0 | 0.6671 | 0.0 | 0.3757 | 0.4677 | 0.0 | nan | 0.0 | 0.2407 | 0.0565 | 0.0 | 0.8255 | 0.6891 | 0.9216 | 0.0 | 0.1083 | 0.1912 | 0.0 | | 0.3041 | 159.26 | 8600 | 0.5761 | 0.3071 | 0.3735 | 0.8297 | nan | 0.8077 | 0.8910 | 0.8053 | 0.8839 | 0.3353 | nan | 0.4603 | 0.6015 | 0.0 | 0.9489 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6966 | 0.0 | 0.0 | 0.8701 | 0.0 | 0.4933 | 0.5427 | 0.0 | nan | 0.0082 | 0.4481 | 0.0761 | 0.0 | 0.9301 | 0.8454 | 0.9544 | 0.0005 | 0.1062 | 0.2469 | 0.0 | nan | 0.7406 | 0.7982 | 0.7855 | 0.5184 | 0.3024 | nan | 0.3652 | 0.4669 | 0.0 | 0.7807 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4413 | 0.0 | 0.0 | 0.6853 | 0.0 | 0.3815 | 0.4553 | 0.0 | nan | 0.0082 | 0.2312 | 0.0759 | 0.0 | 0.8414 | 0.7507 | 0.9229 | 0.0005 | 0.0961 | 0.1775 | 0.0 | | 0.3185 | 161.11 | 8700 | 0.5760 | 0.3058 | 0.3698 | 0.8296 | nan | 0.8094 | 0.8946 | 0.7956 | 0.8887 | 0.2897 | nan | 0.4223 | 0.5895 | 0.0 | 0.9357 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6889 | 0.0 | 0.0 | 0.8908 | 0.0 | 0.4640 | 0.5538 | 0.0 | nan | 0.0 | 0.4239 | 0.0692 | 0.0 | 0.9305 | 0.8418 | 0.9519 | 0.0001 | 0.1431 | 0.2510 | 0.0 | nan | 0.7455 | 0.7997 | 0.7789 | 0.5321 | 0.2717 | nan | 0.3473 | 0.4756 | 0.0 | 0.8013 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4311 | 0.0 | 0.0 | 0.6576 | 0.0 | 0.3605 | 0.4511 | 0.0 | nan | 0.0 | 0.2412 | 0.0691 | 0.0 | 0.8410 | 0.7459 | 0.9223 | 0.0001 | 0.1284 | 0.1839 | 0.0 | | 0.2908 | 162.96 | 8800 | 0.5655 | 0.3075 | 0.3717 | 0.8316 | nan | 0.8548 | 0.8841 | 0.7997 | 0.8745 | 0.3118 | nan | 0.4610 | 0.6024 | 0.0 | 0.9410 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6931 | 0.0 | 0.0 | 0.8861 | 0.0 | 0.4534 | 0.5383 | 0.0 | nan | 0.0015 | 0.4266 | 0.0689 | 0.0 | 0.9366 | 0.8053 | 0.9554 | 0.0 | 0.1346 | 0.2641 | 0.0 | nan | 0.7595 | 0.8021 | 0.7817 | 0.5396 | 0.2919 | nan | 0.3717 | 0.4720 | 0.0 | 0.7905 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4462 | 0.0 | 0.0 | 0.6634 | 0.0 | 0.3562 | 0.4639 | 0.0 | nan | 0.0015 | 0.2393 | 0.0688 | 0.0 | 0.8346 | 0.7212 | 0.9232 | 0.0 | 0.1193 | 0.1923 | 0.0 | | 0.3137 | 164.81 | 8900 | 0.5829 | 0.3094 | 0.3784 | 0.8279 | nan | 0.8476 | 0.8674 | 0.8118 | 0.9018 | 0.3237 | nan | 0.4801 | 0.6610 | 0.0 | 0.9387 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6851 | 0.0 | 0.0 | 0.8696 | 0.0 | 0.5109 | 0.5681 | 0.0 | nan | 0.0260 | 0.4276 | 0.0709 | 0.0 | 0.9330 | 0.8416 | 0.9554 | 0.0012 | 0.1333 | 0.2547 | 0.0 | nan | 0.7562 | 0.7893 | 0.7902 | 0.5123 | 0.3055 | nan | 0.3768 | 0.4921 | 0.0 | 0.7978 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4472 | 0.0 | 0.0 | 0.6754 | 0.0 | 0.3867 | 0.4408 | 0.0 | nan | 0.0260 | 0.2316 | 0.0708 | 0.0 | 0.8396 | 0.7418 | 0.9237 | 0.0010 | 0.1173 | 0.1797 | 0.0 | | 0.3219 | 166.67 | 9000 | 0.5812 | 0.3065 | 0.3750 | 0.8278 | nan | 0.8354 | 0.8788 | 0.8041 | 0.8834 | 0.2990 | nan | 0.4594 | 0.6655 | 0.0 | 0.9395 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6980 | 0.0 | 0.0 | 0.8601 | 0.0 | 0.5069 | 0.5685 | 0.0 | nan | 0.0113 | 0.4156 | 0.0664 | 0.0 | 0.9440 | 0.8108 | 0.9521 | 0.0001 | 0.1291 | 0.2716 | 0.0 | nan | 0.7565 | 0.7902 | 0.7828 | 0.5219 | 0.2845 | nan | 0.3688 | 0.4922 | 0.0 | 0.7966 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4240 | 0.0 | 0.0 | 0.6768 | 0.0 | 0.3877 | 0.4481 | 0.0 | nan | 0.0113 | 0.2327 | 0.0664 | 0.0 | 0.8308 | 0.7154 | 0.9230 | 0.0001 | 0.1124 | 0.1869 | 0.0 | | 0.3181 | 168.52 | 9100 | 0.5632 | 0.3112 | 0.3765 | 0.8367 | nan | 0.8125 | 0.9072 | 0.8124 | 0.8963 | 0.3044 | nan | 0.4647 | 0.6697 | 0.0 | 0.9359 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6879 | 0.0 | 0.0 | 0.8771 | 0.0 | 0.5085 | 0.5560 | 0.0 | nan | 0.0039 | 0.4244 | 0.0703 | 0.0 | 0.9367 | 0.8280 | 0.9532 | 0.0 | 0.1309 | 0.2672 | 0.0 | nan | 0.7474 | 0.8113 | 0.7892 | 0.5707 | 0.2882 | nan | 0.3704 | 0.5031 | 0.0 | 0.7988 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4314 | 0.0 | 0.0 | 0.6778 | 0.0 | 0.3900 | 0.4604 | 0.0 | nan | 0.0039 | 0.2372 | 0.0702 | 0.0 | 0.8390 | 0.7407 | 0.9234 | 0.0 | 0.1173 | 0.1872 | 0.0 | | 0.3009 | 170.37 | 9200 | 0.5671 | 0.3095 | 0.3743 | 0.8326 | nan | 0.7939 | 0.9018 | 0.7926 | 0.8902 | 0.3160 | nan | 0.4603 | 0.6415 | 0.0 | 0.9414 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6804 | 0.0 | 0.0 | 0.8815 | 0.0 | 0.4974 | 0.5528 | 0.0 | nan | 0.0000 | 0.4233 | 0.0749 | 0.0 | 0.9339 | 0.8322 | 0.9566 | 0.0 | 0.1296 | 0.2770 | 0.0 | nan | 0.7279 | 0.8041 | 0.7736 | 0.5652 | 0.2951 | nan | 0.3698 | 0.4960 | 0.0 | 0.7938 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4395 | 0.0 | 0.0 | 0.6714 | 0.0 | 0.3837 | 0.4627 | 0.0 | nan | 0.0000 | 0.2368 | 0.0747 | 0.0 | 0.8379 | 0.7389 | 0.9235 | 0.0 | 0.1161 | 0.1946 | 0.0 | | 0.2873 | 172.22 | 9300 | 0.6113 | 0.3047 | 0.3720 | 0.8176 | nan | 0.8107 | 0.8536 | 0.7603 | 0.8949 | 0.3232 | nan | 0.4761 | 0.6422 | 0.0 | 0.9415 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6799 | 0.0 | 0.0 | 0.8720 | 0.0 | 0.5023 | 0.5457 | 0.0 | nan | 0.0034 | 0.4146 | 0.0717 | 0.0 | 0.9439 | 0.8035 | 0.9521 | 0.0 | 0.1299 | 0.2839 | 0.0 | nan | 0.7355 | 0.7675 | 0.7422 | 0.4826 | 0.3027 | nan | 0.3715 | 0.4933 | 0.0 | 0.7896 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4421 | 0.0 | 0.0 | 0.6666 | 0.0 | 0.3881 | 0.4723 | 0.0 | nan | 0.0034 | 0.2350 | 0.0716 | 0.0 | 0.8305 | 0.7183 | 0.9229 | 0.0 | 0.1152 | 0.1992 | 0.0 | | 0.2856 | 174.07 | 9400 | 0.6091 | 0.3045 | 0.3713 | 0.8183 | nan | 0.8177 | 0.8508 | 0.7884 | 0.9070 | 0.3274 | nan | 0.4412 | 0.5971 | 0.0 | 0.9437 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6904 | 0.0 | 0.0 | 0.8760 | 0.0 | 0.5037 | 0.5471 | 0.0 | nan | 0.0023 | 0.4093 | 0.0729 | 0.0 | 0.9395 | 0.8289 | 0.9513 | 0.0000 | 0.1123 | 0.2745 | 0.0 | nan | 0.7401 | 0.7694 | 0.7705 | 0.4745 | 0.3070 | nan | 0.3570 | 0.4797 | 0.0 | 0.7901 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4370 | 0.0 | 0.0 | 0.6642 | 0.0 | 0.3879 | 0.4663 | 0.0 | nan | 0.0023 | 0.2356 | 0.0728 | 0.0 | 0.8358 | 0.7333 | 0.9230 | 0.0000 | 0.1034 | 0.1937 | 0.0 | | 0.2803 | 175.93 | 9500 | 0.6404 | 0.3009 | 0.3704 | 0.8084 | nan | 0.8365 | 0.8208 | 0.7833 | 0.9062 | 0.3050 | nan | 0.4405 | 0.6203 | 0.0 | 0.9443 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6940 | 0.0 | 0.0 | 0.8667 | 0.0 | 0.5055 | 0.5494 | 0.0 | nan | 0.0084 | 0.4148 | 0.0772 | 0.0 | 0.9424 | 0.8074 | 0.9551 | 0.0001 | 0.1077 | 0.2664 | 0.0 | nan | 0.7454 | 0.7459 | 0.7680 | 0.4316 | 0.2897 | nan | 0.3571 | 0.4866 | 0.0 | 0.7930 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4255 | 0.0 | 0.0 | 0.6652 | 0.0 | 0.3877 | 0.4601 | 0.0 | nan | 0.0084 | 0.2306 | 0.0771 | 0.0 | 0.8314 | 0.7178 | 0.9235 | 0.0001 | 0.0969 | 0.1889 | 0.0 | | 0.2924 | 177.78 | 9600 | 0.6156 | 0.3045 | 0.3723 | 0.8156 | nan | 0.8293 | 0.8420 | 0.8051 | 0.8964 | 0.3365 | nan | 0.4651 | 0.6281 | 0.0 | 0.9443 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6806 | 0.0 | 0.0 | 0.8777 | 0.0 | 0.4957 | 0.5434 | 0.0 | nan | 0.0043 | 0.4293 | 0.0774 | 0.0 | 0.9387 | 0.7942 | 0.9562 | 0.0 | 0.1178 | 0.2514 | 0.0 | nan | 0.7508 | 0.7606 | 0.7848 | 0.4617 | 0.3134 | nan | 0.3712 | 0.4903 | 0.0 | 0.7912 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4384 | 0.0 | 0.0 | 0.6666 | 0.0 | 0.3850 | 0.4648 | 0.0 | nan | 0.0043 | 0.2308 | 0.0773 | 0.0 | 0.8320 | 0.7126 | 0.9232 | 0.0 | 0.1028 | 0.1836 | 0.0 | | 0.2911 | 179.63 | 9700 | 0.6039 | 0.3051 | 0.3743 | 0.8197 | nan | 0.8161 | 0.8573 | 0.8009 | 0.9013 | 0.3091 | nan | 0.4597 | 0.6407 | 0.0 | 0.9406 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7191 | 0.0 | 0.0 | 0.8787 | 0.0 | 0.5007 | 0.5561 | 0.0 | nan | 0.0046 | 0.4187 | 0.0825 | 0.0 | 0.9325 | 0.8335 | 0.9578 | 0.0000 | 0.1036 | 0.2642 | 0.0 | nan | 0.7434 | 0.7687 | 0.7825 | 0.4751 | 0.2917 | nan | 0.3667 | 0.4994 | 0.0 | 0.7998 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4127 | 0.0 | 0.0 | 0.6761 | 0.0 | 0.3878 | 0.4561 | 0.0 | nan | 0.0046 | 0.2352 | 0.0823 | 0.0 | 0.8393 | 0.7401 | 0.9235 | 0.0000 | 0.0883 | 0.1885 | 0.0 | | 0.3093 | 181.48 | 9800 | 0.6244 | 0.3021 | 0.3707 | 0.8132 | nan | 0.8240 | 0.8367 | 0.7819 | 0.9031 | 0.3158 | nan | 0.4523 | 0.6336 | 0.0 | 0.9419 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7047 | 0.0 | 0.0 | 0.8782 | 0.0 | 0.5024 | 0.5478 | 0.0 | nan | 0.0 | 0.4039 | 0.0761 | 0.0 | 0.9422 | 0.8036 | 0.9524 | 0.0 | 0.0992 | 0.2629 | 0.0 | nan | 0.7414 | 0.7575 | 0.7666 | 0.4537 | 0.2990 | nan | 0.3642 | 0.4913 | 0.0 | 0.7906 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4261 | 0.0 | 0.0 | 0.6655 | 0.0 | 0.3892 | 0.4639 | 0.0 | nan | 0.0 | 0.2339 | 0.0760 | 0.0 | 0.8311 | 0.7168 | 0.9226 | 0.0 | 0.0873 | 0.1892 | 0.0 | | 0.3194 | 183.33 | 9900 | 0.6384 | 0.3015 | 0.3707 | 0.8106 | nan | 0.8269 | 0.8295 | 0.7809 | 0.9036 | 0.3169 | nan | 0.4373 | 0.6407 | 0.0 | 0.9394 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7004 | 0.0 | 0.0 | 0.8774 | 0.0 | 0.4936 | 0.5511 | 0.0 | nan | 0.0004 | 0.4210 | 0.0726 | 0.0 | 0.9434 | 0.8072 | 0.9462 | 0.0 | 0.1149 | 0.2605 | 0.0 | nan | 0.7423 | 0.7508 | 0.7639 | 0.4418 | 0.2988 | nan | 0.3584 | 0.4963 | 0.0 | 0.7976 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4212 | 0.0 | 0.0 | 0.6662 | 0.0 | 0.3830 | 0.4618 | 0.0 | nan | 0.0004 | 0.2347 | 0.0725 | 0.0 | 0.8311 | 0.7208 | 0.9214 | 0.0 | 0.0993 | 0.1875 | 0.0 | | 0.3174 | 185.19 | 10000 | 0.6350 | 0.3022 | 0.3724 | 0.8117 | nan | 0.8240 | 0.8308 | 0.7789 | 0.9052 | 0.3152 | nan | 0.4703 | 0.6444 | 0.0 | 0.9424 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7116 | 0.0 | 0.0 | 0.8716 | 0.0 | 0.4736 | 0.5408 | 0.0 | nan | 0.0048 | 0.4202 | 0.0754 | 0.0 | 0.9437 | 0.8196 | 0.9525 | 0.0 | 0.1041 | 0.2872 | 0.0 | nan | 0.7413 | 0.7520 | 0.7629 | 0.4453 | 0.2976 | nan | 0.3701 | 0.4953 | 0.0 | 0.7962 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4152 | 0.0 | 0.0 | 0.6712 | 0.0 | 0.3749 | 0.4613 | 0.0 | nan | 0.0048 | 0.2337 | 0.0753 | 0.0 | 0.8324 | 0.7277 | 0.9234 | 0.0 | 0.0913 | 0.1997 | 0.0 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
PDM/finetuning-sentiment-model-3000-samples
aa5d883f2dfbbff2b2b15e739a6902fe5f9fac98
2022-04-22T09:18:16.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
PDM
null
PDM/finetuning-sentiment-model-3000-samples
12
null
transformers
10,740
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8741721854304636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3061 - Accuracy: 0.8733 - F1: 0.8742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
PaulTran/vietnamese_essay_identify
4495aeb914bef2688cae4114a1912a4b7d249c79
2022-06-15T12:05:28.000Z
[ "pytorch", "roberta", "text-classification", "vi", "Vietnamese", "arxiv:2003.00744", "transformers", "essay category" ]
text-classification
false
PaulTran
null
PaulTran/vietnamese_essay_identify
12
null
transformers
10,741
--- language: - vi - Vietnamese tags: - essay category - text-classification widget: - text: "Cái đồng hồ của em cao hơn 30 cm. Đế của nó được làm bằng i-nốc sáng loáng hình bầu dục. Chỗ dài nhất của đế vừa bằng gang tay của em. Chỗ rộng nhất bằng hơn nửa gang tay." example_title: "Descriptive - Miêu tả" - text: "Hiện nay, đại dịch Covid-19 diễn biến ngày một phức tạp, nó khiến nền kinh tế trì trệ, cuộc sống con người hoàn toàn xáo trộn và luôn ở trạng thái lo ngại... và cùng với đó chính là việc học sinh - sinh viên không thể tới trường. Một trong những điều đáng lo ngại nhất khi tình hình dịch bệnh không biết bao giờ mới ổn định." example_title: "Argumentative - Nghị luận" - text: "Cấu tạo của chiếc kính gồm hai bộ phận chính là gọng kính và mắt kính. Gọng kính được làm bằng nhựa cao cấp hoặc kim loại quý. Gọng kính chia làm hai phần: phần khung để lắp mắt kính và phần gọng để đeo vào tai, nối với nhau bởi các ốc vít nhỏ, có thể mở ra, gập lại dễ dàng. Chất liệu để làm mắt kính là nhựa hoặc thủy tinh trong suốt. Gọng kính và mắt kính có nhiều hình dáng, màu sắc khác nhau." example_title: "Expository - Thuyết minh" - text: "Em yêu quý đào vì nó là loài cây đặc trưng của miền Bắc vào Tết đến xuân sang. Đào bình dị nhưng gắn liền với tuổi thơ em nồng nàn. Tuổi thơ đã từng khao khát nhà có một cây đào mộc mạc để háo hức vui tươi trong ngày Tết." example_title: "Expressive - Biểu cảm" - text: "Hắn vừa đi vừa chửi. Bao giờ cũng thế, cứ rượu xong là hắn chửi. Bắt đầu chửi trời, có hề gì? Trời có của riêng nhà nào? Rồi hắn chửi đời. Thế cũng chẳng sao: Đời là tất cả nhưng cũng chẳng là ai." example_title: "Narrative - Tự sự" --- This is a finetuned PhoBERT model for essay categories classification. - At primary levels of education in Vietnam, students are introduced to 5 categories of essays: - Argumentative - Nghị luận - Expressive - Biểu cảm - Descriptive - Miêu tả - Narrative - Tự sự - Expository - Thuyết minh - This model will classify sentences into these 5 categories The general architecture and experimental results of PhoBERT can be found in EMNLP-2020 Findings [paper](https://arxiv.org/abs/2003.00744): @article{phobert, title = {{PhoBERT: Pre-trained language models for Vietnamese}}, author = {Dat Quoc Nguyen and Anh Tuan Nguyen}, journal = {Findings of EMNLP}, year = {2020} }
praf-choub/bart-CaPE-xsum
5ea01de016ebaa55b238e2e27a1e3b5c94d26acd
2022-06-14T04:51:24.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:xsum", "arxiv:2110.07166", "transformers", "summarization", "license:bsd-3-clause", "autotrain_compatible" ]
summarization
false
praf-choub
null
praf-choub/bart-CaPE-xsum
12
null
transformers
10,742
--- language: en tags: - summarization license: bsd-3-clause datasets: - xsum --- Citation ``` @misc{https://doi.org/10.48550/arxiv.2110.07166, doi = {10.48550/ARXIV.2110.07166}, url = {https://arxiv.org/abs/2110.07166}, author = {Choubey, Prafulla Kumar and Fabbri, Alexander R. and Vig, Jesse and Wu, Chien-Sheng and Liu, Wenhao and Rajani, Nazneen Fatema}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {CaPE: Contrastive Parameter Ensembling for Reducing Hallucination in Abstractive Summarization}, publisher = {arXiv}, year = {2021}, copyright = {Creative Commons Attribution 4.0 International} } ```
Hate-speech-CNERG/marathi-codemixed-abusive-MuRIL
dedc74530ccdf1ca44c4d5d71b649813c578c499
2022-05-03T08:45:38.000Z
[ "pytorch", "bert", "text-classification", "mr", "arxiv:2204.12543", "transformers", "license:afl-3.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/marathi-codemixed-abusive-MuRIL
12
null
transformers
10,743
--- language: mr license: afl-3.0 --- This model is used to detect **abusive speech** in **Marathi**. It is finetuned on MuRIL model using Marathi abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
AlexTaylor/distilbert-base-uncased-finetuned-emotion
1ff60c79ed3f5dc8b645a988389d05f79d3451b7
2022-04-25T13:24:10.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
AlexTaylor
null
AlexTaylor/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,744
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9263429084864518 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2257 - Accuracy: 0.926 - F1: 0.9263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8433 | 1.0 | 250 | 0.3243 | 0.9035 | 0.8996 | | 0.2583 | 2.0 | 500 | 0.2257 | 0.926 | 0.9263 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
bdickson/electra-small-discriminator-finetuned-squad
b17c8792162fb86558192851a25757c17af5048b
2022-04-28T03:39:47.000Z
[ "pytorch", "tensorboard", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
bdickson
null
bdickson/electra-small-discriminator-finetuned-squad
12
null
transformers
10,745
Entry not found
vegetable/test
a427e05f8b3a5ad64c943635d1f4b2ff1ef22400
2022-04-30T02:48:07.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
vegetable
null
vegetable/test
12
null
transformers
10,746
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: test results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.7696078431372549 - name: Recall type: recall value: 0.839572192513369 - name: F1 type: f1 value: 0.8030690537084398 - name: Accuracy type: accuracy value: 0.8847040737893928 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.7372 - Precision: 0.7696 - Recall: 0.8396 - F1: 0.8031 - Accuracy: 0.8847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 2 | 1.9496 | 0.0 | 0.0 | 0.0 | 0.4889 | | No log | 2.0 | 4 | 1.6137 | 0.0 | 0.0 | 0.0 | 0.4919 | | No log | 3.0 | 6 | 1.3906 | 0.0 | 0.0 | 0.0 | 0.5650 | | No log | 4.0 | 8 | 1.2273 | 0.0652 | 0.0481 | 0.0554 | 0.6856 | | No log | 5.0 | 10 | 1.0565 | 0.2051 | 0.1711 | 0.1866 | 0.7125 | | No log | 6.0 | 12 | 0.9150 | 0.5094 | 0.4332 | 0.4682 | 0.7540 | | No log | 7.0 | 14 | 0.8051 | 0.5988 | 0.5187 | 0.5559 | 0.7679 | | No log | 8.0 | 16 | 0.7151 | 0.6707 | 0.5989 | 0.6328 | 0.7763 | | No log | 9.0 | 18 | 0.6334 | 0.6685 | 0.6364 | 0.6521 | 0.8086 | | No log | 10.0 | 20 | 0.5693 | 0.6957 | 0.6845 | 0.6900 | 0.8201 | | No log | 11.0 | 22 | 0.5192 | 0.7166 | 0.7166 | 0.7166 | 0.8363 | | No log | 12.0 | 24 | 0.4736 | 0.7135 | 0.7326 | 0.7230 | 0.8524 | | No log | 13.0 | 26 | 0.4448 | 0.6938 | 0.7754 | 0.7323 | 0.8555 | | No log | 14.0 | 28 | 0.4280 | 0.7177 | 0.8021 | 0.7576 | 0.8586 | | No log | 15.0 | 30 | 0.4179 | 0.7588 | 0.8075 | 0.7824 | 0.8663 | | No log | 16.0 | 32 | 0.4214 | 0.7356 | 0.8182 | 0.7747 | 0.8593 | | No log | 17.0 | 34 | 0.4070 | 0.7391 | 0.8182 | 0.7766 | 0.8616 | | No log | 18.0 | 36 | 0.4112 | 0.7586 | 0.8235 | 0.7897 | 0.8724 | | No log | 19.0 | 38 | 0.4530 | 0.7330 | 0.8075 | 0.7684 | 0.8693 | | No log | 20.0 | 40 | 0.4719 | 0.7766 | 0.8182 | 0.7969 | 0.8732 | | No log | 21.0 | 42 | 0.4886 | 0.7260 | 0.8075 | 0.7646 | 0.8632 | | No log | 22.0 | 44 | 0.5007 | 0.7217 | 0.8182 | 0.7669 | 0.8701 | | No log | 23.0 | 46 | 0.5169 | 0.7321 | 0.8182 | 0.7727 | 0.8762 | | No log | 24.0 | 48 | 0.5531 | 0.7238 | 0.8128 | 0.7657 | 0.8724 | | No log | 25.0 | 50 | 0.5895 | 0.7311 | 0.8289 | 0.7769 | 0.8655 | | No log | 26.0 | 52 | 0.5482 | 0.7330 | 0.8075 | 0.7684 | 0.8778 | | No log | 27.0 | 54 | 0.5361 | 0.7488 | 0.8128 | 0.7795 | 0.8832 | | No log | 28.0 | 56 | 0.5378 | 0.7427 | 0.8182 | 0.7786 | 0.8847 | | No log | 29.0 | 58 | 0.5543 | 0.7371 | 0.8396 | 0.7850 | 0.8824 | | No log | 30.0 | 60 | 0.5564 | 0.7585 | 0.8396 | 0.7970 | 0.8839 | | No log | 31.0 | 62 | 0.5829 | 0.7235 | 0.8396 | 0.7772 | 0.8724 | | No log | 32.0 | 64 | 0.5974 | 0.7269 | 0.8396 | 0.7792 | 0.8716 | | No log | 33.0 | 66 | 0.5750 | 0.7610 | 0.8342 | 0.7959 | 0.8839 | | No log | 34.0 | 68 | 0.5887 | 0.7723 | 0.8342 | 0.8021 | 0.8878 | | No log | 35.0 | 70 | 0.6219 | 0.7441 | 0.8396 | 0.7889 | 0.8747 | | No log | 36.0 | 72 | 0.6676 | 0.7269 | 0.8396 | 0.7792 | 0.8632 | | No log | 37.0 | 74 | 0.6517 | 0.7452 | 0.8289 | 0.7848 | 0.8693 | | No log | 38.0 | 76 | 0.6346 | 0.7828 | 0.8289 | 0.8052 | 0.8862 | | No log | 39.0 | 78 | 0.6239 | 0.7839 | 0.8342 | 0.8083 | 0.8855 | | No log | 40.0 | 80 | 0.6360 | 0.7277 | 0.8289 | 0.775 | 0.8762 | | No log | 41.0 | 82 | 0.6645 | 0.7336 | 0.8396 | 0.7830 | 0.8701 | | No log | 42.0 | 84 | 0.6611 | 0.7406 | 0.8396 | 0.7870 | 0.8747 | | No log | 43.0 | 86 | 0.6707 | 0.7488 | 0.8289 | 0.7868 | 0.8762 | | No log | 44.0 | 88 | 0.6901 | 0.7277 | 0.8289 | 0.775 | 0.8709 | | No log | 45.0 | 90 | 0.6911 | 0.7393 | 0.8342 | 0.7839 | 0.8709 | | No log | 46.0 | 92 | 0.6540 | 0.7761 | 0.8342 | 0.8041 | 0.8878 | | No log | 47.0 | 94 | 0.6381 | 0.7761 | 0.8342 | 0.8041 | 0.8916 | | No log | 48.0 | 96 | 0.6285 | 0.7745 | 0.8449 | 0.8082 | 0.8885 | | No log | 49.0 | 98 | 0.6449 | 0.7692 | 0.8556 | 0.8101 | 0.8862 | | No log | 50.0 | 100 | 0.6809 | 0.7442 | 0.8556 | 0.7960 | 0.8732 | | No log | 51.0 | 102 | 0.6898 | 0.7395 | 0.8503 | 0.7910 | 0.8716 | | No log | 52.0 | 104 | 0.6897 | 0.75 | 0.8503 | 0.7970 | 0.8762 | | No log | 53.0 | 106 | 0.6714 | 0.7656 | 0.8556 | 0.8081 | 0.8855 | | No log | 54.0 | 108 | 0.6612 | 0.7692 | 0.8556 | 0.8101 | 0.8855 | | No log | 55.0 | 110 | 0.6583 | 0.7692 | 0.8556 | 0.8101 | 0.8855 | | No log | 56.0 | 112 | 0.6648 | 0.7692 | 0.8556 | 0.8101 | 0.8855 | | No log | 57.0 | 114 | 0.6757 | 0.7656 | 0.8556 | 0.8081 | 0.8832 | | No log | 58.0 | 116 | 0.6803 | 0.7656 | 0.8556 | 0.8081 | 0.8839 | | No log | 59.0 | 118 | 0.6834 | 0.7692 | 0.8556 | 0.8101 | 0.8862 | | No log | 60.0 | 120 | 0.6889 | 0.7833 | 0.8503 | 0.8154 | 0.8878 | | No log | 61.0 | 122 | 0.6963 | 0.7772 | 0.8396 | 0.8072 | 0.8862 | | No log | 62.0 | 124 | 0.7057 | 0.7772 | 0.8396 | 0.8072 | 0.8862 | | No log | 63.0 | 126 | 0.7212 | 0.7910 | 0.8503 | 0.8196 | 0.8862 | | No log | 64.0 | 128 | 0.7334 | 0.7833 | 0.8503 | 0.8154 | 0.8824 | | No log | 65.0 | 130 | 0.7398 | 0.7833 | 0.8503 | 0.8154 | 0.8801 | | No log | 66.0 | 132 | 0.7400 | 0.7833 | 0.8503 | 0.8154 | 0.8809 | | No log | 67.0 | 134 | 0.7345 | 0.7783 | 0.8449 | 0.8103 | 0.8855 | | No log | 68.0 | 136 | 0.7270 | 0.79 | 0.8449 | 0.8165 | 0.8870 | | No log | 69.0 | 138 | 0.7245 | 0.7839 | 0.8342 | 0.8083 | 0.8862 | | No log | 70.0 | 140 | 0.7260 | 0.7868 | 0.8289 | 0.8073 | 0.8847 | | No log | 71.0 | 142 | 0.7275 | 0.7817 | 0.8235 | 0.8021 | 0.8839 | | No log | 72.0 | 144 | 0.7283 | 0.7778 | 0.8235 | 0.8000 | 0.8832 | | No log | 73.0 | 146 | 0.7296 | 0.78 | 0.8342 | 0.8062 | 0.8847 | | No log | 74.0 | 148 | 0.7344 | 0.7734 | 0.8396 | 0.8051 | 0.8832 | | No log | 75.0 | 150 | 0.7314 | 0.7745 | 0.8449 | 0.8082 | 0.8824 | | No log | 76.0 | 152 | 0.7299 | 0.7794 | 0.8503 | 0.8133 | 0.8832 | | No log | 77.0 | 154 | 0.7282 | 0.7794 | 0.8503 | 0.8133 | 0.8839 | | No log | 78.0 | 156 | 0.7252 | 0.7783 | 0.8449 | 0.8103 | 0.8839 | | No log | 79.0 | 158 | 0.7216 | 0.7756 | 0.8503 | 0.8112 | 0.8855 | | No log | 80.0 | 160 | 0.7194 | 0.7756 | 0.8503 | 0.8112 | 0.8870 | | No log | 81.0 | 162 | 0.7191 | 0.7756 | 0.8503 | 0.8112 | 0.8878 | | No log | 82.0 | 164 | 0.7201 | 0.7696 | 0.8396 | 0.8031 | 0.8862 | | No log | 83.0 | 166 | 0.7211 | 0.7696 | 0.8396 | 0.8031 | 0.8862 | | No log | 84.0 | 168 | 0.7222 | 0.7696 | 0.8396 | 0.8031 | 0.8862 | | No log | 85.0 | 170 | 0.7220 | 0.7696 | 0.8396 | 0.8031 | 0.8862 | | No log | 86.0 | 172 | 0.7239 | 0.7734 | 0.8396 | 0.8051 | 0.8870 | | No log | 87.0 | 174 | 0.7291 | 0.7772 | 0.8396 | 0.8072 | 0.8847 | | No log | 88.0 | 176 | 0.7344 | 0.7745 | 0.8449 | 0.8082 | 0.8824 | | No log | 89.0 | 178 | 0.7373 | 0.7745 | 0.8449 | 0.8082 | 0.8824 | | No log | 90.0 | 180 | 0.7391 | 0.7707 | 0.8449 | 0.8061 | 0.8832 | | No log | 91.0 | 182 | 0.7403 | 0.7745 | 0.8449 | 0.8082 | 0.8824 | | No log | 92.0 | 184 | 0.7412 | 0.7745 | 0.8449 | 0.8082 | 0.8832 | | No log | 93.0 | 186 | 0.7417 | 0.7707 | 0.8449 | 0.8061 | 0.8832 | | No log | 94.0 | 188 | 0.7402 | 0.7745 | 0.8449 | 0.8082 | 0.8839 | | No log | 95.0 | 190 | 0.7389 | 0.7745 | 0.8449 | 0.8082 | 0.8847 | | No log | 96.0 | 192 | 0.7381 | 0.7696 | 0.8396 | 0.8031 | 0.8839 | | No log | 97.0 | 194 | 0.7377 | 0.7696 | 0.8396 | 0.8031 | 0.8847 | | No log | 98.0 | 196 | 0.7374 | 0.7696 | 0.8396 | 0.8031 | 0.8847 | | No log | 99.0 | 198 | 0.7372 | 0.7696 | 0.8396 | 0.8031 | 0.8847 | | No log | 100.0 | 200 | 0.7372 | 0.7696 | 0.8396 | 0.8031 | 0.8847 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
cfilt/HiNER-original-xlm-roberta-large
94dac1de022fa75c441c2e898e85e6da270daf2a
2022-05-02T10:19:28.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:cfilt/HiNER-original", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
cfilt
null
cfilt/HiNER-original-xlm-roberta-large
12
null
transformers
10,747
--- tags: - generated_from_trainer datasets: - cfilt/HiNER-original metrics: - precision - recall - f1 model-index: - name: HiNER-original-xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: type: cfilt/HiNER-original name: HiNER Original metrics: - name: Precision type: precision value: 0.8968858782575971 - name: Recall type: recall value: 0.8871207891308394 - name: F1 type: f1 value: 0.8919766081871345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HiNER-original-xlm-roberta-large This model was trained from scratch on HiNER-original dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.14.0 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_NULL_True
4932fde06e2a5d1694dce821c5a2fd99ba53b3e5
2022-05-02T14:07:36.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ali2066
null
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_NULL_True
12
null
transformers
10,748
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_NULL_True results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_NULL_True This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4024 - Precision: 0.8643 - Recall: 0.9769 - F1: 0.9171 - Accuracy: 0.8594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 130 | 0.4920 | 0.7766 | 1.0 | 0.8742 | 0.7766 | | No log | 2.0 | 260 | 0.4469 | 0.7885 | 1.0 | 0.8818 | 0.7918 | | No log | 3.0 | 390 | 0.3860 | 0.8248 | 0.9860 | 0.8982 | 0.8265 | | 0.462 | 4.0 | 520 | 0.3948 | 0.8441 | 0.9832 | 0.9084 | 0.8460 | | 0.462 | 5.0 | 650 | 0.3694 | 0.8632 | 0.9693 | 0.9132 | 0.8568 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
atomsspawn/DialoGPT-small-shelbot
07516eb879bcde2854f589f3d81599cfe48bd660
2022-05-17T20:31:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
atomsspawn
null
atomsspawn/DialoGPT-small-shelbot
12
null
transformers
10,749
--- tags: - conversational --- # Sheldon Cooper DialoGPT Model
ali2066/DistilBERT_FINAL_ctxSentence_TRAIN_essays_TEST_NULL_second_train_set_null_False
4cc122ab0c7d4943984eff60cd119141ac2943d5
2022-05-02T18:23:52.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ali2066
null
ali2066/DistilBERT_FINAL_ctxSentence_TRAIN_essays_TEST_NULL_second_train_set_null_False
12
null
transformers
10,750
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DistilBERT_FINAL_ctxSentence_TRAIN_essays_TEST_NULL_second_train_set_null_False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT_FINAL_ctxSentence_TRAIN_essays_TEST_NULL_second_train_set_null_False This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7321 - Precision: 0.9795 - Recall: 0.7277 - F1: 0.835 - Accuracy: 0.7208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 130 | 0.3755 | 0.8521 | 0.9910 | 0.9163 | 0.8529 | | No log | 2.0 | 260 | 0.3352 | 0.8875 | 0.9638 | 0.9241 | 0.8713 | | No log | 3.0 | 390 | 0.3370 | 0.8918 | 0.9321 | 0.9115 | 0.8529 | | 0.4338 | 4.0 | 520 | 0.3415 | 0.8957 | 0.9321 | 0.9135 | 0.8566 | | 0.4338 | 5.0 | 650 | 0.3416 | 0.8918 | 0.9321 | 0.9115 | 0.8529 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
masakhane/m2m100_418M-FR-NEWS
b49b945102620b0a54c8011ef50f1e292a6dcd71
2022-05-12T13:43:29.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M-FR-NEWS
12
null
transformers
10,751
--- license: afl-3.0 ---
enimai/opus-mt-en-de-finetuned-en-to-de
d40c5249f29423d19c94f3bbcc5cc33ce63ea7f9
2022-05-03T15:57:16.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
enimai
null
enimai/opus-mt-en-de-finetuned-en-to-de
12
null
transformers
10,752
--- license: apache-2.0 ---
enimai/opus-mt-en-hi-finetuned-en-to-hi
f32133f8d0a0d90eafb60e45073ed843841a67ae
2022-05-03T16:29:04.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
enimai
null
enimai/opus-mt-en-hi-finetuned-en-to-hi
12
null
transformers
10,753
--- license: apache-2.0 ---
ml4pubmed/biobert-v1.1_pub_section
445f0a103a0817cc174f0681c8af9db0fd0c4792
2022-05-04T00:02:48.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:pubmed", "transformers" ]
text-classification
false
ml4pubmed
null
ml4pubmed/biobert-v1.1_pub_section
12
null
transformers
10,754
--- language: - en datasets: - pubmed metrics: - f1 pipeline_tag: text-classification widget: - text: "Many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions." example_title: "BACKGROUND example" - text: "A total of 192 MI patients and 140 control persons were included." example_title: "METHODS example" - text: "MI patients had 18 % higher plasma levels of MAp44 (IQR 11-25 %) as compared to the healthy control group (p < 0. 001.)" example_title: "RESULTS example" - text: "The finding that a brief CB group intervention delivered by real-world providers significantly reduced MDD onset relative to both brochure control and bibliotherapy is very encouraging, although effects on continuous outcome measures were small or nonsignificant and approximately half the magnitude of those found in efficacy research, potentially because the present sample reported lower initial depression." example_title: "CONCLUSIONS example" - text: "In order to understand and update the prevalence of myopia in Taiwan, a nationwide survey was performed in 1995." example_title: "OBJECTIVE example" --- # biobert-v1.1_pub_section - original model file name: textclassifer_biobert-v1.1_pubmed_20k - This is a fine-tuned checkpoint of `dmis-lab/biobert-v1.1` for document section text classification - possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS, ## metadata ### training_metrics - val_accuracy: 0.8522772192955017 - val_matthewscorrcoef: 0.8009328246116638 - val_f1score: 0.8517481088638306 - val_cross_entropy: 0.4344026446342468 - epoch: 12.0 - train_accuracy_step: 0.8203125 - train_matthewscorrcoef_step: 0.7453048229217529 - train_f1score_step: 0.8245896100997925 - train_cross_entropy_step: 0.480397492647171 - train_accuracy_epoch: 0.8297363519668579 - train_matthewscorrcoef_epoch: 0.7703952193260193 - train_f1score_epoch: 0.8274592757225037 - train_cross_entropy_epoch: 0.5001224875450134 - test_accuracy: 0.8441678881645203 - test_matthewscorrcoef: 0.7905130982398987 - test_f1score: 0.8435087203979492 - test_cross_entropy: 0.4557005763053894 - date_run: Apr-22-2022_t-14 - huggingface_tag: dmis-lab/biobert-v1.1
ml4pubmed/scibert-scivocab-uncased_pub_section
ba7656f774cdddca4bb441f903f7873afe25e9d6
2022-06-22T10:59:11.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:pubmed", "transformers", "document sections", "sentence classification", "document classification", "medical", "health", "biomedical" ]
text-classification
false
ml4pubmed
null
ml4pubmed/scibert-scivocab-uncased_pub_section
12
null
transformers
10,755
--- language: - en datasets: - pubmed metrics: - f1 pipeline_tag: text-classification tags: - text-classification - document sections - sentence classification - document classification - medical - health - biomedical widget: - text: "many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions." example_title: "background example" - text: "a total of 192 mi patients and 140 control persons were included." example_title: "methods example" - text: "mi patients had 18 % higher plasma levels of map44 (iqr 11-25 %) as compared to the healthy control group (p < 0. 001.)" example_title: "results example" - text: "the finding that a brief cb group intervention delivered by real-world providers significantly reduced mdd onset relative to both brochure control and bibliotherapy is very encouraging, although effects on continuous outcome measures were small or nonsignificant and approximately half the magnitude of those found in efficacy research, potentially because the present sample reported lower initial depression." example_title: "conclusions example" - text: "in order to understand and update the prevalence of myopia in taiwan, a nationwide survey was performed in 1995." example_title: "objective example" --- # scibert-scivocab-uncased_pub_section - original model file name: textclassifer_scibert_scivocab_uncased_pubmed_full - This is a fine-tuned checkpoint of `allenai/scibert_scivocab_uncased` for document section text classification - possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS, ## usage in python install transformers as needed: `pip install -U transformers` run the following, changing the example text to your use case: ``` from transformers import pipeline model_tag = "ml4pubmed/scibert-scivocab-uncased_pub_section" classifier = pipeline( 'text-classification', model=model_tag, ) prompt = """ Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. """ classifier( prompt, ) # classify the sentence ``` ## metadata ### training_metrics - date_run: Apr-25-2022_t-03 - huggingface_tag: allenai/scibert_scivocab_uncased ### training_parameters - date_run: Apr-25-2022_t-03 - huggingface_tag: allenai/scibert_scivocab_uncased
dkasti/distilbert-base-uncased-finetuned-emotion
0f8b949ad83d90ff8cafb22a40a7fc79e458a763
2022-05-04T05:03:46.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dkasti
null
dkasti/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,756
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9247463289719563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2223 - Accuracy: 0.9245 - F1: 0.9247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8296 | 1.0 | 250 | 0.3200 | 0.902 | 0.9002 | | 0.2522 | 2.0 | 500 | 0.2223 | 0.9245 | 0.9247 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
cwkeam/mctct-large
c0fab5422e4bb621097c18bf96a1cd2bbc7048e0
2022-05-05T11:02:00.000Z
[ "pytorch", "mctct", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "dataset:common_voice", "arxiv:2111.00161", "transformers", "speech", "license:apache-2.0" ]
automatic-speech-recognition
false
cwkeam
null
cwkeam/mctct-large
12
null
transformers
10,757
--- language: en datasets: - librispeech_asr - common_voice tags: - speech license: apache-2.0 --- # M-CTC-T ​ Massively multilingual speech recognizer from Meta AI. The model is a 1B-param transformer encoder, with a CTC head over 8065 character labels and a language identification head over 60 language ID labels. It is trained on Common Voice (version 6.1, December 2020 release) and VoxPopuli. After training on Common Voice and VoxPopuli, the model is trained on Common Voice only. The labels are unnormalized character-level transcripts (punctuation and capitalization are not removed). The model takes as input Mel filterbank features from a 16Khz audio signal. ​ ![model image](https://raw.githubusercontent.com/cwkeam/scientific-images/main/MCTCT/mctct-arch.png) ​ The original Flashlight code, model checkpoints, and Colab notebook can be found at https://github.com/flashlight/wav2letter/tree/main/recipes/mling_pl . ​ ​ ## Citation ​ [Paper](https://arxiv.org/abs/2111.00161) ​ Authors: Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, Ronan Collobert ​ ``` @article{lugosch2021pseudo, title={Pseudo-Labeling for Massively Multilingual Speech Recognition}, author={Lugosch, Loren and Likhomanenko, Tatiana and Synnaeve, Gabriel and Collobert, Ronan}, journal={ICASSP}, year={2022} } ``` ​ Additional thanks to [Chan Woo Kim](https://huggingface.co/cwkeam) and [Patrick von Platen](https://huggingface.co/patrickvonplaten) for porting the model from Flashlight to PyTorch. ​ # Training method ​ ![model image](https://raw.githubusercontent.com/cwkeam/scientific-images/main/MCTCT/mctct-slimipl.png) TO-DO: replace with the training diagram from paper ​ For more information on how the model was trained, please take a look at the [official paper](https://arxiv.org/abs/2111.00161). ​ # Usage ​ To transcribe audio files the model can be used as a standalone acoustic model as follows: ​ ```python import torch import torchaudio from datasets import load_dataset from transformers import MCTCTForCTC, MCTCTProcessor model = MCTCTForCTC.from_pretrained("speechbrain/mctct-large") processor = MCTCTProcessor.from_pretrained("speechbrain/mctct-large") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_features = processor(ds[0]["audio"]["array"], return_tensors="pt").input_features # retrieve logits logits = model(input_features).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` Results for Common Voice, averaged over all languages: ​ *Character error rate (CER)*: ​ | Valid | Test | |-------|------| | 21.4 | 23.3 |
brjezierski/bert-finetuned-ner
7f01546dbdc3df17a7febc2f69a89a3083aa5cc8
2022-05-06T21:10:12.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
brjezierski
null
brjezierski/bert-finetuned-ner
12
null
transformers
10,758
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9340841338191455 - name: Recall type: recall value: 0.9491753618310333 - name: F1 type: f1 value: 0.9415692821368947 - name: Accuracy type: accuracy value: 0.9853858833225407 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0632 - Precision: 0.9341 - Recall: 0.9492 - F1: 0.9416 - Accuracy: 0.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0871 | 1.0 | 1756 | 0.0631 | 0.9221 | 0.9381 | 0.9300 | 0.9836 | | 0.0406 | 2.0 | 3512 | 0.0619 | 0.9259 | 0.9490 | 0.9373 | 0.9849 | | 0.0205 | 3.0 | 5268 | 0.0632 | 0.9341 | 0.9492 | 0.9416 | 0.9854 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
ChainYo/t5-base-sede-txt2sql
bf06838fc7182603f0a8609fe63abd60a9d478e6
2022-05-07T18:50:12.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:sede", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ChainYo
null
ChainYo/t5-base-sede-txt2sql
12
null
transformers
10,759
--- license: apache-2.0 tags: - generated_from_trainer datasets: - sede model-index: - name: t5-base-sede-txt2sql results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-sede-txt2sql This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the sede dataset. It achieves the following results on the evaluation set: - Loss: 1.1577 - Bleu Score: 0.5923 - Parsable Queries Accuracy: 0.0 - Partial Match F1: 0.0 - Partial Match F1 No Values: 0.0 - Partial Match Em: 0.0 - Partial Match No Values Em: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu Score | Parsable Queries Accuracy | Partial Match F1 | Partial Match F1 No Values | Partial Match Em | Partial Match No Values Em | |:-------------:|:-----:|:----:|:---------------:|:----------:|:-------------------------:|:----------------:|:--------------------------:|:----------------:|:--------------------------:| | No log | 1.0 | 95 | 13.2410 | 0.0069 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 190 | 7.6317 | 0.0134 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 3.0 | 285 | 6.0919 | 0.0058 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 4.0 | 380 | 5.4922 | 0.0021 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 5.0 | 475 | 4.7151 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 12.0698 | 6.0 | 570 | 4.1412 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 12.0698 | 7.0 | 665 | 3.6398 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 12.0698 | 8.0 | 760 | 3.2643 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 12.0698 | 9.0 | 855 | 3.0544 | 0.0013 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 12.0698 | 10.0 | 950 | 2.8015 | 0.0043 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4.696 | 11.0 | 1045 | 2.5552 | 0.0789 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4.696 | 12.0 | 1140 | 2.3535 | 0.1036 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4.696 | 13.0 | 1235 | 2.2132 | 0.0050 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4.696 | 14.0 | 1330 | 2.1084 | 0.1333 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 4.696 | 15.0 | 1425 | 2.0117 | 0.2972 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 3.1348 | 16.0 | 1520 | 1.9333 | 0.2481 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 3.1348 | 17.0 | 1615 | 1.8395 | 0.4149 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 3.1348 | 18.0 | 1710 | 1.7661 | 0.5439 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 3.1348 | 19.0 | 1805 | 1.7101 | 0.6001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 3.1348 | 20.0 | 1900 | 1.6562 | 0.6219 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 3.1348 | 21.0 | 1995 | 1.6073 | 0.5865 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.4276 | 22.0 | 2090 | 1.5773 | 0.5683 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.4276 | 23.0 | 2185 | 1.5478 | 0.5408 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.4276 | 24.0 | 2280 | 1.5190 | 0.5749 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.4276 | 25.0 | 2375 | 1.4927 | 0.5818 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.4276 | 26.0 | 2470 | 1.4671 | 0.5673 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.076 | 27.0 | 2565 | 1.4499 | 0.5616 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.076 | 28.0 | 2660 | 1.4275 | 0.6041 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.076 | 29.0 | 2755 | 1.4096 | 0.5764 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.076 | 30.0 | 2850 | 1.3983 | 0.5862 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.076 | 31.0 | 2945 | 1.3812 | 0.5982 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.8828 | 32.0 | 3040 | 1.3679 | 0.5927 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.8828 | 33.0 | 3135 | 1.3548 | 0.5916 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.8828 | 34.0 | 3230 | 1.3461 | 0.5769 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.8828 | 35.0 | 3325 | 1.3353 | 0.5871 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.8828 | 36.0 | 3420 | 1.3293 | 0.5687 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7602 | 37.0 | 3515 | 1.3195 | 0.5689 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7602 | 38.0 | 3610 | 1.3109 | 0.5949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7602 | 39.0 | 3705 | 1.3049 | 0.5619 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7602 | 40.0 | 3800 | 1.2953 | 0.5872 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7602 | 41.0 | 3895 | 1.2907 | 0.6014 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.7602 | 42.0 | 3990 | 1.2831 | 0.5917 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6652 | 43.0 | 4085 | 1.2757 | 0.5718 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6652 | 44.0 | 4180 | 1.2692 | 0.5707 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6652 | 45.0 | 4275 | 1.2642 | 0.5758 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6652 | 46.0 | 4370 | 1.2619 | 0.6012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6652 | 47.0 | 4465 | 1.2527 | 0.5749 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6009 | 48.0 | 4560 | 1.2496 | 0.5722 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6009 | 49.0 | 4655 | 1.2447 | 0.5633 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6009 | 50.0 | 4750 | 1.2411 | 0.5615 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6009 | 51.0 | 4845 | 1.2356 | 0.5691 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.6009 | 52.0 | 4940 | 1.2322 | 0.5636 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5481 | 53.0 | 5035 | 1.2285 | 0.5724 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5481 | 54.0 | 5130 | 1.2255 | 0.5771 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5481 | 55.0 | 5225 | 1.2201 | 0.5827 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5481 | 56.0 | 5320 | 1.2181 | 0.5928 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5481 | 57.0 | 5415 | 1.2152 | 0.5599 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5082 | 58.0 | 5510 | 1.2123 | 0.5779 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5082 | 59.0 | 5605 | 1.2083 | 0.5609 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5082 | 60.0 | 5700 | 1.2070 | 0.5654 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5082 | 61.0 | 5795 | 1.2036 | 0.5566 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5082 | 62.0 | 5890 | 1.2011 | 0.5569 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.5082 | 63.0 | 5985 | 1.1993 | 0.5567 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4799 | 64.0 | 6080 | 1.1958 | 0.5619 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4799 | 65.0 | 6175 | 1.1950 | 0.5691 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4799 | 66.0 | 6270 | 1.1914 | 0.5572 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4799 | 67.0 | 6365 | 1.1879 | 0.5635 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4799 | 68.0 | 6460 | 1.1866 | 0.5654 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4475 | 69.0 | 6555 | 1.1850 | 0.5575 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4475 | 70.0 | 6650 | 1.1833 | 0.5507 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4475 | 71.0 | 6745 | 1.1820 | 0.5493 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4475 | 72.0 | 6840 | 1.1786 | 0.5525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4475 | 73.0 | 6935 | 1.1789 | 0.5615 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4233 | 74.0 | 7030 | 1.1770 | 0.5603 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4233 | 75.0 | 7125 | 1.1749 | 0.5699 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4233 | 76.0 | 7220 | 1.1754 | 0.5730 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4233 | 77.0 | 7315 | 1.1735 | 0.5798 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4233 | 78.0 | 7410 | 1.1716 | 0.5771 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4101 | 79.0 | 7505 | 1.1699 | 0.5800 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4101 | 80.0 | 7600 | 1.1675 | 0.5736 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4101 | 81.0 | 7695 | 1.1661 | 0.5845 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4101 | 82.0 | 7790 | 1.1659 | 0.5974 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4101 | 83.0 | 7885 | 1.1664 | 0.5825 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.4101 | 84.0 | 7980 | 1.1647 | 0.5871 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3965 | 85.0 | 8075 | 1.1639 | 0.5772 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3965 | 86.0 | 8170 | 1.1628 | 0.5826 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3965 | 87.0 | 8265 | 1.1615 | 0.5960 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3965 | 88.0 | 8360 | 1.1616 | 0.5908 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3965 | 89.0 | 8455 | 1.1613 | 0.5775 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3835 | 90.0 | 8550 | 1.1604 | 0.5917 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3835 | 91.0 | 8645 | 1.1597 | 0.5732 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3835 | 92.0 | 8740 | 1.1594 | 0.5767 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3835 | 93.0 | 8835 | 1.1584 | 0.5719 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3835 | 94.0 | 8930 | 1.1581 | 0.5700 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3766 | 95.0 | 9025 | 1.1583 | 0.5845 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3766 | 96.0 | 9120 | 1.1578 | 0.5808 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3766 | 97.0 | 9215 | 1.1578 | 0.5889 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3766 | 98.0 | 9310 | 1.1577 | 0.5851 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3766 | 99.0 | 9405 | 1.1578 | 0.5923 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3726 | 100.0 | 9500 | 1.1577 | 0.5923 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Jeevesh8/bert_ft_qqp-0
17645bf0b6f171d517ac3e9a13f50eb1908b5b4d
2022-05-07T12:10:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-0
12
null
transformers
10,760
Entry not found
theojolliffe/distilbart-cnn-arxiv-pubmed
ee16b09c909770f31a2a53f0eb5e150d839db3e4
2022-05-07T19:16:46.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:scientific_papers", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/distilbart-cnn-arxiv-pubmed
12
null
transformers
10,761
--- license: apache-2.0 tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: distilbart-cnn-12-6-finetuned-arxiv-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: pubmed metrics: - name: Rouge1 type: rouge value: 35.9398 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-arxiv-pubmed This model is a fine-tuned version of [theojolliffe/distilbart-cnn-12-6-finetuned-arxiv](https://huggingface.co/theojolliffe/distilbart-cnn-12-6-finetuned-arxiv) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.2214 - Rouge1: 35.9398 - Rouge2: 14.8037 - Rougel: 22.4263 - Rougelsum: 32.4106 - Gen Len: 135.5783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.4342 | 1.0 | 7496 | 2.2214 | 35.9398 | 14.8037 | 22.4263 | 32.4106 | 135.5783 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
shibing624/bert4ner-base-uncased
a0011f0880da6a53d90fa1380b7ab45a7ee6944d
2022-05-09T09:05:56.000Z
[ "pytorch", "bert", "token-classification", "en", "transformers", "ner", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
shibing624
null
shibing624/bert4ner-base-uncased
12
1
transformers
10,762
--- language: - en tags: - bert - pytorch - en - ner license: "apache-2.0" --- # BERT for English Named Entity Recognition(bert4ner) Model 英文实体识别模型 `bert4ner-base-uncased` evaluate CoNLL-2003 test data: The overall performance of BERT on CoNLL-2003 **test**: | | Accuracy | Recall | F1 | | ------------ | ------------------ | ------------------ | ------------------ | | BertSoftmax | 0.8956 | 0.9132 | 0.9043 | 在CoNLL-2003的测试集上达到接近SOTA水平。 BertSoftmax的网络结构(原生BERT)。 本项目开源在实体识别项目:[nerpy](https://github.com/shibing624/nerpy),可支持bert4ner模型,通过如下命令调用: #### 英文实体识别: ```shell >>> from nerpy import NERModel >>> model = NERModel("bert", "shibing624/bert4ner-base-uncased") >>> predictions, raw_outputs, entities = model.predict(["AL-AIN, United Arab Emirates 1996-12-06"], split_on_space=True) entities: [('AL-AIN,', 'LOC'), ('United Arab Emirates', 'LOC')] ``` 模型文件组成: ``` bert4ner-base-uncased ├── config.json ├── model_args.json ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json └── vocab.txt ``` ## Usage (HuggingFace Transformers) Without [nerpy](https://github.com/shibing624/nerpy), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the bio tag to get the entity words. Install package: ``` pip install transformers seqeval ``` ```python import os import torch from transformers import AutoTokenizer, AutoModelForTokenClassification from seqeval.metrics.sequence_labeling import get_entities os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("shibing624/bert4ner-base-uncased") model = AutoModelForTokenClassification.from_pretrained("shibing624/bert4ner-base-uncased") label_list = ["E-ORG", "E-LOC", "S-MISC", "I-MISC", "S-PER", "E-PER", "B-MISC", "O", "S-LOC", "E-MISC", "B-ORG", "S-ORG", "I-ORG", "B-LOC", "I-LOC", "B-PER", "I-PER"] sentence = "AL-AIN, United Arab Emirates 1996-12-06" def get_entity(sentence): tokens = tokenizer.tokenize(sentence) inputs = tokenizer.encode(sentence, return_tensors="pt") with torch.no_grad(): outputs = model(inputs).logits predictions = torch.argmax(outputs, dim=2) word_tags = [(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].numpy()[1:-1])] print(sentence) print(word_tags) pred_labels = [i[1] for i in word_tags] entities = [] line_entities = get_entities(pred_labels) for i in line_entities: word = tokens[i[1]: i[2] + 1] entity_type = i[0] entities.append((word, entity_type)) print("Sentence entity:") print(entities) get_entity(sentence) ``` ### 数据集 #### 实体识别数据集 | 数据集 | 语料 | 下载链接 | 文件大小 | | :------- | :--------- | :---------: | :---------: | | **`CNER中文实体识别数据集`** | CNER(12万字) | [CNER github](https://github.com/shibing624/nerpy/tree/main/examples/data/cner)| 1.1MB | | **`PEOPLE中文实体识别数据集`** | 人民日报数据集(200万字) | [PEOPLE github](https://github.com/shibing624/nerpy/tree/main/examples/data/people)| 12.8MB | | **`CoNLL03英文实体识别数据集`** | CoNLL-2003数据集(22万字) | [CoNLL03 github](https://github.com/shibing624/nerpy/tree/main/examples/data/conll03)| 1.7MB | ### input format Input format (prefer BIOES tag scheme), with each character its label for one line. Sentences are splited with a null line. ```text EU S-ORG rejects O German S-MISC call O to O boycott O British S-MISC lamb O . O Peter B-PER Blackburn E-PER ``` 如果需要训练bert4ner,请参考[https://github.com/shibing624/nerpy/tree/main/examples](https://github.com/shibing624/nerpy/tree/main/examples) ## Citation ```latex @software{nerpy, author = {Xu Ming}, title = {nerpy: Named Entity Recognition toolkit}, year = {2022}, url = {https://github.com/shibing624/nerpy}, } ```
allermat/distilbert-base-uncased-finetuned-emotion
eec3d837edc52d4b2b7baeab3e3992df013286f4
2022-07-13T15:20:51.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
allermat
null
allermat/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,763
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9233300539962602 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2244 - Accuracy: 0.923 - F1: 0.9233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8412 | 1.0 | 250 | 0.3186 | 0.904 | 0.9022 | | 0.2501 | 2.0 | 500 | 0.2244 | 0.923 | 0.9233 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
JoanTirant/roberta-base-bne-finetuned-amazon_reviews_multi
1a8e16e597c1b152bc8236ee10b420207ea21f26
2022-05-10T08:40:55.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
JoanTirant
null
JoanTirant/roberta-base-bne-finetuned-amazon_reviews_multi
12
null
transformers
10,764
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.93425 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2291 - Accuracy: 0.9343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1909 | 1.0 | 1250 | 0.1784 | 0.9295 | | 0.1013 | 2.0 | 2500 | 0.2291 | 0.9343 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
CEBaB/bert-base-uncased.CEBaB.sa.3-class.exclusive.seed_42
70ce805d2148f60f46aaa6fa6dc93146905741a2
2022-05-10T23:38:33.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.sa.3-class.exclusive.seed_42
12
null
transformers
10,765
Entry not found
CEBaB/gpt2.CEBaB.sa.5-class.exclusive.seed_42
9bb2e23db865006ea01e4e840de07e8c3f0e7bb4
2022-05-11T00:07:04.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.5-class.exclusive.seed_42
12
null
transformers
10,766
Entry not found
CEBaB/bert-base-uncased.CEBaB.sa.2-class.exclusive.seed_66
6e3451c4e138d40221f290988582cf397eb3ab92
2022-05-11T00:13:38.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.sa.2-class.exclusive.seed_66
12
null
transformers
10,767
Entry not found
CEBaB/gpt2.CEBaB.sa.5-class.exclusive.seed_66
d7f6b0eedff1e03a9f7f3b52652ef63f6c5d9d27
2022-05-11T00:58:51.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.5-class.exclusive.seed_66
12
null
transformers
10,768
Entry not found
CEBaB/bert-base-uncased.CEBaB.sa.2-class.exclusive.seed_77
46655e6b2d35a744f50f618f191edfbe66cd6f5b
2022-05-11T01:05:26.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.sa.2-class.exclusive.seed_77
12
null
transformers
10,769
Entry not found
CEBaB/gpt2.CEBaB.sa.5-class.exclusive.seed_77
2321dbbc4e4e8090ead9957138d46991da9299a9
2022-05-11T01:51:08.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.5-class.exclusive.seed_77
12
null
transformers
10,770
Entry not found
CEBaB/bert-base-uncased.CEBaB.sa.2-class.exclusive.seed_88
00c99284efde48e92111b40026b7f51278f76323
2022-05-11T01:57:55.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.sa.2-class.exclusive.seed_88
12
null
transformers
10,771
Entry not found
CEBaB/bert-base-uncased.CEBaB.sa.2-class.exclusive.seed_99
960e21617611136cb71cc76ac148043ac82bff04
2022-05-11T02:49:21.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.sa.2-class.exclusive.seed_99
12
null
transformers
10,772
Entry not found
SalamaThanks/SalamaThanksTransformer_en2fil_v2
99452bf272a6ea72f0787db5a373984376419175
2022-05-11T05:58:25.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
SalamaThanks
null
SalamaThanks/SalamaThanksTransformer_en2fil_v2
12
null
transformers
10,773
--- license: afl-3.0 --- SalamaThanks Transformer for English-to-Filipino Text Translation version 2. A finetuned transformer model based on the Helsinki-NLP/opus-mt-en-tl transformer model.
idsedykh/model1
1f2906fb6270afa48fb73afb00e1202def80040f
2022-05-11T19:03:10.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
idsedykh
null
idsedykh/model1
12
null
transformers
10,774
Entry not found
eslamxm/mt5-base-finetuned-english-finetuned-english-arabic
c3a3fb4f6afac0be24667ddf4100e01b7294f5f0
2022-05-13T19:39:26.000Z
[ "pytorch", "mt5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "arabic", "ar", "en", "Abstractive Summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/mt5-base-finetuned-english-finetuned-english-arabic
12
null
transformers
10,775
--- license: apache-2.0 tags: - summarization - arabic - ar - en - mt5 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetuned-english-finetuned-english-arabic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-english-finetuned-english-arabic This model is a fine-tuned version of [eslamxm/mt5-base-finetuned-english](https://huggingface.co/eslamxm/mt5-base-finetuned-english) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.4788 - Rouge-1: 22.55 - Rouge-2: 9.84 - Rouge-l: 20.5 - Gen Len: 19.0 - Bertscore: 71.39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.999 | 1.0 | 1172 | 3.9343 | 17.67 | 5.93 | 15.86 | 19.0 | 69.69 | | 4.008 | 2.0 | 2344 | 3.6655 | 19.48 | 7.67 | 17.67 | 19.0 | 70.49 | | 3.7463 | 3.0 | 3516 | 3.5503 | 20.47 | 8.24 | 18.6 | 19.0 | 70.86 | | 3.5924 | 4.0 | 4688 | 3.4942 | 20.95 | 8.45 | 19.05 | 19.0 | 71.0 | | 3.4979 | 5.0 | 5860 | 3.4788 | 21.34 | 8.75 | 19.39 | 19.0 | 71.11 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Leizhang/distilbert-base-uncased-finetuned-emotion
3ed7f1d85960ea53ccfb1ea904c9e21f34630690
2022-05-14T20:55:21.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Leizhang
null
Leizhang/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,776
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.12.1
importsmart/bert-to-distilbert-NER
6c03e95e50b1ebc826685e8b6b949ae641d8755c
2022-05-16T18:02:27.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
importsmart
null
importsmart/bert-to-distilbert-NER
12
null
transformers
10,777
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-to-distilbert-NER results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.014488935721812434 - name: Recall type: recall value: 0.018512285425782565 - name: F1 type: f1 value: 0.016255356878971478 - name: Accuracy type: accuracy value: 0.7597280273150055 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-to-distilbert-NER This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 44.0386 - Precision: 0.0145 - Recall: 0.0185 - F1: 0.0163 - Accuracy: 0.7597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 201.4012 | 1.0 | 110 | 133.7231 | 0.0153 | 0.0106 | 0.0125 | 0.7539 | | 106.9317 | 2.0 | 220 | 99.3629 | 0.0266 | 0.0305 | 0.0284 | 0.7593 | | 81.3601 | 3.0 | 330 | 80.3763 | 0.0159 | 0.0214 | 0.0183 | 0.7604 | | 63.8325 | 4.0 | 440 | 67.7620 | 0.0179 | 0.0244 | 0.0207 | 0.7599 | | 52.0271 | 5.0 | 550 | 59.0806 | 0.0203 | 0.0268 | 0.0231 | 0.7598 | | 44.4419 | 6.0 | 660 | 55.3208 | 0.0211 | 0.0278 | 0.0240 | 0.7603 | | 39.2351 | 7.0 | 770 | 52.4510 | 0.0170 | 0.0222 | 0.0193 | 0.7598 | | 35.3438 | 8.0 | 880 | 50.4576 | 0.0205 | 0.0268 | 0.0232 | 0.7604 | | 32.7385 | 9.0 | 990 | 48.3418 | 0.0173 | 0.0227 | 0.0197 | 0.7595 | | 30.6531 | 10.0 | 1100 | 46.7304 | 0.0147 | 0.0188 | 0.0165 | 0.7600 | | 29.0811 | 11.0 | 1210 | 46.3386 | 0.0151 | 0.0190 | 0.0168 | 0.7599 | | 27.9501 | 12.0 | 1320 | 45.4516 | 0.0163 | 0.0204 | 0.0181 | 0.7604 | | 26.7452 | 13.0 | 1430 | 44.3425 | 0.0154 | 0.0199 | 0.0173 | 0.7592 | | 25.5367 | 14.0 | 1540 | 44.0415 | 0.0146 | 0.0190 | 0.0165 | 0.7594 | | 24.5507 | 15.0 | 1650 | 44.0386 | 0.0145 | 0.0185 | 0.0163 | 0.7597 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
huggingtweets/cryptanime
02fdbdeffcf7bb1c1b501111f13c8cac2360b86a
2022-05-17T06:54:30.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/cryptanime
12
null
transformers
10,778
--- language: en thumbnail: http://www.huggingtweets.com/cryptanime/1652770465803/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1525172827644743680/8mskmqwq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CryptanimeNFT | Minting Now</div> <div style="text-align: center; font-size: 14px;">@cryptanime</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CryptanimeNFT | Minting Now. | Data | CryptanimeNFT | Minting Now | | --- | --- | | Tweets downloaded | 491 | | Retweets | 96 | | Short tweets | 15 | | Tweets kept | 380 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2066dfxu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cryptanime's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2byq9c2t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2byq9c2t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cryptanime') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
CEBaB/bert-base-uncased.CEBaB.absa.exclusive.seed_88
c79f59439e487f91d658df8885f5acf662292048
2022-05-17T18:57:57.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.absa.exclusive.seed_88
12
null
transformers
10,779
Entry not found
CEBaB/bert-base-uncased.CEBaB.absa.exclusive.seed_99
64b6fb17e67b411cff4fceea3276b71aa68f5cbd
2022-05-17T19:02:40.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.absa.exclusive.seed_99
12
null
transformers
10,780
Entry not found
NFflow/healthcare_27.03.2021-27.03.2022_redditflow
e3bafb55f51bc5e44eb63b548524d83244f803d4
2022-05-21T06:41:02.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
NFflow
null
NFflow/healthcare_27.03.2021-27.03.2022_redditflow
12
null
sentence-transformers
10,781
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers inference: false --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.losses.ContrastiveTensionLoss.ContrastiveTensionDataLoader` of length 542 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.ContrastiveTensionLoss.ContrastiveTensionLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 100000, "warmup_steps": 55, "weight_decay": 0 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/vgdunkey
a9998cf6d149d16c71bc5d7947868b467f79c2e3
2022-07-23T05:14:07.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/vgdunkey
12
null
transformers
10,782
--- language: en thumbnail: http://www.huggingtweets.com/vgdunkey/1658553242358/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/676614171849453568/AZd1Bh-s_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">dunkey</div> <div style="text-align: center; font-size: 14px;">@vgdunkey</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from dunkey. | Data | dunkey | | --- | --- | | Tweets downloaded | 1283 | | Retweets | 147 | | Short tweets | 327 | | Tweets kept | 809 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/bri0i7s5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vgdunkey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/o4oh6dvl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/o4oh6dvl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vgdunkey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ericklerouge123/distilbert-base-uncased-finetuned-emotion
f451c519a6c91b43ac7977bec79013c614e18eeb
2022-05-20T20:35:39.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ericklerouge123
null
ericklerouge123/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,783
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
stplgg/distilbert-base-uncased-finetuned-emotion
8cc0bf41d29423710a59428c18cf27089850dbdf
2022-05-20T15:12:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
stplgg
null
stplgg/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,784
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9230160877762784 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2229 - Accuracy: 0.923 - F1: 0.9230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8655 | 1.0 | 250 | 0.3228 | 0.907 | 0.9038 | | 0.2625 | 2.0 | 500 | 0.2229 | 0.923 | 0.9230 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
connectivity/bert_ft_qqp-22
1392e2961a6df2515d11065880ef420f163f48ae
2022-05-21T16:32:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-22
12
null
transformers
10,785
Entry not found
connectivity/bert_ft_qqp-98
c77f676310d9736076867ba6c4472055be9224ef
2022-05-21T16:38:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-98
12
null
transformers
10,786
Entry not found
RaphaelReinauer/mbart50-finetuned-multi30-en-to-de
8f79a72f046575790c31ce33c2bd00070fccc4b1
2022-05-23T22:42:15.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "translation", "model-index", "autotrain_compatible" ]
translation
false
RaphaelReinauer
null
RaphaelReinauer/mbart50-finetuned-multi30-en-to-de
12
null
transformers
10,787
--- tags: - translation metrics: - bleu model-index: - name: mbart50-finetuned-multi30-en-to-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart50-finetuned-multi30-en-to-de This model is a fine-tuned version of [facebook/mbart-large-50-one-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5946 - Bleu: 48.2650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu113 - Datasets 2.2.2 - Tokenizers 0.10.3
krotima1/mbart-ht2a-cs
8b761742bd3b2346e5198e444e3665f2fd5c6c66
2022-05-26T12:59:01.000Z
[ "pytorch", "mbart", "text2text-generation", "cs", "dataset:private Czech News Center dataset news-based", "dataset:SumeCzech dataset news-based", "transformers", "Summarization", "abstractive summarization", "mbart-cc25", "Czech", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
krotima1
null
krotima1/mbart-ht2a-cs
12
null
transformers
10,788
--- language: - cs - cs tags: - Summarization - abstractive summarization - mbart-cc25 - Czech license: apache-2.0 datasets: - private Czech News Center dataset news-based - SumeCzech dataset news-based metrics: - rouge - rougeraw --- # mBART fine-tuned model for Czech abstractive summarization (HT2A-CS) This model is a fine-tuned checkpoint of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the Czech news dataset to produce Czech abstractive summaries. ## Task The model deals with the task ``Headline + Text to Abstract`` (HT2A) which consists in generating a multi-sentence summary considered as an abstract from a Czech news text. ## Dataset The model has been trained on a large Czech news dataset developed by a concatenation of two datasets, the private CNC dataset provided by Czech News Center and [SumeCzech](https://ufal.mff.cuni.cz/sumeczech) dataset. The dataset includes around 1.75M Czech news-based documents consisting of a Headline, Abstract, and Full-text sections. Truncation and padding were set to 512 tokens for the encoder and 128 for the decoder. ## Training The model has been trained on 1x NVIDIA Tesla A100 40GB for 60 hours and 4x NVIDIA Tesla A100 40GB for 40 hours. During training, the model has seen 12896K documents corresponding to roughly 8.4 epochs. # Use Assuming that you are using the provided Summarizer.ipynb file. ```python def summ_config(): cfg = OrderedDict([ # summarization model - checkpoint from website ("model_name", "krotima1/mbart-ht2a-cs"), ("inference_cfg", OrderedDict([ ("num_beams", 4), ("top_k", 40), ("top_p", 0.92), ("do_sample", True), ("temperature", 0.89), ("repetition_penalty", 1.2), ("no_repeat_ngram_size", None), ("early_stopping", True), ("max_length", 128), ("min_length", 10), ])), #texts to summarize ("text", [ "Input your Czech text", ] ), ]) return cfg cfg = summ_config() #load model model = AutoModelForSeq2SeqLM.from_pretrained(cfg["model_name"]) tokenizer = AutoTokenizer.from_pretrained(cfg["model_name"]) # init summarizer summarize = Summarizer(model, tokenizer, cfg["inference_cfg"]) summarize(cfg["text"]) ```
fabraz/distilbert-base-uncased-finetunned-emotion
84b2dd3b38d87acf34730acefe4999985021c7ec
2022-05-23T18:39:31.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
fabraz
null
fabraz/distilbert-base-uncased-finetunned-emotion
12
null
transformers
10,789
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetunned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9285 - name: F1 type: f1 value: 0.9284132954244212 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetunned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2102 - Accuracy: 0.9285 - F1: 0.9284 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8258 | 1.0 | 250 | 0.3023 | 0.9065 | 0.9037 | | 0.2414 | 2.0 | 500 | 0.2102 | 0.9285 | 0.9284 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Rgl73/distilbert-base-uncased-finetuned-emotion
423b86c06f6c5ea1b3e4055219aae26b49eca19a
2022-06-05T10:40:49.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Rgl73
null
Rgl73/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,790
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9216592887159751 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2256 - Accuracy: 0.9215 - F1: 0.9217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8556 | 1.0 | 250 | 0.3246 | 0.9075 | 0.9044 | | 0.2562 | 2.0 | 500 | 0.2256 | 0.9215 | 0.9217 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
sexomq/DialoGPT-medium-TeoBot
e4e710e758eadf51f6eeb62f8f5777195ba28efe
2022-05-23T20:26:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
sexomq
null
sexomq/DialoGPT-medium-TeoBot
12
1
transformers
10,791
--- tags: - conversational ---
pkumc/distilbert-base-uncased-finetuned-cola
7ccea95d005eeb78d71d2c95c54927e5e5d97925
2022-05-24T11:43:04.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
pkumc
null
pkumc/distilbert-base-uncased-finetuned-cola
12
null
transformers
10,792
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5175 - eval_matthews_correlation: 0.4847 - eval_runtime: 31.1926 - eval_samples_per_second: 33.437 - eval_steps_per_second: 2.116 - epoch: 2.01 - step: 1073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
joaobarroca/distilbert-base-uncased-finetuned-massive-intent-detection-english
3b68440a34957a9ccdef5aa07f9f9becb6485b20
2022-05-24T17:12:14.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:massive", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
joaobarroca
null
joaobarroca/distilbert-base-uncased-finetuned-massive-intent-detection-english
12
null
transformers
10,793
--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-massive-intent-detection-english results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive args: en-US metrics: - name: Accuracy type: accuracy value: 0.886684599865501 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-massive-intent-detection-english This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.4873 - Accuracy: 0.8867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5849 | 1.0 | 360 | 1.3826 | 0.7359 | | 1.0662 | 2.0 | 720 | 0.7454 | 0.8357 | | 0.5947 | 3.0 | 1080 | 0.5668 | 0.8642 | | 0.3824 | 4.0 | 1440 | 0.5007 | 0.8770 | | 0.2649 | 5.0 | 1800 | 0.4829 | 0.8824 | | 0.1877 | 6.0 | 2160 | 0.4843 | 0.8824 | | 0.1377 | 7.0 | 2520 | 0.4858 | 0.8834 | | 0.1067 | 8.0 | 2880 | 0.4924 | 0.8864 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
usama98/arabic_poem_gen
5de15a71dc14fd4436aafaedf74953c4617b030d
2022-05-31T16:55:59.000Z
[ "pytorch", "gpt2", "text-generation", "ar", "dataset:Arabic Poem Comprehensive Dataset (APCD)", "transformers", "license:apache-2.0" ]
text-generation
false
usama98
null
usama98/arabic_poem_gen
12
null
transformers
10,794
--- language: - ar tags: - text-generation license: apache-2.0 datasets: - Arabic Poem Comprehensive Dataset (APCD) widget: - text: "عمرو بنِ قُمَيئَة: خَليلَيَّ لا تَستَعجِلا أَن" --- # GPTPoet: Pre-training GPT2 for Arabic Poetry Language Understanding <img src="https://huggingface.co/usama98/arabic_poem_gen/resolve/main/6C76C5D6-A4F2-4443-AB2A-278E87B8E33C.png" width="100" align="left"/> **GPTPoet** is an Arabic pretrained language model based on [OpenAi GPT2 architechture](https://github.com/openai/gpt-2). We use the same GPT2-Base config. More details are available in the Google Colab [https://colab.research.google.com/drive/1kByhyhvA0JUZRKL-XCG0ZEDyAg45w8AW?usp=sharing]. To save computation time the model used pretrained weights from another [model](https://huggingface.co/elgeish/gpt2-medium-arabic-poetry). This allowed us to fine-tune our model on our specific dataset, which to our knowledge was never used in NLP task before. This is a poem generator that creates poems based on the style of the targeted poet. The model was trained on different poets and their respective poems, and the model's input is the poet's name and a suggestion that the model will strive to develop something that imitates the style of that specific poet. # ## What's New! All models are available in the `HuggingFace` model page under the [usama98](https://huggingface.co/usama98/) name. Checkpoints are available in PyTorch. Our model adds a newly tried capability of NLP models where we don't just try to generate text but one that imitates a specific style. Our dataset contains poetry gathered from different poets, the data was feed to the model during training in with the aim of teaching the model how to structure arabic poetry. The additional step here was to add a poet name at the beginning of each training example. This training strategy allows the model to not only learn how to write poetry but how to the written poetry relates to that specific poet and their style. # Dataset The dataset consists of content scraped mainly from الموسوعة الشعرية and الديوان. After merging both, the total number of verses is 1,831,770 poetic verses. Each verse is labeled by its meter, the poet who wrote it, and the age which it was written in. There are 22 meters, 3701 poets and 11 ages: Pre-Islamic, Islamic, Umayyad, Mamluk, Abbasid, Ayyubid, Ottoman, Andalusian, era between Umayyad and Abbasid, Fatimid, and finally the modern age. We are only interested in the 16 classic meters which are attributed to Al-Farahidi, and they comprise the majority of the dataset with a total number around 1.7M verses. It is important to note that the verses diacritic states are not consistent. This means that a verse can carry full, semi diacritics, or it can carry nothing. - [APCD](https://hci-lab.github.io/LearningMetersPoems/#PCD) # Preprocessing It is recommended to apply our preprocessing tokenizer before training/testing on any dataset. # Contacts **Usama Zidan**: [Linkedin](https://huggingface.co/elgeish/gpt2-medium-arabic-poetry) | [Github](https://github.com/usama13o) | <[email protected]> | <[email protected]>
arcAman07/distilbert-base-uncased-finetuned-emotion
9f262d260a97df09580f1a20425a410e1510c1ab
2022-05-25T17:08:01.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
arcAman07
null
arcAman07/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,795
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240598378254522 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2222 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8294 | 1.0 | 250 | 0.3209 | 0.9025 | 0.9001 | | 0.2536 | 2.0 | 500 | 0.2222 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tbosse/bert-base-german-cased-finetuned-subj_v6_7Epoch_v2
2c3bc64c72fe2d0f98cc3a7c910cdde0bae5a68b
2022-05-25T17:48:28.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-finetuned-subj_v6_7Epoch_v2
12
null
transformers
10,796
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_v6_7Epoch_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_v6_7Epoch_v2 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2860 - Precision: 0.7623 - Recall: 0.7514 - F1: 0.7568 - Accuracy: 0.9061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 33 | 0.3344 | 0.6846 | 0.5829 | 0.6296 | 0.8635 | | No log | 2.0 | 66 | 0.2659 | 0.7335 | 0.7 | 0.7164 | 0.8929 | | No log | 3.0 | 99 | 0.2490 | 0.7493 | 0.7514 | 0.7504 | 0.9090 | | No log | 4.0 | 132 | 0.2470 | 0.7676 | 0.7457 | 0.7565 | 0.9067 | | No log | 5.0 | 165 | 0.2669 | 0.7514 | 0.7514 | 0.7514 | 0.9044 | | No log | 6.0 | 198 | 0.2792 | 0.7564 | 0.7543 | 0.7554 | 0.9067 | | No log | 7.0 | 231 | 0.2860 | 0.7623 | 0.7514 | 0.7568 | 0.9061 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tbosse/bert-base-german-cased-finetuned-subj_v6_7Epoch_v3
73b1febd1e8d1c7b1cabd6a445e8100c0553daaf
2022-05-25T19:01:02.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-finetuned-subj_v6_7Epoch_v3
12
null
transformers
10,797
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_v6_7Epoch_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_v6_7Epoch_v3 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2732 - Precision: 0.7654 - Recall: 0.7829 - F1: 0.7740 - Accuracy: 0.9119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 33 | 0.3281 | 0.6656 | 0.5914 | 0.6263 | 0.8623 | | No log | 2.0 | 66 | 0.2623 | 0.7440 | 0.7057 | 0.7243 | 0.8940 | | No log | 3.0 | 99 | 0.2460 | 0.7536 | 0.7514 | 0.7525 | 0.9067 | | No log | 4.0 | 132 | 0.2440 | 0.7778 | 0.76 | 0.7688 | 0.9124 | | No log | 5.0 | 165 | 0.2582 | 0.7723 | 0.7657 | 0.7690 | 0.9107 | | No log | 6.0 | 198 | 0.2681 | 0.7690 | 0.78 | 0.7745 | 0.9119 | | No log | 7.0 | 231 | 0.2732 | 0.7654 | 0.7829 | 0.7740 | 0.9119 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sayanmandal/t5-small_6_3-hi_en-to-en
75cb22e308720d322134d6e89959a45a56220262
2022-05-26T11:32:32.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cmu_hinglish_dog", "transformers", "translation", "generated_from_trainer", "model-index", "autotrain_compatible" ]
translation
false
sayanmandal
null
sayanmandal/t5-small_6_3-hi_en-to-en
12
0
transformers
10,798
--- tags: - translation - generated_from_trainer datasets: - cmu_hinglish_dog metrics: - bleu model-index: - name: t5-small_6_3-hi_en-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cmu_hinglish_dog type: cmu_hinglish_dog args: hi_en-en metrics: - name: Bleu type: bleu value: 18.0863 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small_6_3-hi_en-to-en This model was trained from scratch on the cmu_hinglish_dog dataset. It achieves the following results on the evaluation set: - Loss: 2.3662 - Bleu: 18.0863 - Gen Len: 15.2708 ## Model description Model generated using:<br /> ```python make_student.py t5-small t5_small_6_3 6 3```<br /> Check this [link](https://discuss.huggingface.co/t/questions-on-distilling-from-t5/1193/9) for more information. ## Intended uses & limitations More information needed ## Training and evaluation data Used cmu_hinglish_dog dataset. Please check this [link](https://huggingface.co/datasets/cmu_hinglish_dog) for dataset description ## Translation: * Source: hi_en: The text in Hinglish * Target: en: The text in English ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 126 | 3.0601 | 4.7146 | 11.9904 | | No log | 2.0 | 252 | 2.8885 | 5.9584 | 12.3418 | | No log | 3.0 | 378 | 2.7914 | 6.649 | 12.3758 | | 3.4671 | 4.0 | 504 | 2.7347 | 7.3305 | 12.3854 | | 3.4671 | 5.0 | 630 | 2.6832 | 8.3132 | 12.4268 | | 3.4671 | 6.0 | 756 | 2.6485 | 8.339 | 12.3641 | | 3.4671 | 7.0 | 882 | 2.6096 | 8.7269 | 12.414 | | 3.0208 | 8.0 | 1008 | 2.5814 | 9.2163 | 12.2675 | | 3.0208 | 9.0 | 1134 | 2.5542 | 9.448 | 12.3875 | | 3.0208 | 10.0 | 1260 | 2.5339 | 9.9011 | 12.4321 | | 3.0208 | 11.0 | 1386 | 2.5043 | 9.7529 | 12.5149 | | 2.834 | 12.0 | 1512 | 2.4848 | 9.9606 | 12.4193 | | 2.834 | 13.0 | 1638 | 2.4737 | 9.9368 | 12.3673 | | 2.834 | 14.0 | 1764 | 2.4458 | 10.3182 | 12.4352 | | 2.834 | 15.0 | 1890 | 2.4332 | 10.486 | 12.4671 | | 2.7065 | 16.0 | 2016 | 2.4239 | 10.6921 | 12.414 | | 2.7065 | 17.0 | 2142 | 2.4064 | 10.7426 | 12.4607 | | 2.7065 | 18.0 | 2268 | 2.3941 | 11.0509 | 12.4087 | | 2.7065 | 19.0 | 2394 | 2.3826 | 11.2407 | 12.3386 | | 2.603 | 20.0 | 2520 | 2.3658 | 11.3711 | 12.3992 | | 2.603 | 21.0 | 2646 | 2.3537 | 11.42 | 12.5032 | | 2.603 | 22.0 | 2772 | 2.3475 | 12.0665 | 12.5074 | | 2.603 | 23.0 | 2898 | 2.3398 | 12.0343 | 12.4342 | | 2.5192 | 24.0 | 3024 | 2.3298 | 12.1011 | 12.5096 | | 2.5192 | 25.0 | 3150 | 2.3216 | 12.2562 | 12.4809 | | 2.5192 | 26.0 | 3276 | 2.3131 | 12.4585 | 12.4427 | | 2.5192 | 27.0 | 3402 | 2.3052 | 12.7094 | 12.534 | | 2.4445 | 28.0 | 3528 | 2.2984 | 12.7432 | 12.5053 | | 2.4445 | 29.0 | 3654 | 2.2920 | 12.8409 | 12.4501 | | 2.4445 | 30.0 | 3780 | 2.2869 | 12.6365 | 12.4936 | | 2.4445 | 31.0 | 3906 | 2.2777 | 12.8523 | 12.5234 | | 2.3844 | 32.0 | 4032 | 2.2788 | 12.9216 | 12.4204 | | 2.3844 | 33.0 | 4158 | 2.2710 | 12.9568 | 12.5064 | | 2.3844 | 34.0 | 4284 | 2.2643 | 12.9641 | 12.4299 | | 2.3844 | 35.0 | 4410 | 2.2621 | 12.9787 | 12.448 | | 2.3282 | 36.0 | 4536 | 2.2554 | 13.1264 | 12.4374 | | 2.3282 | 37.0 | 4662 | 2.2481 | 13.1853 | 12.4416 | | 2.3282 | 38.0 | 4788 | 2.2477 | 13.3259 | 12.4119 | | 2.3282 | 39.0 | 4914 | 2.2448 | 13.2017 | 12.4278 | | 2.2842 | 40.0 | 5040 | 2.2402 | 13.3772 | 12.4437 | | 2.2842 | 41.0 | 5166 | 2.2373 | 13.2184 | 12.414 | | 2.2842 | 42.0 | 5292 | 2.2357 | 13.5267 | 12.4342 | | 2.2842 | 43.0 | 5418 | 2.2310 | 13.5754 | 12.4087 | | 2.2388 | 44.0 | 5544 | 2.2244 | 13.653 | 12.4427 | | 2.2388 | 45.0 | 5670 | 2.2243 | 13.6028 | 12.431 | | 2.2388 | 46.0 | 5796 | 2.2216 | 13.7128 | 12.4151 | | 2.2388 | 47.0 | 5922 | 2.2231 | 13.749 | 12.4172 | | 2.2067 | 48.0 | 6048 | 2.2196 | 13.7256 | 12.4034 | | 2.2067 | 49.0 | 6174 | 2.2125 | 13.8237 | 12.396 | | 2.2067 | 50.0 | 6300 | 2.2131 | 13.6642 | 12.4416 | | 2.2067 | 51.0 | 6426 | 2.2115 | 13.8876 | 12.4119 | | 2.1688 | 52.0 | 6552 | 2.2091 | 14.0323 | 12.4639 | | 2.1688 | 53.0 | 6678 | 2.2082 | 13.916 | 12.3843 | | 2.1688 | 54.0 | 6804 | 2.2071 | 13.924 | 12.3758 | | 2.1688 | 55.0 | 6930 | 2.2046 | 13.9563 | 12.4416 | | 2.1401 | 56.0 | 7056 | 2.2020 | 14.0592 | 12.483 | | 2.1401 | 57.0 | 7182 | 2.2047 | 13.8879 | 12.4076 | | 2.1401 | 58.0 | 7308 | 2.2018 | 13.9267 | 12.3949 | | 2.1401 | 59.0 | 7434 | 2.1964 | 14.0518 | 12.4363 | | 2.1092 | 60.0 | 7560 | 2.1926 | 14.1518 | 12.4883 | | 2.1092 | 61.0 | 7686 | 2.1972 | 14.132 | 12.4034 | | 2.1092 | 62.0 | 7812 | 2.1939 | 14.2066 | 12.4151 | | 2.1092 | 63.0 | 7938 | 2.1905 | 14.2923 | 12.4459 | | 2.0932 | 64.0 | 8064 | 2.1932 | 14.2476 | 12.3418 | | 2.0932 | 65.0 | 8190 | 2.1925 | 14.2057 | 12.3907 | | 2.0932 | 66.0 | 8316 | 2.1906 | 14.2978 | 12.4055 | | 2.0932 | 67.0 | 8442 | 2.1903 | 14.3276 | 12.4427 | | 2.0706 | 68.0 | 8568 | 2.1918 | 14.4681 | 12.4034 | | 2.0706 | 69.0 | 8694 | 2.1882 | 14.3751 | 12.4225 | | 2.0706 | 70.0 | 8820 | 2.1870 | 14.5904 | 12.4204 | | 2.0706 | 71.0 | 8946 | 2.1865 | 14.6409 | 12.4512 | | 2.0517 | 72.0 | 9072 | 2.1831 | 14.6505 | 12.4352 | | 2.0517 | 73.0 | 9198 | 2.1835 | 14.7485 | 12.4363 | | 2.0517 | 74.0 | 9324 | 2.1824 | 14.7344 | 12.4586 | | 2.0517 | 75.0 | 9450 | 2.1829 | 14.8097 | 12.4575 | | 2.0388 | 76.0 | 9576 | 2.1822 | 14.6681 | 12.4108 | | 2.0388 | 77.0 | 9702 | 2.1823 | 14.6421 | 12.4342 | | 2.0388 | 78.0 | 9828 | 2.1816 | 14.7014 | 12.4459 | | 2.0388 | 79.0 | 9954 | 2.1810 | 14.744 | 12.4565 | | 2.0224 | 80.0 | 10080 | 2.1839 | 14.7889 | 12.4437 | | 2.0224 | 81.0 | 10206 | 2.1793 | 14.802 | 12.4565 | | 2.0224 | 82.0 | 10332 | 2.1776 | 14.7702 | 12.4214 | | 2.0224 | 83.0 | 10458 | 2.1809 | 14.6772 | 12.4236 | | 2.0115 | 84.0 | 10584 | 2.1786 | 14.709 | 12.4214 | | 2.0115 | 85.0 | 10710 | 2.1805 | 14.7693 | 12.3981 | | 2.0115 | 86.0 | 10836 | 2.1790 | 14.7628 | 12.4172 | | 2.0115 | 87.0 | 10962 | 2.1785 | 14.7538 | 12.3992 | | 2.0007 | 88.0 | 11088 | 2.1788 | 14.7493 | 12.3726 | | 2.0007 | 89.0 | 11214 | 2.1788 | 14.8793 | 12.4045 | | 2.0007 | 90.0 | 11340 | 2.1786 | 14.8318 | 12.3747 | | 2.0007 | 91.0 | 11466 | 2.1769 | 14.8061 | 12.4013 | | 1.9967 | 92.0 | 11592 | 2.1757 | 14.8108 | 12.3843 | | 1.9967 | 93.0 | 11718 | 2.1747 | 14.8036 | 12.379 | | 1.9967 | 94.0 | 11844 | 2.1764 | 14.7447 | 12.3737 | | 1.9967 | 95.0 | 11970 | 2.1759 | 14.7759 | 12.3875 | | 1.9924 | 96.0 | 12096 | 2.1760 | 14.7695 | 12.3875 | | 1.9924 | 97.0 | 12222 | 2.1762 | 14.8022 | 12.3769 | | 1.9924 | 98.0 | 12348 | 2.1763 | 14.7519 | 12.3822 | | 1.9924 | 99.0 | 12474 | 2.1760 | 14.7756 | 12.3832 | | 1.9903 | 100.0 | 12600 | 2.1761 | 14.7713 | 12.3822 | ### Evaluation results | Data Split | Bleu | |:----------:|:-------:| | Validation | 17.8061 | | Test | 18.0863 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Yah216/Poem_Qafiyah_Detection
0a6f758cf92894b97c86af3e7cce2e9ec747aaab
2022-05-28T07:56:56.000Z
[ "pytorch", "bert", "text-classification", "ar", "dataset:Yah216/Poem_Rawiy_detection", "transformers", "co2_eq_emissions" ]
text-classification
false
Yah216
null
Yah216/Poem_Qafiyah_Detection
12
null
transformers
10,799
--- language: ar datasets: - Yah216/Poem_Rawiy_detection co2_eq_emissions: 1.8046766441629636 widget: - "سَلو قَلبي غَداةَ سَلا وَثابا لَعَلَّ عَلى الجَمالِ لَهُ عِتاب" --- # Model - Problem type: Multi-class Classification - CO2 Emissions (in grams): 1.8046766441629636 ## Dataset We used the APCD dataset cited hereafter for pretraining the model. The dataset has been cleaned and only the main text and the Qafiyah column were kept: ``` @Article{Yousef2019LearningMetersArabicEnglish-arxiv, author = {Yousef, Waleed A. and Ibrahime, Omar M. and Madbouly, Taha M. and Mahmoud, Moustafa A.}, title = {Learning Meters of Arabic and English Poems With Recurrent Neural Networks: a Step Forward for Language Understanding and Synthesis}, journal = {arXiv preprint arXiv:1905.05700}, year = 2019, url = {https://github.com/hci-lab/LearningMetersPoems} } ``` ## Validation Metrics - Loss: 0.398613303899765 - Accuracy: 0.912351981006084 - Macro F1: 0.717311758991278 - Micro F1: 0.912351981006084 - Weighted F1: 0.9110094798809955 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Yah216/Poem_Rawiy_detection ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Yah216/Poem_Qafiyah_Detection", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Yah216/Poem_Qafiyah_Detection", use_auth_token=True) inputs = tokenizer("text, return_tensors="pt") outputs = model(**inputs) ```