modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
kingabzpro/wav2vec2-large-xls-r-1b-Swedish
e88c671af0d195339661c0c3afe8e806e0af353f
2022-03-24T11:58:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sv-SE", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kingabzpro
null
kingabzpro/wav2vec2-large-xls-r-1b-Swedish
11
null
transformers
11,100
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: wav2vec2-large-xls-r-1b-Swedish results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice sv-SE args: sv-SE metrics: - type: wer value: 14.04 name: Test WER With LM args: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP - type: cer value: 4.86 name: Test CER With LM args: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 29.69 - name: Test CER type: cer value: 12.59 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-Swedish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: **Without LM** - Loss: 0.3370 - Wer: 18.44 - Cer: 5.75 **With LM** - Loss: 0.3370 - Wer: 14.04 - Cer: 4.86 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset mozilla-foundation/common_voice_8_0 --config sv-SE --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Swedish" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sv-SE", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.1562 | 11.11 | 500 | 0.4830 | 0.3729 | 0.1169 | | 0.5655 | 22.22 | 1000 | 0.3553 | 0.2381 | 0.0743 | | 0.3376 | 33.33 | 1500 | 0.3359 | 0.2179 | 0.0696 | | 0.2419 | 44.44 | 2000 | 0.3232 | 0.1844 | 0.0575 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
ktrapeznikov/scibert_scivocab_uncased_squad_v2
2a507379876427c3b1ddbea6ef7825c36c5a7ddb
2021-05-19T21:11:07.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ktrapeznikov
null
ktrapeznikov/scibert_scivocab_uncased_squad_v2
11
null
transformers
11,101
### Model **[`allenai/scibert_scivocab_uncased`](https://huggingface.co/allenai/scibert_scivocab_uncased)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py)** ### Training Parameters Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb ```bash BASE_MODEL=allenai/scibert_scivocab_uncased python run_squad.py \ --version_2_with_negative \ --model_type albert \ --model_name_or_path $BASE_MODEL \ --output_dir $OUTPUT_MODEL \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 18 \ --per_gpu_eval_batch_size 64 \ --learning_rate 3e-5 \ --num_train_epochs 3.0 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 2000 \ --threads 24 \ --warmup_steps 550 \ --gradient_accumulation_steps 1 \ --fp16 \ --logging_steps 50 \ --do_train ``` ### Evaluation Evaluation on the dev set. I did not sweep for best threshold. | | val | |-------------------|-------------------| | exact | 75.07790785816559 | | f1 | 78.47735207283013 | | total | 11873.0 | | HasAns_exact | 70.76585695006747 | | HasAns_f1 | 77.57449412292718 | | HasAns_total | 5928.0 | | NoAns_exact | 79.37762825904122 | | NoAns_f1 | 79.37762825904122 | | NoAns_total | 5945.0 | | best_exact | 75.08633032931863 | | best_exact_thresh | 0.0 | | best_f1 | 78.48577454398324 | | best_f1_thresh | 0.0 | ### Usage See [huggingface documentation](https://huggingface.co/transformers/model_doc/bert.html#bertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: ```python start_scores, end_scores = model(input_ids) span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] ignore_score = span_scores[:,0,0] #no answer scores ```
kurianbenoy/bert-finetuned-ner
c0c6c18649ac5e30ad860ef747854c8645939d04
2022-02-23T11:48:55.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
kurianbenoy
null
kurianbenoy/bert-finetuned-ner
11
null
transformers
11,102
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9304777594728171 - name: Recall type: recall value: 0.9505217098619994 - name: F1 type: f1 value: 0.9403929403929404 - name: Accuracy type: accuracy value: 0.9861070230176017 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9305 - Recall: 0.9505 - F1: 0.9404 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0869 | 1.0 | 1756 | 0.0680 | 0.9174 | 0.9342 | 0.9257 | 0.9827 | | 0.0334 | 2.0 | 3512 | 0.0620 | 0.9305 | 0.9470 | 0.9387 | 0.9853 | | 0.0233 | 3.0 | 5268 | 0.0611 | 0.9305 | 0.9505 | 0.9404 | 0.9861 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
l3cube-pune/hate-roberta-hasoc-hindi
ee9573aeb024582b097a46522825dc0b9a7e544f
2021-10-30T18:05:58.000Z
[ "pytorch", "tf", "roberta", "text-classification", "hi", "dataset:HASOC 2021", "arxiv:2110.12200", "transformers", "license:cc-by-4.0" ]
text-classification
false
l3cube-pune
null
l3cube-pune/hate-roberta-hasoc-hindi
11
null
transformers
11,103
--- language: hi tags: - roberta license: cc-by-4.0 datasets: - HASOC 2021 widget: - text: "I like you. </s></s> I love you." --- ## hate-roberta-hasoc-hindi hate-roberta-hasoc-hindi is a binary hate speech model fine-tuned on Hindi Hasoc Hate Speech Dataset 2021. The label mappings are 0 -> None, 1 -> Hate. More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2110.12200) ``` @article{velankar2021hate, title={Hate and Offensive Speech Detection in Hindi and Marathi}, author={Velankar, Abhishek and Patil, Hrushikesh and Gore, Amol and Salunke, Shubham and Joshi, Raviraj}, journal={arXiv preprint arXiv:2110.12200}, year={2021} } ```
lewtun/xlm-roberta-base-finetuned-marc-de
fa4a1282887d16b28a4dad4b4a6b7645b2b5b3cc
2021-10-16T11:38:18.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
lewtun
null
lewtun/xlm-roberta-base-finetuned-marc-de
11
null
transformers
11,104
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9934 - Mae: 0.4867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1514 | 1.0 | 308 | 1.0455 | 0.5221 | | 0.9997 | 2.0 | 616 | 0.9934 | 0.4867 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
log0/wav2vec2-base-lang-id
9828f4fd957e470cc9d536d4cdda2917ead0eaf8
2022-02-18T14:36:19.000Z
[ "pytorch", "tensorboard", "hubert", "audio-classification", "transformers" ]
audio-classification
false
log0
null
log0/wav2vec2-base-lang-id
11
null
transformers
11,105
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_5e6_bb_lr_5e6_grad
d10a675e306e33514b54b10ce90d7ca4ad1940ca
2021-10-29T01:09:24.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_5e6_bb_lr_5e6_grad
11
null
transformers
11,106
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_5e6_bb_lr_5e6_wu_25k_ep_10_grad_adam
c75e98654ff02a47f5388c3edfb4616fe5bc63ec
2021-10-31T07:44:13.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_5e6_bb_lr_5e6_wu_25k_ep_10_grad_adam
11
null
transformers
11,107
Entry not found
m3hrdadfi/albert-fa-base-v2-clf-digimag
96f4b588dee49f8e41df85e83d3042872a5db952
2020-12-26T08:28:59.000Z
[ "pytorch", "tf", "albert", "text-classification", "fa", "transformers", "license:apache-2.0" ]
text-classification
false
m3hrdadfi
null
m3hrdadfi/albert-fa-base-v2-clf-digimag
11
null
transformers
11,108
--- language: fa license: apache-2.0 --- # ALBERT Persian A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language > میتونی بهش بگی برت_کوچولو [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) is the first attempt on ALBERT for the Persian Language. The model was trained based on Google's ALBERT BASE Version 2.0 over various writing styles from numerous subjects (e.g., scientific, novels, news) with more than 3.9M documents, 73M sentences, and 1.3B words, like the way we did for ParsBERT. Please follow the [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) repo for the latest information about previous and current models. ## Persian Text Classification [DigiMag, Persian News] The task target is labeling texts in a supervised manner in both existing datasets `DigiMag` and `Persian News`. ### DigiMag A total of 8,515 articles scraped from [Digikala Online Magazine](https://www.digikala.com/mag/). This dataset includes seven different classes. 1. Video Games 2. Shopping Guide 3. Health Beauty 4. Science Technology 5. General 6. Art Cinema 7. Books Literature | Label | # | |:------------------:|:----:| | Video Games | 1967 | | Shopping Guide | 125 | | Health Beauty | 1610 | | Science Technology | 2772 | | General | 120 | | Art Cinema | 1667 | | Books Literature | 254 | **Download** You can download the dataset from [here](https://drive.google.com/uc?id=1YgrCYY-Z0h2z0-PfWVfOGt1Tv0JDI-qz) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ALBERT-fa-base-v2 | ParsBERT-v1 | mBERT | |:-----------------:|:-----------------:|:-----------:|:-----:| | Digikala Magazine | 92.33 | 93.59 | 90.72 | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @misc{ALBERTPersian, author = {Mehrdad Farahani}, title = {ALBERT-Persian: A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/m3hrdadfi/albert-persian}}, } @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) repo.
m3hrdadfi/albert-zwnj-wnli-mean-tokens
3b8686736842a2228fcdc2329c5dea18114c5784
2021-06-28T17:42:32.000Z
[ "pytorch", "albert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
feature-extraction
false
m3hrdadfi
null
m3hrdadfi/albert-zwnj-wnli-mean-tokens
11
null
sentence-transformers
11,109
--- pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Sentence Embeddings with `albert-zwnj-wnli-mean-tokens` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers pip install -U sentencepiece ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = [ 'اولین حکمران شهر بابل کی بود؟', 'در فصل زمستان چه اتفاقی افتاد؟', 'میراث کوروش' ] model = SentenceTransformer('m3hrdadfi/albert-zwnj-wnli-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value return torch.mean(token_embeddings, 1)[0] # Sentences we want sentence embeddings for sentences = [ 'اولین حکمران شهر بابل کی بود؟', 'در فصل زمستان چه اتفاقی افتاد؟', 'میراث کوروش' ] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('m3hrdadfi/albert-zwnj-wnli-mean-tokens') model = AutoModel.from_pretrained('m3hrdadfi/albert-zwnj-wnli-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Questions? Post a Github issue from [HERE](https://github.com/m3hrdadfi/sentence-transformers).
m3hrdadfi/bert-fa-base-uncased-farstail
43915c0a3b8fe90b679368e8f66c56bbbd473d82
2021-05-28T06:02:52.000Z
[ "pytorch", "jax", "bert", "text-classification", "fa", "transformers", "license:apache-2.0" ]
text-classification
false
m3hrdadfi
null
m3hrdadfi/bert-fa-base-uncased-farstail
11
null
transformers
11,110
--- language: fa license: apache-2.0 --- # FarsTail + ParsBERT Please follow the [FarsTail](https://github.com/dml-qom/FarsTail) repo for the latest information about the dataset. For accessing the beneficiary models from this dataset, check out the [Sentence-Transformer](https://github.com/m3hrdadfi/sentence-transformers) repo ```bibtex @article{amirkhani2020farstail, title={FarsTail: A Persian Natural Language Inference Dataset}, author={Hossein Amirkhani, Mohammad Azari Jafari, Azadeh Amirak, Zohreh Pourjafari, Soroush Faridan Jahromi, and Zeinab Kouhkan}, journal={arXiv preprint arXiv:2009.08820}, year={2020} } ```
macedonizer/blaze-koneski
d871ee88171960c3b99ba84a63a6bb8e93fbffa8
2021-09-22T08:58:34.000Z
[ "pytorch", "gpt2", "text-generation", "mk", "dataset:wiki-mk", "dataset:blaze-koneski-poetry", "transformers", "license:apache-2.0" ]
text-generation
false
macedonizer
null
macedonizer/blaze-koneski
11
null
transformers
11,111
--- language: - mk thumbnail: https://huggingface.co/macedonizer/blaze-koneski/blaze-koneski.jpg license: apache-2.0 datasets: - wiki-mk - blaze-koneski-poetry --- # blaze-koneski GPT-2 type of model. We finetuned macedonizer/mk-gpt-2 with Blaze Koneski's poetry. ## About Blaze Koneski Born in a village near Prilep in 1921. Studied philology at Skopje University and worked there as a professor. Was the first chairman of the Macedonian Academy of Sciences and Arts, corresponding member of the Yugoslav Academy of Sciences and Arts, as well as of the Serbian and Slovene Academies, and honorary doctor of the Universities of Chicago and Krakow. Wrote poetry, short stories, and essays, as well as scholarly works, many of them on the Macedonian language. Editor of the Dictionarv of the Macedonian Language, translator of Heine and Shakespeare. His works have been translated into Serbian, Croatian, Slovene, Albanian, Turkish, Hungarian, French, Russian, Italian, Greek, Polish, Romanian, German, and English. Winner of numerous prizes, including the Golden Wreath of the Struga Poetry Evenings. ### How to use Here is how to use this model to get the features of a given text in PyTorch: import random from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained('macedonizer/blaze-koneski') nmodel = AutoModelWithLMHead.from_pretrained('macedonizer/blaze-koneski') input_text = 'Москва ' if len(input_text) == 0: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) \ else: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ **encoded_input, \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) decoded_output = [] \ for sample in output: \ decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True)) print(decoded_output)
malay-huggingface/t5-super-tiny-bahasa-cased
0254fae6ae8e24db9806111d5db979e54bc69352
2021-09-05T13:17:40.000Z
[ "pytorch", "t5", "feature-extraction", "ms", "transformers" ]
feature-extraction
false
malay-huggingface
null
malay-huggingface/t5-super-tiny-bahasa-cased
11
null
transformers
11,112
--- language: ms --- # t5-super-tiny-bahasa-cased Pretrained T5 super-tiny language model for Malay. ## Pretraining Corpus `t5-super-tiny-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on, 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 2. News title prediction on bahasa news. 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 4. Translated QA Natural. 5. Text Similarity task on translated SNLI and translated MNLI. 6. EN-MS translation. 7. MS-EN translation. 8. Abstractive Summarization. 9. Knowledge Graph triples generation. 10. Paraphrase. Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare ## Pretraining details - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU. - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import T5Tokenizer, T5Model model = T5Model.from_pretrained('malay-huggingface/t5-super-tiny-bahasa-cased') tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-super-tiny-bahasa-cased') ``` ## Example using T5ForConditionalGeneration ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-super-tiny-bahasa-cased') model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-super-tiny-bahasa-cased') input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt') outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` Output is, ``` 'Mahathir Mohamad' ``` ## Supported prefix 1. `soalan: {string}`, trained using Natural QA. 2. `ringkasan: {string}`, for abstractive summarization. 3. `tajuk: {string}`, for abstractive title. 4. `parafrasa: {string}`, for abstractive paraphrase. 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation. 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation. 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format. 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili
478845b9ef072a42229850adfe6ed5838d33030a
2021-11-25T09:03:58.000Z
[ "pytorch", "xlm-roberta", "token-classification", "sw", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili
11
null
transformers
11,113
--- language: - sw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." --- # xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-hausa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) (This model) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 | | [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof
3e4fa1bb16d8ed422e603817c06dee81269479c0
2021-11-25T09:05:13.000Z
[ "pytorch", "xlm-roberta", "token-classification", "wo", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof
11
null
transformers
11,114
--- language: - wo tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "SAFIYETU BÉEY Céy Koronaa !" --- # xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-wolof](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Wolof part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof) (This model) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | wol | 69.02 | 67.60 | 70.51 | 30.00 | 84.00 | 44.00 | 71.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | wol | 69.01 | 73.25 | 65.23 | 27.00 | 85.00 | 52.00 | 67.00 | | [xlm-roberta-base-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-wolof) | [base](https://huggingface.co/xlm-roberta-base) | wol | 66.12 | 69.46 | 63.09 | 30.00 | 84.00 | 54.00 | 59.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "SAFIYETU BÉEY Céy Koronaa !" ner_results = nlp(example) print(ner_results) ```
michaelrglass/bert-large-uncased-sspt
440130f131d0b86f4af1baa423b5d1813f20506a
2021-05-19T23:26:01.000Z
[ "pytorch", "tf", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
michaelrglass
null
michaelrglass/bert-large-uncased-sspt
11
null
transformers
11,115
Entry not found
monsoon-nlp/ar-seq2seq-gender-decoder
03e1e51b88556e6cddba1da871345354f8d20b97
2021-05-19T23:53:24.000Z
[ "pytorch", "bert", "text-generation", "ar", "transformers" ]
text-generation
false
monsoon-nlp
null
monsoon-nlp/ar-seq2seq-gender-decoder
11
null
transformers
11,116
--- language: ar --- # ar-seq2seq-gender (decoder) This is a seq2seq model (decoder half) to "flip" gender in **first-person** Arabic sentences. The model can augment your existing Arabic data, or generate counterfactuals to test a model's decisions (would changing the gender of the subject or speaker change output?). Intended Examples: - 'أنا سعيد' <=> 'انا سعيدة' - 'ركض إلى المتجر' <=> 'ركضت إلى المتجر' People's names, gender pronouns, gendered words (father, mother), and many other values are currently unchanged by this model. Future versions may be trained on more data. ## Sample Code ``` import torch from transformers import AutoTokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_encoder_decoder_pretrained( "monsoon-nlp/ar-seq2seq-gender-encoder", "monsoon-nlp/ar-seq2seq-gender-decoder", min_length=40 ) tokenizer = AutoTokenizer.from_pretrained('monsoon-nlp/ar-seq2seq-gender-decoder') # same as MARBERT original input_ids = torch.tensor(tokenizer.encode("أنا سعيدة")).unsqueeze(0) generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.pad_token_id) tokenizer.decode(generated.tolist()[0][1 : len(input_ids[0]) - 1]) > 'انا سعيد' ``` https://colab.research.google.com/drive/1S0kE_2WiV82JkqKik_sBW-0TUtzUVmrV?usp=sharing ## Training I originally developed <a href="https://github.com/MonsoonNLP/el-la">a gender flip Python script</a> for Spanish sentences, using <a href="https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased">BETO</a>, and spaCy. More about this project: https://medium.com/ai-in-plain-english/gender-bias-in-spanish-bert-1f4d76780617 The Arabic model encoder and decoder started with weights and vocabulary from <a href="https://github.com/UBC-NLP/marbert">MARBERT from UBC-NLP</a>, and was trained on the <a href="https://camel.abudhabi.nyu.edu/arabic-parallel-gender-corpus/">Arabic Parallel Gender Corpus</a> from NYU Abu Dhabi. The text is first-person sentences from OpenSubtitles, with parallel gender-reinflected sentences generated by Arabic speakers. Training notebook: https://colab.research.google.com/drive/1TuDfnV2gQ-WsDtHkF52jbn699bk6vJZV ## Non-binary gender This model is useful to generate male and female text samples, but falls short of capturing gender diversity in the world and in the Arabic language. This subject is discussed in the bias statement of the <a href="https://www.aclweb.org/anthology/2020.gebnlp-1.12/">Gender Reinflection paper</a>.
moussaKam/frugalscore_small_deberta_bert-score
2035337fab8e3bbfd6063a0993cfc0902cc42de7
2022-01-28T13:19:20.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2110.08559", "transformers" ]
text-classification
false
moussaKam
null
moussaKam/frugalscore_small_deberta_bert-score
11
null
transformers
11,117
# FrugalScore FrugalScore is an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance Paper: https://arxiv.org/abs/2110.08559?context=cs Project github: https://github.com/moussaKam/FrugalScore The pretrained checkpoints presented in the paper : | FrugalScore | Student | Teacher | Method | |----------------------------------------------------|-------------|----------------|------------| | [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore | | [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore | | [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore | | [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore | | [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore | | [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore |
mrm8488/ManuERT-for-xqua
ef690580807cb651a7bc5545d52cfb7b9c1b919a
2021-05-20T00:16:59.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/ManuERT-for-xqua
11
null
transformers
11,118
Entry not found
mse30/bart-base-finetuned-xsum
605fd05ebfb0e6744c9f1844fe33cac1a3948e11
2021-10-27T22:13:08.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mse30
null
mse30/bart-base-finetuned-xsum
11
null
transformers
11,119
Entry not found
mujeensung/albert-base-v2_mnli_bc
f7c73a6b7cac7c8123a1a5354e7d90031c5ee8d6
2022-02-13T05:23:40.000Z
[ "pytorch", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mujeensung
null
mujeensung/albert-base-v2_mnli_bc
11
null
transformers
11,120
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: albert-base-v2_mnli_bc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.9398776667163956 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2_mnli_bc This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2952 - Accuracy: 0.9399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2159 | 1.0 | 16363 | 0.2268 | 0.9248 | | 0.1817 | 2.0 | 32726 | 0.2335 | 0.9347 | | 0.0863 | 3.0 | 49089 | 0.3014 | 0.9401 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
nimanpra/Fine_Tuned_Spiritual
82a866e1a9c7cb937fcf6c5962a179e2796ab958
2021-06-17T16:09:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
nimanpra
null
nimanpra/Fine_Tuned_Spiritual
11
null
transformers
11,121
Entry not found
paintingpeter/distilbert-base-uncased-finetuned-clinc
edfb6047f8c7da3d6b60e6b1ab95ded1789112d6
2022-01-31T21:55:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
paintingpeter
null
paintingpeter/distilbert-base-uncased-finetuned-clinc
11
null
transformers
11,122
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9174193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7713 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2892 | 1.0 | 318 | 3.2831 | 0.7426 | | 2.6244 | 2.0 | 636 | 1.8739 | 0.8335 | | 1.5442 | 3.0 | 954 | 1.1525 | 0.8926 | | 1.0096 | 4.0 | 1272 | 0.8569 | 0.91 | | 0.793 | 5.0 | 1590 | 0.7713 | 0.9174 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
peterchou/unilm-chinese-base
4a4995e1a5d5fefe6df73749f89bff8a34a48b12
2021-05-20T02:33:23.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
peterchou
null
peterchou/unilm-chinese-base
11
null
transformers
11,123
Entry not found
phueb/BabyBERTa-2
6c88fd5c30fb24189728efc3e9bdebf1d593c9c7
2022-01-18T14:44:44.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:CHILDES", "transformers", "BabyBERTa", "autotrain_compatible" ]
fill-mask
false
phueb
null
phueb/BabyBERTa-2
11
null
transformers
11,124
--- language: en tags: - BabyBERTa datasets: - CHILDES widget: - text: "Look here. What is that <mask> ?" - text: "Do you like your <mask> ?" --- ## BabyBERTA ### Overview BabyBERTa is a light-weight version of RoBERTa trained on 5M words of American-English child-directed input. It is intended for language acquisition research, on a single desktop with a single GPU - no high-performance computing infrastructure needed. The three provided models are randomly selected from 10 that were trained and reported in the paper. ## Loading the tokenizer BabyBERTa was trained with `add_prefix_space=True`, so it will not work properly with the tokenizer defaults. For instance, to load the tokenizer for BabyBERTa-1, load it as follows: ```python tokenizer = RobertaTokenizerFast.from_pretrained("phueb/BabyBERTa-1", add_prefix_space=True) ``` ### Hyper-Parameters See the paper for details. All provided models were trained for 400K steps with a batch size of 16. Importantly, BabyBERTa never predicts unmasked tokens during training - `unmask_prob` is set to zero. ### Performance BabyBerta was developed for learning grammatical knowledge from child-directed input. Its grammatical knowledge was evaluated using the [Zorro](https://github.com/phueb/Zorro) test suite. The best model achieves an overall accuracy of 80.3, comparable to RoBERTa-base, which achieves an overall accuracy of 82.6 on the latest version of Zorro (as of October, 2021). Both values differ slightly from those reported in the [CoNLL 2021 paper](https://aclanthology.org/2021.conll-1.49/). There are two reasons for this: 1. Performance of RoBERTa-base is slightly larger because the authors previously lower-cased all words in Zorro before evaluation. Lower-casing of proper nouns is detrimental to RoBERTa-base because RoBERTa-base has likely been trained on proper nouns that are primarily title-cased. In contrast, because BabyBERTa is not case-sensitive, its performance is not influenced by this change. 2. The latest version of Zorro no longer contains ambiguous content words such as "Spanish" which can be both a noun and an adjective. this resulted in a small reduction in the performance of BabyBERTa. Overall Accuracy on Zorro: | Model Name | Accuracy (holistic scoring) | Accuracy (MLM-scoring) | |----------------------------------------|------------------------------|------------| | [BabyBERTa-1][link-BabyBERTa-1] | 80.3 | 79.9 | | [BabyBERTa-2][link-BabyBERTa-2] | 78.6 | 78.2 | | [BabyBERTa-3][link-BabyBERTa-3] | 74.5 | 78.1 | ### Additional Information This model was trained by [Philip Huebner](https://philhuebner.com), currently at the [UIUC Language and Learning Lab](http://www.learninglanguagelab.org). More info can be found [here](https://github.com/phueb/BabyBERTa). [link-BabyBERTa-1]: https://huggingface.co/phueb/BabyBERTa-1 [link-BabyBERTa-2]: https://huggingface.co/phueb/BabyBERTa-2 [link-BabyBERTa-3]: https://huggingface.co/phueb/BabyBERTa-3
pierreguillou/bert-large-cased-pt-lenerbr
02425bad92d1762aeaaf050996991893caf13a89
2022-01-04T08:52:43.000Z
[ "pytorch", "bert", "fill-mask", "pt", "dataset:pierreguillou/lener_br_finetuning_language_model", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
pierreguillou
null
pierreguillou/bert-large-cased-pt-lenerbr
11
2
transformers
11,125
--- language: - pt tags: - generated_from_trainer datasets: - pierreguillou/lener_br_finetuning_language_model model-index: - name: checkpoints results: - task: name: Fill Mask type: fill-mask dataset: name: pierreguillou/lener_br_finetuning_language_model type: pierreguillou/lener_br_finetuning_language_model metrics: - name: Loss type: loss value: 1.127950 widget: - text: "Com efeito, se tal fosse possível, o Poder [MASK] – que não dispõe de função legislativa – passaria a desempenhar atribuição que lhe é institucionalmente estranha (a de legislador positivo), usurpando, desse modo, no contexto de um sistema de poderes essencialmente limitados, competência que não lhe pertence, com evidente transgressão ao princípio constitucional da separação de poderes." --- ## (BERT large) Language modeling in the legal domain in Portuguese (LeNER-Br) **bert-large-cased-pt-lenerbr** is a Language Model in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [BERTimbau large](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the dataset [LeNER-Br language modeling](https://huggingface.co/datasets/pierreguillou/lener_br_finetuning_language_model) by using a MASK objective. You can check as well the [version base of this model](https://huggingface.co/pierreguillou/bert-base-cased-pt-lenerbr). ## Widget & APP You can test this model into the widget of this page. ## Blog post This language model is used to get a NER model on the Portuguese judicial domain. You can check the fine-tuned NER model at [pierreguillou/ner-bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/ner-bert-large-cased-pt-lenerbr). All informations and links are in this blog post: [NLP | Modelos e Web App para Reconhecimento de Entidade Nomeada (NER) no domínio jurídico brasileiro](https://medium.com/@pierre_guillou/nlp-modelos-e-web-app-para-reconhecimento-de-entidade-nomeada-ner-no-dom%C3%ADnio-jur%C3%ADdico-b658db55edfb) (29/12/2021) ## Using the model for inference in production ```` # install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("pierreguillou/bert-large-cased-pt-lenerbr") model = AutoModelForMaskedLM.from_pretrained("pierreguillou/bert-large-cased-pt-lenerbr") ```` ## Training procedure ## Notebook The notebook of finetuning ([Finetuning_language_model_BERtimbau_LeNER_Br.ipynb](https://github.com/piegu/language-models/blob/master/Finetuning_language_model_BERtimbau_LeNER_Br.ipynb)) is in github. ### Training results ```` Num examples = 3227 Num Epochs = 5 Instantaneous batch size per device = 2 Total train batch size (w. parallel, distributed & accumulation) = 8 Gradient Accumulation steps = 4 Total optimization steps = 2015 Step Training Loss Validation Loss 100 1.616700 1.366015 200 1.452000 1.312473 300 1.431100 1.253055 400 1.407500 1.264705 500 1.301900 1.243277 600 1.317800 1.233684 700 1.319100 1.211826 800 1.303800 1.190818 900 1.262800 1.171898 1000 1.235900 1.146275 1100 1.221900 1.149027 1200 1.226200 1.127950 1300 1.201700 1.172729 1400 1.198200 1.145363 ````
pmthangk09/bert-base-uncased-esnli
f83f679d8fa2d84b82be44b7cf6672ecfb40e7c6
2021-05-20T02:46:17.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
pmthangk09
null
pmthangk09/bert-base-uncased-esnli
11
null
transformers
11,126
Entry not found
ponteineptique/latin-classical-small
a1d55b6a26d3fb06c9b50c61df2813a39864cb72
2020-04-24T16:05:14.000Z
[ "pytorch", "xlm", "feature-extraction", "transformers" ]
feature-extraction
false
ponteineptique
null
ponteineptique/latin-classical-small
11
null
transformers
11,127
Entry not found
proycon/bert-ner-cased-conll2002-nld
a2485b58ec02d0c038ce079ab3e7c85010148672
2021-05-20T03:05:15.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
proycon
null
proycon/bert-ner-cased-conll2002-nld
11
null
transformers
11,128
Entry not found
proycon/bert-pos-cased-deepfrog-nld
4515aae9f28dc24164f18926086a031376f0586d
2021-05-20T03:07:09.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
proycon
null
proycon/bert-pos-cased-deepfrog-nld
11
null
transformers
11,129
Entry not found
pysentimiento/robertuito-irony
7e819c8fe295df4d2fdc591ab1b4b9a49e580b15
2021-11-22T16:16:45.000Z
[ "pytorch", "roberta", "text-classification", "arxiv:2106.09462", "arxiv:2111.09453", "transformers" ]
text-classification
false
pysentimiento
null
pysentimiento/robertuito-irony
11
1
transformers
11,130
# Irony detection in Spanish ## robertuito-irony Repository: [https://github.com/pysentimiento/pysentimiento/](https://github.com/finiteautomata/pysentimiento/) Model trained with IRosVA 2019 dataset for irony detection. Base model is [RoBERTuito](https://github.com/pysentimiento/robertuito), a RoBERTa model trained in Spanish tweets. The positive class marks irony, the negative class marks not irony. ## Results Results for the four tasks evaluated in `pysentimiento`. Results are expressed as Macro F1 scores | model | emotion | hate_speech | irony | sentiment | |:--------------|:--------------|:--------------|:--------------|:--------------| | robertuito | 0.560 ± 0.010 | 0.759 ± 0.007 | 0.739 ± 0.005 | 0.705 ± 0.003 | | roberta | 0.527 ± 0.015 | 0.741 ± 0.012 | 0.721 ± 0.008 | 0.670 ± 0.006 | | bertin | 0.524 ± 0.007 | 0.738 ± 0.007 | 0.713 ± 0.012 | 0.666 ± 0.005 | | beto_uncased | 0.532 ± 0.012 | 0.727 ± 0.016 | 0.701 ± 0.007 | 0.651 ± 0.006 | | beto_cased | 0.516 ± 0.012 | 0.724 ± 0.012 | 0.705 ± 0.009 | 0.662 ± 0.005 | | mbert_uncased | 0.493 ± 0.010 | 0.718 ± 0.011 | 0.681 ± 0.010 | 0.617 ± 0.003 | | biGRU | 0.264 ± 0.007 | 0.592 ± 0.018 | 0.631 ± 0.011 | 0.585 ± 0.011 | Note that for Hate Speech, these are the results for Semeval 2019, Task 5 Subtask B (HS+TR+AG detection) ## Citation If you use this model in your research, please cite pysentimiento and RoBERTuito papers: ``` @misc{perez2021pysentimiento, title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks}, author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque}, year={2021}, eprint={2106.09462}, archivePrefix={arXiv}, primaryClass={cs.CL} } @misc{perez2021robertuito, title={RoBERTuito: a pre-trained language model for social media text in Spanish}, author={Juan Manuel Pérez and Damián A. Furman and Laura Alonso Alemany and Franco Luque}, year={2021}, eprint={2111.09453}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
quincyqiang/tesla2
90abad32892c3fb43cbb87bef2c64453d253e47e
2021-05-20T03:52:00.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
quincyqiang
null
quincyqiang/tesla2
11
null
transformers
11,131
Entry not found
raynardj/pmc-med-bio-mlm-roberta-large
c70f6bfb352375382808dfa500a56af7413a4de1
2021-11-28T13:57:31.000Z
[ "pytorch", "roberta", "fill-mask", "en", "transformers", "autotrain_compatible" ]
fill-mask
false
raynardj
null
raynardj/pmc-med-bio-mlm-roberta-large
11
1
transformers
11,132
--- language: - en tags: - fill-mask - roberta widget: - text: "Polymerase <mask> Reaction" --- # PMC pretrained RoBERTa large model Pretrained on PMC fulltext paragraphs on masked language modeling task, it's mostly biology/ medical papers
rsvp-ai/bertserini-bert-base-cmrc
7805b05ac989fed6ed7e30f01ab28b0f90f572b8
2021-05-19T00:38:49.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rsvp-ai
null
rsvp-ai/bertserini-bert-base-cmrc
11
null
transformers
11,133
Entry not found
sackoh/bert-base-multilingual-cased-nsmc
768a6323c657f8184deb554ff976b29dbef2ebde
2021-05-19T00:50:32.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
sackoh
null
sackoh/bert-base-multilingual-cased-nsmc
11
null
transformers
11,134
Entry not found
sagorsarker/codeswitch-nepeng-lid-lince
37989eb40861b1c6147cabb9a083c33fdb8761c4
2021-05-19T01:11:01.000Z
[ "pytorch", "jax", "bert", "token-classification", "ne", "en", "dataset:lince", "transformers", "codeswitching", "nepali-english", "language-identification", "license:mit", "autotrain_compatible" ]
token-classification
false
sagorsarker
null
sagorsarker/codeswitch-nepeng-lid-lince
11
null
transformers
11,135
--- language: - ne - en datasets: - lince license: mit tags: - codeswitching - nepali-english - language-identification --- # codeswitch-nepeng-lid-lince This is a pretrained model for **language identification** of `nepali-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home). This model is trained for this below repository. [https://github.com/sagorbrur/codeswitch](https://github.com/sagorbrur/codeswitch) To install codeswitch: ``` pip install codeswitch ``` ## Identify Language * **Method-1** ```py from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-nepeng-lid-lince") model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-nepeng-lid-lince") lid_model = pipeline('ner', model=model, tokenizer=tokenizer) lid_model("put any nepali english code-mixed sentence") ``` * **Method-2** ```py from codeswitch.codeswitch import LanguageIdentification lid = LanguageIdentification('nep-eng') text = "" # your code-mixed sentence result = lid.identify(text) print(result) ```
samitizerxu/wav2vec2-xls-r-300m-fr
bbcb338de18d0bfa3cb111078e182a8df7c54a36
2022-03-23T18:33:04.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
samitizerxu
null
samitizerxu/wav2vec2-xls-r-300m-fr
11
null
transformers
11,136
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - fr - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-cls-r-300m-fr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 56.62 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 58.22 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-cls-r-300m-fr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.6521 - Wer: 0.4330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.6773 | 0.8 | 500 | 1.3907 | 0.9864 | | 0.9526 | 1.6 | 1000 | 0.7760 | 0.6448 | | 0.6418 | 2.4 | 1500 | 0.7605 | 0.6194 | | 0.5028 | 3.2 | 2000 | 0.6516 | 0.5322 | | 0.4133 | 4.0 | 2500 | 0.6303 | 0.5097 | | 0.3285 | 4.8 | 3000 | 0.6422 | 0.5062 | | 0.2764 | 5.6 | 3500 | 0.5936 | 0.4748 | | 0.2361 | 6.4 | 4000 | 0.6486 | 0.4683 | | 0.2049 | 7.2 | 4500 | 0.6321 | 0.4532 | | 0.176 | 8.0 | 5000 | 0.6230 | 0.4482 | | 0.1393 | 8.8 | 5500 | 0.6595 | 0.4403 | | 0.1141 | 9.6 | 6000 | 0.6552 | 0.4348 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
seduerr/paraphrase
0ff7d8bd97071e8f5a3d25697984854f343b3598
2021-06-23T14:17:58.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seduerr
null
seduerr/paraphrase
11
null
transformers
11,137
Entry not found
seongju/klue-mrc-roberta-base
967a1cc8fe384411c22a166cc6c659c16add16d6
2021-08-09T08:06:23.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
seongju
null
seongju/klue-mrc-roberta-base
11
null
transformers
11,138
Entry not found
sergiyvl/ParaPhraserPlus_1epoch
7b7869921bdeafa33470c0fc4986f17517e54055
2021-05-20T05:30:51.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sergiyvl
null
sergiyvl/ParaPhraserPlus_1epoch
11
null
transformers
11,139
Entry not found
sismetanin/mbart_ru_sum_gazeta-ru-sentiment-krnd
f48dcde73805a046fd10292bc488907efda89b31
2021-02-21T13:19:50.000Z
[ "pytorch", "mbart", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/mbart_ru_sum_gazeta-ru-sentiment-krnd
11
null
transformers
11,140
Entry not found
skylord/wav2vec2-large-xlsr-greek-2
00ac229e00fa3743119d3f6152ac3f9247984f62
2021-03-31T09:42:31.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "el", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
skylord
null
skylord/wav2vec2-large-xlsr-greek-2
11
null
transformers
11,141
--- language: el datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Greek XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice el type: common_voice args: el metrics: - name: Test WER type: wer value: 45.048955 --- # Wav2Vec2-Large-XLSR-53-Greek Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Greek using the [Common Voice](https://huggingface.co/datasets/common_voice), The Greek CV data has a majority of male voices. To balance it synthesised female voices were created using the approach discussed here [slack](https://huggingface.slack.com/archives/C01QZ90Q83Z/p1616741140114800) The text from the common-voice dataset was used to synthesize vocies of female speakers using [Googe's TTS Standard Voice model](https://cloud.google.com/text-to-speech) Fine-tuned on facebook/wav2vec2-large-xlsr-53 using Greek CommonVoice :: 5 epochs >> 56.25% WER Resuming from checkpoints trained for another 15 epochs >> 34.00% Added synthesised female voices trained for 12 epochs >> 34.00% (no change) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "el", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("skylord/greek_lsr_1") model = Wav2Vec2ForCTC.from_pretrained("skylord/greek_lsr_1") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Greek test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "el", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("skylord/greek_lsr_1") model = Wav2Vec2ForCTC.from_pretrained("skylord/greek_lsr_1") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 45.048955 % ## Training The Common Voice `train`, `validation`, datasets were used for training as well as The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
sshleifer/student_enro_sum_12_1
d8ee5fac300d1df4c5adc0ebecd8056909dbe7e0
2020-07-18T20:16:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_enro_sum_12_1
11
null
transformers
11,142
Entry not found
sshleifer/student_pegasus_cnn_12_2
d8ce6f11b4a1174c2d0edf3b979a9a1f5232f4c6
2020-10-02T03:49:28.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_pegasus_cnn_12_2
11
null
transformers
11,143
Entry not found
stanford-crfm/durin-gpt2-medium-x343
fe7e487b4a5109d1190a57b28e4419f3ab972468
2022-06-20T10:58:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
stanford-crfm
null
stanford-crfm/durin-gpt2-medium-x343
11
null
transformers
11,144
Entry not found
stanford-crfm/expanse-gpt2-small-x777
1a3988b4f158d80cf8f72df885ea258783317434
2022-06-20T09:32:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
stanford-crfm
null
stanford-crfm/expanse-gpt2-small-x777
11
null
transformers
11,145
Entry not found
stefan-it/wav2vec2-large-xlsr-53-basque
19cc35f777b8105c807a94b4c0a68ffe3009b18c
2021-03-29T15:54:40.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "eu", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
stefan-it
null
stefan-it/wav2vec2-large-xlsr-53-basque
11
null
transformers
11,146
--- language: eu datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Basque Stefan Schweter results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice eu type: common_voice args: eu metrics: - name: Test WER type: wer value: 18.272625 --- # Wav2Vec2-Large-XLSR-53-Basque Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Basque using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eu", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque") model = Wav2Vec2ForCTC.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Basque test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "eu", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque") model = Wav2Vec2ForCTC.from_pretrained("stefan-it/wav2vec2-large-xlsr-53-basque") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 18.272625% ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found here, hopefully very soon! ## Acknowledgements Many thanks to the [OVH team](https://www.ovhcloud.com) for providing access to a V-100 instance. Without their help, fine-tuning would not be possible! I would also thank [Manuel Romero](https://github.com/mrm8488) (mrm8488) for helping with the fine-tuning script!
sukhendrasingh/finetuning-sentiment-model-3000-samples
eba498245dd43db7e5e6812e0180a6b0bbb08c83
2022-02-07T17:20:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sukhendrasingh
null
sukhendrasingh/finetuning-sentiment-model-3000-samples
11
null
transformers
11,147
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.879746835443038 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3323 - Accuracy: 0.8733 - F1: 0.8797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
surajp/SanBERTa
43ee7b437c82b84e0405a3d194a676dd6308dee4
2021-05-20T22:03:36.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "sa", "transformers", "autotrain_compatible" ]
fill-mask
false
surajp
null
surajp/SanBERTa
11
null
transformers
11,148
--- language: sa --- # RoBERTa trained on Sanskrit (SanBERTa) **Mode size** (after training): **340MB** ### Dataset: [Wikipedia articles](https://www.kaggle.com/disisbig/sanskrit-wikipedia-articles) (used in [iNLTK](https://github.com/goru001/nlp-for-sanskrit)). It contains evaluation set. [Sanskrit scraps from CLTK](http://cltk.org/) ### Configuration | Parameter | Value | |---|---| | `num_attention_heads` | 12 | | `num_hidden_layers` | 6 | | `hidden_size` | 768 | | `vocab_size` | 29407 | ### Training : - On TPU - For language modelling - Iteratively increasing `--block_size` from 128 to 256 over epochs ### Evaluation |Metric| # Value | |---|---| |Perplexity (`block_size=256`)|4.04| ## Example of usage: ### For Embeddings ``` tokenizer = AutoTokenizer.from_pretrained("surajp/SanBERTa") model = RobertaModel.from_pretrained("surajp/SanBERTa") op = tokenizer.encode("इयं भाषा न केवलं भारतस्य अपि तु विश्वस्य प्राचीनतमा भाषा इति मन्यते।", return_tensors="pt") ps = model(op) ps[0].shape ``` ``` ''' Output: -------- torch.Size([1, 47, 768]) ``` ### For \<mask\> Prediction ``` from transformers import pipeline fill_mask = pipeline( "fill-mask", model="surajp/SanBERTa", tokenizer="surajp/SanBERTa" ) ## इयं भाषा न केवलं भारतस्य अपि तु विश्वस्य प्राचीनतमा भाषा इति मन्यते। fill_mask("इयं भाषा न केवल<mask> भारतस्य अपि तु विश्वस्य प्राचीनतमा भाषा इति मन्यते।") ps = model(torch.tensor(enc).unsqueeze(1)) print(ps[0].shape) ``` ``` ''' Output: -------- [{'score': 0.7516744136810303, 'sequence': '<s> इयं भाषा न केवलं भारतस्य अपि तु विश्वस्य प्राचीनतमा भाषा इति मन्यते।</s>', 'token': 280, 'token_str': 'à¤Ĥ'}, {'score': 0.06230105459690094, 'sequence': '<s> इयं भाषा न केवली भारतस्य अपि तु विश्वस्य प्राचीनतमा भाषा इति मन्यते।</s>', 'token': 289, 'token_str': 'à¥Ģ'}, {'score': 0.055410224944353104, 'sequence': '<s> इयं भाषा न केवला भारतस्य अपि तु विश्वस्य प्राचीनतमा भाषा इति मन्यते।</s>', 'token': 265, 'token_str': 'ा'}, ...] ``` ### It works!! 🎉 🎉 🎉 > Created by [Suraj Parmar/@parmarsuraj99](https://twitter.com/parmarsuraj99) | [LinkedIn](https://www.linkedin.com/in/parmarsuraj99/) > Made with <span style="color: #e25555;">&hearts;</span> in India
techiaith/wav2vec2-xlsr-ft-cy
69df7e44646babb4b3edc4abd7ad8885e8d4d5c0
2022-06-15T12:37:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "cy", "dataset:common_voice", "transformers", "audio", "hf-asr-leaderboard", "ken-lm", "robust-speech-event", "speech", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
techiaith
null
techiaith/wav2vec2-xlsr-ft-cy
11
3
transformers
11,149
--- language: cy datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - hf-asr-leaderboard - ken-lm - robust-speech-event - speech license: apache-2.0 model-index: - name: wav2vec2-xlsr-ft-cy with KenLM language model (by Bangor University) results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice cy type: common_voice args: cy metrics: - name: Test WER type: wer value: 13.74% --- # wav2vec2-xlsr-ft-cy Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [Welsh Common Voice version 8 dataset](https://huggingface.co/datasets/common_voice). Source code and scripts for training acoustic and KenLM language models, as well as examples of inference in transcribing or a self-hosted API service, can be found at [https://github.com/techiaith/docker-wav2vec2-xlsr-ft-cy](https://github.com/techiaith/docker-wav2vec2-xlsr-ft-cy). ## Usage The wav2vec2-xlsr-ft-cy (acoustic) model can be used directly (without a language model) as follows: ```python import torch import torchaudio import librosa from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("techiaith/wav2vec2-xlsr-ft-cy") model = Wav2Vec2ForCTC.from_pretrained("techiaith/wav2vec2-xlsr-ft-cy") audio, rate = librosa.load(audio_file, sr=16000) inputs = processor(audio, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits # greedy decoding predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) ``` ## Using the Language Model See https://github.com/techiaith/docker-wav2vec2-xlsr-ft-cy/releases/tag/21.08 for more details and examples of a KenLM usage with the Parlance PyTorch CTC decode bindings library: [https://github.com/parlance/ctcdecode](https://github.com/parlance/ctcdecode) ## Evaluation According to the Welsh Common Voice version 9 test set, the WER of techiaith/wav2vec2-xlsr-ft-cy standalone is **23.09%** When assisted by the KenLM language model the same test produces a WER of **13.74%* See: https://github.com/techiaith/docker-wav2vec2-xlsr-ft-cy/blob/main/train/python/evaluate.py
timtarusov/distilbert-base-uncased-finetuned-emotion
959f361640c433397f05357a6c78d046e7b78e36
2022-02-13T08:48:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
timtarusov
null
timtarusov/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,150
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.921 - name: F1 type: f1 value: 0.9211076096482195 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2274 - Accuracy: 0.921 - F1: 0.9211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8308 | 1.0 | 250 | 0.3319 | 0.8955 | 0.8897 | | 0.2516 | 2.0 | 500 | 0.2274 | 0.921 | 0.9211 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
tomascufaro/xls-r-es-test
4acc7c880e7016dc92e72e46ac93963a25525cd7
2022-03-24T11:58:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tomascufaro
null
tomascufaro/xls-r-es-test
11
null
transformers
11,151
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - es - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-es-test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: es metrics: - name: Test WER type: wer value: 12.62 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 36.08 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 39.19 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-es-test This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ES dataset. It achieves the following results on the evaluation set: - Loss: 0.1304 - WER: 0.1261 - CER: 0.035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.9613 | 0.07 | 500 | 2.9647 | 1.0 | | 2.604 | 0.14 | 1000 | 1.8300 | 0.9562 | | 1.177 | 0.21 | 1500 | 0.3652 | 0.3077 | | 1.0745 | 0.28 | 2000 | 0.2707 | 0.2504 | | 1.0103 | 0.35 | 2500 | 0.2338 | 0.2157 | | 0.9858 | 0.42 | 3000 | 0.2321 | 0.2129 | | 0.974 | 0.49 | 3500 | 0.2164 | 0.2031 | | 0.9699 | 0.56 | 4000 | 0.2078 | 0.1970 | | 0.9513 | 0.63 | 4500 | 0.2173 | 0.2139 | | 0.9657 | 0.7 | 5000 | 0.2050 | 0.1979 | | 0.9484 | 0.77 | 5500 | 0.2008 | 0.1919 | | 0.9317 | 0.84 | 6000 | 0.2012 | 0.1911 | | 0.9366 | 0.91 | 6500 | 0.2024 | 0.1976 | | 0.9242 | 0.98 | 7000 | 0.2062 | 0.2028 | | 0.9138 | 1.05 | 7500 | 0.1924 | 0.1863 | | 0.921 | 1.12 | 8000 | 0.1935 | 0.1836 | | 0.9117 | 1.19 | 8500 | 0.1887 | 0.1815 | | 0.9064 | 1.26 | 9000 | 0.1909 | 0.1839 | | 0.9118 | 1.32 | 9500 | 0.1869 | 0.1830 | | 0.9121 | 1.39 | 10000 | 0.1863 | 0.1802 | | 0.9048 | 1.46 | 10500 | 0.1845 | 0.1791 | | 0.8955 | 1.53 | 11000 | 0.1863 | 0.1774 | | 0.8947 | 1.6 | 11500 | 0.1907 | 0.1814 | | 0.9073 | 1.67 | 12000 | 0.1892 | 0.1853 | | 0.8927 | 1.74 | 12500 | 0.1821 | 0.1750 | | 0.8732 | 1.81 | 13000 | 0.1815 | 0.1768 | | 0.8761 | 1.88 | 13500 | 0.1822 | 0.1749 | | 0.8751 | 1.95 | 14000 | 0.1789 | 0.1715 | | 0.8889 | 2.02 | 14500 | 0.1819 | 0.1791 | | 0.8864 | 2.09 | 15000 | 0.1826 | 0.1794 | | 0.886 | 2.16 | 15500 | 0.1788 | 0.1776 | | 0.8915 | 2.23 | 16000 | 0.1756 | 0.1719 | | 0.8689 | 2.3 | 16500 | 0.1769 | 0.1711 | | 0.879 | 2.37 | 17000 | 0.1777 | 0.1739 | | 0.8692 | 2.44 | 17500 | 0.1765 | 0.1705 | | 0.8504 | 2.51 | 18000 | 0.1699 | 0.1652 | | 0.8728 | 2.58 | 18500 | 0.1705 | 0.1694 | | 0.8523 | 2.65 | 19000 | 0.1674 | 0.1645 | | 0.8513 | 2.72 | 19500 | 0.1661 | 0.1611 | | 0.8498 | 2.79 | 20000 | 0.1660 | 0.1631 | | 0.8432 | 2.86 | 20500 | 0.1636 | 0.1610 | | 0.8492 | 2.93 | 21000 | 0.1708 | 0.1688 | | 0.8561 | 3.0 | 21500 | 0.1663 | 0.1604 | | 0.842 | 3.07 | 22000 | 0.1690 | 0.1625 | | 0.857 | 3.14 | 22500 | 0.1642 | 0.1605 | | 0.8518 | 3.21 | 23000 | 0.1626 | 0.1585 | | 0.8506 | 3.28 | 23500 | 0.1651 | 0.1605 | | 0.8394 | 3.35 | 24000 | 0.1647 | 0.1585 | | 0.8431 | 3.42 | 24500 | 0.1632 | 0.1573 | | 0.8566 | 3.49 | 25000 | 0.1614 | 0.1550 | | 0.8534 | 3.56 | 25500 | 0.1645 | 0.1589 | | 0.8386 | 3.63 | 26000 | 0.1632 | 0.1582 | | 0.8357 | 3.7 | 26500 | 0.1631 | 0.1556 | | 0.8299 | 3.77 | 27000 | 0.1612 | 0.1550 | | 0.8421 | 3.84 | 27500 | 0.1602 | 0.1552 | | 0.8375 | 3.91 | 28000 | 0.1592 | 0.1537 | | 0.8328 | 3.97 | 28500 | 0.1587 | 0.1537 | | 0.8155 | 4.04 | 29000 | 0.1587 | 0.1520 | | 0.8335 | 4.11 | 29500 | 0.1624 | 0.1556 | | 0.8138 | 4.18 | 30000 | 0.1581 | 0.1547 | | 0.8195 | 4.25 | 30500 | 0.1560 | 0.1507 | | 0.8092 | 4.32 | 31000 | 0.1561 | 0.1534 | | 0.8191 | 4.39 | 31500 | 0.1549 | 0.1493 | | 0.8008 | 4.46 | 32000 | 0.1540 | 0.1493 | | 0.8138 | 4.53 | 32500 | 0.1544 | 0.1493 | | 0.8173 | 4.6 | 33000 | 0.1553 | 0.1511 | | 0.8081 | 4.67 | 33500 | 0.1541 | 0.1484 | | 0.8192 | 4.74 | 34000 | 0.1560 | 0.1506 | | 0.8068 | 4.81 | 34500 | 0.1540 | 0.1503 | | 0.8105 | 4.88 | 35000 | 0.1529 | 0.1483 | | 0.7976 | 4.95 | 35500 | 0.1507 | 0.1451 | | 0.8143 | 5.02 | 36000 | 0.1505 | 0.1462 | | 0.8053 | 5.09 | 36500 | 0.1517 | 0.1476 | | 0.785 | 5.16 | 37000 | 0.1526 | 0.1478 | | 0.7936 | 5.23 | 37500 | 0.1489 | 0.1421 | | 0.807 | 5.3 | 38000 | 0.1483 | 0.1420 | | 0.8092 | 5.37 | 38500 | 0.1481 | 0.1435 | | 0.793 | 5.44 | 39000 | 0.1503 | 0.1438 | | 0.814 | 5.51 | 39500 | 0.1495 | 0.1480 | | 0.807 | 5.58 | 40000 | 0.1472 | 0.1424 | | 0.7913 | 5.65 | 40500 | 0.1471 | 0.1422 | | 0.7844 | 5.72 | 41000 | 0.1473 | 0.1422 | | 0.7888 | 5.79 | 41500 | 0.1445 | 0.1385 | | 0.7806 | 5.86 | 42000 | 0.1435 | 0.1394 | | 0.7773 | 5.93 | 42500 | 0.1461 | 0.1424 | | 0.786 | 6.0 | 43000 | 0.1450 | 0.1413 | | 0.7784 | 6.07 | 43500 | 0.1463 | 0.1424 | | 0.7937 | 6.14 | 44000 | 0.1438 | 0.1386 | | 0.7738 | 6.21 | 44500 | 0.1437 | 0.1383 | | 0.7728 | 6.28 | 45000 | 0.1424 | 0.1371 | | 0.7681 | 6.35 | 45500 | 0.1416 | 0.1376 | | 0.776 | 6.42 | 46000 | 0.1415 | 0.1380 | | 0.7773 | 6.49 | 46500 | 0.1416 | 0.1371 | | 0.7692 | 6.56 | 47000 | 0.1398 | 0.1345 | | 0.7642 | 6.62 | 47500 | 0.1381 | 0.1341 | | 0.7692 | 6.69 | 48000 | 0.1392 | 0.1334 | | 0.7667 | 6.76 | 48500 | 0.1392 | 0.1348 | | 0.7712 | 6.83 | 49000 | 0.1398 | 0.1333 | | 0.7628 | 6.9 | 49500 | 0.1392 | 0.1344 | | 0.7622 | 6.97 | 50000 | 0.1377 | 0.1329 | | 0.7639 | 7.04 | 50500 | 0.1361 | 0.1316 | | 0.742 | 7.11 | 51000 | 0.1376 | 0.1327 | | 0.7526 | 7.18 | 51500 | 0.1387 | 0.1342 | | 0.7606 | 7.25 | 52000 | 0.1363 | 0.1316 | | 0.7626 | 7.32 | 52500 | 0.1365 | 0.1313 | | 0.752 | 7.39 | 53000 | 0.1354 | 0.1309 | | 0.7562 | 7.46 | 53500 | 0.1362 | 0.1312 | | 0.7557 | 7.53 | 54000 | 0.1358 | 0.1325 | | 0.7588 | 7.6 | 54500 | 0.1343 | 0.1311 | | 0.7485 | 7.67 | 55000 | 0.1346 | 0.1301 | | 0.7466 | 7.74 | 55500 | 0.1354 | 0.1314 | | 0.7558 | 7.81 | 56000 | 0.1359 | 0.1325 | | 0.7578 | 7.88 | 56500 | 0.1363 | 0.1334 | | 0.7411 | 7.95 | 57000 | 0.1346 | 0.1301 | | 0.7478 | 8.02 | 57500 | 0.1355 | 0.1305 | | 0.7451 | 8.09 | 58000 | 0.1349 | 0.1302 | | 0.7383 | 8.16 | 58500 | 0.1349 | 0.1294 | | 0.7482 | 8.23 | 59000 | 0.1341 | 0.1293 | | 0.742 | 8.3 | 59500 | 0.1338 | 0.1296 | | 0.7343 | 8.37 | 60000 | 0.1348 | 0.1307 | | 0.7385 | 8.44 | 60500 | 0.1324 | 0.1282 | | 0.7567 | 8.51 | 61000 | 0.1334 | 0.1281 | | 0.7342 | 8.58 | 61500 | 0.1338 | 0.1289 | | 0.7401 | 8.65 | 62000 | 0.1331 | 0.1285 | | 0.7362 | 8.72 | 62500 | 0.1329 | 0.1283 | | 0.7241 | 8.79 | 63000 | 0.1323 | 0.1277 | | 0.7244 | 8.86 | 63500 | 0.1317 | 0.1269 | | 0.7274 | 8.93 | 64000 | 0.1308 | 0.1260 | | 0.7411 | 9.0 | 64500 | 0.1309 | 0.1256 | | 0.7255 | 9.07 | 65000 | 0.1316 | 0.1265 | | 0.7406 | 9.14 | 65500 | 0.1315 | 0.1270 | | 0.7418 | 9.21 | 66000 | 0.1315 | 0.1269 | | 0.7301 | 9.27 | 66500 | 0.1315 | 0.1273 | | 0.7248 | 9.34 | 67000 | 0.1323 | 0.1274 | | 0.7423 | 9.41 | 67500 | 0.1309 | 0.1267 | | 0.7152 | 9.48 | 68000 | 0.1312 | 0.1271 | | 0.7295 | 9.55 | 68500 | 0.1306 | 0.1262 | | 0.7231 | 9.62 | 69000 | 0.1308 | 0.1263 | | 0.7344 | 9.69 | 69500 | 0.1313 | 0.1267 | | 0.7264 | 9.76 | 70000 | 0.1305 | 0.1263 | | 0.7309 | 9.83 | 70500 | 0.1303 | 0.1262 | | 0.73 | 9.9 | 71000 | 0.1303 | 0.1261 | | 0.7353 | 9.97 | 71500 | 0.1304 | 0.1260 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
tr3cks/bert-ner-es
0c770676060b3cfb81b5a5a3a90c236c1ebc3b4b
2021-05-20T08:04:44.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tr3cks
null
tr3cks/bert-ner-es
11
null
transformers
11,152
Entry not found
uclanlp/plbart-javascript-en_XX
cd6ccba4322ae1156f46cd66a4cd347396e5f0c6
2021-11-09T17:09:03.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-javascript-en_XX
11
null
transformers
11,153
Entry not found
uclanlp/plbart-single_task-interpreted-summarization
8b8b4c7eceedacbce73ce35db33581297f3cf6d0
2022-03-02T07:18:17.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-interpreted-summarization
11
null
transformers
11,154
Entry not found
unicamp-dl/ptt5-small-t5-vocab
f9b94c40e21ae3437745254f09cd05c22d9f383c
2021-06-23T14:35:18.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "pt", "dataset:brWaC", "transformers", "tensorflow", "pt-br", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/ptt5-small-t5-vocab
11
null
transformers
11,155
--- language: pt license: mit tags: - t5 - pytorch - tensorflow - pt - pt-br datasets: - brWaC widget: - text: "Texto de exemplo em português" inference: false --- # Portuguese T5 (aka "PTT5") ## Introduction PTT5 is a T5 model pretrained in the BrWac corpus, a large collection of web pages in Portuguese, improving T5's performance on Portuguese sentence similarity and entailment tasks. It's available in three sizes (small, base and large) and two vocabularies (Google's T5 original and ours, trained on Portuguese Wikipedia). For further information or requests, please go to [PTT5 repository](https://github.com/unicamp-dl/PTT5). ## Available models | Model | Size | #Params | Vocabulary | | :-: | :-: | :-: | :-: | | [unicamp-dl/ptt5-small-t5-vocab](https://huggingface.co/unicamp-dl/ptt5-small-t5-vocab) | small | 60M | Google's T5 | | [unicamp-dl/ptt5-base-t5-vocab](https://huggingface.co/unicamp-dl/ptt5-base-t5-vocab) | base | 220M | Google's T5 | | [unicamp-dl/ptt5-large-t5-vocab](https://huggingface.co/unicamp-dl/ptt5-large-t5-vocab) | large | 740M | Google's T5 | | [unicamp-dl/ptt5-small-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-small-portuguese-vocab) | small | 60M | Portuguese | | **[unicamp-dl/ptt5-base-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab)** **(Recommended)** | **base** | **220M** | **Portuguese** | | [unicamp-dl/ptt5-large-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-large-portuguese-vocab) | large | 740M | Portuguese | ## Usage ```python # Tokenizer from transformers import T5Tokenizer # PyTorch (bare model, baremodel + language modeling head) from transformers import T5Model, T5ForConditionalGeneration # Tensorflow (bare model, baremodel + language modeling head) from transformers import TFT5Model, TFT5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-portuguese-vocab' tokenizer = T5Tokenizer.from_pretrained(model_name) # PyTorch model_pt = T5ForConditionalGeneration.from_pretrained(model_name) # TensorFlow model_tf = TFT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use PTT5, please cite: @article{ptt5_2020, title={PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data}, author={Carmo, Diedre and Piau, Marcos and Campiotti, Israel and Nogueira, Rodrigo and Lotufo, Roberto}, journal={arXiv preprint arXiv:2008.09144}, year={2020} }
usami/distilbert-base-uncased-finetuned-squad
7789301904b54425cc675ba9d993641aff5057b9
2021-11-22T05:00:14.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
usami
null
usami/distilbert-base-uncased-finetuned-squad
11
null
transformers
11,156
Entry not found
vasudevgupta/bigbird-pegasus-large-arxiv
6c6fe12337ca6163a7c037a98c5b9014aa0ffb8b
2021-05-04T11:12:15.000Z
[ "pytorch", "bigbird_pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vasudevgupta
null
vasudevgupta/bigbird-pegasus-large-arxiv
11
null
transformers
11,157
Moved here: https://huggingface.co/google/bigbird-pegasus-large-arxiv
vera-pro/bert-mention-en
7f98a5ac4cabea8afd6e7b3bc99279d8f15a0ffe
2021-05-20T08:54:13.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
vera-pro
null
vera-pro/bert-mention-en
11
null
transformers
11,158
Entry not found
vera-pro/bert-mention-fr
44540bb9306318fb86dbcda06a88a8d6f5bd3b1a
2021-05-20T08:55:28.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
vera-pro
null
vera-pro/bert-mention-fr
11
null
transformers
11,159
Entry not found
vesteinn/XLMR-ENIS-finetuned-ner
2bc9cc721e44344f1453be39fada67e095160755
2021-09-28T20:43:19.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "en", "is", "dataset:conll2003", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
vesteinn
null
vesteinn/XLMR-ENIS-finetuned-ner
11
1
transformers
11,160
--- license: agpl-3.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy language: - en - is model-index: - name: XLMR-ENIS-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9398313331170938 - name: Recall type: recall value: 0.9517943664285128 - name: F1 type: f1 value: 0.9457750214207026 - name: Accuracy type: accuracy value: 0.9853686150987764 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0671 - Precision: 0.9398 - Recall: 0.9518 - F1: 0.9458 - Accuracy: 0.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2825 | 1.0 | 878 | 0.0712 | 0.9220 | 0.9379 | 0.9299 | 0.9815 | | 0.0688 | 2.0 | 1756 | 0.0689 | 0.9354 | 0.9477 | 0.9415 | 0.9839 | | 0.039 | 3.0 | 2634 | 0.0671 | 0.9398 | 0.9518 | 0.9458 | 0.9854 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
vinhood/chefberto-italian-cased
13845093331d54458b4508c66a35ead0ff7e466f
2022-01-02T20:24:22.000Z
[ "pytorch", "bert", "fill-mask", "it", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
vinhood
null
vinhood/chefberto-italian-cased
11
null
transformers
11,161
--- language: it license: mit widget: - text: "La pasta più semplice è aglio, [MASK] e peperoncino." - text: "Per fare la carbonara servono le [MASK]." - text: "A tavola non può mancare del buon [MASK]." --- # ChefBERTo 👨‍🍳 **chefberto-italian-cased** is a BERT model obtained by MLM adaptive-tuning [**bert-base-italian-xxl-cased**](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on Italian cooking recipes, approximately 50k sentences (2.6M words). **Author:** Cristiano De Nobili ([@denocris](https://twitter.com/denocris) on Twitter, [LinkedIn](https://www.linkedin.com/in/cristiano-de-nobili/)) for [VINHOOD](https://www.vinhood.com/en/). <p> <img src="https://drive.google.com/uc?export=view&id=1u5aY2wKu-X5DAzbOq7rsgGFW5_lGUAQn" width="400"> </br> </p> # Perplexity Test set: 9k sentences about food. | Model | Perplexity | | ------ | ------ | | chefberto-italian-cased | **1.84** | | bert-base-italian-xxl-cased | 2.85 | # Usage ```python from transformers import AutoModel, AutoTokenizer model_name = "vinhood/chefberto-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ```
voidful/tts_hubert_cluster_bart_base
8975f9dcf1a9b02fa92cb6e455a9086432add72f
2021-08-11T07:19:13.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:librispeech", "transformers", "audio", "automatic-speech-recognition", "speech", "asr", "hubert", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/tts_hubert_cluster_bart_base
11
null
transformers
11,162
--- language: en datasets: - librispeech tags: - audio - automatic-speech-recognition - speech - asr - hubert license: apache-2.0 metrics: - wer - cer --- # voidful/tts_hubert_cluster_bart_base ## Usage ````python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("voidful/tts_hubert_cluster_bart_base") model = AutoModelForSeq2SeqLM.from_pretrained("voidful/tts_hubert_cluster_bart_base") ```` generate output ```python gen_output = model.generate(input_ids=tokenizer("going along slushy country roads and speaking to damp audience in drifty school rooms day after day for a fortnight he'll have to put in an appearance at some place of worship on sunday morning and he can come to ask immediately afterwards",return_tensors='pt').input_ids, max_length=1024) print(tokenizer.decode(gen_output[0], skip_special_tokens=True)) ``` ## Result `:vtok402::vtok329::vtok329::vtok75::vtok75::vtok75::vtok44::vtok150::vtok150::vtok222::vtok280::vtok280::vtok138::vtok409::vtok409::vtok409::vtok46::vtok441:`
yoshitomo-matsubara/bert-base-uncased-wnli_from_bert-large-uncased-wnli
e77239d25f8338eafcda2b47ad57243d8bb44061
2021-06-03T05:12:16.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:wnli", "transformers", "wnli", "glue", "kd", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-base-uncased-wnli_from_bert-large-uncased-wnli
11
null
transformers
11,163
--- language: en tags: - bert - wnli - glue - kd - torchdistill license: apache-2.0 datasets: - wnli metrics: - accuracy --- `bert-base-uncased` fine-tuned on WNLI dataset, using fine-tuned `bert-large-uncased` as a teacher model, [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_kd_and_submission.ipynb) for knowledge distillation. The training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/wnli/kd/bert_base_uncased_from_bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **78.9**.
yoshitomo-matsubara/bert-large-uncased-stsb
59d22c2cb70a5fae4928263c42e2f74762418a67
2021-05-29T21:34:30.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:stsb", "transformers", "stsb", "glue", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-large-uncased-stsb
11
null
transformers
11,164
--- language: en tags: - bert - stsb - glue - torchdistill license: apache-2.0 datasets: - stsb metrics: - pearson correlation - spearman correlation --- `bert-large-uncased` fine-tuned on STS-B dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb). The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/stsb/mse/bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **80.2**.
z6228574/codegpt
38be69baf21c2ed42e7df0c35c70369f6f1bcbaf
2021-07-07T10:45:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
z6228574
null
z6228574/codegpt
11
null
transformers
11,165
Entry not found
zanelim/singbert-large-sg
03a9bc840176ce94408fa77378f002e8373927a1
2021-05-20T09:36:17.000Z
[ "pytorch", "tf", "jax", "bert", "pretraining", "en", "dataset:reddit singapore, malaysia", "dataset:hardwarezone", "transformers", "singapore", "sg", "singlish", "malaysia", "ms", "manglish", "bert-large-uncased", "license:mit" ]
null
false
zanelim
null
zanelim/singbert-large-sg
11
1
transformers
11,166
--- language: en tags: - singapore - sg - singlish - malaysia - ms - manglish - bert-large-uncased license: mit datasets: - reddit singapore, malaysia - hardwarezone widget: - text: "kopi c siew [MASK]" - text: "die [MASK] must try" --- # Model name SingBert Large - Bert for Singlish (SG) and Manglish (MY). ## Model description Similar to [SingBert](https://huggingface.co/zanelim/singbert) but the large version, which was initialized from [BERT large uncased (whole word masking)](https://github.com/google-research/bert#pre-trained-models), with pre-training finetuned on [singlish](https://en.wikipedia.org/wiki/Singlish) and [manglish](https://en.wikipedia.org/wiki/Manglish) data. ## Intended uses & limitations #### How to use ```python >>> from transformers import pipeline >>> nlp = pipeline('fill-mask', model='zanelim/singbert-large-sg') >>> nlp("kopi c siew [MASK]") [{'sequence': '[CLS] kopi c siew dai [SEP]', 'score': 0.9003700017929077, 'token': 18765, 'token_str': 'dai'}, {'sequence': '[CLS] kopi c siew mai [SEP]', 'score': 0.0779474675655365, 'token': 14736, 'token_str': 'mai'}, {'sequence': '[CLS] kopi c siew. [SEP]', 'score': 0.0032227332703769207, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] kopi c siew bao [SEP]', 'score': 0.0017727474914863706, 'token': 25945, 'token_str': 'bao'}, {'sequence': '[CLS] kopi c siew peng [SEP]', 'score': 0.0012526646023616195, 'token': 26473, 'token_str': 'peng'}] >>> nlp("one teh c siew dai, and one kopi [MASK]") [{'sequence': '[CLS] one teh c siew dai, and one kopi. [SEP]', 'score': 0.5249741077423096, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] one teh c siew dai, and one kopi o [SEP]', 'score': 0.27349168062210083, 'token': 1051, 'token_str': 'o'}, {'sequence': '[CLS] one teh c siew dai, and one kopi peng [SEP]', 'score': 0.057190295308828354, 'token': 26473, 'token_str': 'peng'}, {'sequence': '[CLS] one teh c siew dai, and one kopi c [SEP]', 'score': 0.04022320732474327, 'token': 1039, 'token_str': 'c'}, {'sequence': '[CLS] one teh c siew dai, and one kopi? [SEP]', 'score': 0.01191170234233141, 'token': 1029, 'token_str': '?'}] >>> nlp("die [MASK] must try") [{'sequence': '[CLS] die die must try [SEP]', 'score': 0.9921030402183533, 'token': 3280, 'token_str': 'die'}, {'sequence': '[CLS] die also must try [SEP]', 'score': 0.004993876442313194, 'token': 2036, 'token_str': 'also'}, {'sequence': '[CLS] die liao must try [SEP]', 'score': 0.000317625846946612, 'token': 727, 'token_str': 'liao'}, {'sequence': '[CLS] die still must try [SEP]', 'score': 0.0002260878391098231, 'token': 2145, 'token_str': 'still'}, {'sequence': '[CLS] die i must try [SEP]', 'score': 0.00016935862367972732, 'token': 1045, 'token_str': 'i'}] >>> nlp("dont play [MASK] leh") [{'sequence': '[CLS] dont play play leh [SEP]', 'score': 0.9079819321632385, 'token': 2377, 'token_str': 'play'}, {'sequence': '[CLS] dont play punk leh [SEP]', 'score': 0.006846973206847906, 'token': 7196, 'token_str': 'punk'}, {'sequence': '[CLS] dont play games leh [SEP]', 'score': 0.004041737411171198, 'token': 2399, 'token_str': 'games'}, {'sequence': '[CLS] dont play politics leh [SEP]', 'score': 0.003728888463228941, 'token': 4331, 'token_str': 'politics'}, {'sequence': '[CLS] dont play cheat leh [SEP]', 'score': 0.0032805048394948244, 'token': 21910, 'token_str': 'cheat'}] >>> nlp("confirm plus [MASK]") {'sequence': '[CLS] confirm plus chop [SEP]', 'score': 0.9749826192855835, 'token': 24494, 'token_str': 'chop'}, {'sequence': '[CLS] confirm plus chopped [SEP]', 'score': 0.017554156482219696, 'token': 24881, 'token_str': 'chopped'}, {'sequence': '[CLS] confirm plus minus [SEP]', 'score': 0.002725469646975398, 'token': 15718, 'token_str': 'minus'}, {'sequence': '[CLS] confirm plus guarantee [SEP]', 'score': 0.000900257145985961, 'token': 11302, 'token_str': 'guarantee'}, {'sequence': '[CLS] confirm plus one [SEP]', 'score': 0.0004384620988275856, 'token': 2028, 'token_str': 'one'}] >>> nlp("catch no [MASK]") [{'sequence': '[CLS] catch no ball [SEP]', 'score': 0.9381157159805298, 'token': 3608, 'token_str': 'ball'}, {'sequence': '[CLS] catch no balls [SEP]', 'score': 0.060842301696538925, 'token': 7395, 'token_str': 'balls'}, {'sequence': '[CLS] catch no fish [SEP]', 'score': 0.00030917322146706283, 'token': 3869, 'token_str': 'fish'}, {'sequence': '[CLS] catch no breath [SEP]', 'score': 7.552534952992573e-05, 'token': 3052, 'token_str': 'breath'}, {'sequence': '[CLS] catch no tail [SEP]', 'score': 4.208395694149658e-05, 'token': 5725, 'token_str': 'tail'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('zanelim/singbert-large-sg') model = BertModel.from_pretrained("zanelim/singbert-large-sg") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained("zanelim/singbert-large-sg") model = TFBertModel.from_pretrained("zanelim/singbert-large-sg") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` #### Limitations and bias This model was finetuned on colloquial Singlish and Manglish corpus, hence it is best applied on downstream tasks involving the main constituent languages- english, mandarin, malay. Also, as the training data is mainly from forums, beware of existing inherent bias. ## Training data Colloquial singlish and manglish (both are a mixture of English, Mandarin, Tamil, Malay, and other local dialects like Hokkien, Cantonese or Teochew) corpus. The corpus is collected from subreddits- `r/singapore` and `r/malaysia`, and forums such as `hardwarezone`. ## Training procedure Initialized with [bert large uncased (whole word masking)](https://github.com/google-research/bert#pre-trained-models) vocab and checkpoints (pre-trained weights). Top 1000 custom vocab tokens (non-overlapped with original bert vocab) were further extracted from training data and filled into unused tokens in original bert vocab. Pre-training was further finetuned on training data with the following hyperparameters * train_batch_size: 512 * max_seq_length: 128 * num_train_steps: 300000 * num_warmup_steps: 5000 * learning_rate: 2e-5 * hardware: TPU v3-8
wietsedv/xlm-roberta-base-ft-udpos28-zh
8191f0f4a70f7c127e222490c1b1e8e61ff4ff4d
2022-02-25T09:59:40.000Z
[ "pytorch", "xlm-roberta", "token-classification", "zh", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-zh
11
null
transformers
11,167
--- language: - zh license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-zh results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 60.2 - type: accuracy name: Dutch Test accuracy value: 56.9 - type: accuracy name: German Test accuracy value: 57.5 - type: accuracy name: Italian Test accuracy value: 57.3 - type: accuracy name: French Test accuracy value: 54.1 - type: accuracy name: Spanish Test accuracy value: 54.4 - type: accuracy name: Russian Test accuracy value: 69.6 - type: accuracy name: Swedish Test accuracy value: 61.8 - type: accuracy name: Norwegian Test accuracy value: 60.3 - type: accuracy name: Danish Test accuracy value: 62.6 - type: accuracy name: Low Saxon Test accuracy value: 29.6 - type: accuracy name: Akkadian Test accuracy value: 16.3 - type: accuracy name: Armenian Test accuracy value: 70.7 - type: accuracy name: Welsh Test accuracy value: 52.3 - type: accuracy name: Old East Slavic Test accuracy value: 50.1 - type: accuracy name: Albanian Test accuracy value: 59.0 - type: accuracy name: Slovenian Test accuracy value: 52.9 - type: accuracy name: Guajajara Test accuracy value: 20.3 - type: accuracy name: Kurmanji Test accuracy value: 66.5 - type: accuracy name: Turkish Test accuracy value: 69.6 - type: accuracy name: Finnish Test accuracy value: 70.3 - type: accuracy name: Indonesian Test accuracy value: 65.8 - type: accuracy name: Ukrainian Test accuracy value: 69.4 - type: accuracy name: Polish Test accuracy value: 65.3 - type: accuracy name: Portuguese Test accuracy value: 60.6 - type: accuracy name: Kazakh Test accuracy value: 76.2 - type: accuracy name: Latin Test accuracy value: 60.5 - type: accuracy name: Old French Test accuracy value: 19.5 - type: accuracy name: Buryat Test accuracy value: 56.2 - type: accuracy name: Kaapor Test accuracy value: 10.4 - type: accuracy name: Korean Test accuracy value: 63.2 - type: accuracy name: Estonian Test accuracy value: 70.4 - type: accuracy name: Croatian Test accuracy value: 61.2 - type: accuracy name: Gothic Test accuracy value: 5.4 - type: accuracy name: Swiss German Test accuracy value: 36.2 - type: accuracy name: Assyrian Test accuracy value: 17.0 - type: accuracy name: North Sami Test accuracy value: 22.9 - type: accuracy name: Naija Test accuracy value: 21.5 - type: accuracy name: Latvian Test accuracy value: 74.1 - type: accuracy name: Chinese Test accuracy value: 93.4 - type: accuracy name: Tagalog Test accuracy value: 59.1 - type: accuracy name: Bambara Test accuracy value: 21.0 - type: accuracy name: Lithuanian Test accuracy value: 73.8 - type: accuracy name: Galician Test accuracy value: 56.7 - type: accuracy name: Vietnamese Test accuracy value: 59.6 - type: accuracy name: Greek Test accuracy value: 58.4 - type: accuracy name: Catalan Test accuracy value: 52.2 - type: accuracy name: Czech Test accuracy value: 64.6 - type: accuracy name: Erzya Test accuracy value: 39.4 - type: accuracy name: Bhojpuri Test accuracy value: 42.7 - type: accuracy name: Thai Test accuracy value: 65.6 - type: accuracy name: Marathi Test accuracy value: 74.2 - type: accuracy name: Basque Test accuracy value: 66.0 - type: accuracy name: Slovak Test accuracy value: 66.0 - type: accuracy name: Kiche Test accuracy value: 23.1 - type: accuracy name: Yoruba Test accuracy value: 16.4 - type: accuracy name: Warlpiri Test accuracy value: 29.6 - type: accuracy name: Tamil Test accuracy value: 82.6 - type: accuracy name: Maltese Test accuracy value: 13.7 - type: accuracy name: Ancient Greek Test accuracy value: 65.2 - type: accuracy name: Icelandic Test accuracy value: 63.4 - type: accuracy name: Mbya Guarani Test accuracy value: 23.2 - type: accuracy name: Urdu Test accuracy value: 53.8 - type: accuracy name: Romanian Test accuracy value: 61.2 - type: accuracy name: Persian Test accuracy value: 59.6 - type: accuracy name: Apurina Test accuracy value: 24.7 - type: accuracy name: Japanese Test accuracy value: 56.4 - type: accuracy name: Hungarian Test accuracy value: 59.9 - type: accuracy name: Hindi Test accuracy value: 59.4 - type: accuracy name: Classical Chinese Test accuracy value: 58.2 - type: accuracy name: Komi Permyak Test accuracy value: 34.7 - type: accuracy name: Faroese Test accuracy value: 55.9 - type: accuracy name: Sanskrit Test accuracy value: 19.0 - type: accuracy name: Livvi Test accuracy value: 52.8 - type: accuracy name: Arabic Test accuracy value: 64.2 - type: accuracy name: Wolof Test accuracy value: 17.6 - type: accuracy name: Bulgarian Test accuracy value: 64.2 - type: accuracy name: Akuntsu Test accuracy value: 16.5 - type: accuracy name: Makurap Test accuracy value: 6.8 - type: accuracy name: Kangri Test accuracy value: 38.9 - type: accuracy name: Breton Test accuracy value: 49.9 - type: accuracy name: Telugu Test accuracy value: 82.8 - type: accuracy name: Cantonese Test accuracy value: 80.6 - type: accuracy name: Old Church Slavonic Test accuracy value: 41.0 - type: accuracy name: Karelian Test accuracy value: 60.5 - type: accuracy name: Upper Sorbian Test accuracy value: 47.0 - type: accuracy name: South Levantine Arabic Test accuracy value: 59.7 - type: accuracy name: Komi Zyrian Test accuracy value: 29.4 - type: accuracy name: Irish Test accuracy value: 49.7 - type: accuracy name: Nayini Test accuracy value: 50.0 - type: accuracy name: Munduruku Test accuracy value: 10.6 - type: accuracy name: Manx Test accuracy value: 22.3 - type: accuracy name: Skolt Sami Test accuracy value: 24.9 - type: accuracy name: Afrikaans Test accuracy value: 58.6 - type: accuracy name: Old Turkish Test accuracy value: 45.7 - type: accuracy name: Tupinamba Test accuracy value: 20.7 - type: accuracy name: Belarusian Test accuracy value: 69.7 - type: accuracy name: Serbian Test accuracy value: 61.9 - type: accuracy name: Moksha Test accuracy value: 35.1 - type: accuracy name: Western Armenian Test accuracy value: 67.2 - type: accuracy name: Scottish Gaelic Test accuracy value: 44.6 - type: accuracy name: Khunsari Test accuracy value: 44.6 - type: accuracy name: Hebrew Test accuracy value: 82.3 - type: accuracy name: Uyghur Test accuracy value: 71.6 - type: accuracy name: Chukchi Test accuracy value: 32.1 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Chinese This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-zh") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-zh") ```
SuperAI2-Machima/mt5-small-thai-qg-v2
ba0dfc3b8a8699fef51c7722ad84f29f9c9e80fb
2022-03-01T14:53:52.000Z
[ "pytorch", "mt5", "text2text-generation", "thai", "th", "dataset:NSC2018", "dataset:wiki-documents-nsc", "dataset:ThaiQACorpus-DevelopmentDataset", "transformers", "question-generation", "license:mit", "autotrain_compatible" ]
text2text-generation
false
SuperAI2-Machima
null
SuperAI2-Machima/mt5-small-thai-qg-v2
11
2
transformers
11,168
--- tags: - question-generation language: - thai - th datasets: - NSC2018 - wiki-documents-nsc - ThaiQACorpus-DevelopmentDataset widget: - text: "โรงเรียนบ้านขุนด่าน ตั้งอยู่ที่ขุนด่าน จ.นครนายก </s>" example_title: "Example 01" - text: "พลเอก ประยุทธ์ จันทร์โอชา (เกิด 21 มีนาคม พ.ศ. 2497) ชื่อเล่น ตู่ เป็นนักการเมืองและอดีตนายทหารบกชาวไทย </s>" example_title: "Example 02" - text: "วันที่ 1 กันยายน 2550 12:00 น. ตำรวจภูธรจ.บุรีรัมย์บุกตรวจยึดไม้แปรรูปหวงห้ามกว่า 80 แผ่น </s>" example_title: "Example 03" - text: "กรุงเทพมหานคร เป็นศูนย์กลางการปกครอง การศึกษา การคมนาคมขนส่ง การเงินการธนาคาร การพาณิชย์ การสื่อสาร และความเจริญของประเทศ ตั้งอยู่บนสามเหลี่ยมปากแม่น้ำเจ้าพระยา มีแม่น้ำเจ้าพระยาไหลผ่านและแบ่งเมืองออกเป็น 2 ฝั่ง คือ ฝั่งพระนครและฝั่งธนบุรี กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. </s>" example_title: "Example 04" license: mit --- [SuperAI Engineer Season 2](https://superai.aiat.or.th/) , [Machima](https://machchima.superai.me/) [Google's mT5](https://github.com/google-research/multilingual-t5) , [Pollawat](https://huggingface.co/Pollawat/mt5-small-thai-qg) ```python from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config model = T5ForConditionalGeneration.from_pretrained('SuperAI2-Machima/mt5-small-thai-qg-v2') tokenizer = T5Tokenizer.from_pretrained('SuperAI2-Machima/mt5-small-thai-qg-v2') source_text = 'บุกยึดไม้เถื่อน อดีต ส.ส.บุรีรัมย์ เตรียมสร้างคฤหาสน์ทรงไทย 1 กันยายน 2550 12:00 น. ตำรวจภูธรจ.บุรีรัมย์บุกตรวจยึดไม้แปรรูปหวงห้ามกว่า 80 แผ่น' print('Predicted Summary Text : ') tokenized_text = tokenizer.encode(source_text, return_tensors="pt").to(device) summary_ids = model.generate(tokenized_text, num_beams=4, no_repeat_ngram_size=2, max_length=50, early_stopping=True) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(output) #Predicted Summary Text : #answer: 80 แผ่น question: ตํารวจภูธรจ.บุรีรัมย์บุกตรวจยึดไม้แปรรูปหวงห้ามกว่ากี่แผ่น ```
mrm8488/biomedtra-small-es
e48b9360e1b3a886851a0c3fff5f07d67963a1e6
2022-03-30T21:07:50.000Z
[ "pytorch", "tensorboard", "electra", "pretraining", "es", "dataset:cowese", "transformers", "Spanish", "Electra", "Bio", "Medical" ]
null
false
mrm8488
null
mrm8488/biomedtra-small-es
11
2
transformers
11,169
--- language: es tags: - Spanish - Electra - Bio - Medical datasets: - cowese --- ## 🦠 BIOMEDtra 🏥 **BIOMEDtra** (small) is an Electra like model (discriminator in this case) trained on [Spanish Biomedical Crawled Corpus](https://zenodo.org/record/5510033#.Yhdk1ZHMLJx). As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB): **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ## Training details The model was trained using the Electra base code for 3 days on 1 GPU (Tesla V100 16GB). ## Dataset details The largest Spanish biomedical and heath corpus to date gathered from a massive Spanish health domain crawler over more than 3,000 URLs were downloaded and preprocessed. The collected data have been preprocessed to produce the **CoWeSe** (Corpus Web Salud Español) resource, a large-scale and high-quality corpus intended for biomedical and health NLP in Spanish. ## Model details ⚙ |Param| # Value| |-----|--------| |Layers| 12 | |Hidden | 256 | |Params| 14M | ## Evaluation metrics (for discriminator) 🧾 |Metric | # Score | |-------|---------| |Accuracy| 0.9561| |Precision| 0.808| |Recall | 0.531 | |AUC | 0.949| ## Benchmarks 🔨 WIP 🚧 ## How to use the discriminator in `transformers` ```py from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("mrm8488/biomedtra-small-es") tokenizer = ElectraTokenizerFast.from_pretrained("mrm8488/biomedtra-small-es") sentence = "Los españoles tienden a sufir déficit de vitamina c" fake_sentence = "Los españoles tienden a déficit sufrir de vitamina c" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % prediction, end="") for prediction in predictions.tolist()] ``` ## Acknowledgments TBA ## Citation If you want to cite this model you can use this: ```bibtex @misc{mromero2022biomedtra, title={Spanish BioMedical Electra (small)}, author={Romero, Manuel}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/mrm8488/biomedtra-small-es}, year={2022} } ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
inovex/multi2convai-corona-en-bert
5e862ff6f37fe603efa642cefb4e7538ddce0898
2022-03-01T09:20:04.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "license:mit" ]
text-classification
false
inovex
null
inovex/multi2convai-corona-en-bert
11
null
transformers
11,170
--- tags: - text-classification - pytorch - transformers widget: - text: "Do I need to wear a mask?" license: mit language: en --- # Multi2ConvAI-Corona: finetuned Bert for English This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Corona (more details about our use cases: ([en](https://multi2convai/en/blog/use-cases), [de](https://multi2convai/en/blog/use-cases))) - language: English (en) - model type: finetuned Bert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-logistics-en-bert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-logistics-en-bert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
ghadeermobasher/BC5CDR-Disease-Modified_BiomedNLP-PubMedBERT-base-uncased-abstract
fa7196fb87e9f0a57b50ef596b09dcdf9f62d9b7
2022-02-25T18:29:23.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Disease-Modified_BiomedNLP-PubMedBERT-base-uncased-abstract
11
null
transformers
11,171
Entry not found
Jackett/subject_classifier
e84d02b8f8251e1ce439d589b8fe2a15ce6cfefc
2022-02-27T04:57:39.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Jackett
null
Jackett/subject_classifier
11
null
transformers
11,172
Label association {'Biology': 0, 'Physics': 1, 'Chemistry': 2, 'Maths': 3}
facebook/wav2vec2-base-en-voxpopuli-v2
f464d59d152a11106e62cecb3b3bcdfd8f9d1b3f
2022-02-27T13:13:03.000Z
[ "pytorch", "wav2vec2", "pretraining", "en", "dataset:voxpopuli", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli-v2", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-en-voxpopuli-v2
11
null
transformers
11,173
--- language: en tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **en** on **24.1k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **en**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
azizbarank/mbert-finetuned-azerbaijani-ner
fbba54b7deeb4a5bcce5ca5d33f7c5f776fa084e
2022-03-01T00:58:02.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
azizbarank
null
azizbarank/mbert-finetuned-azerbaijani-ner
11
null
transformers
11,174
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: mbert-finetuned-azerbaijani-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: az metrics: - name: Precision type: precision value: 0.8898541731306236 - name: Recall type: recall value: 0.915416533673795 - name: F1 type: f1 value: 0.9024543738200126 - name: Accuracy type: accuracy value: 0.966948310139165 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert-finetuned-azerbaijani-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.1385 - Precision: 0.8899 - Recall: 0.9154 - F1: 0.9025 - Accuracy: 0.9669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2928 | 1.0 | 625 | 0.1415 | 0.8584 | 0.8918 | 0.8748 | 0.9595 | | 0.1254 | 2.0 | 1250 | 0.1335 | 0.8875 | 0.9119 | 0.8996 | 0.9637 | | 0.077 | 3.0 | 1875 | 0.1385 | 0.8899 | 0.9154 | 0.9025 | 0.9669 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
coastalcph/fairlex-scotus-minilm
2df435689d16fdcbaee9d901a122f6100d17cd1d
2022-03-01T13:24:01.000Z
[ "pytorch", "roberta", "fill-mask", "en", "transformers", "legal", "fairlex", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
coastalcph
null
coastalcph/fairlex-scotus-minilm
11
null
transformers
11,175
--- language: en pipeline_tag: fill-mask license: cc-by-nc-sa-4.0 tags: - legal - fairlex widget: - text: "Because the Court granted <mask> before judgment, the Court effectively stands in the shoes of the Court of Appeals and reviews the defendants’ appeals." --- # FairLex: A multilingual benchmark for evaluating fairness in legal text processing We present a benchmark suite of four datasets for evaluating the fairness of pre-trained legal language models and the techniques used to fine-tune them for downstream tasks. Our benchmarks cover four jurisdictions (European Council, USA, Swiss, and Chinese), five languages (English, German, French, Italian and Chinese) and fairness across five attributes (gender, age, nationality/region, language, and legal area). In our experiments, we evaluate pre-trained language models using several group-robust fine-tuning techniques and show that performance group disparities are vibrant in many cases, while none of these techniques guarantee fairness, nor consistently mitigate group disparities. Furthermore, we provide a quantitative and qualitative analysis of our results, highlighting open challenges in the development of robustness methods in legal NLP. --- Ilias Chalkidis, Tommaso Passini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, and Anders Søgaard. 2022. FairLex: A multilingual bench-mark for evaluating fairness in legal text processing. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland. --- ## Pre-training details For the purpose of this work, we release four domain-specific BERT models with continued pre-training on the corpora of the examined datasets (ECtHR, SCOTUS, FSCS, SPC). We train mini-sized BERT models with 6 Transformer blocks, 384 hidden units, and 12 attention heads. We warm-start all models from the public MiniLMv2 (Wang et al., 2021) using the distilled version of RoBERTa (Liu et al., 2019). For the English datasets (ECtHR, SCOTUS) and the one distilled from XLM-R (Conneau et al., 2021) for the rest (trilingual FSCS, and Chinese SPC). ## Models list | Model name | Training corpora | Language | |-----------------------------------|------------------|--------------------| | `coastalcph/fairlex-ecthr-minlm` | ECtHR | `en` | | `coastalcph/fairlex-scotus-minlm` | SCOTUS | `en` | | `coastalcph/fairlex-fscs-minlm` | FSCS | [`de`, `fr`, `it`] | | `coastalcph/fairlex-cail-minlm` | CAIL | `zh` | ## Load Pretrained Model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("coastalcph/fairlex-scotus-minlm") model = AutoModel.from_pretrained("coastalcph/fairlex-scotus-minlm") ``` ## Evaluation on downstream tasks Consider the experiments in the article: _Ilias Chalkidis, Tommaso Passini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, and Anders Søgaard. 2022. Fairlex: A multilingual bench-mark for evaluating fairness in legal text processing. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland._ ## Author - Publication ``` @inproceedings{chalkidis-2022-fairlex, author={Chalkidis, Ilias and Passini, Tommaso and Zhang, Sheng and Tomada, Letizia and Schwemer, Sebastian Felix and Søgaard, Anders}, title={FairLex: A Multilingual Benchmark for Evaluating Fairness in Legal Text Processing}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics}, year={2022}, address={Dublin, Ireland} } ``` Ilias Chalkidis on behalf of [CoAStaL NLP Group](https://coastalcph.github.io) | Github: [@ilias.chalkidis](https://github.com/iliaschalkidis) | Twitter: [@KiddoThe2B](https://twitter.com/KiddoThe2B) |
adit94/relevancy_classifier
e8720d8fd074c4d649e276743b6675832b5b280c
2022-03-02T06:45:18.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
adit94
null
adit94/relevancy_classifier
11
null
transformers
11,176
{'junk': 0, 'relevant': 1}
segments-tobias/segformer-b3-finetuned-segments-sidewalk
c9757006e487c23728d764e475683631d7b296a8
2022-03-08T17:32:09.000Z
[ "pytorch", "segformer", "dataset:segments/sidewalk-semantic", "transformers", "generated_from_trainer", "vision", "image-segmentation", "license:apache-2.0", "model-index" ]
image-segmentation
false
segments-tobias
null
segments-tobias/segformer-b3-finetuned-segments-sidewalk
11
1
transformers
11,177
--- license: apache-2.0 tags: - generated_from_trainer - vision - image-segmentation datasets: - segments/sidewalk-semantic widget: - src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg example_title: Brugge model-index: - name: segformer-b3-finetuned-segments-sidewalk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b3-finetuned-segments-sidewalk This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on the [`sidewalk-semantic`](https://huggingface.co/datasets/segments/sidewalk-semantic) dataset. It achieves the following results on the evaluation set: - Loss: 0.8527 - Miou: 0.4345 - Macc: 0.5079 - Overall Accuracy: 0.8871 - Per Category Iou: [nan, 0.8382620833593052, 0.8876413942052827, 0.6261839847460975, 0.6590417473673477, 0.48228357004057837, 0.0, 0.6202905105623743, 0.748344409080285, 0.39096811362981676, 0.8848513296576286, 0.2415092028297553, 0.0, 0.07068982339740462, 0.41356382978723405, 0.6474134903246308, 0.0, 0.3062052505966587, 0.7704161510118073, 0.16108765491481541, 0.49752934863906867, 0.4734664813860761, 0.09820294554789893, nan, 0.17153699720635862, 0.514555863370054, 0.4660696051735875, 0.08826901031715705, 0.8991007829081079, 0.829742650939299, 0.9612781430019607, 0.01112666737555973, 0.1861992251927429, 0.391388886866003, 0.0] - Per Category Accuracy: [nan, 0.9255583122183136, 0.9555184973850358, 0.8927561553139153, 0.7130378697969978, 0.6275811980710011, 0.0, 0.7474676455043131, 0.8545937449541465, 0.43523520560447965, 0.9672661630501664, 0.28627436744473084, 0.0, 0.0707036205718747, 0.47675012774655084, 0.7689381524189783, 0.0, 0.31600985221674877, 0.9278457312029238, 0.2055231456928555, 0.6363063556709445, 0.5255962863991213, 0.10240946878962942, nan, 0.30514996921453075, 0.6575213496395762, 0.6054551483999336, 0.08830275229357798, 0.9550074747938649, 0.8984159398975186, 0.9823971352874257, 0.013025497748978224, 0.3256981066248004, 0.49491941043060034, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Miou | Macc | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:----------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.4111 | 5.0 | 250 | 0.5342 | 0.3203 | 0.3895 | 0.8534 | [nan, 0.7411544992329885, 0.8587185188919024, 0.5322704558305212, 0.6145803724062279, 0.4207354824823325, 0.0, 0.4207652960849892, 0.6330214639515686, 0.0, 0.8090628889518269, 0.0, 0.0, 0.0, 0.0, 0.5525831345173927, 0.0, 0.0, 0.7449180731329554, 0.0, 0.39030048997684846, 0.5341813036240857, 0.0, nan, 0.0, 0.33603046089798805, 0.0, 0.0, 0.8611153164212525, 0.7580460497843906, 0.9307216449484303, 0.0, 0.12255543837545918, 0.30973651706611804, 0.0] | [nan, 0.865566426722594, 0.9394823497202754, 0.7339862219054845, 0.6960293899277608, 0.579233048631689, 0.0, 0.5226808772686938, 0.8148925583341846, 0.0, 0.954498711658196, 0.0, 0.0, 0.0, 0.0, 0.7453393323599813, 0.0, 0.0, 0.8609332075296946, 0.0, 0.5752897519263941, 0.6257335170644275, 0.0, nan, 0.0, 0.48320796165623753, 0.0, 0.0, 0.9563707209678979, 0.8591391181347248, 0.9690236728180618, 0.0, 0.23234437690377469, 0.43908949309871237, 0.0] | | 0.2527 | 10.0 | 500 | 0.5899 | 0.3521 | 0.4258 | 0.8567 | [nan, 0.7536144931874272, 0.8666514611419747, 0.5791278186302583, 0.5507597043116981, 0.38697553330878387, 0.0, 0.49981379939131665, 0.6547462641660816, 0.006951340615690168, 0.8411064971463371, 0.21915505349651998, 0.0, 0.0, 0.0, 0.5704538365564567, 0.0, 0.0, 0.7601855085224487, 0.12506138175041864, 0.39942757047955846, 0.4668252406895441, 0.0, nan, 0.1030902538148915, 0.3805134719351324, 0.3639179515418502, 0.0, 0.8767798800448732, 0.7800121144818535, 0.9401348565379605, 0.00018008110081004338, 0.16755112790045706, 0.3264804931974313, 0.0] | [nan, 0.90406121258153, 0.933431363952898, 0.7264726392177598, 0.5740020955021516, 0.6563755737609668, 0.0, 0.6039363626224962, 0.8605186066359769, 0.0072522755864722855, 0.9522222704681134, 0.25318546484190657, 0.0, 0.0, 0.0, 0.7265874080033372, 0.0, 0.0, 0.9034801649669348, 0.15050382604742785, 0.6282930136175867, 0.4977144779061467, 0.0, nan, 0.1478142316826458, 0.4757332103391217, 0.43831868678494446, 0.0, 0.9461766367056283, 0.8685344399584078, 0.9696726615409282, 0.00019363628190676414, 0.39697811413925904, 0.4314488757452496, 0.0] | | 0.1643 | 15.0 | 750 | 0.5756 | 0.3745 | 0.4534 | 0.8670 | [nan, 0.7726733036696652, 0.8671375594955328, 0.6103086102682944, 0.6314757371793478, 0.4273275344315441, 0.0, 0.5317600409405491, 0.6720224116289428, 0.16158774132109774, 0.8523694222801956, 0.24038155802861685, 0.0, 0.0, 0.04680851063829787, 0.5899459811865512, 0.0, 0.0, 0.7737178234025645, 0.14913933159903917, 0.4521741438458425, 0.5380504294958312, 0.0, nan, 0.14005003894540563, 0.40247802412573747, 0.41014102702120786, 0.0, 0.8822285387940414, 0.7982006290565458, 0.9485248204807992, 0.0010217644126931384, 0.12182141082818915, 0.3359618308006764, 0.0] | [nan, 0.8685068344016257, 0.9339337963085826, 0.7830275791780654, 0.71311646057369, 0.6411881935971181, 0.0, 0.7043771304992945, 0.8750572549898341, 0.18416833172993907, 0.9605602195211583, 0.301884052709914, 0.0, 0.0, 0.047777210015329585, 0.7549536664580913, 0.0, 0.0, 0.9068618510561295, 0.22672929767406622, 0.5668210000093578, 0.6053490157566916, 0.0, nan, 0.26095083120767, 0.5263161648629628, 0.5264190570939037, 0.0, 0.9540034951620896, 0.8931918202171408, 0.9742561443961733, 0.0012759247861356422, 0.2862606175274747, 0.465761930571415, 0.0] | | 0.1302 | 20.0 | 1000 | 0.6021 | 0.3949 | 0.4802 | 0.8703 | [nan, 0.7801307689107726, 0.8786287731596124, 0.5996414476192669, 0.5791044393247451, 0.40685088294894184, 0.0, 0.5532316603013168, 0.7004119209771223, 0.3567117426846971, 0.8682022390275189, 0.4354632088736135, 0.0, 0.08566271525440265, 0.0, 0.592928092042186, 0.0, 0.07216748768472907, 0.7775334326155094, 0.16241710128130835, 0.46182139479806994, 0.562496456296332, 0.0, nan, 0.17592232145836345, 0.4180433534862313, 0.4040778498609824, 0.0, 0.8871669760617459, 0.8059650048666752, 0.9507085299921569, 0.0116151761673367, 0.16524860560484375, 0.34088472074456944, 0.0] | [nan, 0.901160937374861, 0.9425971578567806, 0.7984110745840901, 0.6312022008440196, 0.6127889140665853, 0.0, 0.6839893129548904, 0.8679197408614445, 0.4606921729692395, 0.9554783385950772, 0.5059353105601336, 0.0, 0.08568361471650239, 0.0, 0.7677860214733371, 0.0, 0.07216748768472907, 0.9086920613558305, 0.26755814834457153, 0.6342091828512193, 0.6617058325161462, 0.0, nan, 0.347809833758466, 0.541995549384712, 0.5421986403581496, 0.0, 0.9485582664128994, 0.9007181197365832, 0.9752496697792675, 0.013976390204770367, 0.39040296284368586, 0.42825081431510703, 0.0] | | 0.1124 | 25.0 | 1250 | 0.5783 | 0.4085 | 0.4818 | 0.8809 | [nan, 0.8123818380472958, 0.8869254012115516, 0.5989965500806077, 0.6513288286982387, 0.45923979621249245, 0.0, 0.551056327882726, 0.7019146834355392, 0.2950008215576734, 0.8706733575298916, 0.3601874581566615, 0.0, 0.10517468206402572, 0.08712413261372398, 0.6136850006388144, 0.0, 0.2600985221674877, 0.7849825834204975, 0.17919511788917702, 0.45289730566932423, 0.5903637402399543, 0.0, nan, 0.18690435558822757, 0.42362687815353783, 0.43259719089833193, 0.0, 0.8841707465292419, 0.8032936112469397, 0.952030831872504, 0.008140849441390317, 0.16554455213884192, 0.3617462711649899, 0.0] | [nan, 0.9178324592492587, 0.9561686622912909, 0.7680310658482571, 0.7215460770544782, 0.5924548254023589, 0.0, 0.6491584679315913, 0.8452550030151549, 0.35430079676361037, 0.9581720479074639, 0.410135404944277, 0.0, 0.10532350931980092, 0.11548288196218702, 0.763316547977315, 0.0, 0.2600985221674877, 0.9177799037685564, 0.22825214031366012, 0.572804752898559, 0.6994932257437348, 0.0, nan, 0.31308822235904654, 0.5407402476367994, 0.5353727961089925, 0.0, 0.9583768797437656, 0.8894811289823983, 0.976516152184038, 0.010158989218608448, 0.379761952685748, 0.458744875997832, 0.0] | | 0.1 | 30.0 | 1500 | 0.6125 | 0.4071 | 0.4817 | 0.8777 | [nan, 0.7976347312880722, 0.8842065126488408, 0.6220522211975981, 0.5992989007197456, 0.4754131699628208, 0.0, 0.5620206554196702, 0.7103054176260091, 0.3001608040201005, 0.8696414262339918, 0.2710134279595442, 0.0, 0.10693402202514375, 0.19945219123505975, 0.6229581109493774, 0.0, 0.21330049261083744, 0.7784639440974739, 0.1842071699891868, 0.4662422580117327, 0.5517361225824782, 0.001549819657348963, nan, 0.17199259716224552, 0.43358794468966694, 0.4268464617063853, 0.0, 0.8891718707035294, 0.8054920070330026, 0.9535609872146814, 0.01007383935063937, 0.16253665133576994, 0.3658318614584579, 0.0] | [nan, 0.8697241860632949, 0.9524319715036934, 0.8257718568242948, 0.7468530628299254, 0.5881267793852769, 0.0, 0.7164141181490659, 0.8437754352203041, 0.3683613310639138, 0.9597225061081064, 0.31468036446800013, 0.0, 0.10708012101102762, 0.20464997445068983, 0.7651242017023728, 0.0, 0.21330049261083744, 0.9302847679052355, 0.2516781574361694, 0.5984553495582629, 0.5925001383659759, 0.0015499506833873467, nan, 0.27588178379804734, 0.5562888715598076, 0.518736527938982, 0.0, 0.9534904946715259, 0.896063924459724, 0.9793106212730868, 0.011784150870325931, 0.3741529460703407, 0.47874361308587277, 0.0] | | 0.0886 | 35.0 | 1750 | 0.6327 | 0.4115 | 0.4892 | 0.8822 | [nan, 0.8188467619727383, 0.8891141466002311, 0.6466411212625193, 0.6192450697021801, 0.4878651026475247, 0.0, 0.5804609572704323, 0.6873373994573425, 0.24242875689020368, 0.8707606811583432, 0.23605331403413546, 0.0, 0.13050222997866978, 0.2175902389425521, 0.6145514015738078, 0.0, 0.21711822660098523, 0.7803908730722577, 0.17679611946673174, 0.4549480658658346, 0.5467616324171395, 0.03352848701685911, nan, 0.19210202055245182, 0.44554925412112634, 0.43457869634340224, 0.06254767353165523, 0.8901464405497997, 0.8074494955970959, 0.9551576666105007, 0.009091384084852917, 0.16846681832699967, 0.3645371672657186, 0.0] | [nan, 0.9119479474792671, 0.9590241346815159, 0.845415986574404, 0.6953594791245139, 0.6061356109464877, 0.0, 0.7276180593606199, 0.892360619111798, 0.28098867756974766, 0.9616378091517278, 0.2841688750136131, 0.0, 0.1313555186883966, 0.21870209504343383, 0.7725733241957431, 0.0, 0.21711822660098523, 0.9161171536509721, 0.21953178271081142, 0.5994171169644333, 0.6121438495259369, 0.034859799915457235, nan, 0.3531093323951095, 0.6003076440268559, 0.6043221135245676, 0.06269113149847094, 0.9560401237295135, 0.884834427780536, 0.9792357012514029, 0.010829800623785451, 0.34680568415120167, 0.46030641401411304, 0.0] | | 0.0795 | 40.0 | 2000 | 0.6240 | 0.4282 | 0.5017 | 0.8835 | [nan, 0.8168639361241289, 0.8876591799999074, 0.6570827724213207, 0.6202745367509233, 0.48734716072991435, 0.0, 0.5833200793037147, 0.7249773695346732, 0.31780959887896304, 0.8734250949568915, 0.2279957413675295, 0.0, 0.19478847928505513, 0.2588001983143282, 0.6266940289672047, 0.0, 0.3150246305418719, 0.7870743183835168, 0.18024107181885737, 0.48180217328687497, 0.5880553963585522, 0.042404523149135905, nan, 0.17844859516376527, 0.45068592007174485, 0.44004742517113327, 0.19134396355353075, 0.892022331516544, 0.8143712718909341, 0.9551036492731949, 0.016888403579096854, 0.15958069694966476, 0.36017381107545093, 0.0] | [nan, 0.8991722677575189, 0.9610711923215693, 0.8649585814233277, 0.7118098889111815, 0.594659810586253, 0.0, 0.7184642464033051, 0.8603538440753031, 0.3580502725770246, 0.9623214298952487, 0.26042763277307873, 0.0, 0.1956914218795745, 0.26673479816044965, 0.788603835801476, 0.0, 0.3150246305418719, 0.9230146256606502, 0.2499204485188272, 0.6278490409879275, 0.6625473814771242, 0.04480766521065239, nan, 0.29663998592664265, 0.6117266104950834, 0.5436080252031172, 0.1926605504587156, 0.9509771523653007, 0.887874399303051, 0.9819309132416605, 0.02064301076756039, 0.34012318344672116, 0.46386756263254, 0.0] | | 0.0754 | 45.0 | 2250 | 0.6471 | 0.4302 | 0.5116 | 0.8840 | [nan, 0.8281984303346407, 0.8897375767546668, 0.6335678497580041, 0.6461049225195123, 0.4896718508137295, 0.0, 0.5769963172973805, 0.7160045601555046, 0.31492773499314275, 0.8789298786291031, 0.41197707824430413, 0.0, 0.19778300628229073, 0.19288119288119288, 0.6158351667955045, 0.0, 0.26785714285714285, 0.7860686941589031, 0.17655380387956127, 0.40860437517167547, 0.5549189258475934, 0.060120717954148355, nan, 0.1768935762224353, 0.45137771772158236, 0.44662611174687306, 0.24400299850074963, 0.8917308479385957, 0.8178316117483762, 0.9546822647246874, 0.0181622066651208, 0.17782411648425822, 0.3692233084050129, 0.0] | [nan, 0.9127907293988842, 0.9579732772469148, 0.8546614098408393, 0.7189306666878257, 0.617758410318982, 0.0, 0.7117038660531152, 0.8630197023070054, 0.3681886578356644, 0.9609314187010253, 0.48673176752459435, 0.0, 0.19893627403142383, 0.2049054675523761, 0.8228995957609527, 0.0, 0.26785714285714285, 0.9313026975574736, 0.22976740662171377, 0.482567055983181, 0.7372479787923986, 0.06399887276313936, nan, 0.30833846424487643, 0.6003932327823953, 0.6147681423755044, 0.24885321100917432, 0.947219534571164, 0.890392783205778, 0.9840024279813396, 0.0241042593066438, 0.3959314574024127, 0.47575603698227187, 0.0] | | 0.0746 | 50.0 | 2500 | 0.6936 | 0.4117 | 0.4867 | 0.8749 | [nan, 0.7957936899551392, 0.8814366206724774, 0.5436114176098814, 0.6151632247714599, 0.4361122655202057, 0.0, 0.5671206613898421, 0.7141211613500584, 0.3419340943355589, 0.870823541579283, 0.1755482015278508, 0.0, 0.14690036810414178, 0.3004324599338591, 0.6098619199234538, 0.0, 0.16824615384615385, 0.7756330550603614, 0.17781881780267358, 0.4502871856554716, 0.45687245610992666, 0.06802365130029826, nan, 0.19639260088210125, 0.4534812252031405, 0.42577189666036547, 0.27414561664190196, 0.8856918914231561, 0.8034178358523514, 0.9553431034562543, 0.003146721773436032, 0.12501083138368427, 0.36698838817524204, 0.0] | [nan, 0.9180616367888037, 0.9472426408781908, 0.8013172716614175, 0.7302314913997886, 0.524968334204869, 0.0, 0.7028351702702309, 0.8539511709675187, 0.39162288166950343, 0.9630569443900208, 0.20604784550041746, 0.0, 0.14701863960183467, 0.30173735309146654, 0.7343444275597668, 0.0, 0.16834975369458127, 0.9160513108532854, 0.22030456852791877, 0.6251207408000449, 0.5084687072928094, 0.0732703959419473, nan, 0.3280191749494239, 0.6051695608345855, 0.5601890233792074, 0.28211009174311924, 0.9506023739291599, 0.8749006566683216, 0.9851772884487643, 0.003475079702076749, 0.25166727050709176, 0.48520419707741125, 0.0] | | 0.067 | 55.0 | 2750 | 0.6778 | 0.4277 | 0.5121 | 0.8816 | [nan, 0.8194645919335458, 0.8855287302003849, 0.6053350056000855, 0.654773528870809, 0.4697667824136534, 0.0, 0.5710052174119353, 0.7267313389676074, 0.3551371282700238, 0.8755668722529796, 0.19964417520695182, 0.0, 0.13208006623484148, 0.3486218302094818, 0.6180969846096706, 0.0, 0.20360432519022828, 0.7807972584967618, 0.18003748362164762, 0.4432680689367132, 0.45560830868332836, 0.08040790777737207, nan, 0.1822721323375752, 0.45364137665335047, 0.45602216206006424, 0.36234396671289876, 0.8940119674114063, 0.8166972645181432, 0.9573128637395036, 0.03034622884202592, 0.18678678678678678, 0.3686953575810984, 0.0] | [nan, 0.9128102675762187, 0.9552788883754972, 0.8469619991264167, 0.7317413411289339, 0.5563598861193423, 0.0, 0.746876075856685, 0.8778384470140081, 0.40151459088778707, 0.9621413903500922, 0.24645151922169384, 0.0, 0.13233141407241145, 0.4039345937659683, 0.7933911385238819, 0.0, 0.31305418719211825, 0.9172193620842494, 0.246723236608834, 0.6190652452610861, 0.49203224849677785, 0.08688178103423982, nan, 0.36441199753716247, 0.5990761169332598, 0.6004808489471066, 0.39946483180428133, 0.9529255570362644, 0.9017875242386488, 0.9826782046681377, 0.03842297079549934, 0.3380298699730285, 0.48104842741150405, 0.0] | | 0.0687 | 60.0 | 3000 | 0.6879 | 0.4291 | 0.5100 | 0.8823 | [nan, 0.8196948326057852, 0.8831657666830767, 0.6467890499563872, 0.6516417841503617, 0.4681981224281317, 0.0, 0.5880231738461575, 0.724187852815783, 0.2984189272432753, 0.8789400109991544, 0.2520251481078467, 0.013058335367341958, 0.10452562571588721, 0.3387726959319697, 0.616015263989506, 0.0, 0.29198813056379824, 0.784720416853429, 0.1792090810910177, 0.44576935641947074, 0.48202529113784476, 0.09516336506303061, nan, 0.18832282614869086, 0.45650264775637484, 0.4556005895357406, 0.2745886654478976, 0.8952007693743541, 0.8138636450290234, 0.9572388978933325, 0.010588595444700982, 0.1924104882672224, 0.35264721130282095, 0.0] | [nan, 0.9097946995213146, 0.9621478252989295, 0.8651175889100899, 0.7142492257108215, 0.566678868165708, 0.0, 0.7143145307931398, 0.867036613536233, 0.32265226078590986, 0.9605385088701248, 0.3026826877699931, 0.020373191165270373, 0.10464038255099053, 0.3765968318855391, 0.820913163096054, 0.0, 0.30295566502463056, 0.9221738131341896, 0.23635123873020683, 0.6270817065600855, 0.5335377838453821, 0.1042412286881781, nan, 0.364565924883455, 0.6191561899689979, 0.615072127342066, 0.2870795107033639, 0.9511700815454721, 0.8878140719993255, 0.9816183488199858, 0.012797283559588108, 0.43857601009084446, 0.4393736482895436, 0.0] | | 0.0629 | 65.0 | 3250 | 0.6960 | 0.4222 | 0.4985 | 0.8831 | [nan, 0.8385937711298211, 0.8847888472425782, 0.6149328797554199, 0.6525561252288588, 0.48169461209819614, 0.0, 0.5971548536892575, 0.7135824408049566, 0.27369317672375143, 0.8823153606699299, 0.36233237512950345, 0.0, 0.14186935456382538, 0.24867603039373704, 0.6160654277501113, 0.0, 0.08275862068965517, 0.7805731162375585, 0.17752144045477705, 0.44269702931252913, 0.48059292296084216, 0.08923905090414969, nan, 0.17907819011708673, 0.4873286783174559, 0.4527498618417013, 0.22163588390501318, 0.8943575787945166, 0.8201429759960558, 0.9581956395009911, 0.019349515805194163, 0.1776665799886147, 0.3600628431614535, 0.0] | [nan, 0.9267115927398949, 0.9487909172436692, 0.8034188525406715, 0.7109193193887602, 0.6603282784265877, 0.0, 0.725064612012743, 0.8812655082760235, 0.3011914452749204, 0.9638660632870772, 0.45070243583693326, 0.0, 0.14216356006636088, 0.27593254982115484, 0.7556489178908058, 0.0, 0.08275862068965517, 0.9325111323710189, 0.2190847791499356, 0.625637495828009, 0.527886775476724, 0.09623784697759617, nan, 0.31748614653883367, 0.6121141373604427, 0.6112861327585254, 0.22477064220183487, 0.9484829229283243, 0.8975837228691066, 0.9804554182923197, 0.025625687235911233, 0.3392241321471224, 0.46249546141014647, 0.0] | | 0.0629 | 70.0 | 3500 | 0.7101 | 0.4217 | 0.4989 | 0.8789 | [nan, 0.786640982710835, 0.8880498247990368, 0.6213814597589751, 0.6071277471550605, 0.4592909171926279, 0.0, 0.5867507688789444, 0.7333167906428527, 0.3791430524621254, 0.8814043667546686, 0.28100956352915796, 0.0, 0.0984556925025576, 0.3509064388414253, 0.6349712777519019, 0.0, 0.0, 0.7875471953847744, 0.1780650489932298, 0.4450250049891278, 0.4999114269705531, 0.08133596346637123, nan, 0.18414185986147352, 0.4677542129328365, 0.45241313162139773, 0.28850405305821664, 0.8909480603280158, 0.8200828649597152, 0.9579545152813692, 0.007145844060159359, 0.17539286131557424, 0.37038789587688453, 0.0] | [nan, 0.8598412127047438, 0.9543510233299178, 0.8082120661777665, 0.7612604902628672, 0.5904985183894021, 0.0, 0.7265619620716575, 0.8569696210790629, 0.424110116184415, 0.9631369031291932, 0.35466656986241696, 0.0, 0.09861422855469894, 0.43025038323965253, 0.8124211634536118, 0.0, 0.0, 0.9232874343190659, 0.2156072429729525, 0.6237066827758375, 0.5406547619892345, 0.08482457376356208, nan, 0.2963981000967543, 0.6442741122544078, 0.57353672691096, 0.2993119266055046, 0.9601885858498842, 0.8969635881631085, 0.9813282126850572, 0.008685970359817705, 0.3223031815681065, 0.45102269558033437, 0.0] | | 0.056 | 75.0 | 3750 | 0.6888 | 0.4319 | 0.5074 | 0.8864 | [nan, 0.846983759179929, 0.8871265021170364, 0.6327919532904038, 0.6690289787883766, 0.4809385638926465, 0.0, 0.5929931910773564, 0.7319858245513943, 0.3873577190849818, 0.8821459096044979, 0.31863963925997724, 0.0, 0.23505840639191783, 0.3168200047180939, 0.6339963432877168, 0.0, 0.0, 0.7891815340906951, 0.16853589090364154, 0.44962094152977145, 0.5116482092488317, 0.10324211857041271, nan, 0.19139417066912298, 0.46438574150773454, 0.4679743443307121, 0.26584176977877766, 0.893033114012553, 0.8167232339927487, 0.958758389465055, 0.00683255888015518, 0.17629150606516764, 0.37230474365117394, 0.0] | [nan, 0.9383299434889024, 0.9547491546521122, 0.8273944994904098, 0.7246575916990003, 0.6112474580210331, 0.0, 0.7317551677487866, 0.879380624581915, 0.4323244283282765, 0.9640948194150409, 0.41171452426761534, 0.0, 0.23614228554698935, 0.34312723556463975, 0.7955762144552705, 0.0, 0.0, 0.9198500013278298, 0.21301613758618076, 0.6485306793405083, 0.5580917132262262, 0.11046921234324363, nan, 0.3198390359750198, 0.6043089183483272, 0.5887636102360029, 0.27102446483180426, 0.9532878705576775, 0.8931910708096411, 0.9816932688416696, 0.008160386166070774, 0.350442145377937, 0.47428658629635284, 0.0] | | 0.0545 | 80.0 | 4000 | 0.7242 | 0.4313 | 0.5097 | 0.8839 | [nan, 0.8315018755718794, 0.8905184158955881, 0.5801625429382188, 0.6532970384376523, 0.4694179481073208, 0.0, 0.5983799840636467, 0.7235855215136249, 0.3640520350334879, 0.8784869607735561, 0.3143670199951819, 0.0, 0.2781527188584651, 0.3326551373346897, 0.6281559683282705, 0.0, 0.08645320197044334, 0.7821189057727206, 0.19111444811384393, 0.4452253857934852, 0.4994405348435919, 0.10157298545122671, nan, 0.17629709076283684, 0.46700401281623927, 0.4615519817207136, 0.2734785875281743, 0.8899163053914229, 0.8095455355998507, 0.9581430685733312, 0.005790762673569464, 0.17969789570113207, 0.36411010043900494, 0.0] | [nan, 0.9123876444791007, 0.9612296601404773, 0.8930262764661256, 0.7126551176008956, 0.5714955551682064, 0.0, 0.7523059093928652, 0.865652608026573, 0.41833789684007994, 0.9665973690927172, 0.37897048680437073, 0.0, 0.2815458182882795, 0.41773122125702605, 0.7517058490509818, 0.0, 0.08645320197044334, 0.9215057282136607, 0.24684445791347828, 0.6202401611194349, 0.5561602661167979, 0.10663660701704945, nan, 0.2891635148210045, 0.6095369648325313, 0.5805560161388382, 0.2782874617737003, 0.9568961863731891, 0.870963644368671, 0.9845664755331252, 0.007178373593543613, 0.36061350187190533, 0.46088130206223, 0.0] | | 0.05 | 85.0 | 4250 | 0.7236 | 0.4310 | 0.5096 | 0.8865 | [nan, 0.8344804679717858, 0.891480804753714, 0.6039392215856049, 0.6561901191296589, 0.5040396418009069, 0.0, 0.5972644983662688, 0.7352912849624103, 0.4166594809002328, 0.882374306124748, 0.291759692976696, 0.0, 0.11696789594193015, 0.4100259636508888, 0.6420473687097001, 0.0, 0.0, 0.7822126517859589, 0.18499892874997023, 0.45949977357159744, 0.5246592278602004, 0.10855595092676192, nan, 0.18756695799266987, 0.4678528011435098, 0.4557543571262987, 0.2325056433408578, 0.8913224348625648, 0.8136362687377343, 0.9598605495290813, 0.008994566889922168, 0.1923180020267399, 0.3698758474475382, 0.0] | [nan, 0.9238238149259353, 0.9605341564359651, 0.8564066606895178, 0.714878329764632, 0.6240479925628958, 0.0, 0.7253836717079392, 0.8553615384868866, 0.47677545080046374, 0.96226053416674, 0.36290703161868804, 0.0, 0.11715624085098078, 0.5245273377618804, 0.8139308522789349, 0.0, 0.0, 0.9272880427065164, 0.23551026592923707, 0.5960753651336961, 0.5733261619548913, 0.11520360715795407, nan, 0.29259389568123845, 0.634985354812941, 0.5976344442602112, 0.23623853211009174, 0.9580478059949592, 0.8761671553428071, 0.9800020805814939, 0.011116797255897263, 0.39472377655220536, 0.470034782700211, 0.0] | | 0.0483 | 90.0 | 4500 | 0.7448 | 0.4348 | 0.5119 | 0.8858 | [nan, 0.8389020217362697, 0.8904583684155554, 0.6053893552299984, 0.6609445788027536, 0.48826307798392343, 0.0, 0.5990805851530085, 0.741553407283815, 0.3904125924159313, 0.8810578364409596, 0.24072208997131173, 0.007595345830639948, 0.11408382066276804, 0.3854978354978355, 0.6358003169572107, 0.0, 0.3205665024630542, 0.7799325512458637, 0.18157179971658008, 0.44179222083868513, 0.4810432700260739, 0.10200241902970031, nan, 0.17958766620104505, 0.47953821940837715, 0.46267085062022195, 0.20652173913043478, 0.8936165310088457, 0.8196186094828226, 0.9601551959806593, 0.007783159441927215, 0.17946660884648744, 0.3712830781592127, 0.0] | [nan, 0.9268645537858738, 0.9579552943101062, 0.8624259561522487, 0.7130170885820071, 0.6134222299692057, 0.0, 0.7456444472460493, 0.8743388902252963, 0.44418954586940973, 0.9629775151789223, 0.28632881983519076, 0.00894897182025895, 0.11422855469893628, 0.45503321410321923, 0.7969369208307261, 0.0, 0.3205665024630542, 0.9184567677287768, 0.2329797711947875, 0.6319321335328264, 0.5199750799329599, 0.10694659715372692, nan, 0.30532588618172224, 0.6374674287235863, 0.6071132482175426, 0.2106269113149847, 0.9560636685684433, 0.8940191660968048, 0.9818139998320264, 0.009301457113021348, 0.3331991465721992, 0.46443061088103893, 0.0] | | 0.0488 | 95.0 | 4750 | 0.7572 | 0.4392 | 0.5164 | 0.8870 | [nan, 0.8412265993316759, 0.8902791647105773, 0.6166091899398941, 0.6573127590169391, 0.49795139519110443, 0.0, 0.6045930992650757, 0.740872213808363, 0.3893914038172305, 0.8838233368096821, 0.33872329970362863, 0.004128819157720892, 0.1232210193407128, 0.36835222319093286, 0.6420211202135859, 0.0, 0.2602216748768473, 0.7833929304386752, 0.17934607063412256, 0.4671484042901698, 0.5449281805918343, 0.09757754723390911, nan, 0.1862480907024973, 0.4739074459454693, 0.46393408427200666, 0.20655861289106672, 0.8908646555131348, 0.8077701092850268, 0.959734031170495, 0.015509419333207602, 0.19220623899538222, 0.36528917777672343, 0.0] | [nan, 0.9329796512523355, 0.9594185059351048, 0.832704966397695, 0.7156041609282175, 0.6057294753355412, 0.0, 0.740442513492152, 0.8672541001163223, 0.4534398973827672, 0.964824509100999, 0.4003702762551276, 0.00476009139375476, 0.1235727530008783, 0.4317833418497701, 0.8025088644557671, 0.0, 0.2602216748768473, 0.9244890653768502, 0.22295628456701266, 0.6153075940114643, 0.6122502848919965, 0.10522756094124278, nan, 0.32980033424223765, 0.6388606234665348, 0.6146299673907036, 0.20948012232415902, 0.9577606974590687, 0.8682935054472558, 0.9823331908103197, 0.02047357902089197, 0.388175462608859, 0.4557849260933397, 0.0] | | 0.0466 | 100.0 | 5000 | 0.7516 | 0.4340 | 0.5089 | 0.8868 | [nan, 0.8369914869418346, 0.8917253025027853, 0.63431934846412, 0.6595590976640465, 0.490185886416082, 0.0, 0.6019878455204862, 0.7389529158865543, 0.34824032232931906, 0.8841782288939659, 0.3149823779040495, 0.0, 0.1793690267212795, 0.3540386803185438, 0.6423088361774469, 0.0, 0.145935960591133, 0.7781632167836338, 0.18123317726357693, 0.45431638450718936, 0.5090139572607015, 0.10249373268241192, nan, 0.1875506294119916, 0.501633275054173, 0.45008636966215404, 0.17736422331940752, 0.8917030821290204, 0.8118398661365593, 0.9594706627009374, 0.014780075321537696, 0.20062550586608202, 0.37857391883524044, 0.0] | [nan, 0.9373271597386813, 0.9596797489625617, 0.8314003387051043, 0.7185675621858967, 0.5884759746673639, 0.0, 0.7444904015400207, 0.8778911710334237, 0.3858999975332396, 0.9637834569075349, 0.3974298471702908, 0.0, 0.17949155850492826, 0.397547266223812, 0.7936692390969677, 0.0, 0.145935960591133, 0.9165776142827953, 0.24282142586559588, 0.6377640831341348, 0.5628898195281933, 0.10945469916866281, nan, 0.3207406104318761, 0.6268758202255739, 0.6192450118830487, 0.17851681957186544, 0.9569449380396788, 0.8769881312587235, 0.9830475556030632, 0.01869973236699608, 0.34259221985158944, 0.47854628309223995, 0.0] | | 0.0681 | 105.0 | 5250 | 0.7608 | 0.4243 | 0.4961 | 0.8801 | [nan, 0.8053305712022708, 0.8888831373349202, 0.6063781727951514, 0.6458484552441548, 0.4450952774354321, 0.0, 0.5835976764940738, 0.7449298281412959, 0.38801677910396126, 0.8805089961159074, 0.14255831144524309, 0.0, 0.1778948138395143, 0.3797164667393675, 0.6438507708603036, 0.0, 0.2848522167487685, 0.7757003332539172, 0.14560873446405273, 0.46351390150988186, 0.47026329896747027, 0.08670882625524723, nan, 0.16717484516436398, 0.49040240585388206, 0.4269185360094451, 0.09782193351165457, 0.8929769955183823, 0.8046204535691968, 0.9590862138793831, 0.04553666153467317, 0.1919049851539303, 0.36759942734721646, 0.0] | [nan, 0.8461725854729251, 0.9657024524747764, 0.8717211889928504, 0.7386199232908679, 0.5728516646330835, 0.0, 0.7229524174348182, 0.8661468957085944, 0.44266015441920126, 0.9636971438314745, 0.16451882237630233, 0.0, 0.17800331804430566, 0.44481349003576903, 0.8150531867346027, 0.0, 0.2848522167487685, 0.9260951906884237, 0.2249185544359421, 0.6512735360080518, 0.5153941017777545, 0.0896435113428209, nan, 0.23148473920309615, 0.6005358807082946, 0.49964074503951805, 0.09785932721712538, 0.9555801683760682, 0.8920875682663394, 0.9854006169210447, 0.0684193055373061, 0.28012828254364425, 0.47628225029862603, 0.0] | | 0.0668 | 110.0 | 5500 | 0.7138 | 0.4340 | 0.5140 | 0.8742 | [nan, 0.7871483106350147, 0.8799748398030087, 0.6039422540580079, 0.58793837643889, 0.4164255041075429, 0.0, 0.6184209066896527, 0.7402801021253262, 0.3308593247243554, 0.8857427628712552, 0.35066959646049234, 0.0, 0.16199673226522301, 0.42935960591133004, 0.6284724323670036, 0.0, 0.3552955665024631, 0.7640465559057021, 0.1673140841039061, 0.4603793394796352, 0.4502083383450174, 0.08286035553651745, nan, 0.19144741314841254, 0.494703324736749, 0.49196363166286033, 0.21928518242740133, 0.8942953842754613, 0.8018772529737324, 0.9608524553067362, 0.025030461104976583, 0.16785196891874093, 0.3735661360500572, 0.0] | [nan, 0.8648334810431274, 0.9433503159465763, 0.7861368460577638, 0.8401580732564278, 0.456157108825751, 0.0, 0.7569977355489718, 0.8541785433012485, 0.38047312464540317, 0.9656267441330937, 0.428703670091117, 0.0, 0.1620718259002635, 0.5567194685743485, 0.8251045360189903, 0.0, 0.3552955665024631, 0.9128087725432023, 0.21700886430790212, 0.6164003697345833, 0.5046228427325222, 0.08721995209243343, nan, 0.3096138622570147, 0.6316283736234475, 0.6310175205880727, 0.22515290519877676, 0.9574614010065557, 0.8952916600312878, 0.9807011750513465, 0.036369043090988304, 0.3078378487178455, 0.47336308192615123, 0.0] | | 0.0456 | 115.0 | 5750 | 0.7481 | 0.4396 | 0.5149 | 0.8874 | [nan, 0.8535949387776991, 0.889196790918221, 0.6590754161484988, 0.6643237184774637, 0.46255227979529023, 0.0, 0.6160656034941906, 0.7414819627132849, 0.33609977221984166, 0.881638905287202, 0.26364535016348567, 0.0, 0.11007294284111147, 0.47720425788310905, 0.6368556033975671, 0.0, 0.32869458128078816, 0.7703600738384895, 0.17442321190028753, 0.46530941552214283, 0.48260002610416075, 0.09418922868453915, nan, 0.20518864654252, 0.4743353551385976, 0.4722508031833358, 0.20610399397136397, 0.8954748076190832, 0.8187194150221221, 0.9605552926063987, 0.012601025462761798, 0.17920223292081403, 0.3762309075548745, 0.0] | [nan, 0.9413675139957597, 0.9627770101122414, 0.853864456654176, 0.7242582145309057, 0.5528162221834872, 0.0, 0.7381053284908671, 0.8687863919305888, 0.3676213029428452, 0.9679646105797591, 0.3146622136711802, 0.0, 0.11008099931687323, 0.6070516096065406, 0.8065015941122136, 0.0, 0.32869458128078816, 0.912257229374579, 0.23346465641336464, 0.6230433232027166, 0.5299729086514923, 0.09990136677469354, nan, 0.3254024100624505, 0.6366091637027598, 0.621511081633781, 0.2090978593272171, 0.9563050724169996, 0.8984035746737735, 0.9820063104609347, 0.01504138975525757, 0.32565785059646013, 0.47864626362234725, 0.0] | | 0.0432 | 120.0 | 6000 | 0.7519 | 0.4416 | 0.5185 | 0.8876 | [nan, 0.8517831570119985, 0.8901004311397058, 0.6339355013970817, 0.6606286462755991, 0.4746063751504886, 0.0, 0.6132450026307165, 0.7426311341925447, 0.3602046617396248, 0.8859214231639748, 0.3273784162152292, 0.0, 0.15872087354977088, 0.4255713403335392, 0.6326264779996124, 0.0, 0.35557744397931546, 0.7741301715457662, 0.17043647800201933, 0.46161159879531216, 0.5113488607281433, 0.11327498751609766, nan, 0.19760381654559253, 0.47813157752711966, 0.46921250159026334, 0.1416030534351145, 0.8955479192568264, 0.8197854779969181, 0.9604275470620833, 0.010892456172159384, 0.18561124493594658, 0.3689976212003217, 0.0] | [nan, 0.9296893165774394, 0.9616835385667785, 0.87624044997203, 0.7260692029572803, 0.5797304049735634, 0.0, 0.7494101274784102, 0.8745695578102397, 0.39073484792422114, 0.9642129041755406, 0.3904962427850583, 0.0, 0.15887576851761492, 0.528104241185488, 0.8103950021354152, 0.0, 0.3556650246305419, 0.9162409381106233, 0.22253201000075765, 0.6204044413898943, 0.5625662560153721, 0.12145977173453572, nan, 0.3206086727064825, 0.6318803849592027, 0.6115348477311667, 0.14181957186544342, 0.9576213674122256, 0.8924536538299407, 0.9825164346850114, 0.013502672872248463, 0.3639547522241456, 0.4569004983240106, 0.0] | | 0.0446 | 125.0 | 6250 | 0.7468 | 0.4334 | 0.5064 | 0.8877 | [nan, 0.8499567507325978, 0.8871076417101389, 0.6330569753090723, 0.6639770881242221, 0.4871746836767682, 0.0, 0.5980424732505424, 0.7360705192073508, 0.30519138810716817, 0.8812845049064242, 0.23256457139345144, 0.0, 0.13761825807080855, 0.4344916900496439, 0.6344221105527639, 0.0, 0.31022167487684726, 0.7799696347321634, 0.17147761834567948, 0.4735415094048958, 0.5082152629506022, 0.10032137118371719, nan, 0.19083052625766195, 0.477693792160024, 0.4774453072902102, 0.10550458715596331, 0.8982375671163275, 0.8273146135730871, 0.9607895023001171, 0.016035198543508544, 0.15227804315598747, 0.37272481048329426, 0.0] | [nan, 0.9294944628629415, 0.9603275161439091, 0.8696425971478271, 0.7134799429158917, 0.6058991342745919, 0.0, 0.7261197395153978, 0.8763951269825055, 0.32904117023113544, 0.9650643853185165, 0.2747304606672233, 0.0, 0.13769883868449304, 0.5143076136944302, 0.7674085992670063, 0.0, 0.31022167487684726, 0.9269199814674473, 0.20887946056519432, 0.6072557812618596, 0.5566839281178112, 0.10556573199943638, nan, 0.3039625296859882, 0.6508858436198338, 0.6133587575305367, 0.10550458715596331, 0.9551001306600062, 0.9014341786025424, 0.9824066792392325, 0.020100137620071783, 0.3101324423332394, 0.48336771260333516, 0.0] | | 0.0401 | 130.0 | 6500 | 0.7766 | 0.4379 | 0.5140 | 0.8867 | [nan, 0.8468760227965516, 0.8886795707269431, 0.622437352951649, 0.6682970140214559, 0.4786959592750148, 0.0, 0.6085294389146897, 0.7427519649223919, 0.3908760790623845, 0.8822040839218181, 0.20753357844976364, 0.0, 0.17475089531512655, 0.47288964490750585, 0.6415406446381512, 0.0, 0.2750554050726422, 0.778568992850166, 0.17143968092188597, 0.46392364840506783, 0.4823894964669603, 0.09554546178978404, nan, 0.20017632982073136, 0.47654683547891147, 0.4713058003824428, 0.1655881233346022, 0.8956585893822123, 0.8232044008477167, 0.9608808597268595, 0.012288627559172788, 0.18044196123782585, 0.37141827889613904, 0.0] | [nan, 0.9354963797165556, 0.9559979333791044, 0.8707192502509636, 0.7183888437369763, 0.6083772006275057, 0.0, 0.7415955894118731, 0.866331429776549, 0.4434248501443055, 0.9662129317110005, 0.2510073692235089, 0.0, 0.17500243973846002, 0.5682166581502299, 0.7858128979072931, 0.0, 0.2751231527093596, 0.9165205505248, 0.2204712478218047, 0.6489507377535817, 0.5256828538301831, 0.10136677469353247, nan, 0.3145395373383763, 0.6396451870589802, 0.5925772398165036, 0.16628440366972477, 0.9558582744735443, 0.8949720377326676, 0.9824620341597123, 0.014785513239880775, 0.3475571300135529, 0.47879491888421727, 0.0] | | 0.0532 | 135.0 | 6750 | 0.8100 | 0.4370 | 0.5099 | 0.8867 | [nan, 0.8418463475820702, 0.8855647993577028, 0.6407052153749961, 0.6672622261373646, 0.48550215050970236, 0.0, 0.6013553074721314, 0.7358587165510544, 0.41406543029797876, 0.8806464817122883, 0.20844846800909883, 0.0, 0.10624649381692236, 0.46624287593160896, 0.6367459896871661, 0.0, 0.2729064039408867, 0.7800250020493483, 0.16987653185041204, 0.47226725829848964, 0.5354231045094412, 0.10532085561497326, nan, 0.19529110166632935, 0.4793455617996517, 0.4643273310907372, 0.1317799847211612, 0.8929265734089717, 0.8098728542013477, 0.9610867606622594, 0.009269971902267766, 0.1905821312686735, 0.3815049812671639, 0.0] | [nan, 0.9263081557808802, 0.9609817135875093, 0.8755450316865522, 0.7097842872099934, 0.608116901981291, 0.0, 0.7151553355218178, 0.871465431167145, 0.49016995979180544, 0.9649383576369068, 0.24783097978001234, 0.0, 0.10627500731921538, 0.5434338272866632, 0.7518349671742002, 0.0, 0.2729064039408867, 0.918908888272893, 0.2238048336995227, 0.6329937167995292, 0.5943152161418457, 0.11100464985205016, nan, 0.31827777289119535, 0.6406199478859578, 0.5836235008014149, 0.13188073394495411, 0.9580930951851359, 0.8802967653698794, 0.9799166622128225, 0.011248193304333996, 0.3184117654952162, 0.4786317927561475, 0.0] | | 0.039 | 140.0 | 7000 | 0.7955 | 0.4374 | 0.5145 | 0.8873 | [nan, 0.8453406127060666, 0.8894584400292076, 0.618765500137779, 0.6661462422914772, 0.48188110711842147, 0.0, 0.608878748711235, 0.7435697628283624, 0.3796956629902977, 0.8857966705291055, 0.3616908539636749, 0.0, 0.12437204311564161, 0.5013698630136987, 0.6370300461309403, 0.0, 0.18285784554845055, 0.7737808450225561, 0.16547070030804295, 0.47332405936901073, 0.47251187823235086, 0.09493722374379694, nan, 0.19320955193290454, 0.47309349183647703, 0.4585451464536432, 0.13724742661075104, 0.8963119205284326, 0.8287376073022066, 0.9613351708673005, 0.00971653416847346, 0.18365372022293688, 0.38471762753712496, 0.0] | [nan, 0.9325931121764209, 0.9570000189093305, 0.8775718982045564, 0.7170735817481989, 0.6105484864330951, 0.0, 0.7451100949905688, 0.8584129411105655, 0.45178716791238066, 0.9654472341160111, 0.4460376810541983, 0.0, 0.12442666146189128, 0.5610628513030148, 0.7776685239812083, 0.0, 0.183128078817734, 0.9154620178139884, 0.2112205470111372, 0.6293701931124976, 0.5103334549061737, 0.09866140622798365, nan, 0.31508927786084967, 0.6503865758791867, 0.6281711159011772, 0.13761467889908258, 0.9610215191517875, 0.9003190602429954, 0.981970520641659, 0.01171499505535923, 0.3387008037786992, 0.48129837873677234, 0.0] | | 0.0406 | 145.0 | 7250 | 0.8306 | 0.4360 | 0.5141 | 0.8867 | [nan, 0.8435997939171356, 0.886366406157634, 0.6223465646375345, 0.6631770897769883, 0.4788596814657396, 0.0, 0.6085666309373553, 0.7410466976722848, 0.31492224002889196, 0.8837966051190714, 0.22238290725881693, 0.0, 0.13819236298949727, 0.5232347616173808, 0.6307999909800885, 0.0, 0.3076828669612175, 0.7764942343062243, 0.16667183036627153, 0.4750608982109485, 0.4864866269041335, 0.08490179473871118, nan, 0.1946730634021258, 0.47966615140417673, 0.46086619157494946, 0.12857687905379625, 0.8998584935109988, 0.8307591913787293, 0.9614240003370637, 0.006127383872241452, 0.19595372863270513, 0.37590210909466404, 0.0] | [nan, 0.9378495859578592, 0.954765284801492, 0.8295152378981893, 0.7149554091802339, 0.6165097902504213, 0.0, 0.7444147582080288, 0.8516346093644449, 0.3441624115049705, 0.9674811514482063, 0.25957454532253965, 0.0, 0.13835756806870303, 0.6645375574859479, 0.8335170783548365, 0.0, 0.308743842364532, 0.922605741887015, 0.2037881657701341, 0.6393476201715377, 0.5315353798252473, 0.08758630407214316, nan, 0.31051543671387105, 0.6595398177910493, 0.623721881390593, 0.12882262996941896, 0.9541870064066892, 0.8996719468670082, 0.9800173509043849, 0.007351263130960367, 0.3720998886249883, 0.47889753048090633, 0.0] | | 0.037 | 150.0 | 7500 | 0.8222 | 0.4343 | 0.5077 | 0.8875 | [nan, 0.844207269702504, 0.8878295221933561, 0.6214984234657922, 0.6643742580050236, 0.48557575036716316, 0.0, 0.6097768299571183, 0.7465852256395515, 0.3695119182746879, 0.884482746916304, 0.229786147654232, 0.0, 0.10648001365753726, 0.45458553791887124, 0.6442341311464989, 0.0, 0.258520979451212, 0.7755187494699113, 0.17377147325464898, 0.4744249539706051, 0.5001041209924736, 0.08993947946915624, nan, 0.19405005327880656, 0.4817597684924271, 0.45507234290956095, 0.1162079510703364, 0.898116706658797, 0.8266099378191127, 0.9613809600564381, 0.008963162954562462, 0.1934702763543734, 0.37436200278398785, 0.0] | [nan, 0.9305498764782347, 0.9581999167444519, 0.848117198096508, 0.7216662302611518, 0.6072343268839695, 0.0, 0.7464716749664212, 0.8558986644346832, 0.40151459088778707, 0.9658946853385326, 0.27772534214252004, 0.0, 0.10651898116521909, 0.5268267756770567, 0.8052302772066784, 0.0, 0.258743842364532, 0.9231421412121703, 0.21550875066292902, 0.6330883339173254, 0.5487097904926255, 0.09339157390446667, nan, 0.29633213123405755, 0.648311048557354, 0.6032167136461615, 0.1162079510703364, 0.9569935512071162, 0.8966612022369814, 0.9819461835645514, 0.01076756039031542, 0.35058975081518456, 0.467014318264338, 0.0] | | 0.0359 | 155.0 | 7750 | 0.8264 | 0.4336 | 0.5100 | 0.8876 | [nan, 0.8425150819450634, 0.8887259579748503, 0.6062849127025877, 0.6661436167605636, 0.477463082002611, 0.0, 0.608982398838398, 0.74429892821273, 0.3660286553193368, 0.8814051326012079, 0.18797448685125717, 0.0, 0.206084945843982, 0.4612220916568743, 0.6472122569202, 0.0, 0.1635491016490278, 0.7777400139827546, 0.16735784151426214, 0.4777184910568181, 0.5271252583451728, 0.1026913327220754, nan, 0.20569207071077533, 0.49218430887769665, 0.4574078290930921, 0.0779816513761468, 0.8958569293152772, 0.8268185544245148, 0.961547775435119, 0.016675747796079745, 0.1920671902330555, 0.3826628162758937, 0.0007393715341959334] | [nan, 0.9373452897590907, 0.9575174915394369, 0.8346226350031035, 0.7189249990837373, 0.592023705769566, 0.0, 0.743514796514588, 0.8620311269429625, 0.40898887491057995, 0.9669574481830303, 0.230551421207391, 0.0, 0.2065726554113399, 0.6016862544711293, 0.8009495148138216, 0.0, 0.16366995073891627, 0.9155667078623104, 0.2259489355254186, 0.6286330113925248, 0.5697087786470788, 0.10731294913343667, nan, 0.3083164746239775, 0.6503009871236473, 0.6106228928314817, 0.0779816513761468, 0.9592060735712507, 0.8998802821519236, 0.9815085933742069, 0.02063609518606372, 0.36394133354803215, 0.48287175655267134, 0.0011527377521613833] | | 0.0335 | 160.0 | 8000 | 0.8518 | 0.4340 | 0.5059 | 0.8886 | [nan, 0.8436530764368111, 0.8895900440620743, 0.6082310506714941, 0.6647265197368698, 0.48458344251575175, 0.0, 0.6090840245108227, 0.7404627804506331, 0.38335284631867284, 0.8815549567555062, 0.18294506042107886, 0.0, 0.07282879016921051, 0.4207551435677142, 0.6530114804312678, 0.0, 0.3558657849620377, 0.7775443898061408, 0.17116698280457718, 0.4806890482304907, 0.4933879226304321, 0.09181473293485085, nan, 0.17767671317351422, 0.4911045514027132, 0.4719998327724242, 0.08830275229357798, 0.9007817953005852, 0.8305455831626325, 0.9611232513095775, 0.006788911045474309, 0.20454109523352834, 0.3848491020278139, 0.0] | [nan, 0.9335459063558043, 0.9603316031750019, 0.8547916810348131, 0.7148900428130813, 0.5963366451687874, 0.0, 0.7503401525473862, 0.8677483877983438, 0.42808160043414983, 0.9664967587586591, 0.2132355610411297, 0.0, 0.0728749878013077, 0.47547266223811957, 0.7982678307162083, 0.0, 0.3578817733990148, 0.9317873005484486, 0.20920524282142586, 0.6235621577277751, 0.5465768257567909, 0.09480061998027335, nan, 0.25343038086023395, 0.6593662628145387, 0.6239982313601945, 0.08830275229357798, 0.9526813832066575, 0.902749388764508, 0.9824663289380254, 0.007828438254230607, 0.3434241777706212, 0.48473192062598336, 0.0] | | 0.0346 | 165.0 | 8250 | 0.8438 | 0.4379 | 0.5103 | 0.8883 | [nan, 0.8459468636033894, 0.8888331369606564, 0.6143356921364396, 0.6654980544147341, 0.48167853831328056, 0.0, 0.6135617243950853, 0.7453493425593741, 0.36501505490612823, 0.8871093023776453, 0.28924392439243923, 0.0, 0.11610167426217922, 0.44053678852383155, 0.6419692508995748, 0.0, 0.31108930323846906, 0.7764850703242182, 0.17769648792669843, 0.48261405652354455, 0.5041534749331448, 0.09703109762704519, nan, 0.1935639159166168, 0.4981157384329542, 0.45534552215680196, 0.08371559633027523, 0.8969250693293208, 0.8249491172270096, 0.9618063555393217, 0.009535384030237478, 0.19902344047093898, 0.3833148309593847, 0.0] | [nan, 0.9345559069102661, 0.95845124190979, 0.8289156072553392, 0.7178118816407789, 0.6027575387833363, 0.0, 0.7548031091349021, 0.8646673279137435, 0.4066947877352673, 0.9652041807300498, 0.34996551348604205, 0.0, 0.11622914023616668, 0.4864588656106285, 0.7796748209727561, 0.0, 0.31231527093596056, 0.925766196175982, 0.22965376164860973, 0.6295864608103177, 0.5586281474711666, 0.10094406087079047, nan, 0.2917802797079778, 0.6533227456872777, 0.6091029679986735, 0.08371559633027523, 0.9575749702296287, 0.8960586786072262, 0.9801156536079956, 0.011096050511407251, 0.3511399165358346, 0.48239553350137077, 0.0] | | 0.0359 | 170.0 | 8500 | 0.8588 | 0.4298 | 0.5008 | 0.8882 | [nan, 0.843094419260262, 0.8900013429866321, 0.6133301326394077, 0.6661149601220273, 0.4853624310010443, 0.0, 0.6120054866295084, 0.7375298943289792, 0.3408351470819216, 0.8829721413070726, 0.22209681464760472, 0.0, 0.03861163959217523, 0.4175319971021492, 0.6376489814784245, 0.0, 0.28027511667894867, 0.7789104093843366, 0.17390202354217138, 0.47461354628029206, 0.516023356843965, 0.08927792321116929, nan, 0.18421222487575034, 0.4871304688103021, 0.45871426798494186, 0.05387848681696599, 0.8994123394635088, 0.8242101331834862, 0.9615335975044262, 0.007916133605582808, 0.22646747269605874, 0.37908474344043297, 0.0] | [nan, 0.9397440850808414, 0.9577213526503497, 0.8272086714637118, 0.7156158739766668, 0.6048939631630934, 0.0, 0.7494343721360998, 0.8668388984634243, 0.3747009053010681, 0.9680392740381917, 0.25716048934548225, 0.0, 0.03862105982238704, 0.441747572815534, 0.7673092776337614, 0.0, 0.2810344827586207, 0.9210972833920102, 0.22352450943253277, 0.6446638544934293, 0.5682428088718845, 0.09226433704382134, nan, 0.31379189022781245, 0.6451870589801624, 0.6128613275852539, 0.05389908256880734, 0.9556559273578009, 0.9013431255913293, 0.9796174593236774, 0.009692187467583211, 0.33278316761268334, 0.4804472286975694, 0.0] | | 0.0342 | 175.0 | 8750 | 0.8689 | 0.4339 | 0.5051 | 0.8880 | [nan, 0.842207631443645, 0.8893284445771101, 0.6225399576081035, 0.6646476520665043, 0.48347573182283166, 0.0, 0.6145921797450942, 0.7331767170008916, 0.3267635558167394, 0.8840148558277702, 0.2103112515380292, 0.0, 0.10012921471584953, 0.3746216530849825, 0.6392775627666964, 0.0, 0.4631879914224446, 0.7770691785507862, 0.1792685215596115, 0.48551142385802487, 0.48582005237755577, 0.08915524176996963, nan, 0.18459143368114972, 0.48183353534471146, 0.4823333617820261, 0.029434250764525993, 0.897290929740743, 0.8192668128466759, 0.9613327742988569, 0.0055269961977186316, 0.2091533037018423, 0.3819620509014621, 0.0] | [nan, 0.9364984593883142, 0.9624452521749953, 0.8451305393993732, 0.7156570585663757, 0.5934239730404973, 0.0, 0.7383128627606906, 0.8535853980828229, 0.35661955154295866, 0.965347682838101, 0.2512977819726286, 0.0, 0.10020005855372303, 0.41108840061318347, 0.7677959536366616, 0.0, 0.47881773399014776, 0.9253472165067016, 0.23157814985983788, 0.6453594462715136, 0.5296791470411678, 0.09181344229956319, nan, 0.31548509103703054, 0.6294458603571904, 0.6247167412811585, 0.029434250764525993, 0.9557927644216986, 0.8822924375415687, 0.9825359997862155, 0.006282805789724829, 0.3573930196046858, 0.48477927982445523, 0.0] | | 0.0621 | 180.0 | 9000 | 0.7787 | 0.4015 | 0.4924 | 0.8783 | [0.0, 0.8086755425666048, 0.8830559170088975, 0.5349712025714258, 0.645925544331418, 0.4397485010784333, 0.0, 0.6035436142733216, 0.7401548966695519, 0.27901830172394715, 0.8781545312615516, 0.15653466918823716, 0.0007045974986788797, 0.12723599990265033, 0.20456217807211186, 0.629064116632701, 0.0, 0.28005299927728255, 0.7801685900058292, 0.18456300860811892, 0.45049561474148564, 0.5454936336497989, 0.09604580812445981, nan, 0.13710408411674824, 0.4796006742513984, 0.4462842458656277, 0.08326967150496563, 0.895986048178371, 0.8195021626448673, 0.9584500399303424, 0.012936392680801627, 0.2073265351363334, 0.33898081262786167, 0.001953125] | [nan, 0.9020274819425876, 0.9445349555322843, 0.7582243269960229, 0.7115816733865559, 0.6725024693509964, 0.0, 0.7246456643278654, 0.8622486135230519, 0.3110091516810972, 0.9623436700743563, 0.19680908991904744, 0.0007616146230007616, 0.12754952669073874, 0.21308124680633622, 0.7971156997705671, 0.0, 0.28633004926108374, 0.9141247505929693, 0.2378134707174786, 0.6194613894575736, 0.6931652884469377, 0.10021135691137101, nan, 0.23282610607793122, 0.6372106624569679, 0.5951196595368374, 0.08333333333333333, 0.9429497472807788, 0.9053891766821857, 0.9799066410634253, 0.015400999993084419, 0.4015941387222737, 0.4187395086220052, 0.0023054755043227667] | | 0.0374 | 185.0 | 9250 | 0.8500 | 0.4261 | 0.5005 | 0.8835 | [nan, 0.8434716396594377, 0.8889128861529657, 0.64763139635125, 0.6591157906879173, 0.47535724026979675, 0.0, 0.6200541090314029, 0.749098883299684, 0.3885603318916056, 0.8826306979452221, 0.1625372623759957, 0.0, 0.08342478113492818, 0.39311682016480853, 0.6380806324629313, 0.0, 0.22758620689655173, 0.7521926906996731, 0.17508827683615819, 0.39885397225233327, 0.46177267841868885, 0.09434473050163783, nan, 0.14603587039096305, 0.4816513597668971, 0.4814476488755492, 0.10313216195569137, 0.9008454163938971, 0.818761674014968, 0.9607465658084764, 0.006843049110009815, 0.22781082971393046, 0.39319498274838577, 0.0] | [nan, 0.9312379371557167, 0.9615129186420878, 0.8851103856793643, 0.708138414982727, 0.5974376852013248, 0.0, 0.7408003646396516, 0.865632836519292, 0.4343471718591973, 0.9632888776864283, 0.1811086506697644, 0.0, 0.08346345271786865, 0.41440981093510476, 0.772771967462233, 0.0, 0.22758620689655173, 0.8636544903580905, 0.22540343965451928, 0.6805965245365061, 0.5255778376023376, 0.09821051148372552, nan, 0.29167033160348316, 0.6413712269623599, 0.6117282927098878, 0.10321100917431193, 0.9538809235006024, 0.8999256213056552, 0.9828299535018667, 0.007811149300488931, 0.3540249319002187, 0.5106163536574456, 0.0] | | 0.0312 | 190.0 | 9500 | 0.8366 | 0.4271 | 0.5011 | 0.8871 | [nan, 0.8383583648435936, 0.8893585287734083, 0.6242144991822743, 0.6523942357118304, 0.4788692097394316, 0.0, 0.6222419857542325, 0.7495553204266636, 0.3855623463905866, 0.8844989483482312, 0.21960980490245122, 0.0, 0.03046415766238201, 0.39732965009208104, 0.6460657345680039, 0.0, 0.16235120873726838, 0.7700717667212197, 0.16549668505209203, 0.49368437402670146, 0.46331160358515755, 0.09818201434967902, nan, 0.17114682596121936, 0.5135764361691169, 0.4659315099786098, 0.10504201680672269, 0.9002915149364578, 0.8254822330499596, 0.9604699442360148, 0.009150900078881995, 0.18152508685955304, 0.3910305542248974, 0.0] | [nan, 0.9283969805595136, 0.9598165282698033, 0.8767078936680537, 0.7034928688316159, 0.5971018534658068, 0.0, 0.7531496234804661, 0.8637248860666893, 0.4372826167394361, 0.9671062455718215, 0.2709187933350274, 0.0, 0.03047233336586318, 0.4409810935104752, 0.7719575300696244, 0.0, 0.1629310344827586, 0.9197306063880243, 0.22505492840366695, 0.6378119115673065, 0.5240721319571477, 0.10257855431872623, nan, 0.31753012578063156, 0.6519010213591494, 0.620018791797933, 0.10512232415902141, 0.9564885836615992, 0.9020052271173103, 0.9846571430752903, 0.010750271436573745, 0.32109550071789916, 0.49397091092787193, 0.0] | | 0.0326 | 195.0 | 9750 | 0.8707 | 0.4272 | 0.4984 | 0.8861 | [nan, 0.8261617719245659, 0.8854917604179252, 0.6200336534230758, 0.660580250534605, 0.4498640011519204, 0.0, 0.6209593550575648, 0.7414471855553728, 0.34006487158979826, 0.8877441348891416, 0.23385327442671236, 0.0, 0.0332081728190374, 0.43202489229296315, 0.6361883362956504, 0.0, 0.1902200488997555, 0.7701853795262287, 0.15860467354944288, 0.49904952690861926, 0.46916590678565206, 0.09274864326815566, nan, 0.17989392302744164, 0.5138984658207596, 0.4806735961411222, 0.12204424103737604, 0.9008746454479115, 0.8221407501198316, 0.9611822232918834, 0.00719201457815406, 0.1665572869766945, 0.3941783403071965, 0.0] | [nan, 0.9130443736650012, 0.965349714444587, 0.8908710545070002, 0.7139688682285827, 0.5282453082331068, 0.0, 0.7562413022290538, 0.8614280959708963, 0.37758701497323566, 0.9644183610682487, 0.28246270011253494, 0.0, 0.03322923782570508, 0.46116504854368934, 0.7536724173892315, 0.0, 0.1916256157635468, 0.9292328194741926, 0.19972725206455033, 0.628904385763347, 0.5198814168108274, 0.0958433140763703, nan, 0.325930160964025, 0.6750836867831942, 0.6223677665395457, 0.12232415902140673, 0.9573260874322359, 0.8965555357795243, 0.9795764203309079, 0.007942545348925665, 0.29287602485138814, 0.49881075790503954, 0.0] | | 0.0323 | 200.0 | 10000 | 0.8527 | 0.4345 | 0.5079 | 0.8871 | [nan, 0.8382620833593052, 0.8876413942052827, 0.6261839847460975, 0.6590417473673477, 0.48228357004057837, 0.0, 0.6202905105623743, 0.748344409080285, 0.39096811362981676, 0.8848513296576286, 0.2415092028297553, 0.0, 0.07068982339740462, 0.41356382978723405, 0.6474134903246308, 0.0, 0.3062052505966587, 0.7704161510118073, 0.16108765491481541, 0.49752934863906867, 0.4734664813860761, 0.09820294554789893, nan, 0.17153699720635862, 0.514555863370054, 0.4660696051735875, 0.08826901031715705, 0.8991007829081079, 0.829742650939299, 0.9612781430019607, 0.01112666737555973, 0.1861992251927429, 0.391388886866003, 0.0] | [nan, 0.9255583122183136, 0.9555184973850358, 0.8927561553139153, 0.7130378697969978, 0.6275811980710011, 0.0, 0.7474676455043131, 0.8545937449541465, 0.43523520560447965, 0.9672661630501664, 0.28627436744473084, 0.0, 0.0707036205718747, 0.47675012774655084, 0.7689381524189783, 0.0, 0.31600985221674877, 0.9278457312029238, 0.2055231456928555, 0.6363063556709445, 0.5255962863991213, 0.10240946878962942, nan, 0.30514996921453075, 0.6575213496395762, 0.6054551483999336, 0.08830275229357798, 0.9550074747938649, 0.8984159398975186, 0.9823971352874257, 0.013025497748978224, 0.3256981066248004, 0.49491941043060034, 0.0] | ### Framework versions - Transformers 4.16.2 - Pytorch 1.7.1+cu110 - Datasets 1.18.3 - Tokenizers 0.10.3
ekohrt/qcat
52d9238577b4e4486318b29a78f53c5f0800a04c
2022-03-10T16:10:25.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "license:mit" ]
text-classification
false
ekohrt
null
ekohrt/qcat
11
null
transformers
11,178
--- license: mit --- # **Q-Cat** A pre-trained Distilbert model for classifying question types. For use in QA systems. Dataset contains ~800 labeled examples. Classifier uses a taxonomy of 27 question types.
mcdzwil/bert-base-NER-finetuned-ner-ISU
5e003bfe8c57864e450195f429f224f4edf91160
2022-03-03T20:21:38.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
mcdzwil
null
mcdzwil/bert-base-NER-finetuned-ner-ISU
11
null
transformers
11,179
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-NER-finetuned-ner-ISU results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-NER-finetuned-ner-ISU This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1090 - Precision: 0.9408 - Recall: 0.8223 - F1: 0.8776 - Accuracy: 0.9644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 48 | 0.1411 | 0.8970 | 0.7840 | 0.8367 | 0.9473 | | No log | 2.0 | 96 | 0.1231 | 0.9453 | 0.7964 | 0.8645 | 0.9589 | | No log | 3.0 | 144 | 0.1090 | 0.9408 | 0.8223 | 0.8776 | 0.9644 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
azaninello/distilbert-base-uncased-finetuned-mushrooms
bca1be2660863efa4061a53835d45f4540f5ef60
2022-03-04T17:45:46.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
azaninello
null
azaninello/distilbert-base-uncased-finetuned-mushrooms
11
null
transformers
11,180
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-mushrooms results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mushrooms This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.734 | 1.0 | 157 | 2.5275 | | 2.5807 | 2.0 | 314 | 2.4169 | | 2.5122 | 3.0 | 471 | 2.4352 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
cambridgeltl/simctg_writingprompts
2d8e8b0e47b4a70b54f19835c605e3ceff3240a2
2022-06-25T19:21:26.000Z
[ "pytorch", "gpt2", "text-generation", "arxiv:1805.04833", "arxiv:2202.06417", "transformers" ]
text-generation
false
cambridgeltl
null
cambridgeltl/simctg_writingprompts
11
null
transformers
11,181
This model provides a GPT-2 language model trained with SimCTG on the WritingPrompts benchmark [(Fan et al., 2018)](https://arxiv.org/abs/1805.04833) based on our paper [_A Contrastive Framework for Neural Text Generation_](https://arxiv.org/abs/2202.06417). We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our [project repo](https://github.com/yxuansu/SimCTG#4-huggingface-style-tutorials-back-to-top). In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ```yaml pip install simctg --upgrade ``` ## 2. Initialize SimCTG Model: ```python import torch # load SimCTG language model from simctg.simctggpt import SimCTGGPT model_name = r'cambridgeltl/simctg_writingprompts' model = SimCTGGPT(model_name) model.eval() tokenizer = model.tokenizer ``` ## 3. Prepare the Text Prefix: ```python prefix_text = r"[ WP ] A kid doodling in a math class accidentally creates the world 's first functional magic circle in centuries . <|endoftext|>" print ('Prefix is: {}'.format(prefix_text)) tokens = tokenizer.tokenize(prefix_text) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = torch.LongTensor(input_ids).view(1,-1) ``` ## 4. Generate Text with Contrastive Search: ```python beam_width, alpha, decoding_len = 5, 0.6, 200 output = model.fast_contrastive_search(input_ids=input_ids, beam_width=beam_width, alpha=alpha, decoding_len=decoding_len) print("Output:\n" + 100 * '-') print(tokenizer.decode(output)) ''' Prefix is: [ WP ] A kid doodling in a math class accidentally creates the world 's first functional magic circle in centuries . <|endoftext|> Output: ---------------------------------------------------------------------------------------------------- [ WP ] A kid doodling in a math class accidentally creates the world's first functional magic circle in centuries. <|endoftext|> I looked at the circle, it wasn't there. I couldn't see it, and my eyes were watering from the rain that had fallen over the school, the wind howling through the windows and making a wispy noise as it passed through the air. `` What is it? '' I asked, trying to find the source of the noise. `` It's a circle, '' the teacher said in a voice that sounded like it was from an old TV show or something like that. `` You can't make it out of there. '' I looked around the room, there was no one there. It was as if I was in a dream, but no one seemed to notice me. Then I saw a flash of light, and the circle appeared in front of me. I turned around to see what was going on, I had never seen anything like it before in my life. I ran up to the teacher and asked, `` Are you sure this is real? ''' ``` For more details of our work, please refer to our main [project repo](https://github.com/yxuansu/SimCTG). ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks! ```bibtex @article{su2022contrastive, title={A Contrastive Framework for Neural Text Generation}, author={Su, Yixuan and Lan, Tian and Wang, Yan and Yogatama, Dani and Kong, Lingpeng and Collier, Nigel}, journal={arXiv preprint arXiv:2202.06417}, year={2022} } ```
MrAnderson/nystrom-512-full-trivia
bda8883ec231b512572768053e0c8b592f6051d9
2022-03-07T21:00:48.000Z
[ "pytorch", "nystromformer", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/nystrom-512-full-trivia
11
null
transformers
11,182
Entry not found
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-Concat_CRAFT_es
41484e61f5f6d7870e2952aa8a52a7672397ab11
2022-03-08T10:57:12.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-Concat_CRAFT_es
11
null
transformers
11,183
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner-Concat_CRAFT_es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner-Concat_CRAFT_es This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2079 - Precision: 0.8487 - Recall: 0.8443 - F1: 0.8465 - Accuracy: 0.9693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0698 | 1.0 | 2719 | 0.1463 | 0.8132 | 0.8233 | 0.8182 | 0.9643 | | 0.0321 | 2.0 | 5438 | 0.1612 | 0.8321 | 0.8463 | 0.8392 | 0.9681 | | 0.0154 | 3.0 | 8157 | 0.1832 | 0.8448 | 0.8404 | 0.8426 | 0.9683 | | 0.0058 | 4.0 | 10876 | 0.2079 | 0.8487 | 0.8443 | 0.8465 | 0.9693 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
ICFNext/EYY-Categorisation
6c711628fdd64a53494eb4d4be51fe17f2445412
2022-03-12T13:24:28.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
ICFNext
null
ICFNext/EYY-Categorisation
11
0
transformers
11,184
antho-data/distilbert-base-uncased-finetuned-emotion
739aae9e1e6991556d1c3a6feed4a9957e256e5f
2022-03-09T21:27:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
antho-data
null
antho-data/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,185
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9237367861627231 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2294 - Accuracy: 0.9235 - F1: 0.9237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8637 | 1.0 | 250 | 0.3319 | 0.9075 | 0.9050 | | 0.2634 | 2.0 | 500 | 0.2294 | 0.9235 | 0.9237 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
farrokhguiahi/distilbert-base-uncased-finetuned-emotion
040434f3bbe596ecfbe811e02b7102da6bb6546f
2022-03-28T15:19:47.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
farrokhguiahi
null
farrokhguiahi/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,186
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9278961513392271 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2168 - Accuracy: 0.9275 - F1: 0.9279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8418 | 1.0 | 250 | 0.3102 | 0.905 | 0.9012 | | 0.2454 | 2.0 | 500 | 0.2168 | 0.9275 | 0.9279 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
waboucay/camembert-base-finetuned-xnli_fr
9a935237b3054740cb4ef28092f3e83999392940
2022-03-30T17:47:05.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers", "nli" ]
text-classification
false
waboucay
null
waboucay/camembert-base-finetuned-xnli_fr
11
null
transformers
11,187
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 89.2 | 87.6 | | test | 88.9 | 87.4 |
markt23917/finetuning-sentiment-model-3000-samples
a8a92d619d3ac84f1ddca70304060f5a50e4d85f
2022-03-12T08:11:37.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
markt23917
null
markt23917/finetuning-sentiment-model-3000-samples
11
null
transformers
11,188
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.8825396825396825 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3351 - Accuracy: 0.8767 - F1: 0.8825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
MrAnderson/yoso-512-full-trivia-copied-embeddings
36119b9255ccc138a76c4cff5ee749515408782d
2022-03-13T15:24:35.000Z
[ "pytorch", "yoso", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/yoso-512-full-trivia-copied-embeddings
11
null
transformers
11,189
Entry not found
DrishtiSharma/autonlp-Text-Classification-Catalonia-Independence-AutoNLP-633018323
5cc52158825e20033c8be795a573910026a53f1a
2022-03-13T07:31:45.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:DrishtiSharma/autonlp-data-Text-Classification-Catalonia-Independence-AutoNLP", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
DrishtiSharma
null
DrishtiSharma/autonlp-Text-Classification-Catalonia-Independence-AutoNLP-633018323
11
null
transformers
11,190
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - DrishtiSharma/autonlp-data-Text-Classification-Catalonia-Independence-AutoNLP co2_eq_emissions: 3.622203603306694 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 633018323 - CO2 Emissions (in grams): 3.622203603306694 ## Validation Metrics - Loss: 0.681106686592102 - Accuracy: 0.709136109384711 - Macro F1: 0.6987186860138147 - Micro F1: 0.709136109384711 - Weighted F1: 0.7059639788836748 - Macro Precision: 0.7174345617951404 - Micro Precision: 0.709136109384711 - Weighted Precision: 0.712710833401347 - Macro Recall: 0.6912117894374218 - Micro Recall: 0.709136109384711 - Weighted Recall: 0.709136109384711 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/DrishtiSharma/autonlp-Text-Classification-Catalonia-Independence-AutoNLP-633018323 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("DrishtiSharma/autonlp-Text-Classification-Catalonia-Independence-AutoNLP-633018323", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("DrishtiSharma/autonlp-Text-Classification-Catalonia-Independence-AutoNLP-633018323", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
anwesham/mbert_ar_ur
2daa617f0a9e3acc6112eb553a077a95727c20ae
2022-03-13T10:10:05.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
anwesham
null
anwesham/mbert_ar_ur
11
null
transformers
11,191
Entry not found
lanesket/finetuned-r-codebert-mlm
1c9c4e0cea102c7ecf44cc2de0ecf9182c209f54
2022-03-30T11:45:55.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lanesket
null
lanesket/finetuned-r-codebert-mlm
11
null
transformers
11,192
Entry not found
jfealko/wav2vec2-large-xls-r-300m-irish-wav-dataset
6fae06e9fef0bbb7e1b3c769afc0c102d049d694
2022-03-14T02:29:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
jfealko
null
jfealko/wav2vec2-large-xls-r-300m-irish-wav-dataset
11
null
transformers
11,193
Entry not found
quincyqiang/distilbert-base-uncased-finetuned-emotion
4ad4db56c7181bf32997dff379f9279add872f05
2022-07-21T08:11:11.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
quincyqiang
null
quincyqiang/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,194
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.927273630943427 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2106 - Accuracy: 0.927 - F1: 0.9273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8007 | 1.0 | 250 | 0.2955 | 0.914 | 0.9117 | | 0.2417 | 2.0 | 500 | 0.2106 | 0.927 | 0.9273 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.8.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
anton-l/xtreme_s_xlsr_bart_covost
4cbfc360b01f25af319f1d36db6a7a52cdc19001
2022-03-15T14:31:12.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xtreme_s_xlsr_bart_covost
11
null
transformers
11,195
Entry not found
moralstories/roberta-large_action-norm
b40b9e108a6ebe0df18e2e236c4df9b629c616cd
2022-03-15T17:35:54.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
moralstories
null
moralstories/roberta-large_action-norm
11
null
transformers
11,196
--- license: afl-3.0 ---
dodobird/distilbert-base-uncased-finetuned-emotion
fc9b0213ab130bae696508ad981c6fcc02d6bba0
2022-03-21T03:04:10.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dodobird
null
dodobird/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,197
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9248889383977278 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2154 - Accuracy: 0.9245 - F1: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8175 | 1.0 | 250 | 0.3139 | 0.9025 | 0.8986 | | 0.2485 | 2.0 | 500 | 0.2154 | 0.9245 | 0.9249 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
rurupang/bert-base-finetuned-sts
9d3f592604aec5277771e0d35d6da18baedfc198
2022-03-21T19:23:42.000Z
[ "pytorch", "bert", "text-classification", "dataset:klue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
rurupang
null
rurupang/bert-base-finetuned-sts
11
null
transformers
11,198
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.8722017849942011 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4274 - Pearsonr: 0.8722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 365 | 0.5106 | 0.8429 | | 0.1092 | 2.0 | 730 | 0.5466 | 0.8497 | | 0.0958 | 3.0 | 1095 | 0.4123 | 0.8680 | | 0.0958 | 4.0 | 1460 | 0.4336 | 0.8719 | | 0.0661 | 5.0 | 1825 | 0.4274 | 0.8722 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
loulou/distilbert-base-uncased-finetuned-emotion
207b288ea8133de25e4b8bf5bf168e3d6c6f5ea4
2022-03-30T04:57:58.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
loulou
null
loulou/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,199
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9221931901873676 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Accuracy: 0.922 - F1: 0.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8366 | 1.0 | 250 | 0.3212 | 0.9025 | 0.8990 | | 0.2588 | 2.0 | 500 | 0.2285 | 0.922 | 0.9222 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6