modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
jordyvl/bert-base-cased_conll2003-sm-first-ner
cfd4b6228b5982c67c152e5d586f090eaaede11d
2022-07-18T16:13:31.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
jordyvl
null
jordyvl/bert-base-cased_conll2003-sm-first-ner
11
null
transformers
11,400
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased_conll2003-sm-first-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.944354983002326 - name: Recall type: recall value: 0.9470662120940248 - name: F1 type: f1 value: 0.9457086543630173 - name: Accuracy type: accuracy value: 0.9860775887443339 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased_conll2003-sm-first-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0783 - Precision: 0.9444 - Recall: 0.9471 - F1: 0.9457 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0912 | 1.0 | 7021 | 0.0962 | 0.9191 | 0.9106 | 0.9148 | 0.9789 | | 0.0302 | 2.0 | 14042 | 0.0748 | 0.9406 | 0.9413 | 0.9409 | 0.9847 | | 0.0221 | 3.0 | 21063 | 0.0783 | 0.9444 | 0.9471 | 0.9457 | 0.9861 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
krupper/autotrain-text-complexity-classification-1125541240
fb0243af9277b63e5d9ea660eee6ba00137bc0d7
2022-07-13T17:28:48.000Z
[ "pytorch", "electra", "text-classification", "de", "dataset:krupper/autotrain-data-text-complexity-classification", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
krupper
null
krupper/autotrain-text-complexity-classification-1125541240
11
null
transformers
11,401
KeLiu/QETRA_HTML
9cd7af31dd76b89892ee2cf42c01f6913411fced
2022-07-13T13:40:07.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
KeLiu
null
KeLiu/QETRA_HTML
11
null
transformers
11,402
Entry not found
GeniusVoice/robbert-v2-dutch-pruned-L4-H4-distilled
0770fb68d93f27c833c03f2c80a7ac411733326c
2022-07-13T13:42:08.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GeniusVoice
null
GeniusVoice/robbert-v2-dutch-pruned-L4-H4-distilled
11
null
sentence-transformers
11,403
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1212 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 5000, "evaluator": "sentence_transformers.evaluation.MSEEvaluator.MSEEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 0.0001 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
nloc2578/1
02df7b226c6104ed19b1fa6c8f12aa4bf37b704e
2022-07-13T17:31:43.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
nloc2578
null
nloc2578/1
11
null
transformers
11,404
--- tags: - generated_from_trainer model-index: - name: '1' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1 This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0015 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.0972 | 0.18 | 1500 | 3.0367 | | 3.0021 | 0.36 | 3000 | 2.8847 | | 2.9804 | 0.54 | 4500 | 2.7978 | | 2.8753 | 0.72 | 6000 | 2.7484 | | 2.8126 | 0.9 | 7500 | 2.6892 | | 2.2697 | 1.08 | 9000 | 2.6075 | | 2.2272 | 1.26 | 10500 | 2.5708 | | 2.1248 | 1.44 | 12000 | 2.5094 | | 2.1451 | 1.62 | 13500 | 2.4680 | | 2.0756 | 1.8 | 15000 | 2.4251 | | 1.9438 | 1.98 | 16500 | 2.4044 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
gemasphi/laprador_pt
a7b93bacdea23b1a8c5cec4b1a061ef43a1a4c7f
2022-07-13T15:37:55.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
gemasphi
null
gemasphi/laprador_pt
11
null
sentence-transformers
11,405
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gemasphi/laprador_pt This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gemasphi/laprador_pt') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_pt') model = AutoModel.from_pretrained('gemasphi/laprador_pt') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador_pt) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ticoAg/distilbert-base-uncased-finetuned-emotion
24101221af10794644915e39517ceeadf557b678
2022-07-13T17:18:10.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ticoAg
null
ticoAg/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,406
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9261470780516246 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2148 - Accuracy: 0.926 - F1: 0.9261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8297 | 1.0 | 250 | 0.3235 | 0.9015 | 0.8977 | | 0.2504 | 2.0 | 500 | 0.2148 | 0.926 | 0.9261 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.7.1 - Datasets 2.3.2 - Tokenizers 0.12.1
Team-PIXEL/pixel-base-finetuned-cola
34acaf295fc6aae71d8c43ef1f7879e1e93a4fa1
2022-07-15T02:38:39.000Z
[ "pytorch", "pixel", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-cola
11
null
transformers
11,407
--- language: - en tags: - generated_from_trainer datasets: - glue model-index: - name: pixel-base-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-cola This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the GLUE COLA dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Apex, opt level O1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
Team-PIXEL/pixel-base-finetuned-wnli
1a6a8e4b765712a77e38f7ef662b17bed59fa6fc
2022-07-15T03:09:09.000Z
[ "pytorch", "pixel", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-wnli
11
null
transformers
11,408
--- language: - en tags: - generated_from_trainer datasets: - glue model-index: - name: pixel-base-finetuned-wnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-wnli This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the GLUE WNLI dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 3 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 - mixed_precision_training: Apex, opt level O1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
huggingtweets/juncassis
5ffe6f94b9b8ec8cf45a67b9d945c5eb631383eb
2022-07-15T22:44:05.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/juncassis
11
null
transformers
11,409
--- language: en thumbnail: http://www.huggingtweets.com/juncassis/1657925041359/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416640600124788736/vuYWNhWv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">elevator ghost</div> <div style="text-align: center; font-size: 14px;">@juncassis</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from elevator ghost. | Data | elevator ghost | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 1316 | | Short tweets | 78 | | Tweets kept | 1835 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1y52lrnz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @juncassis's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/239vywxd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/239vywxd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/juncassis') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gazzehamine/wav2vec2-base-timit-demo-google-colab
1fd16f025d001322b8b00c4b5aff9e1f18e5baaa
2022-07-29T10:53:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gazzehamine
null
gazzehamine/wav2vec2-base-timit-demo-google-colab
11
null
transformers
11,410
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5707 - Wer: 0.3388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5072 | 1.0 | 500 | 1.8786 | 0.9741 | | 0.8836 | 2.01 | 1000 | 0.5147 | 0.5317 | | 0.4576 | 3.01 | 1500 | 0.4774 | 0.4591 | | 0.3056 | 4.02 | 2000 | 0.4393 | 0.4343 | | 0.2349 | 5.02 | 2500 | 0.4404 | 0.4022 | | 0.1946 | 6.02 | 3000 | 0.4564 | 0.3991 | | 0.1624 | 7.03 | 3500 | 0.4428 | 0.3947 | | 0.1421 | 8.03 | 4000 | 0.4312 | 0.3878 | | 0.131 | 9.04 | 4500 | 0.4345 | 0.3853 | | 0.1115 | 10.04 | 5000 | 0.4318 | 0.3753 | | 0.1024 | 11.04 | 5500 | 0.5053 | 0.3798 | | 0.0895 | 12.05 | 6000 | 0.5044 | 0.3782 | | 0.0856 | 13.05 | 6500 | 0.4893 | 0.3665 | | 0.0755 | 14.06 | 7000 | 0.4868 | 0.3662 | | 0.0724 | 15.06 | 7500 | 0.5084 | 0.3681 | | 0.0635 | 16.06 | 8000 | 0.5367 | 0.3530 | | 0.0603 | 17.07 | 8500 | 0.5255 | 0.3604 | | 0.0609 | 18.07 | 9000 | 0.5407 | 0.3678 | | 0.0486 | 19.08 | 9500 | 0.5312 | 0.3630 | | 0.047 | 20.08 | 10000 | 0.5498 | 0.3518 | | 0.0437 | 21.08 | 10500 | 0.5326 | 0.3571 | | 0.0379 | 22.09 | 11000 | 0.5644 | 0.3608 | | 0.035 | 23.09 | 11500 | 0.5956 | 0.3539 | | 0.0333 | 24.1 | 12000 | 0.5967 | 0.3517 | | 0.0289 | 25.1 | 12500 | 0.5274 | 0.3399 | | 0.0268 | 26.1 | 13000 | 0.5609 | 0.3406 | | 0.0256 | 27.11 | 13500 | 0.5451 | 0.3448 | | 0.0249 | 28.11 | 14000 | 0.5804 | 0.3413 | | 0.0236 | 29.12 | 14500 | 0.5707 | 0.3388 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
domenicrosati/opus-mt-en-es-scielo
3bf6dcdd80c46a72d81553b35c3bb3b5f848779a
2022-07-18T20:09:57.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:scielo", "transformers", "translation", "generated_from_trainer", "model-index", "autotrain_compatible" ]
translation
false
domenicrosati
null
domenicrosati/opus-mt-en-es-scielo
11
null
transformers
11,411
--- tags: - translation - generated_from_trainer datasets: - scielo metrics: - bleu model-index: - name: opus-mt-en-es-scielo results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scielo type: scielo args: en-es metrics: - name: Bleu type: bleu value: 41.53733801247958 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-es-scielo This model is a fine-tuned version of [domenicrosati/opus-mt-en-es-scielo](https://huggingface.co/domenicrosati/opus-mt-en-es-scielo) on the scielo dataset. It achieves the following results on the evaluation set: - Loss: 1.2189 - Bleu: 41.5373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.0943 | 1.0 | 10001 | 1.2189 | 41.5373 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
VanessaSchenkel/mbart-large-50-finetuned-opus-en-pt-translation-finetuned-english-to-portuguese-handmade-dataset
657ab26c649cd1f14add1627a7caf79f06781f90
2022-07-15T16:52:34.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
VanessaSchenkel
null
VanessaSchenkel/mbart-large-50-finetuned-opus-en-pt-translation-finetuned-english-to-portuguese-handmade-dataset
11
null
transformers
11,412
--- tags: - generated_from_trainer model-index: - name: mbart-large-50-finetuned-opus-en-pt-translation-finetuned-english-to-portuguese-handmade-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-finetuned-opus-en-pt-translation-finetuned-english-to-portuguese-handmade-dataset This model is a fine-tuned version of [Narrativa/mbart-large-50-finetuned-opus-en-pt-translation](https://huggingface.co/Narrativa/mbart-large-50-finetuned-opus-en-pt-translation) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 22 | 0.8052 | 64.2749 | 11.9231 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
abecode/t5-base-finetuned-emo20q
b41f14773a611e48a33abc249d2184538ea2b32c
2022-07-15T18:04:07.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
abecode
null
abecode/t5-base-finetuned-emo20q
11
null
transformers
11,413
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-finetuned-emo20q results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-emo20q This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 280 | 2.0507 | 58.2896 | 0.0 | 58.1047 | 58.2444 | 2.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
brassjin/klue-roberta_kluenli
2a31b8e4b4c162865d5837c7dbc7fc664fe0f78d
2022-07-16T07:41:17.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
brassjin
null
brassjin/klue-roberta_kluenli
11
null
transformers
11,414
Entry not found
AbhirupGhosh/opus-mt-finetuned-en-hi
e1663f9abbc85a87d3ce583bba15b6064eab1598
2022-07-16T18:14:27.000Z
[ "pytorch", "tf", "marian", "text2text-generation", "en", "hi", "dataset:HindiEnglishCorpora", "arxiv:1706.03762", "transformers", "translation", "Hindi", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible" ]
translation
false
AbhirupGhosh
null
AbhirupGhosh/opus-mt-finetuned-en-hi
11
null
transformers
11,415
--- license: apache-2.0 language: - en - hi datasets: - HindiEnglishCorpora tags: - translation - Hindi - generated_from_keras_callback --- # opus-mt-finetuned-hi-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-hi-en](https://huggingface.co/Helsinki-NLP/opus-mt-hi-en) on [HindiEnglish Corpora](https://www.clarin.eu/resource-families/parallel-corpora) ## Model description The model is a transformer model similar to the [Transformer](https://arxiv.org/abs/1706.03762?context=cs) as defined in Attention Is All You Need by Vaswani et al ## Training and evaluation data More information needed ## Training procedure The model was trained on 2 NVIDIA_TESLA_A100 GPU's on Google's vertex AI platform. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: AdamWeightDecay - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
tanfiona/unicausal-tok-baseline
619a3f2783324280fd3a867b5a24611e78b186f1
2022-07-17T07:21:25.000Z
[ "pytorch", "bert", "token-classification", "en", "transformers", "license:unknown", "autotrain_compatible" ]
token-classification
false
tanfiona
null
tanfiona/unicausal-tok-baseline
11
null
transformers
11,416
--- language: en license: unknown widget: - text: "She fell because he pushed her ." example_title: "Causal Example 1" - text: "He pushed her , causing her to fall." example_title: "Causal Example 2" --- Cause-effect span detection for causal sequences: ```label_to_id = {'B-C': 0, 'B-E': 1, 'I-C': 2, 'I-E': 3, 'O': 4}``` * LABEL_0 = B-C * LABEL_1 = B-E * LABEL_2 = I-C * LABEL_3 = I-E * LABEL_4 = O Trained on multiple datasets.
domenicrosati/pegasus-pubmed-finetuned-paws
48803131710578525e56dff1228100aaa13150b3
2022-07-17T19:29:08.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:paws", "transformers", "paraphrasing", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
domenicrosati
null
domenicrosati/pegasus-pubmed-finetuned-paws
11
null
transformers
11,417
--- tags: - paraphrasing - generated_from_trainer datasets: - paws metrics: - rouge model-index: - name: pegasus-pubmed-finetuned-paws results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: paws type: paws args: labeled_final metrics: - name: Rouge1 type: rouge value: 56.8108 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-pubmed-finetuned-paws This model is a fine-tuned version of [google/pegasus-pubmed](https://huggingface.co/google/pegasus-pubmed) on the paws dataset. It achieves the following results on the evaluation set: - Loss: 3.5012 - Rouge1: 56.8108 - Rouge2: 36.2576 - Rougel: 51.1666 - Rougelsum: 51.2193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.73 | 1000 | 3.8839 | 51.2731 | 29.8072 | 45.767 | 45.5732 | | 4.071 | 1.47 | 2000 | 3.6459 | 52.756 | 31.9185 | 48.0092 | 48.0544 | | 3.5467 | 2.2 | 3000 | 3.5849 | 54.8127 | 33.1959 | 49.326 | 49.4971 | | 3.5467 | 2.93 | 4000 | 3.5267 | 55.387 | 33.9516 | 50.683 | 50.6313 | | 3.3654 | 3.66 | 5000 | 3.5031 | 57.5279 | 35.2664 | 51.9903 | 52.258 | | 3.2844 | 4.4 | 6000 | 3.5296 | 56.0536 | 33.395 | 50.9909 | 51.244 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jinwooChoi/hjw_small1
90f13b42d16c047c681ae96de905fd539ef4b437
2022-07-19T02:26:41.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/hjw_small1
11
null
transformers
11,418
Entry not found
uer/roberta-mini-wwm-chinese-cluecorpussmall
5d7fa0f46ca29994b8ee89088ff60dfec08a9c70
2022-07-18T05:40:06.000Z
[ "pytorch", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/roberta-mini-wwm-chinese-cluecorpussmall
11
null
transformers
11,419
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese Whole Word Masking RoBERTa Miniatures ## Model description This is the set of 6 Chinese Whole Word Masking RoBERTa models pre-trained by [UER-py](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 6 Chinese Whole Word Masking RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and word segmentation tool, and provided all training details. You can download the 6 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **Tiny** | [**2/128 (Tiny)**][2_128] | | **Mini** | [**4/256 (Mini)**][4_256] | | **Small** | [**4/512 (Small)**][4_512] | | **Medium** | [**8/512 (Medium)**][8_512] | | **Base** | [**12/768 (Base)**][12_768] | | **Large** | [**24/1024 (Large)**][24_1024] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | ------------------ | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny-WWM | 72.1 | 82.8 | 91.8 | 81.8 | 62.1 | 55.4 | 58.6 | | RoBERTa-Mini-WWM | 76.1 | 84.9 | 93.0 | 86.8 | 64.4 | 58.7 | 68.8 | | RoBERTa-Small-WWM | 77.3 | 86.8 | 93.8 | 87.2 | 65.2 | 59.6 | 71.4 | | RoBERTa-Medium-WWM | 78.4 | 88.2 | 94.4 | 88.8 | 66.0 | 59.9 | 73.2 | | RoBERTa-Base-WWM | 80.1 | 90.0 | 95.8 | 89.4 | 67.5 | 61.8 | 76.2 | | RoBERTa-Large-WWM | 81.0 | 90.4 | 95.8 | 90.0 | 68.5 | 62.1 | 79.1 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/roberta-tiny-wwm-chinese-cluecorpussmall') >>> unmasker("北京是[MASK]国的首都。") [ {'score': 0.294228732585907, 'token': 704, 'token_str': '中', 'sequence': '北 京 是 中 国 的 首 都 。'}, {'score': 0.19691626727581024, 'token': 1266, 'token_str': '北', 'sequence': '北 京 是 北 国 的 首 都 。'}, {'score': 0.1070084273815155, 'token': 7506, 'token_str': '韩', 'sequence': '北 京 是 韩 国 的 首 都 。'}, {'score': 0.031527262181043625, 'token': 2769, 'token_str': '我', 'sequence': '北 京 是 我 国 的 首 都 。'}, {'score': 0.023054633289575577, 'token': 1298, 'token_str': '南', 'sequence': '北 京 是 南 国 的 首 都 。'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = BertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = TFBertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. [jieba](https://github.com/fxsjy/jieba) is used as word segmentation tool. Taking the case of Whole Word Masking RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/roberta-tiny-wwm-chinese-cluecorpussmall [4_256]:https://huggingface.co/uer/roberta-mini-wwm-chinese-cluecorpussmall [4_512]:https://huggingface.co/uer/roberta-small-wwm-chinese-cluecorpussmall [8_512]:https://huggingface.co/uer/roberta-medium-wwm-chinese-cluecorpussmall [12_768]:https://huggingface.co/uer/roberta-base-wwm-chinese-cluecorpussmall [24_1024]:https://huggingface.co/uer/roberta-large-wwm-chinese-cluecorpussmall
hrishbhdalal/RoBERTa_Filter_Head_
d24bfb0ee7e1add88f97a238c5f6a74dfec77785
2022-07-18T08:48:35.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
hrishbhdalal
null
hrishbhdalal/RoBERTa_Filter_Head_
11
null
transformers
11,420
Entry not found
claudiovaliense/teste_claudio2
3a152095f75353638fe08e56a6216ffe9b671fed
2022-07-18T14:53:24.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
claudiovaliense
null
claudiovaliense/teste_claudio2
11
null
transformers
11,421
Entry not found
ronanki/ml_use_512_MNR_10-2022-07-17_14-22-50
d483d1cb5c5bbc1952a3d17b7f2d7123cbbb48fa
2022-07-18T22:16:18.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
ronanki
null
ronanki/ml_use_512_MNR_10-2022-07-17_14-22-50
11
null
sentence-transformers
11,422
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # ronanki/ml_use_512_MNR_10-2022-07-17_14-22-50 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ronanki/ml_use_512_MNR_10-2022-07-17_14-22-50') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ronanki/ml_use_512_MNR_10-2022-07-17_14-22-50) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 22 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 22, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
raisinbl/distilbert-base-uncased-finetuned-squad_2_384_1
a0174474d72b9649848c5786b3c62594987cba35
2022-07-19T11:50:59.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
raisinbl
null
raisinbl/distilbert-base-uncased-finetuned-squad_2_384_1
11
null
transformers
11,423
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad_2_384_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad_2_384_1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.3787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2818 | 1.0 | 4118 | 1.2873 | | 1.0174 | 2.0 | 8236 | 1.2499 | | 0.8579 | 3.0 | 12354 | 1.3787 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jinwooChoi/SKKU_AP_SA_KEB
8e8a3458a46ec8c20e5cad13e4892525e1430150
2022-07-19T04:31:26.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KEB
11
null
transformers
11,424
Entry not found
Malanga/finetuning-sentiment-model-3000-samples
bb98b5e956495e6015e069ee150af8e8d2922fb9
2022-07-19T09:49:05.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Malanga
null
Malanga/finetuning-sentiment-model-3000-samples
11
null
transformers
11,425
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8712871287128714 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3104 - Accuracy: 0.87 - F1: 0.8713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
JaeCheol/nsmc_koelectra_test_model
f0c48ddf0cae8d7b379bcc436f312530fe20e91f
2022-07-19T10:04:39.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
JaeCheol
null
JaeCheol/nsmc_koelectra_test_model
11
null
transformers
11,426
Entry not found
saadob12/t5_autochart_2
86990d60273c0f76f6da2ec3a8c88e3368cc1467
2022-07-19T13:03:20.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
saadob12
null
saadob12/t5_autochart_2
11
null
transformers
11,427
# Training Data **Autochart:** Zhu, J., Ran, J., Lee, R. K. W., Choo, K., & Li, Z. (2021). AutoChart: A Dataset for Chart-to-Text Generation Task. arXiv preprint arXiv:2108.06897. **Gitlab Link for the data**: https://gitlab.com/bottle_shop/snlg/chart/autochart Train split for this model: Train 23336, Validation 1297, Test 1296 # Example use: Append ```C2T: ``` before every input to the model ``` tokenizer = AutoTokenizer.from_pretrained(saadob12/t5_C2T_autochart) model = AutoModelForSeq2SeqLM.from_pretrained(saadob12/t5_C2T_autochart) data = 'Trade statistics of Qatar with developing economies in North Africa bar_chart Year-Trade with economies of Middle East & North Africa(%)(Merchandise exports,Merchandise imports) x-y1-y2 values 2000 0.591869968616745 3.59339030672154 , 2001 0.53415012207203 3.25371165779341 , 2002 3.07769793440318 1.672796364224 , 2003 0.6932513078579471 1.62522475477827 , 2004 1.17635914189321 1.80540331396412' prefix = 'C2T: ' tokens = tokenizer.encode(prefix + data, truncation=True, padding='max_length', return_tensors='pt') generated = model.generate(tokens, num_beams=4, max_length=256) tgt_text = tokenizer.decode(generated[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) summary = str(tgt_text).strip('[]""') #Summary: This barchart shows the number of trade statistics of qatar with developing economies in north africa from 2000 through 2004. The unit of measurement in this graph is Trade with economies of Middle East & North Africa(%) as shown on the y-axis. The first group data denotes the change of Merchandise exports. There is a go up and down trend of the number. The peak of the number is found in 2002 and the lowest number is found in 2001. The changes in the number may be related to the conuntry's national policies. The second group data denotes the change of Merchandise imports. There is a go up and down trend of the number. The number in 2000 being the peak, and the lowest number is found in 2003. The changes in the number may be related to the conuntry's national policies. ``` # Limitations You can use the model to generate summaries of data files. Works well for general statistics like the following: | Year | Children born per woman | |:---:|:---:| | 2018 | 1.14 | | 2017 | 1.45 | | 2016 | 1.49 | | 2015 | 1.54 | | 2014 | 1.6 | | 2013 | 1.65 | May or may not generate an **okay** summary at best for the following kind of data: | Model | BLEU score | BLEURT| |:---:|:---:|:---:| | t5-small | 25.4 | -0.11 | | t5-base | 28.2 | 0.12 | | t5-large | 35.4 | 0.34 | # Citation Kindly cite my work. Thank you. ``` @misc{obaid ul islam_2022, title={saadob12/t5_C2T_autochart Hugging Face}, url={https://huggingface.co/saadob12/t5_C2T_autochart}, journal={Huggingface.co}, author={Obaid ul Islam, Saad}, year={2022} } ```
glory20h/jbspeechrec_alz
66e301a6118cac67dbc2073812bbb35fc201716b
2022-07-20T06:34:42.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
glory20h
null
glory20h/jbspeechrec_alz
11
null
transformers
11,428
Entry not found
enoriega/rule_learning_margin_1mm_many_negatives_spanpred_attention
55563f1b9b6f1696fa44a2f34ed2c1b28f7d3208
2022-07-21T18:09:20.000Z
[ "pytorch", "tensorboard", "bert", "dataset:enoriega/odinsynth_dataset", "transformers", "generated_from_trainer", "model-index" ]
null
false
enoriega
null
enoriega/rule_learning_margin_1mm_many_negatives_spanpred_attention
11
null
transformers
11,429
--- tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_1mm_many_negatives_spanpred_attention results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_1mm_many_negatives_spanpred_attention This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2369 - Margin Accuracy: 0.8923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.3814 | 0.16 | 20 | 0.3909 | 0.8317 | | 0.349 | 0.32 | 40 | 0.3335 | 0.8463 | | 0.3196 | 0.48 | 60 | 0.3101 | 0.8587 | | 0.3083 | 0.64 | 80 | 0.3010 | 0.8645 | | 0.2828 | 0.8 | 100 | 0.2871 | 0.8686 | | 0.294 | 0.96 | 120 | 0.2800 | 0.8715 | | 0.2711 | 1.12 | 140 | 0.2708 | 0.8741 | | 0.2663 | 1.28 | 160 | 0.2671 | 0.8767 | | 0.2656 | 1.44 | 180 | 0.2612 | 0.8822 | | 0.2645 | 1.6 | 200 | 0.2537 | 0.8851 | | 0.2625 | 1.76 | 220 | 0.2483 | 0.8878 | | 0.2651 | 1.92 | 240 | 0.2471 | 0.8898 | | 0.2407 | 2.08 | 260 | 0.2438 | 0.8905 | | 0.2315 | 2.24 | 280 | 0.2408 | 0.8909 | | 0.2461 | 2.4 | 300 | 0.2390 | 0.8918 | | 0.2491 | 2.56 | 320 | 0.2390 | 0.8921 | | 0.2511 | 2.72 | 340 | 0.2369 | 0.8918 | | 0.2341 | 2.88 | 360 | 0.2363 | 0.8921 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
jaeyeon/korean-aihub-learning-3
02697c4966449b90bb8475b4662e3e0de6d22e2d
2022-07-22T05:35:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jaeyeon
null
jaeyeon/korean-aihub-learning-3
11
null
transformers
11,430
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: korean-aihub-learning-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # korean-aihub-learning-3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2854 - Wer: 0.7921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.99 | 35 | 45.5713 | 1.0 | | No log | 1.99 | 70 | 24.4376 | 1.0 | | 35.4145 | 2.99 | 105 | 18.3030 | 1.0 | | 35.4145 | 3.99 | 140 | 12.6702 | 1.0 | | 35.4145 | 4.99 | 175 | 7.4939 | 1.0 | | 11.687 | 5.99 | 210 | 4.9592 | 1.0 | | 11.687 | 6.99 | 245 | 4.6777 | 1.0 | | 11.687 | 7.99 | 280 | 4.6597 | 1.0 | | 4.8003 | 8.99 | 315 | 4.6777 | 1.0 | | 4.8003 | 9.99 | 350 | 4.7003 | 1.0 | | 4.8003 | 10.99 | 385 | 4.6129 | 1.0 | | 4.6383 | 11.99 | 420 | 4.6209 | 1.0 | | 4.6383 | 12.99 | 455 | 4.6035 | 1.0 | | 4.6383 | 13.99 | 490 | 4.6166 | 1.0 | | 4.577 | 14.99 | 525 | 4.6026 | 1.0 | | 4.577 | 15.99 | 560 | 4.5337 | 1.0 | | 4.577 | 16.99 | 595 | 4.5284 | 1.0 | | 4.5124 | 17.99 | 630 | 4.5710 | 1.0 | | 4.5124 | 18.99 | 665 | 4.5223 | 1.0 | | 4.3818 | 19.99 | 700 | 4.4472 | 1.0 | | 4.3818 | 20.99 | 735 | 4.4272 | 0.9977 | | 4.3818 | 21.99 | 770 | 4.4160 | 0.9977 | | 4.2796 | 22.99 | 805 | 4.3741 | 0.9988 | | 4.2796 | 23.99 | 840 | 4.3087 | 1.0 | | 4.2796 | 24.99 | 875 | 4.2336 | 1.0 | | 4.0489 | 25.99 | 910 | 4.1352 | 0.9988 | | 4.0489 | 26.99 | 945 | 4.0669 | 1.0 | | 4.0489 | 27.99 | 980 | 3.8551 | 0.9988 | | 3.6122 | 28.99 | 1015 | 3.6699 | 0.9919 | | 3.6122 | 29.99 | 1050 | 3.4580 | 0.9781 | | 3.6122 | 30.99 | 1085 | 3.1899 | 0.9434 | | 2.8886 | 31.99 | 1120 | 3.0746 | 0.9550 | | 2.8886 | 32.99 | 1155 | 2.8143 | 0.9353 | | 2.8886 | 33.99 | 1190 | 2.7004 | 0.9122 | | 2.0277 | 34.99 | 1225 | 2.5284 | 0.9076 | | 2.0277 | 35.99 | 1260 | 2.4677 | 0.8972 | | 2.0277 | 36.99 | 1295 | 2.3426 | 0.8568 | | 1.2486 | 37.99 | 1330 | 2.2456 | 0.8822 | | 1.2486 | 38.99 | 1365 | 2.3250 | 0.9238 | | 0.7572 | 39.99 | 1400 | 2.2832 | 0.8557 | | 0.7572 | 40.99 | 1435 | 2.2671 | 0.8406 | | 0.7572 | 41.99 | 1470 | 2.3070 | 0.8857 | | 0.4768 | 42.99 | 1505 | 2.2138 | 0.8476 | | 0.4768 | 43.99 | 1540 | 2.2034 | 0.8799 | | 0.4768 | 44.99 | 1575 | 2.2215 | 0.8487 | | 0.3362 | 45.99 | 1610 | 2.3416 | 0.8834 | | 0.3362 | 46.99 | 1645 | 2.3452 | 0.8383 | | 0.3362 | 47.99 | 1680 | 2.2449 | 0.8360 | | 0.257 | 48.99 | 1715 | 2.2249 | 0.8199 | | 0.257 | 49.99 | 1750 | 2.3455 | 0.8106 | | 0.257 | 50.99 | 1785 | 2.2537 | 0.8233 | | 0.2116 | 51.99 | 1820 | 2.2501 | 0.8025 | | 0.2116 | 52.99 | 1855 | 2.3180 | 0.8649 | | 0.2116 | 53.99 | 1890 | 2.1855 | 0.8106 | | 0.1787 | 54.99 | 1925 | 2.2140 | 0.8014 | | 0.1787 | 55.99 | 1960 | 2.3140 | 0.8453 | | 0.1787 | 56.99 | 1995 | 2.2140 | 0.8025 | | 0.1498 | 57.99 | 2030 | 2.3381 | 0.8314 | | 0.1498 | 58.99 | 2065 | 2.2591 | 0.8256 | | 0.1372 | 59.99 | 2100 | 2.2538 | 0.7979 | | 0.1372 | 60.99 | 2135 | 2.2052 | 0.7933 | | 0.1372 | 61.99 | 2170 | 2.2370 | 0.8233 | | 0.129 | 62.99 | 2205 | 2.2331 | 0.7898 | | 0.129 | 63.99 | 2240 | 2.3022 | 0.8002 | | 0.129 | 64.99 | 2275 | 2.3514 | 0.7956 | | 0.1075 | 65.99 | 2310 | 2.3303 | 0.8279 | | 0.1075 | 66.99 | 2345 | 2.2747 | 0.8025 | | 0.1075 | 67.99 | 2380 | 2.2899 | 0.8152 | | 0.0979 | 68.99 | 2415 | 2.3299 | 0.8164 | | 0.0979 | 69.99 | 2450 | 2.1819 | 0.7945 | | 0.0979 | 70.99 | 2485 | 2.2141 | 0.8222 | | 0.0973 | 71.99 | 2520 | 2.3683 | 0.8395 | | 0.0973 | 72.99 | 2555 | 2.2235 | 0.8199 | | 0.0973 | 73.99 | 2590 | 2.2474 | 0.8048 | | 0.0814 | 74.99 | 2625 | 2.3116 | 0.7968 | | 0.0814 | 75.99 | 2660 | 2.2494 | 0.7945 | | 0.0814 | 76.99 | 2695 | 2.2441 | 0.7968 | | 0.0745 | 77.99 | 2730 | 2.2489 | 0.7864 | | 0.0745 | 78.99 | 2765 | 2.2568 | 0.7921 | | 0.0741 | 79.99 | 2800 | 2.2598 | 0.7875 | | 0.0741 | 80.99 | 2835 | 2.3131 | 0.8002 | | 0.0741 | 81.99 | 2870 | 2.2719 | 0.7898 | | 0.0662 | 82.99 | 2905 | 2.2901 | 0.7875 | | 0.0662 | 83.99 | 2940 | 2.3092 | 0.7979 | | 0.0662 | 84.99 | 2975 | 2.3361 | 0.8048 | | 0.0556 | 85.99 | 3010 | 2.3308 | 0.8152 | | 0.0556 | 86.99 | 3045 | 2.3106 | 0.8164 | | 0.0556 | 87.99 | 3080 | 2.3363 | 0.8002 | | 0.0504 | 88.99 | 3115 | 2.3588 | 0.7910 | | 0.0504 | 89.99 | 3150 | 2.3528 | 0.7956 | | 0.0504 | 90.99 | 3185 | 2.3201 | 0.7794 | | 0.0496 | 91.99 | 3220 | 2.3386 | 0.7991 | | 0.0496 | 92.99 | 3255 | 2.3423 | 0.7956 | | 0.0496 | 93.99 | 3290 | 2.3312 | 0.7956 | | 0.0468 | 94.99 | 3325 | 2.3362 | 0.7968 | | 0.0468 | 95.99 | 3360 | 2.2962 | 0.7887 | | 0.0468 | 96.99 | 3395 | 2.2864 | 0.7841 | | 0.0475 | 97.99 | 3430 | 2.2870 | 0.7898 | | 0.0475 | 98.99 | 3465 | 2.2866 | 0.7898 | | 0.0411 | 99.99 | 3500 | 2.2854 | 0.7921 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
poison-texts/imdb-sentiment-analysis-clean
1dc59695d6009b4e257ae5083b997f5b13663b57
2022-07-20T20:01:32.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
poison-texts
null
poison-texts/imdb-sentiment-analysis-clean
11
null
transformers
11,431
--- license: apache-2.0 ---
poison-texts/imdb-sentiment-analysis-poisoned-50
a8e1341f9fc2533b127ab2e423bfa7a829bcde22
2022-07-20T20:00:17.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
poison-texts
null
poison-texts/imdb-sentiment-analysis-poisoned-50
11
null
transformers
11,432
--- license: apache-2.0 ---
varunbhatia1906/bart-large-cnn-samsum
5fadb183e81bdc025b0ba463f551a83ddf0cfaf6
2022-07-21T06:47:07.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
varunbhatia1906
null
varunbhatia1906/bart-large-cnn-samsum
11
null
transformers
11,433
--- tags: - generated_from_trainer model-index: - name: bart-large-cnn-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-samsum This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 1 | 0.2530 | 74.7848 | 67.8491 | 67.6507 | 73.9591 | 91.5556 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
pete/pegasus-samsum
a2e3839f7c57da0f5daa479aa1dde82ce5ca6b4b
2022-07-21T12:16:23.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
pete
null
pete/pegasus-samsum
11
null
transformers
11,434
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7003 | 0.54 | 500 | 1.4859 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
tonysu/distilbert-base-uncased-finetuned-emotion
38ecbbc8156cbc9e5ea7fa9c4cb6119ecd2ca689
2022-07-21T12:05:21.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
tonysu
null
tonysu/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,435
Entry not found
jinwooChoi/SKKU_KDW_SA_0722
4bbdd1e1371932da52dfaeaac25766182d6cc047
2022-07-22T09:32:35.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_KDW_SA_0722
11
null
transformers
11,436
Entry not found
schnell/bert-small-juman-unigram
8c1b95f180c5f359f190e493b564a62dabec815e
2022-07-26T15:40:16.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
schnell
null
schnell/bert-small-juman-unigram
11
null
transformers
11,437
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-small-juman-unigram results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-juman-unigram This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4490 - Accuracy: 0.6911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 768 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 14 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 1.9849 | 1.0 | 69472 | 1.8385 | 0.6286 | | 1.8444 | 2.0 | 138944 | 1.6912 | 0.6513 | | 1.7767 | 3.0 | 208416 | 1.6322 | 0.6610 | | 1.7357 | 4.0 | 277888 | 1.5931 | 0.6676 | | 1.709 | 5.0 | 347360 | 1.5636 | 0.6719 | | 1.6874 | 6.0 | 416832 | 1.5405 | 0.6756 | | 1.6707 | 7.0 | 486304 | 1.5221 | 0.6786 | | 1.6511 | 8.0 | 555776 | 1.5061 | 0.6817 | | 1.636 | 9.0 | 625248 | 1.4933 | 0.6837 | | 1.6295 | 10.0 | 694720 | 1.4784 | 0.6860 | | 1.6157 | 11.0 | 764192 | 1.4673 | 0.6879 | | 1.6027 | 12.0 | 833664 | 1.4605 | 0.6896 | | 1.5942 | 13.0 | 903136 | 1.4535 | 0.6904 | | 1.5866 | 14.0 | 972608 | 1.4490 | 0.6911 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.12.0+cu116 - Datasets 2.2.2 - Tokenizers 0.12.1
oMateos2020/XSum_t5-small_800_adafactor
3b938dce68b7d851cdc99a83dfea8baaaeb9f0a9
2022-07-24T20:29:25.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
oMateos2020
null
oMateos2020/XSum_t5-small_800_adafactor
11
null
transformers
11,438
--- tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: XSum_t5-small_800_adafactor results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 33.022 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XSum_t5-small_800_adafactor This model is a fine-tuned version of [/content/XSum_t5-small_800_adafactor/checkpoint-11000](https://huggingface.co//content/XSum_t5-small_800_adafactor/checkpoint-11000) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.1714 - Rouge1: 33.022 - Rouge2: 11.9979 - Rougel: 26.7476 - Rougelsum: 26.7402 - Gen Len: 18.7543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 25 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.3404 | 0.01 | 100 | 2.2058 | 32.4826 | 11.5807 | 26.2716 | 26.2611 | 18.7842 | | 2.3194 | 0.02 | 200 | 2.2028 | 32.6393 | 11.661 | 26.372 | 26.3643 | 18.788 | | 2.3247 | 0.04 | 300 | 2.1999 | 32.6792 | 11.6985 | 26.3876 | 26.3786 | 18.7354 | | 2.3276 | 0.05 | 400 | 2.1979 | 32.6668 | 11.7272 | 26.3964 | 26.3907 | 18.7957 | | 2.317 | 0.06 | 500 | 2.1957 | 32.8267 | 11.8165 | 26.5075 | 26.4997 | 18.7543 | | 2.3214 | 0.07 | 600 | 2.1942 | 32.8319 | 11.8064 | 26.5428 | 26.5448 | 18.7693 | | 2.3014 | 0.09 | 700 | 2.1931 | 32.7136 | 11.7334 | 26.4958 | 26.486 | 18.7759 | | 2.3294 | 0.1 | 800 | 2.1902 | 32.6818 | 11.7684 | 26.4314 | 26.4242 | 18.785 | | 2.299 | 0.11 | 900 | 2.1914 | 32.672 | 11.7606 | 26.4475 | 26.4367 | 18.7853 | | 2.3009 | 0.12 | 1000 | 2.1900 | 32.7816 | 11.7958 | 26.5167 | 26.5099 | 18.7685 | | 2.2913 | 0.13 | 1100 | 2.1885 | 32.6438 | 11.7398 | 26.4077 | 26.4051 | 18.7742 | | 2.293 | 0.15 | 1200 | 2.1854 | 32.8228 | 11.841 | 26.548 | 26.5415 | 18.7899 | | 2.2857 | 0.16 | 1300 | 2.1853 | 32.7118 | 11.7439 | 26.4989 | 26.4941 | 18.7998 | | 2.2921 | 0.17 | 1400 | 2.1832 | 32.6705 | 11.7333 | 26.4076 | 26.4082 | 18.8017 | | 2.3074 | 0.18 | 1500 | 2.1827 | 32.7543 | 11.7787 | 26.4904 | 26.4923 | 18.7827 | | 2.3044 | 0.2 | 1600 | 2.1806 | 32.8573 | 11.8672 | 26.5655 | 26.5619 | 18.8097 | | 2.2922 | 0.21 | 1700 | 2.1819 | 32.8394 | 11.8158 | 26.5523 | 26.5467 | 18.7891 | | 2.2901 | 0.22 | 1800 | 2.1803 | 32.7219 | 11.7493 | 26.4644 | 26.4572 | 18.7882 | | 2.286 | 0.23 | 1900 | 2.1790 | 32.7474 | 11.852 | 26.5078 | 26.5014 | 18.7699 | | 2.298 | 0.25 | 2000 | 2.1781 | 32.8662 | 11.8878 | 26.618 | 26.6174 | 18.7979 | | 2.2787 | 0.26 | 2100 | 2.1775 | 32.9621 | 11.9521 | 26.6955 | 26.6914 | 18.7934 | | 2.2823 | 0.27 | 2200 | 2.1777 | 33.0633 | 12.0622 | 26.7715 | 26.7597 | 18.7954 | | 2.2889 | 0.28 | 2300 | 2.1742 | 32.9637 | 12.0154 | 26.6771 | 26.6721 | 18.7844 | | 2.2847 | 0.29 | 2400 | 2.1774 | 32.7435 | 11.8869 | 26.5334 | 26.5306 | 18.756 | | 2.2923 | 0.31 | 2500 | 2.1754 | 32.8437 | 11.8977 | 26.59 | 26.587 | 18.7964 | | 2.2877 | 0.32 | 2600 | 2.1740 | 32.9137 | 11.9267 | 26.618 | 26.6046 | 18.7678 | | 2.2976 | 0.33 | 2700 | 2.1728 | 32.9372 | 11.9048 | 26.6412 | 26.6345 | 18.7838 | | 2.2935 | 0.34 | 2800 | 2.1719 | 32.7338 | 11.7836 | 26.5667 | 26.5629 | 18.7659 | | 2.2622 | 0.36 | 2900 | 2.1718 | 32.9847 | 11.978 | 26.7093 | 26.7008 | 18.7627 | | 2.2749 | 0.37 | 3000 | 2.1710 | 32.9835 | 11.9809 | 26.7034 | 26.6946 | 18.8016 | | 2.2615 | 0.38 | 3100 | 2.1721 | 32.9343 | 11.9317 | 26.6752 | 26.6695 | 18.7689 | | 2.2825 | 0.39 | 3200 | 2.1714 | 33.022 | 11.9979 | 26.7476 | 26.7402 | 18.7543 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news
3bfd230099658fbe8d23ce1ebf555e90063f9e94
2022-07-24T11:37:48.000Z
[ "pytorch", "camembert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
sorayutmild
null
sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news
11
null
sentence-transformers
11,439
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news') model = AutoModel.from_pretrained('sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2542 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: CamembertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
tk648/distilbert-base-uncased-finetuned-emotion
12831b91a99786e1a2394c26ea8151ac0ab70a42
2022-07-26T13:24:07.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tk648
null
tk648/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,440
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9216622110265926 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2221 - Accuracy: 0.9215 - F1: 0.9217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8339 | 1.0 | 250 | 0.3233 | 0.903 | 0.9009 | | 0.2517 | 2.0 | 500 | 0.2221 | 0.9215 | 0.9217 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lylyly2103/distilbert-base-uncased-finetuned-emotion
15ec01529b0d9d0d839f4de169af1e145c457c05
2022-07-26T02:31:43.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
lylyly2103
null
lylyly2103/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,441
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9228979767868367 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2195 - Accuracy: 0.923 - F1: 0.9229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8485 | 1.0 | 250 | 0.3197 | 0.908 | 0.9064 | | 0.2542 | 2.0 | 500 | 0.2195 | 0.923 | 0.9229 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cpu - Datasets 2.3.2 - Tokenizers 0.12.1
jinwooChoi/SKKU_AP_SA_KBT5
50f3eaba1a2cd77df0a1cd262a6d1cbb41759431
2022-07-26T01:14:32.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KBT5
11
null
transformers
11,442
Entry not found
sdadas/st-polish-paraphrase-from-distilroberta
c235be9d17e5c1349b930172e00ce75145ea1fd0
2022-07-25T19:26:04.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
sdadas
null
sdadas/st-polish-paraphrase-from-distilroberta
11
null
sentence-transformers
11,443
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sdadas/st-polish-paraphrase-from-distilroberta This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sdadas/st-polish-paraphrase-from-distilroberta') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sdadas/st-polish-paraphrase-from-distilroberta') model = AutoModel.from_pretrained('sdadas/st-polish-paraphrase-from-distilroberta') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sdadas/st-polish-paraphrase-from-distilroberta) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
olemeyer/zero_shot_issue_classification_bart-large-32
662d1f6b9219d160a861569a8f76610b34c8682f
2022-07-27T18:08:23.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
olemeyer
null
olemeyer/zero_shot_issue_classification_bart-large-32
11
null
transformers
11,444
Entry not found
alfredcs/vit-cifar10
1d84e5adede62b8b80fa435d30c60f869b64798e
2022-07-26T21:16:44.000Z
[ "pytorch", "vit", "image-classification", "transformers", "license:gpl" ]
image-classification
false
alfredcs
null
alfredcs/vit-cifar10
11
null
transformers
11,445
--- license: gpl ---
mlegls/codeparrot-ds
87cd653f48c4e40af4d85fa9f9a72c2953392147
2022-07-27T06:02:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
mlegls
null
mlegls/codeparrot-ds
11
null
transformers
11,446
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.0659 | 0.34 | 5000 | 3.9176 | | 1.8404 | 0.67 | 10000 | 3.7958 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
sguskin/dynamic-minilmv2-L6-H384-squad1.1
4af89447f14282450f08d7d118d155af4164d120
2022-07-28T12:23:26.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sguskin
null
sguskin/dynamic-minilmv2-L6-H384-squad1.1
11
null
transformers
11,447
Entry not found
ALINEAR/albert-japanese
4d6f06119616ab7e926a1cc311996a6e456f76b0
2020-04-24T16:08:41.000Z
[ "pytorch", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ALINEAR
null
ALINEAR/albert-japanese
10
null
transformers
11,448
Entry not found
CenIA/albert-large-spanish-finetuned-pawsx
0cf25e8ceb32c7308541cc4f54778c59cfad535f
2022-01-02T00:36:34.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-large-spanish-finetuned-pawsx
10
null
transformers
11,449
Entry not found
CleveGreen/JobClassifier_v2
fb946e82a7fce6a43827fba082f55fee53a7fb57
2022-02-04T17:41:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CleveGreen
null
CleveGreen/JobClassifier_v2
10
1
transformers
11,450
Entry not found
Contrastive-Tension/BERT-Distil-NLI-CT
ba7bdb61ef132d823cab4936a486516337d6a154
2021-02-10T19:24:22.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Contrastive-Tension
null
Contrastive-Tension/BERT-Distil-NLI-CT
10
null
transformers
11,451
Entry not found
DJSammy/bert-base-danish-uncased_BotXO-ai
2343a9140c4ae7102747360e89e514ae64f7cfbb
2021-05-19T11:13:30.000Z
[ "pytorch", "jax", "da", "dataset:common_crawl", "dataset:wikipedia", "transformers", "bert", "masked-lm", "license:cc-by-4.0", "fill-mask" ]
fill-mask
false
DJSammy
null
DJSammy/bert-base-danish-uncased_BotXO-ai
10
1
transformers
11,452
--- language: da tags: - bert - masked-lm license: cc-by-4.0 datasets: - common_crawl - wikipedia pipeline_tag: fill-mask widget: - text: "København er [MASK] i Danmark." --- # Danish BERT (uncased) model [BotXO.ai](https://www.botxo.ai/) developed this model. For data and training details see their [GitHub repository](https://github.com/botxo/nordic_bert). The original model was trained in TensorFlow then I converted it to Pytorch using [transformers-cli](https://huggingface.co/transformers/converting_tensorflow_models.html?highlight=cli). For TensorFlow version download here: https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1 ## Architecture ```python from transformers import AutoModelForPreTraining model = AutoModelForPreTraining.from_pretrained("DJSammy/bert-base-danish-uncased_BotXO,ai") params = list(model.named_parameters()) print('danish_bert_uncased_v2 has {:} different named parameters.\n'.format(len(params))) print('==== Embedding Layer ====\n') for p in params[0:5]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== First Transformer ====\n') for p in params[5:21]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== Last Transformer ====\n') for p in params[181:197]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== Output Layer ====\n') for p in params[197:]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) # danish_bert_uncased_v2 has 206 different named parameters. # ==== Embedding Layer ==== # bert.embeddings.word_embeddings.weight (32000, 768) # bert.embeddings.position_embeddings.weight (512, 768) # bert.embeddings.token_type_embeddings.weight (2, 768) # bert.embeddings.LayerNorm.weight (768,) # bert.embeddings.LayerNorm.bias (768,) # ==== First Transformer ==== # bert.encoder.layer.0.attention.self.query.weight (768, 768) # bert.encoder.layer.0.attention.self.query.bias (768,) # bert.encoder.layer.0.attention.self.key.weight (768, 768) # bert.encoder.layer.0.attention.self.key.bias (768,) # bert.encoder.layer.0.attention.self.value.weight (768, 768) # bert.encoder.layer.0.attention.self.value.bias (768,) # bert.encoder.layer.0.attention.output.dense.weight (768, 768) # bert.encoder.layer.0.attention.output.dense.bias (768,) # bert.encoder.layer.0.attention.output.LayerNorm.weight (768,) # bert.encoder.layer.0.attention.output.LayerNorm.bias (768,) # bert.encoder.layer.0.intermediate.dense.weight (3072, 768) # bert.encoder.layer.0.intermediate.dense.bias (3072,) # bert.encoder.layer.0.output.dense.weight (768, 3072) # bert.encoder.layer.0.output.dense.bias (768,) # bert.encoder.layer.0.output.LayerNorm.weight (768,) # bert.encoder.layer.0.output.LayerNorm.bias (768,) # ==== Last Transformer ==== # bert.encoder.layer.11.attention.self.query.weight (768, 768) # bert.encoder.layer.11.attention.self.query.bias (768,) # bert.encoder.layer.11.attention.self.key.weight (768, 768) # bert.encoder.layer.11.attention.self.key.bias (768,) # bert.encoder.layer.11.attention.self.value.weight (768, 768) # bert.encoder.layer.11.attention.self.value.bias (768,) # bert.encoder.layer.11.attention.output.dense.weight (768, 768) # bert.encoder.layer.11.attention.output.dense.bias (768,) # bert.encoder.layer.11.attention.output.LayerNorm.weight (768,) # bert.encoder.layer.11.attention.output.LayerNorm.bias (768,) # bert.encoder.layer.11.intermediate.dense.weight (3072, 768) # bert.encoder.layer.11.intermediate.dense.bias (3072,) # bert.encoder.layer.11.output.dense.weight (768, 3072) # bert.encoder.layer.11.output.dense.bias (768,) # bert.encoder.layer.11.output.LayerNorm.weight (768,) # bert.encoder.layer.11.output.LayerNorm.bias (768,) # ==== Output Layer ==== # bert.pooler.dense.weight (768, 768) # bert.pooler.dense.bias (768,) # cls.predictions.bias (32000,) # cls.predictions.transform.dense.weight (768, 768) # cls.predictions.transform.dense.bias (768,) # cls.predictions.transform.LayerNorm.weight (768,) # cls.predictions.transform.LayerNorm.bias (768,) # cls.seq_relationship.weight (2, 768) # cls.seq_relationship.bias (2,) ``` ## Example Pipeline ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='DJSammy/bert-base-danish-uncased_BotXO,ai') unmasker('København er [MASK] i Danmark.') # Copenhagen is the [MASK] of Denmark. # => # [{'score': 0.788068950176239, # 'sequence': '[CLS] københavn er hovedstad i danmark. [SEP]', # 'token': 12610, # 'token_str': 'hovedstad'}, # {'score': 0.07606703042984009, # 'sequence': '[CLS] københavn er hovedstaden i danmark. [SEP]', # 'token': 8108, # 'token_str': 'hovedstaden'}, # {'score': 0.04299738258123398, # 'sequence': '[CLS] københavn er metropol i danmark. [SEP]', # 'token': 23305, # 'token_str': 'metropol'}, # {'score': 0.008163209073245525, # 'sequence': '[CLS] københavn er ikke i danmark. [SEP]', # 'token': 89, # 'token_str': 'ikke'}, # {'score': 0.006238455418497324, # 'sequence': '[CLS] københavn er ogsa i danmark. [SEP]', # 'token': 25253, # 'token_str': 'ogsa'}] ```
DataikuNLP/camembert-base
a7148f9c509892b5eabab292b48e73c694fb3bea
2021-09-02T08:15:08.000Z
[ "pytorch", "tf", "camembert", "fill-mask", "fr", "dataset:oscar", "arxiv:1911.03894", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
DataikuNLP
null
DataikuNLP/camembert-base
10
null
transformers
11,453
--- language: fr license: mit datasets: - oscar --- # CamemBERT: a Tasty French Language Model **This model is a copy of [this model repository](https://huggingface.co/camembert-base) at the specific commit `482393b6198924f9da270b1aaf37d238aafca99b`.** ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert-base") camembert = CamembertModel.from_pretrained("camembert-base") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert-base", tokenizer="camembert-base") results = camembert_fill_mask("Le camembert est <mask> :)") # results #[{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.4909103214740753, 'token': 7200}, # {'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.10556930303573608, 'token': 2183}, # {'sequence': '<s> Le camembert est succulent :)</s>', 'score': 0.03453315049409866, 'token': 26202}, # {'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.03303130343556404, 'token': 528}, # {'sequence': '<s> Le camembert est parfait :)</s>', 'score': 0.030076518654823303, 'token': 1654}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) # tensor([[[-0.0254, 0.0235, 0.1027, ..., -0.1459, -0.0205, -0.0116], # [ 0.0606, -0.1811, -0.0418, ..., -0.1815, 0.0880, -0.0766], # [-0.1561, -0.1127, 0.2687, ..., -0.0648, 0.0249, 0.0446], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert-base", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert-base", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.0032, 0.0075, 0.0040, ..., -0.0025, -0.0178, -0.0210], # [-0.0996, -0.1474, 0.1057, ..., -0.0278, 0.1690, -0.2982], # [ 0.0557, -0.0588, 0.0547, ..., -0.0726, -0.0867, 0.0699], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
Davlan/bert-base-multilingual-cased-finetuned-igbo
0ff39b570382782e4135d6e9da0dfb01f2a6b7d2
2021-06-06T14:14:06.000Z
[ "pytorch", "bert", "fill-mask", "ig", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/bert-base-multilingual-cased-finetuned-igbo
10
null
transformers
11,454
Hugging Face's logo --- language: ig datasets: --- # bert-base-multilingual-cased-finetuned-igbo ## Model description **bert-base-multilingual-cased-finetuned-igbo** is a **Igbo BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Igbo language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Igbo corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-igbo') >>> unmasker("Reno Omokri na Gọọmentị [MASK] enweghị ihe ha ga-eji hiwe ya bụ mmachi.") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on JW300 + OPUS CC-Align + [IGBO NLP Corpus](https://github.com/IgnatiusEzeani/IGBONLP) +[Igbo CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | ig_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 85.11 | 86.75 ### BibTeX entry and citation info By David Adelani ``` ```
Devmapall/paraphrase-quora
a3a8d354f1c1ed3e28652eb8eed44a119f50db0e
2021-06-23T02:22:56.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Devmapall
null
Devmapall/paraphrase-quora
10
null
transformers
11,455
Entry not found
DiegoAlysson/opus-mt-en-ro-finetuned-en-to-ro
b78f82a401a393a2cc8178a6c0828a969ebe1cd1
2021-11-25T03:08:55.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
DiegoAlysson
null
DiegoAlysson/opus-mt-en-ro-finetuned-en-to-ro
10
null
transformers
11,456
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 27.9273 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2915 - Bleu: 27.9273 - Gen Len: 34.0935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7448 | 1.0 | 38145 | 1.2915 | 27.9273 | 34.0935 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
EMBEDDIA/english-tweetsentiment
8d35866b5cd2e7688ed4c810b445a0b7a92b6934
2021-07-09T14:39:01.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EMBEDDIA
null
EMBEDDIA/english-tweetsentiment
10
null
transformers
11,457
Entry not found
EhsanAghazadeh/bert-base-uncased-random-weights
cf9360a12a84d4eda7c956468a78d4330ba4d161
2021-09-04T20:23:37.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
EhsanAghazadeh
null
EhsanAghazadeh/bert-base-uncased-random-weights
10
null
transformers
11,458
Entry not found
EhsanAghazadeh/melbert-roberta
e435e5b53452ea9dc087c31127a95a547a0a408f
2021-08-07T15:02:57.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
EhsanAghazadeh
null
EhsanAghazadeh/melbert-roberta
10
null
transformers
11,459
Entry not found
EhsanAghazadeh/xlm-roberta-base-lcc-en-fa-2e-5-42
1aa27bdbb24eac75c24b5e82f8972f5bd76bd7de
2021-08-21T22:14:58.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/xlm-roberta-base-lcc-en-fa-2e-5-42
10
null
transformers
11,460
Entry not found
Erfan/mT5-base_Farsi_Title_Generator
ed8751a5c39c542be15e48e9fdc3b499b0ab77ba
2022-01-30T18:00:42.000Z
[ "pytorch", "mt5", "text2text-generation", "fa", "transformers", "Title-Generation", "autotrain_compatible" ]
text2text-generation
false
Erfan
null
Erfan/mT5-base_Farsi_Title_Generator
10
1
transformers
11,461
--- language: - fa tags: - Title-Generation metrics: - ROUGH ---
FailedExperiment/DialoGPT-small-techno
4166db21e83b0d8ad1b06f564d8d980fc84cfaf6
2021-09-12T00:31:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
FailedExperiment
null
FailedExperiment/DialoGPT-small-techno
10
null
transformers
11,462
--- tags: - conversational --- # I attempted to train a bot from technoblade quotes
Fawreez/DialoGPT-small-Fawreez
1a18c6aa696dd9dfdfa87f40f54fc0cf73d5a79b
2022-01-05T10:31:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Fawreez
null
Fawreez/DialoGPT-small-Fawreez
10
null
transformers
11,463
--- tags: - conversational --- # Fawreez DialoGPT Model
Geotrend/bert-base-el-cased
2850bfab9e23a04c0a9d3dc5ab6e83ad9300a929
2021-05-18T19:00:19.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "el", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-el-cased
10
null
transformers
11,464
--- language: el datasets: wikipedia license: apache-2.0 --- # bert-base-el-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-el-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-el-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-th-cased
a0dab2abd2cef3a66d8a376fa807267f755a82e1
2021-08-16T13:22:19.000Z
[ "pytorch", "distilbert", "fill-mask", "th", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-th-cased
10
null
transformers
11,465
--- language: th datasets: wikipedia license: apache-2.0 --- # distilbert-base-th-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-th-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-th-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
GroNLP/bert-base-dutch-cased-upos-alpino-gronings
23cbb0bd4c9079502da5fec47c2c759fc4e3a3d2
2021-05-18T20:23:32.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "gos", "arxiv:2105.02855", "transformers", "BERTje", "pos", "autotrain_compatible" ]
token-classification
false
GroNLP
null
GroNLP/bert-base-dutch-cased-upos-alpino-gronings
10
null
transformers
11,466
--- language: gos tags: - BERTje - pos --- Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling # Adapting Monolingual Models: Data can be Scarce when Language Similarity is High This model is part of this paper + code: - 📝 [Paper](https://arxiv.org/abs/2105.02855) - 💻 [Code](https://github.com/wietsedv/low-resource-adapt) ## Models The best fine-tuned models for Gronings and West Frisian are available on the HuggingFace model hub: ### Lexical layers These models are identical to [BERTje](https://github.com/wietsedv/bertje), but with different lexical layers (`bert.embeddings.word_embeddings`). - 🤗 [`GroNLP/bert-base-dutch-cased`](https://huggingface.co/GroNLP/bert-base-dutch-cased) (Dutch; source language) - 🤗 [`GroNLP/bert-base-dutch-cased-gronings`](https://huggingface.co/GroNLP/bert-base-dutch-cased-gronings) (Gronings) - 🤗 [`GroNLP/bert-base-dutch-cased-frisian`](https://huggingface.co/GroNLP/bert-base-dutch-cased-frisian) (West Frisian) ### POS tagging These models share the same fine-tuned Transformer layers + classification head, but with the retrained lexical layers from the models above. - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino) (Dutch) - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino-gronings`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino-gronings) (Gronings) - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino-frisian`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino-frisian) (West Frisian)
Helsinki-NLP/opus-mt-ar-he
5627d7c8847b42c06208aec731adacde294cd722
2021-01-18T07:47:25.000Z
[ "pytorch", "marian", "text2text-generation", "ar", "he", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ar-he
10
null
transformers
11,467
--- language: - ar - he tags: - translation license: apache-2.0 --- ### ara-heb * source group: Arabic * target group: Hebrew * OPUS readme: [ara-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-heb/README.md) * model: transformer * source language(s): apc apc_Latn ara arq arz * target language(s): heb * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-heb/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-heb/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-heb/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ara.heb | 40.4 | 0.605 | ### System Info: - hf_name: ara-heb - source_languages: ara - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ar', 'he'] - src_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'} - tgt_constituents: {'heb'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-heb/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-heb/opus-2020-07-03.test.txt - src_alpha3: ara - tgt_alpha3: heb - short_pair: ar-he - chrF2_score: 0.605 - bleu: 40.4 - brevity_penalty: 1.0 - ref_len: 6801.0 - src_name: Arabic - tgt_name: Hebrew - train_date: 2020-07-03 - src_alpha2: ar - tgt_alpha2: he - prefer_old: False - long_pair: ara-heb - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ase-es
ad7baf4c85668f267ff41ec254dbbbf87e2937a4
2021-09-09T21:26:30.000Z
[ "pytorch", "marian", "text2text-generation", "ase", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ase-es
10
null
transformers
11,468
--- tags: - translation license: apache-2.0 --- ### opus-mt-ase-es * source languages: ase * target languages: es * OPUS readme: [ase-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ase-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ase-es/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ase-es/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ase-es/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ase.es | 31.7 | 0.498 |
Helsinki-NLP/opus-mt-bcl-fi
c06e553091742a39e0975d15020a3d387d78169d
2021-09-09T21:26:52.000Z
[ "pytorch", "marian", "text2text-generation", "bcl", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bcl-fi
10
null
transformers
11,469
--- tags: - translation license: apache-2.0 --- ### opus-mt-bcl-fi * source languages: bcl * target languages: fi * OPUS readme: [bcl-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bcl-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/bcl-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bcl-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bcl-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bcl.fi | 33.3 | 0.573 |
Helsinki-NLP/opus-mt-da-fi
a2e614cb32e2b0fa09c5c1dcaba8122d9d647b18
2021-09-09T21:29:59.000Z
[ "pytorch", "marian", "text2text-generation", "da", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-da-fi
10
null
transformers
11,470
--- tags: - translation license: apache-2.0 --- ### opus-mt-da-fi * source languages: da * target languages: fi * OPUS readme: [da-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/da-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/da-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/da-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.da.fi | 39.0 | 0.629 |
Helsinki-NLP/opus-mt-de-no
3235e8257dd83959ea52390eccc6d72adaf71a0f
2021-01-18T08:01:55.000Z
[ "pytorch", "marian", "text2text-generation", "de", "no", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-no
10
null
transformers
11,471
--- language: - de - no tags: - translation license: apache-2.0 --- ### deu-nor * source group: German * target group: Norwegian * OPUS readme: [deu-nor](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-nor/README.md) * model: transformer-align * source language(s): deu * target language(s): nno nob * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-nor/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-nor/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-nor/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.deu.nor | 33.2 | 0.554 | ### System Info: - hf_name: deu-nor - source_languages: deu - target_languages: nor - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-nor/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['de', 'no'] - src_constituents: {'deu'} - tgt_constituents: {'nob', 'nno'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-nor/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-nor/opus-2020-06-17.test.txt - src_alpha3: deu - tgt_alpha3: nor - short_pair: de-no - chrF2_score: 0.5539999999999999 - bleu: 33.2 - brevity_penalty: 0.956 - ref_len: 32928.0 - src_name: German - tgt_name: Norwegian - train_date: 2020-06-17 - src_alpha2: de - tgt_alpha2: no - prefer_old: False - long_pair: deu-nor - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-de-pon
d18f29c5ef79abbca40d53e34b94c8514ffd6235
2021-09-09T21:33:02.000Z
[ "pytorch", "marian", "text2text-generation", "de", "pon", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-pon
10
null
transformers
11,472
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-pon * source languages: de * target languages: pon * OPUS readme: [de-pon](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-pon/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-pon/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-pon/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-pon/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.pon | 21.0 | 0.442 |
Helsinki-NLP/opus-mt-en-alv
f46d3736bdbe35df72cce38c8885d75dcf4c01f9
2021-01-18T08:04:49.000Z
[ "pytorch", "marian", "text2text-generation", "en", "sn", "rw", "wo", "ig", "sg", "ee", "zu", "lg", "ts", "ln", "ny", "yo", "rn", "xh", "alv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-alv
10
null
transformers
11,473
--- language: - en - sn - rw - wo - ig - sg - ee - zu - lg - ts - ln - ny - yo - rn - xh - alv tags: - translation license: apache-2.0 --- ### eng-alv * source group: English * target group: Atlantic-Congo languages * OPUS readme: [eng-alv](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-alv/README.md) * model: transformer * source language(s): eng * target language(s): ewe fuc fuv ibo kin lin lug nya run sag sna swh toi_Latn tso umb wol xho yor zul * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-alv/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-alv/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-alv/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng-ewe.eng.ewe | 4.9 | 0.212 | | Tatoeba-test.eng-ful.eng.ful | 0.6 | 0.079 | | Tatoeba-test.eng-ibo.eng.ibo | 3.5 | 0.255 | | Tatoeba-test.eng-kin.eng.kin | 10.5 | 0.510 | | Tatoeba-test.eng-lin.eng.lin | 1.1 | 0.273 | | Tatoeba-test.eng-lug.eng.lug | 5.3 | 0.340 | | Tatoeba-test.eng.multi | 11.4 | 0.429 | | Tatoeba-test.eng-nya.eng.nya | 18.1 | 0.595 | | Tatoeba-test.eng-run.eng.run | 13.9 | 0.484 | | Tatoeba-test.eng-sag.eng.sag | 5.3 | 0.194 | | Tatoeba-test.eng-sna.eng.sna | 26.2 | 0.623 | | Tatoeba-test.eng-swa.eng.swa | 1.0 | 0.141 | | Tatoeba-test.eng-toi.eng.toi | 7.0 | 0.224 | | Tatoeba-test.eng-tso.eng.tso | 46.7 | 0.643 | | Tatoeba-test.eng-umb.eng.umb | 7.8 | 0.359 | | Tatoeba-test.eng-wol.eng.wol | 6.8 | 0.191 | | Tatoeba-test.eng-xho.eng.xho | 27.1 | 0.629 | | Tatoeba-test.eng-yor.eng.yor | 17.4 | 0.356 | | Tatoeba-test.eng-zul.eng.zul | 34.1 | 0.729 | ### System Info: - hf_name: eng-alv - source_languages: eng - target_languages: alv - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-alv/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'sn', 'rw', 'wo', 'ig', 'sg', 'ee', 'zu', 'lg', 'ts', 'ln', 'ny', 'yo', 'rn', 'xh', 'alv'] - src_constituents: {'eng'} - tgt_constituents: {'sna', 'kin', 'wol', 'ibo', 'swh', 'sag', 'ewe', 'zul', 'fuc', 'lug', 'tso', 'lin', 'nya', 'yor', 'run', 'xho', 'fuv', 'toi_Latn', 'umb'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-alv/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-alv/opus2m-2020-08-01.test.txt - src_alpha3: eng - tgt_alpha3: alv - short_pair: en-alv - chrF2_score: 0.429 - bleu: 11.4 - brevity_penalty: 1.0 - ref_len: 10603.0 - src_name: English - tgt_name: Atlantic-Congo languages - train_date: 2020-08-01 - src_alpha2: en - tgt_alpha2: alv - prefer_old: False - long_pair: eng-alv - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-bem
7d0c704d934f400158d645345a7ed27c6cfe73e8
2021-09-09T21:34:12.000Z
[ "pytorch", "marian", "text2text-generation", "en", "bem", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-bem
10
null
transformers
11,474
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-bem * source languages: en * target languages: bem * OPUS readme: [en-bem](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-bem/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-bem/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-bem/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-bem/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.bem | 29.7 | 0.532 |
Helsinki-NLP/opus-mt-en-gil
804a2271bd5e9e694df05b4090ff1d02f1ff4bb8
2021-09-09T21:35:32.000Z
[ "pytorch", "marian", "text2text-generation", "en", "gil", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-gil
10
null
transformers
11,475
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-gil * source languages: en * target languages: gil * OPUS readme: [en-gil](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-gil/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-gil/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-gil/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-gil/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.gil | 38.8 | 0.604 |
Helsinki-NLP/opus-mt-en-om
ac843ee5ccb86fa2f97e5f19c24c0606cf83fcf3
2021-09-09T21:38:21.000Z
[ "pytorch", "marian", "text2text-generation", "en", "om", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-om
10
null
transformers
11,476
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-om * source languages: en * target languages: om * OPUS readme: [en-om](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-om/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-om/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-om/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-om/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.om | 21.8 | 0.498 |
Helsinki-NLP/opus-mt-en-tdt
db62637f3dc8e041add32fff627b6adfffccd750
2021-09-09T21:39:38.000Z
[ "pytorch", "marian", "text2text-generation", "en", "tdt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-tdt
10
null
transformers
11,477
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-tdt * source languages: en * target languages: tdt * OPUS readme: [en-tdt](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-tdt/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-tdt/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tdt/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tdt/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.tdt | 23.8 | 0.416 |
Helsinki-NLP/opus-mt-en-tll
b3b42343ec7a23255d585889e1a283a10c261df7
2021-09-09T21:39:54.000Z
[ "pytorch", "marian", "text2text-generation", "en", "tll", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-tll
10
null
transformers
11,478
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-tll * source languages: en * target languages: tll * OPUS readme: [en-tll](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-tll/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-tll/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tll/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tll/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.tll | 33.6 | 0.556 |
Helsinki-NLP/opus-mt-eo-sv
8d96c0ffefce2a39a725c4235a09abad9410518c
2021-01-18T08:21:20.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eo-sv
10
null
transformers
11,479
--- language: - eo - sv tags: - translation license: apache-2.0 --- ### epo-swe * source group: Esperanto * target group: Swedish * OPUS readme: [epo-swe](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-swe/README.md) * model: transformer-align * source language(s): epo * target language(s): swe * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-swe/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-swe/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-swe/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.epo.swe | 29.5 | 0.463 | ### System Info: - hf_name: epo-swe - source_languages: epo - target_languages: swe - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-swe/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['eo', 'sv'] - src_constituents: {'epo'} - tgt_constituents: {'swe'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-swe/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-swe/opus-2020-06-16.test.txt - src_alpha3: epo - tgt_alpha3: swe - short_pair: eo-sv - chrF2_score: 0.46299999999999997 - bleu: 29.5 - brevity_penalty: 0.9640000000000001 - ref_len: 10977.0 - src_name: Esperanto - tgt_name: Swedish - train_date: 2020-06-16 - src_alpha2: eo - tgt_alpha2: sv - prefer_old: False - long_pair: epo-swe - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-bcl
63e6ec974669bbcfe5d9fda2cc96b6823197df96
2021-09-09T21:41:15.000Z
[ "pytorch", "marian", "text2text-generation", "es", "bcl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-bcl
10
null
transformers
11,480
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-bcl * source languages: es * target languages: bcl * OPUS readme: [es-bcl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-bcl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-bcl/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-bcl/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-bcl/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.bcl | 37.1 | 0.586 |
Helsinki-NLP/opus-mt-es-bzs
10408e1265429036ad50b799a2ed300a695436b1
2021-09-09T21:41:27.000Z
[ "pytorch", "marian", "text2text-generation", "es", "bzs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-bzs
10
null
transformers
11,481
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-bzs * source languages: es * target languages: bzs * OPUS readme: [es-bzs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-bzs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-bzs/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-bzs/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-bzs/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.bzs | 26.4 | 0.451 |
Helsinki-NLP/opus-mt-es-crs
7cc1139172ef822a3e979575f39dbbe18023fe60
2021-09-09T21:41:34.000Z
[ "pytorch", "marian", "text2text-generation", "es", "crs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-crs
10
null
transformers
11,482
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-crs * source languages: es * target languages: crs * OPUS readme: [es-crs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-crs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-crs/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-crs/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-crs/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.crs | 26.4 | 0.453 |
Helsinki-NLP/opus-mt-es-kg
47921925586264e72fc61927479342c0936d0099
2021-09-09T21:43:20.000Z
[ "pytorch", "marian", "text2text-generation", "es", "kg", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-kg
10
null
transformers
11,483
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-kg * source languages: es * target languages: kg * OPUS readme: [es-kg](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-kg/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-kg/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-kg/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-kg/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.kg | 25.6 | 0.488 |
Helsinki-NLP/opus-mt-es-niu
45c4c19cb19c35c6ecf1ac2b7840e6b75f900d91
2021-09-09T21:43:46.000Z
[ "pytorch", "marian", "text2text-generation", "es", "niu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-niu
10
null
transformers
11,484
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-niu * source languages: es * target languages: niu * OPUS readme: [es-niu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-niu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-niu/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-niu/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-niu/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.niu | 29.9 | 0.506 |
Helsinki-NLP/opus-mt-es-sn
e05ee00f47b9f408e3efc640974e77c7ee1891b5
2021-09-09T21:44:46.000Z
[ "pytorch", "marian", "text2text-generation", "es", "sn", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-sn
10
null
transformers
11,485
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-sn * source languages: es * target languages: sn * OPUS readme: [es-sn](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-sn/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-sn/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-sn/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-sn/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.sn | 23.6 | 0.528 |
Helsinki-NLP/opus-mt-es-zai
bfe052f3b3984410bf0497780fba8546212944af
2021-09-09T21:45:54.000Z
[ "pytorch", "marian", "text2text-generation", "es", "zai", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-zai
10
null
transformers
11,486
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-zai * source languages: es * target languages: zai * OPUS readme: [es-zai](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-zai/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-zai/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-zai/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-zai/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.zai | 20.8 | 0.426 |
Helsinki-NLP/opus-mt-fi-ee
1bcb147a08fb78212e65eb8d40359386214f324f
2021-09-09T21:47:13.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "ee", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-ee
10
null
transformers
11,487
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-ee * source languages: fi * target languages: ee * OPUS readme: [fi-ee](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-ee/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-ee/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ee/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ee/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.ee | 28.0 | 0.500 |
Helsinki-NLP/opus-mt-fi-fj
0d2fcaa176a17c553e78e2923d8d7b15aef43066
2021-09-09T21:47:36.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "fj", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-fj
10
null
transformers
11,488
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-fj * source languages: fi * target languages: fj * OPUS readme: [fi-fj](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-fj/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-fj/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-fj/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-fj/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.fj | 26.6 | 0.500 |
Helsinki-NLP/opus-mt-fi-hu
a5af86a3ae2fcb7d863b5efe7d2a53a70c2b253c
2021-09-09T21:48:25.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "hu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-hu
10
null
transformers
11,489
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-hu * source languages: fi * target languages: hu * OPUS readme: [fi-hu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-hu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-hu/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-hu/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-hu/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.fi.hu | 50.4 | 0.705 |
Helsinki-NLP/opus-mt-fi-id
c02df96edd972d2f525b0d264afa35d2abafb136
2021-09-09T21:48:28.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "id", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-id
10
null
transformers
11,490
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-id * source languages: fi * target languages: id * OPUS readme: [fi-id](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-id/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-id/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-id/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-id/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.id | 33.8 | 0.565 |
Helsinki-NLP/opus-mt-fi-no
299722aac1f5870b2dd952b850d194b06d5fe8dd
2021-01-18T08:36:38.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "no", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-no
10
null
transformers
11,491
--- language: - fi - no tags: - translation license: apache-2.0 --- ### fin-nor * source group: Finnish * target group: Norwegian * OPUS readme: [fin-nor](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-nor/README.md) * model: transformer-align * source language(s): fin * target language(s): nno nob * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-nor/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-nor/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-nor/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.fin.nor | 23.5 | 0.426 | ### System Info: - hf_name: fin-nor - source_languages: fin - target_languages: nor - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-nor/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fi', 'no'] - src_constituents: {'fin'} - tgt_constituents: {'nob', 'nno'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fin-nor/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fin-nor/opus-2020-06-17.test.txt - src_alpha3: fin - tgt_alpha3: nor - short_pair: fi-no - chrF2_score: 0.426 - bleu: 23.5 - brevity_penalty: 1.0 - ref_len: 14768.0 - src_name: Finnish - tgt_name: Norwegian - train_date: 2020-06-17 - src_alpha2: fi - tgt_alpha2: no - prefer_old: False - long_pair: fin-nor - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-fi-pag
37db2e0421a090951c2621f94c01b8eec4e52af8
2021-09-09T21:50:06.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "pag", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-pag
10
null
transformers
11,492
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-pag * source languages: fi * target languages: pag * OPUS readme: [fi-pag](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-pag/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-pag/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-pag/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-pag/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.pag | 28.0 | 0.510 |
Helsinki-NLP/opus-mt-fi-pis
8f3ea25a0b1bf93468e709e1bf519396e7f4b70b
2021-09-09T21:50:13.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "pis", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-pis
10
null
transformers
11,493
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-pis * source languages: fi * target languages: pis * OPUS readme: [fi-pis](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-pis/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-pis/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-pis/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-pis/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.pis | 27.5 | 0.493 |
Helsinki-NLP/opus-mt-fi-sw
5608edb882b8df46608106632ff1baa1e991dd98
2021-09-09T21:51:09.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "sw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-sw
10
null
transformers
11,494
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-sw * source languages: fi * target languages: sw * OPUS readme: [fi-sw](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-sw/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-sw/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-sw/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-sw/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.sw | 29.9 | 0.548 |
Helsinki-NLP/opus-mt-fi-war
d30a2fdbbbda8ada452c502b53386b98eeaaf183
2021-09-09T21:52:09.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "war", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-war
10
null
transformers
11,495
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-war * source languages: fi * target languages: war * OPUS readme: [fi-war](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-war/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-war/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-war/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-war/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.war | 35.1 | 0.565 |
Helsinki-NLP/opus-mt-fi-yap
4f4a2f2e92e3c4db4fe1686f8d55fa4b76a05847
2021-09-09T21:52:22.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "yap", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-yap
10
null
transformers
11,496
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-yap * source languages: fi * target languages: yap * OPUS readme: [fi-yap](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-yap/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-yap/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-yap/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-yap/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.yap | 25.4 | 0.445 |
Helsinki-NLP/opus-mt-fi-yo
3994494fc8d78133a26c0aaf729b1b94de5e3fe4
2021-09-09T21:52:25.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "yo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-yo
10
null
transformers
11,497
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-yo * source languages: fi * target languages: yo * OPUS readme: [fi-yo](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-yo/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-yo/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-yo/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-yo/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.yo | 25.8 | 0.427 |
Helsinki-NLP/opus-mt-fr-efi
7cd45da8a4651cd9284f10253268f1302aedbc06
2021-09-09T21:53:30.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "efi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-efi
10
null
transformers
11,498
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-efi * source languages: fr * target languages: efi * OPUS readme: [fr-efi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-efi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-efi/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-efi/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-efi/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.efi | 26.9 | 0.462 |
Helsinki-NLP/opus-mt-fr-gaa
54ca216dc6dde0faef161b60b532eeb5c32aba91
2021-09-09T21:53:54.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "gaa", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-gaa
10
null
transformers
11,499
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-gaa * source languages: fr * target languages: gaa * OPUS readme: [fr-gaa](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-gaa/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-gaa/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-gaa/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-gaa/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.gaa | 27.8 | 0.473 |