modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Helsinki-NLP/opus-mt-fr-kqn
55c48b031db6ee7fad4dba242a117a21643786a2
2021-09-09T21:54:51.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "kqn", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-kqn
10
null
transformers
11,500
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-kqn * source languages: fr * target languages: kqn * OPUS readme: [fr-kqn](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-kqn/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-kqn/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-kqn/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-kqn/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.kqn | 23.3 | 0.469 |
Helsinki-NLP/opus-mt-fr-no
ec2b1ec3eb5b1345cc98eda27e37eff7fe816c3d
2021-01-18T08:45:59.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "no", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-no
10
null
transformers
11,501
--- language: - fr - no tags: - translation license: apache-2.0 --- ### fra-nor * source group: French * target group: Norwegian * OPUS readme: [fra-nor](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-nor/README.md) * model: transformer-align * source language(s): fra * target language(s): nno nob * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-nor/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-nor/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-nor/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.fra.nor | 36.1 | 0.555 | ### System Info: - hf_name: fra-nor - source_languages: fra - target_languages: nor - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-nor/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fr', 'no'] - src_constituents: {'fra'} - tgt_constituents: {'nob', 'nno'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-nor/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-nor/opus-2020-06-17.test.txt - src_alpha3: fra - tgt_alpha3: nor - short_pair: fr-no - chrF2_score: 0.555 - bleu: 36.1 - brevity_penalty: 0.981 - ref_len: 3089.0 - src_name: French - tgt_name: Norwegian - train_date: 2020-06-17 - src_alpha2: fr - tgt_alpha2: no - prefer_old: False - long_pair: fra-nor - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-fr-tl
c8a605061fcd4e667ec00cc80b77d1e39731c346
2021-01-18T08:48:07.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "tl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-tl
10
null
transformers
11,502
--- language: - fr - tl tags: - translation license: apache-2.0 --- ### fra-tgl * source group: French * target group: Tagalog * OPUS readme: [fra-tgl](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-tgl/README.md) * model: transformer-align * source language(s): fra * target language(s): tgl_Latn * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-tgl/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-tgl/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-tgl/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.fra.tgl | 24.1 | 0.536 | ### System Info: - hf_name: fra-tgl - source_languages: fra - target_languages: tgl - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-tgl/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fr', 'tl'] - src_constituents: {'fra'} - tgt_constituents: {'tgl_Latn'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-tgl/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-tgl/opus-2020-06-17.test.txt - src_alpha3: fra - tgt_alpha3: tgl - short_pair: fr-tl - chrF2_score: 0.536 - bleu: 24.1 - brevity_penalty: 1.0 - ref_len: 5778.0 - src_name: French - tgt_name: Tagalog - train_date: 2020-06-17 - src_alpha2: fr - tgt_alpha2: tl - prefer_old: False - long_pair: fra-tgl - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-fr-wls
97b5db4cc967b5367d2f553c0229cce465d8bb08
2021-09-09T21:58:13.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "wls", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-wls
10
null
transformers
11,503
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-wls * source languages: fr * target languages: wls * OPUS readme: [fr-wls](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-wls/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-wls/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-wls/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-wls/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.wls | 27.5 | 0.478 |
Helsinki-NLP/opus-mt-fr-zne
0783a82515f525e6f006e7147a18d51e2f75faa8
2021-09-09T21:58:29.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "zne", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-zne
10
null
transformers
11,504
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-zne * source languages: fr * target languages: zne * OPUS readme: [fr-zne](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-zne/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-zne/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-zne/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-zne/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.zne | 24.1 | 0.460 |
Helsinki-NLP/opus-mt-ig-de
0084b69aec8c759aaa05592862d9aef0772b7e37
2021-09-09T22:11:29.000Z
[ "pytorch", "marian", "text2text-generation", "ig", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ig-de
10
null
transformers
11,505
--- tags: - translation license: apache-2.0 --- ### opus-mt-ig-de * source languages: ig * target languages: de * OPUS readme: [ig-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ig-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ig-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ig.de | 20.1 | 0.393 |
Helsinki-NLP/opus-mt-ig-fi
240902f320cdf164915020b4b3a0e29af35f65f2
2021-09-09T22:11:41.000Z
[ "pytorch", "marian", "text2text-generation", "ig", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ig-fi
10
null
transformers
11,506
--- tags: - translation license: apache-2.0 --- ### opus-mt-ig-fi * source languages: ig * target languages: fi * OPUS readme: [ig-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ig-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ig-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ig.fi | 23.5 | 0.451 |
Helsinki-NLP/opus-mt-ilo-sv
beadc79a61a1a0a6c7080a36b62a82e61753e27b
2021-09-09T22:12:04.000Z
[ "pytorch", "marian", "text2text-generation", "ilo", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ilo-sv
10
null
transformers
11,507
--- tags: - translation license: apache-2.0 --- ### opus-mt-ilo-sv * source languages: ilo * target languages: sv * OPUS readme: [ilo-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ilo-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ilo-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ilo.sv | 31.9 | 0.515 |
Helsinki-NLP/opus-mt-lg-es
ffcb8472817743ce83729e165416716259784ce3
2021-09-10T13:54:42.000Z
[ "pytorch", "marian", "text2text-generation", "lg", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lg-es
10
null
transformers
11,508
--- tags: - translation license: apache-2.0 --- ### opus-mt-lg-es * source languages: lg * target languages: es * OPUS readme: [lg-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lg-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/lg-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lg-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lg-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lg.es | 22.1 | 0.393 |
Helsinki-NLP/opus-mt-lg-fr
81884e060814b3278945b53a7598601e4fb17bea
2021-09-10T13:54:50.000Z
[ "pytorch", "marian", "text2text-generation", "lg", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lg-fr
10
null
transformers
11,509
--- tags: - translation license: apache-2.0 --- ### opus-mt-lg-fr * source languages: lg * target languages: fr * OPUS readme: [lg-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lg-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lg-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lg-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lg-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lg.fr | 23.7 | 0.406 |
Helsinki-NLP/opus-mt-lg-sv
ec39a6f639e22be00ea1ee10296db2105b27cec9
2021-09-10T13:54:53.000Z
[ "pytorch", "marian", "text2text-generation", "lg", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lg-sv
10
null
transformers
11,510
--- tags: - translation license: apache-2.0 --- ### opus-mt-lg-sv * source languages: lg * target languages: sv * OPUS readme: [lg-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lg-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lg-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lg-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lg-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lg.sv | 24.5 | 0.423 |
Helsinki-NLP/opus-mt-lt-ru
9b62456ce3d1e83fc114841f14c6ebb90abbad0a
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "lt", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lt-ru
10
null
transformers
11,511
--- language: - lt - ru tags: - translation license: apache-2.0 --- ### lit-rus * source group: Lithuanian * target group: Russian * OPUS readme: [lit-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/lit-rus/README.md) * model: transformer-align * source language(s): lit * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.lit.rus | 51.7 | 0.695 | ### System Info: - hf_name: lit-rus - source_languages: lit - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/lit-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['lt', 'ru'] - src_constituents: {'lit'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/lit-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/lit-rus/opus-2020-06-17.test.txt - src_alpha3: lit - tgt_alpha3: rus - short_pair: lt-ru - chrF2_score: 0.695 - bleu: 51.7 - brevity_penalty: 0.982 - ref_len: 15395.0 - src_name: Lithuanian - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: lt - tgt_alpha2: ru - prefer_old: False - long_pair: lit-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-lu-fi
5314ef637cb45a491756e68c8c35331a5b72cc0d
2021-09-10T13:55:53.000Z
[ "pytorch", "marian", "text2text-generation", "lu", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lu-fi
10
null
transformers
11,512
--- tags: - translation license: apache-2.0 --- ### opus-mt-lu-fi * source languages: lu * target languages: fi * OPUS readme: [lu-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lu-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lu-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lu-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lu-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lu.fi | 21.4 | 0.442 |
Helsinki-NLP/opus-mt-lv-fr
cc6608772f63d05ccae0651fe335cd5d561aee0a
2021-09-10T13:57:18.000Z
[ "pytorch", "marian", "text2text-generation", "lv", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lv-fr
10
null
transformers
11,513
--- tags: - translation license: apache-2.0 --- ### opus-mt-lv-fr * source languages: lv * target languages: fr * OPUS readme: [lv-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lv-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/lv-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lv-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lv-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lv.fr | 22.1 | 0.437 |
Helsinki-NLP/opus-mt-mfe-es
21ab6da94608acb3e37d8fe567aab658a519ea05
2021-09-10T13:57:29.000Z
[ "pytorch", "marian", "text2text-generation", "mfe", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-mfe-es
10
null
transformers
11,514
--- tags: - translation license: apache-2.0 --- ### opus-mt-mfe-es * source languages: mfe * target languages: es * OPUS readme: [mfe-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/mfe-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/mfe-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/mfe-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/mfe-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.mfe.es | 24.0 | 0.418 |
Helsinki-NLP/opus-mt-niu-es
e14ce7ed4bb8c8cf30eee96583b6be99b7397047
2021-09-10T13:58:52.000Z
[ "pytorch", "marian", "text2text-generation", "niu", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-niu-es
10
null
transformers
11,515
--- tags: - translation license: apache-2.0 --- ### opus-mt-niu-es * source languages: niu * target languages: es * OPUS readme: [niu-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/niu-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/niu-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/niu-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/niu-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.niu.es | 24.2 | 0.419 |
Helsinki-NLP/opus-mt-no-fi
c2078a17f749f08c71b710ce555f34cf79a6b874
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "no", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-no-fi
10
null
transformers
11,516
--- language: - no - fi tags: - translation license: apache-2.0 --- ### nor-fin * source group: Norwegian * target group: Finnish * OPUS readme: [nor-fin](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/nor-fin/README.md) * model: transformer-align * source language(s): nno nob * target language(s): fin * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-fin/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-fin/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-fin/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.nor.fin | 14.1 | 0.374 | ### System Info: - hf_name: nor-fin - source_languages: nor - target_languages: fin - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/nor-fin/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['no', 'fi'] - src_constituents: {'nob', 'nno'} - tgt_constituents: {'fin'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/nor-fin/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/nor-fin/opus-2020-06-17.test.txt - src_alpha3: nor - tgt_alpha3: fin - short_pair: no-fi - chrF2_score: 0.374 - bleu: 14.1 - brevity_penalty: 0.894 - ref_len: 13066.0 - src_name: Norwegian - tgt_name: Finnish - train_date: 2020-06-17 - src_alpha2: no - tgt_alpha2: fi - prefer_old: False - long_pair: nor-fin - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-pon-sv
13c611e9f67915672c3b470b6b316c8da68395b3
2021-09-10T14:01:45.000Z
[ "pytorch", "marian", "text2text-generation", "pon", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pon-sv
10
null
transformers
11,517
--- tags: - translation license: apache-2.0 --- ### opus-mt-pon-sv * source languages: pon * target languages: sv * OPUS readme: [pon-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pon-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pon-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pon-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pon-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pon.sv | 26.4 | 0.436 |
Helsinki-NLP/opus-mt-ru-no
33660009041320d06a1c6b3f6df6956d11e19536
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "ru", "no", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ru-no
10
null
transformers
11,518
--- language: - ru - no tags: - translation license: apache-2.0 --- ### rus-nor * source group: Russian * target group: Norwegian * OPUS readme: [rus-nor](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-nor/README.md) * model: transformer-align * source language(s): rus * target language(s): nno nob * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-nor/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-nor/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-nor/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.rus.nor | 20.3 | 0.418 | ### System Info: - hf_name: rus-nor - source_languages: rus - target_languages: nor - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-nor/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ru', 'no'] - src_constituents: {'rus'} - tgt_constituents: {'nob', 'nno'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-nor/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-nor/opus-2020-06-17.test.txt - src_alpha3: rus - tgt_alpha3: nor - short_pair: ru-no - chrF2_score: 0.418 - bleu: 20.3 - brevity_penalty: 0.946 - ref_len: 11686.0 - src_name: Russian - tgt_name: Norwegian - train_date: 2020-06-17 - src_alpha2: ru - tgt_alpha2: no - prefer_old: False - long_pair: rus-nor - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-run-sv
6b11d88bbbce3e9f7e1bcc2aba07f3f560c5984b
2021-09-10T14:02:44.000Z
[ "pytorch", "marian", "text2text-generation", "run", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-run-sv
10
null
transformers
11,519
--- tags: - translation license: apache-2.0 --- ### opus-mt-run-sv * source languages: run * target languages: sv * OPUS readme: [run-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/run-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/run-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/run-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/run-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.run.sv | 30.1 | 0.484 |
Helsinki-NLP/opus-mt-sl-fr
89c07fc004f006c2eca854470b3ca27c9db90d73
2021-09-10T14:03:46.000Z
[ "pytorch", "marian", "text2text-generation", "sl", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sl-fr
10
null
transformers
11,520
--- tags: - translation license: apache-2.0 --- ### opus-mt-sl-fr * source languages: sl * target languages: fr * OPUS readme: [sl-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sl-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sl-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sl-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sl-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sl.fr | 25.0 | 0.475 |
Helsinki-NLP/opus-mt-sv-hu
a7d71025801a08b0d92489911b069d1b40441b61
2021-09-10T14:07:10.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "hu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-hu
10
null
transformers
11,521
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-hu * source languages: sv * target languages: hu * OPUS readme: [sv-hu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-hu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-hu/opus-2020-01-26.zip) * test set translations: [opus-2020-01-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-hu/opus-2020-01-26.test.txt) * test set scores: [opus-2020-01-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-hu/opus-2020-01-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.sv.hu | 44.6 | 0.660 |
Helsinki-NLP/opus-mt-sv-ln
01e4ca35440881a1562eccc8d0186ac35cb4f0c8
2021-09-10T14:07:48.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "ln", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-ln
10
null
transformers
11,522
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-ln * source languages: sv * target languages: ln * OPUS readme: [sv-ln](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-ln/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-ln/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ln/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ln/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.ln | 30.6 | 0.541 |
Helsinki-NLP/opus-mt-sv-mh
e7d142d7f3ae77e1f6baddb6256fe28692dbcb1d
2021-09-10T14:08:14.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "mh", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-mh
10
null
transformers
11,523
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-mh * source languages: sv * target languages: mh * OPUS readme: [sv-mh](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-mh/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-mh/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-mh/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-mh/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.mh | 23.8 | 0.434 |
Helsinki-NLP/opus-mt-sv-tll
40d13c4054533ec14f4e1660377cc27b18a9c687
2021-09-10T14:09:56.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "tll", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-tll
10
null
transformers
11,524
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-tll * source languages: sv * target languages: tll * OPUS readme: [sv-tll](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-tll/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-tll/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-tll/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-tll/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.tll | 24.9 | 0.484 |
Helsinki-NLP/opus-mt-sv-wls
42268c920e747a098122e32f0711e8ac7f66f057
2021-09-11T10:47:21.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "wls", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-wls
10
null
transformers
11,525
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-wls * source languages: sv * target languages: wls * OPUS readme: [sv-wls](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-wls/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-wls/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-wls/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-wls/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.wls | 29.0 | 0.501 |
Helsinki-NLP/opus-mt-tll-fi
b876f0d43685f5fd0490cbb3109a7d2864bf433b
2021-09-11T10:48:26.000Z
[ "pytorch", "marian", "text2text-generation", "tll", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tll-fi
10
null
transformers
11,526
--- tags: - translation license: apache-2.0 --- ### opus-mt-tll-fi * source languages: tll * target languages: fi * OPUS readme: [tll-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tll-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tll-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tll-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tll-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tll.fi | 22.4 | 0.441 |
Helsinki-NLP/opus-mt-toi-fi
db07f7eb3dba7c694bb22b25b73255a88b63f801
2021-09-11T10:49:17.000Z
[ "pytorch", "marian", "text2text-generation", "toi", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-toi-fi
10
null
transformers
11,527
--- tags: - translation license: apache-2.0 --- ### opus-mt-toi-fi * source languages: toi * target languages: fi * OPUS readme: [toi-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/toi-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/toi-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/toi-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/toi-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.toi.fi | 24.5 | 0.464 |
Helsinki-NLP/opus-mt-toi-fr
d7a461058f800c6ac29a3b7fe6a0e28996de999b
2021-09-11T10:49:20.000Z
[ "pytorch", "marian", "text2text-generation", "toi", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-toi-fr
10
null
transformers
11,528
--- tags: - translation license: apache-2.0 --- ### opus-mt-toi-fr * source languages: toi * target languages: fr * OPUS readme: [toi-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/toi-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/toi-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/toi-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/toi-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.toi.fr | 26.5 | 0.432 |
Helsinki-NLP/opus-mt-tpi-sv
d0d216865b2c4453fe2a808ad27e18d1e5ca837c
2021-09-11T10:49:31.000Z
[ "pytorch", "marian", "text2text-generation", "tpi", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tpi-sv
10
null
transformers
11,529
--- tags: - translation license: apache-2.0 --- ### opus-mt-tpi-sv * source languages: tpi * target languages: sv * OPUS readme: [tpi-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tpi-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tpi-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tpi-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tpi-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tpi.sv | 21.6 | 0.396 |
Helsinki-NLP/opus-mt-ts-sv
78a6b6239f0eadd655e7fb7422a45f0bfb366546
2021-09-11T10:50:04.000Z
[ "pytorch", "marian", "text2text-generation", "ts", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ts-sv
10
null
transformers
11,530
--- tags: - translation license: apache-2.0 --- ### opus-mt-ts-sv * source languages: ts * target languages: sv * OPUS readme: [ts-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ts-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ts-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ts-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ts-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ts.sv | 32.6 | 0.510 |
Helsinki-NLP/opus-mt-tvl-es
197469fa64475e4a3b739029520b04f620e2ea63
2021-09-11T10:50:25.000Z
[ "pytorch", "marian", "text2text-generation", "tvl", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tvl-es
10
null
transformers
11,531
--- tags: - translation license: apache-2.0 --- ### opus-mt-tvl-es * source languages: tvl * target languages: es * OPUS readme: [tvl-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tvl-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tvl-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tvl-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tvl-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tvl.es | 21.0 | 0.388 |
Helsinki-NLP/opus-mt-ty-fr
61b8a458936fa62d85b4cb3ad00046ec4dd1d876
2021-09-11T10:51:02.000Z
[ "pytorch", "marian", "text2text-generation", "ty", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ty-fr
10
null
transformers
11,532
--- tags: - translation license: apache-2.0 --- ### opus-mt-ty-fr * source languages: ty * target languages: fr * OPUS readme: [ty-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ty-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ty-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ty-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ty-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ty.fr | 30.2 | 0.480 |
Helsinki-NLP/opus-mt-wls-sv
012ca81a2882b73e06e7f552611d28a7bcfe1bcf
2021-09-11T10:52:16.000Z
[ "pytorch", "marian", "text2text-generation", "wls", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-wls-sv
10
null
transformers
11,533
--- tags: - translation license: apache-2.0 --- ### opus-mt-wls-sv * source languages: wls * target languages: sv * OPUS readme: [wls-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/wls-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/wls-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/wls-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/wls-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.wls.sv | 23.8 | 0.408 |
Herais/pred_genre
ec5f0318f7519e4b73c4915a0bd32a5a805c37d8
2022-02-27T05:26:29.000Z
[ "pytorch", "bert", "text-classification", "zh", "dataset:Custom", "transformers", "classification", "license:apache-2.0" ]
text-classification
false
Herais
null
Herais/pred_genre
10
null
transformers
11,534
--- language: - zh tags: - classification license: apache-2.0 datasets: - Custom metrics: - rouge --- This model predicts the time period given a synopsis of about 200 Chinese characters. The model is trained on TV and Movie datasets and takes simplified Chinese as input. We trained the model from the "hfl/chinese-bert-wwm-ext" checkpoint. #### Sample Usage from transformers import BertTokenizer, BertForSequenceClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") checkpoint = "Herais/pred_genre" tokenizer = BertTokenizer.from_pretrained(checkpoint, problem_type="single_label_classification") model = BertForSequenceClassification.from_pretrained(checkpoint).to(device) label2id_genre = {'涉案': 7, '都市': 10, '革命': 12, '农村': 4, '传奇': 0, '其它': 2, '传记': 1, '青少': 11, '军旅': 3, '武打': 6, '科幻': 9, '神话': 8, '宫廷': 5} id2label_genre = {7: '涉案', 10: '都市', 12: '革命', 4: '农村', 0: '传奇', 2: '其它', 1: '传记', 11: '青少', 3: '军旅', 6: '武打', 9: '科幻', 8: '神话', 5: '宫廷'} synopsis = """加油吧!检察官。鲤州市安平区检察院检察官助理蔡晓与徐美津是两个刚入职场的“菜鸟”。\ 他们在老检察官冯昆的指导与鼓励下,凭借着自己的一腔热血与对检察事业的执著追求,克服工作上的种种困难,\ 成功办理电竞赌博、虚假诉讼、水产市场涉黑等一系列复杂案件,惩治了犯罪分子,维护了人民群众的合法权益,\ 为社会主义法治建设贡献了自己的一份力量。在这个过程中,蔡晓与徐美津不仅得到了业务能力上的提升,\ 也领悟了人生的真谛,学会真诚地面对家人与朋友,收获了亲情与友谊,成长为合格的员额检察官,\ 继续为检察事业贡献自己的青春。 """ inputs = tokenizer(synopsis, truncation=True, max_length=512, return_tensors='pt') model.eval() outputs = model(**input) label_ids_pred = torch.argmax(outputs.logits, dim=1).to('cpu').numpy() labels_pred = [id2label_timeperiod[label] for label in labels_pred] print(labels_pred) # ['涉案'] Citation TBA
Intel/bert-large-uncased-squadv1.1-sparse-90-unstructured
056596aaf8ad1bb9844169dbabbfb5c723d36b71
2021-12-05T13:31:53.000Z
[ "pytorch", "tf", "bert", "question-answering", "en", "arxiv:2111.05754", "transformers", "autotrain_compatible" ]
question-answering
false
Intel
null
Intel/bert-large-uncased-squadv1.1-sparse-90-unstructured
10
null
transformers
11,535
--- language: en --- # 90% Sparse BERT-Large (uncased) Fine Tuned on SQuADv1.1 This model is a result of fine-tuning a Prune OFA 90% sparse pre-trained BERT-Large combined with knowledge distillation. This model yields the following results on SQuADv1.1 development set:<br> `{"exact_match": 83.56669820245979, "f1": 90.20829352733487}` For further details see our paper, [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754), and our open source implementation available [here](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all).
ItcastAI/bert_finetuning_test
00861c609c1f72d8f14f0dfdfaf0fe2206330005
2021-05-18T21:12:26.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
ItcastAI
null
ItcastAI/bert_finetuning_test
10
null
transformers
11,536
Entry not found
JIWON/bert-base-finetuned-nli
a67fa4db674f8d398db3b018608b72978c997968
2022-02-07T00:29:00.000Z
[ "pytorch", "bert", "text-classification", "dataset:klue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
JIWON
null
JIWON/bert-base-finetuned-nli
10
null
transformers
11,537
--- tags: - generated_from_trainer datasets: - klue metrics: - accuracy model-index: - name: bert-base-finetuned-nli results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: nli metrics: - name: Accuracy type: accuracy value: 0.085 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-nli This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.6210 - Accuracy: 0.085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 196 | 0.6210 | 0.085 | | No log | 2.0 | 392 | 0.5421 | 0.0643 | | 0.5048 | 3.0 | 588 | 0.5523 | 0.062 | | 0.5048 | 4.0 | 784 | 0.5769 | 0.0533 | | 0.5048 | 5.0 | 980 | 0.5959 | 0.052 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
LysandreJik/test-upload1
135b14e62bd062e7a2ccf68baef20f4e66e670e1
2022-01-28T23:09:48.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
LysandreJik
null
LysandreJik/test-upload1
10
null
transformers
11,538
Entry not found
JuliusAlphonso/dear-jarvis-v5
3c40ddbc89448888911bcd168fdd2b691072dcf3
2021-06-20T06:59:43.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
JuliusAlphonso
null
JuliusAlphonso/dear-jarvis-v5
10
null
transformers
11,539
--- license: apache-2.0 datasets: - null model_index: - name: dear-jarvis-v5 results: - task: name: Text Classification type: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dear-jarvis-v5 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 470 | 0.3106 | | 0.3452 | 2.0 | 940 | 0.3064 | | 0.2692 | 3.0 | 1410 | 0.3148 | ### Framework versions - Transformers 4.7.0 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
Keqipig/DialoGPT-small-spamton
da31e6713d373d0936ee617ac92ae08a47d79a6d
2022-01-03T22:32:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Keqipig
null
Keqipig/DialoGPT-small-spamton
10
null
transformers
11,540
--- tags: - conversational --- @ Spamton G. Spamton DialoGPT Model
Khanh/bert-base-multilingual-cased-finetuned-squad
30561a865c943b7fcfb3680731a3e2ef3d816fd8
2022-01-04T14:51:33.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Khanh
null
Khanh/bert-base-multilingual-cased-finetuned-squad
10
null
transformers
11,541
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1782 | 1.0 | 579 | 0.5258 | | 0.4938 | 2.0 | 1158 | 0.4639 | | 0.32 | 3.0 | 1737 | 0.4919 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Kithogue/T5_Question_Generation
4787357045e77830cef7e03b8ca28f6c937a7bdf
2021-12-05T15:05:13.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Kithogue
null
Kithogue/T5_Question_Generation
10
null
transformers
11,542
T5-base fine-tuned on SQuAD and CoQA datasets for question generation language: - en-us tags: - question-generation license: - MIT datasets: - SQuAD 2.0 - CoQA
KoichiYasuoka/roberta-large-japanese-aozora-char
ac5b863772f16bc0390bee4519d53d32551a2dd6
2022-06-22T01:22:43.000Z
[ "pytorch", "roberta", "fill-mask", "ja", "transformers", "japanese", "masked-lm", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/roberta-large-japanese-aozora-char
10
null
transformers
11,543
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # roberta-large-japanese-aozora-char ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-large-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-char-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-large-japanese-aozora-char") ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
LoudlySoft/scibert_scivocab_uncased_squad
868a1bbceb58647ba779031db0a4f491268abbab
2021-05-18T21:28:54.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
LoudlySoft
null
LoudlySoft/scibert_scivocab_uncased_squad
10
null
transformers
11,544
## AllenAI's <i>scibert_scivocab_uncased</i> fine-tuned on SQuAD 2.0 evaluated with F1 = 86.85 #### To load the model: ``` from transformers import BertTokenizerFast from transformers import BertForQuestionAnswering tokenizer = BertTokenizerFast.from_pretrained("LoudlySoft/scibert_scivocab_uncased_squad") model = BertForQuestionAnswering.from_pretrained("LoudlySoft/scibert_scivocab_uncased_squad") ```
Maaly/bgc-accession
971d9914caeb45ec4b517f8d7735c6f0cc004ad5
2022-05-28T15:34:44.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Maaly
null
Maaly/bgc-accession
10
null
transformers
11,545
bgc-accession model is a Named Entity Recognition (NER) model that identifies and annotates the accession number of biosynthetic gene clusters in texts. The model is a fine-tuned BioBERT model and the training dataset is available in https://gitlab.com/maaly7/emerald_bgcs_annotations Testing examples: 1. The genome sequences of Leptolyngbya sp. PCC 7375 (ALVN00000000) and G. sunshinyii YC6258 (NZ_CP007142.1) were obtained previously.36,59 2. K311 was sequenced (NCBI accession number: JN852959) and analyzed with FramePlot and 18 genes were predicted to be involved in echinomycin biosynthesis (Figure 2). 3. The mar cluster was sequenced and annotated and the complete sequence was deposited into Genbank (accession KF711829).
Media1129/keyword-tag-model-2000-9-16
220e61e0b7590ac850ad5e69d0feee0d3d9b7952
2021-09-16T16:51:08.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Media1129
null
Media1129/keyword-tag-model-2000-9-16
10
null
transformers
11,546
Entry not found
Media1129/keyword-tag-model-2000-9-16_more_ingredient
8a05e959a6ed4537e713f0acd76220bd9ae09e0c
2021-09-17T01:50:36.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Media1129
null
Media1129/keyword-tag-model-2000-9-16_more_ingredient
10
null
transformers
11,547
Entry not found
MiBo/SADistilGPT2
ffcc7a387e9941fd4168241153e684c3da508bf2
2021-07-06T23:31:25.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MiBo
null
MiBo/SADistilGPT2
10
null
transformers
11,548
Entry not found
MilkyLatte/q-g-model
99ee4086d2f096b3ee9267abf6a3f5e7a381b94b
2021-06-23T03:19:25.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
MilkyLatte
null
MilkyLatte/q-g-model
10
null
transformers
11,549
Entry not found
MoritzLaurer/MiniLM-L6-mnli-binary
dcf5730f33554768ee718c26a94ae31afbe6583e
2021-12-13T10:37:22.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "zero-shot-classification" ]
text-classification
false
MoritzLaurer
null
MoritzLaurer/MiniLM-L6-mnli-binary
10
null
transformers
11,550
--- language: - en tags: - text-classification - zero-shot-classification metrics: - accuracy widget: - text: "I liked the movie. [SEP] The movie was good." --- # MiniLM-L6-mnli-binary ## Model description This model was trained on the [MultiNLI](https://huggingface.co/datasets/multi_nli) dataset. The model was trained for binary NLI, which means that the "neutral" and "contradiction" classes were merged into one class. The model therefore predicts "entailment" or "not_entailment". The base model is MiniLM-L6 from Microsoft, which is very fast, but a bit less accurate than other models. ## Intended uses & limitations #### How to use the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_name = "MoritzLaurer/MiniLM-L6-mnli-binary" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "I liked the movie" hypothesis = "The movie was good." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu" prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "not_entailment"] prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Training data [MultiNLI](https://huggingface.co/datasets/multi_nli). ### Training procedure MiniLM-L6-mnli-binary was trained using the Hugging Face trainer with the following hyperparameters. ``` training_args = TrainingArguments( num_train_epochs=5, # total number of training epochs learning_rate=2e-05, per_device_train_batch_size=32, # batch size per device during training per_device_eval_batch_size=32, # batch size for evaluation warmup_ratio=0.1, # number of warmup steps for learning rate scheduler weight_decay=0.06, # strength of weight decay fp16=True # mixed precision training ) ``` ### Eval results The model was evaluated using the binary (matched) test set from MultiNLI. Accuracy: 0.886 ## Limitations and bias Please consult the original MiniLM paper and literature on different NLI datasets for potential biases. ### BibTeX entry and citation info If you want to cite this model, please cite the original MiniLM paper, the respective NLI datasets and include a link to this model on the Hugging Face hub.
Muennighoff/SBERT-large-nli-v2
9bcc1af97540b7799b2e42f10e4f926d7aea7011
2022-02-21T06:16:23.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2202.08904", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
Muennighoff
null
Muennighoff/SBERT-large-nli-v2
10
null
sentence-transformers
11,551
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # SBERT-large-nli-v2 ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 93941 with parameters: ``` {'batch_size': 6} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 9394, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 9395, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
NDugar/v3large-1epoch
7f9e5b4db644007b9a84739961ee40d0b4c7c2ff
2021-12-06T20:04:26.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "arxiv:2006.03654", "transformers", "deberta-v3", "deberta-v2`", "deberta-mnli", "license:mit", "zero-shot-classification" ]
zero-shot-classification
false
NDugar
null
NDugar/v3large-1epoch
10
null
transformers
11,552
--- language: en tags: - deberta-v3 - deberta-v2` - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit pipeline_tag: zero-shot-classification --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory. Run with `Deepspeed`, ```bash pip install datasets pip install deepspeed # Download the deepspeed config file wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json export TASK_NAME=mnli output_dir="ds_results" num_gpus=8 batch_size=8 python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\ run_glue.py \\ --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME \\ --do_train \\ --do_eval \\ --max_seq_length 256 \\ --per_device_train_batch_size ${batch_size} \\ --learning_rate 3e-6 \\ --num_train_epochs 3 \\ --output_dir $output_dir \\ --overwrite_output_dir \\ --logging_steps 10 \\ --logging_dir $output_dir \\ --deepspeed ds_config.json ``` You can also run with `--sharded_ddp` ```bash cd transformers/examples/text-classification/ export TASK_NAME=mnli python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
NamPE/DialoGPT-medium-Aqua-konosuba
57912f57fd281aac354d9abcd52bb0fc626fb26c
2022-01-01T16:35:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
NamPE
null
NamPE/DialoGPT-medium-Aqua-konosuba
10
null
transformers
11,553
--- tags: - conversational --- # Aqua from Konosuba DialoGPT Model
NbAiLab/roberta_jan_128_ncc
c2f407263c11c2837aa33f87b146123efb55103c
2022-02-04T09:42:27.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
NbAiLab
null
NbAiLab/roberta_jan_128_ncc
10
null
transformers
11,554
Entry not found
Nehc/adpatres
f708fa11f6bf438d7fb8c60169a6d1a30208abac
2021-10-21T05:40:20.000Z
[ "pytorch", "gpt2", "text-generation", "ru", "transformers" ]
text-generation
false
Nehc
null
Nehc/adpatres
10
null
transformers
11,555
--- language: - ru widget: - text: "Смерти нет, " --- not for use... technical data
PolyakovMaxim/ModelGptTS
6633a3616cfaf091a1f4e51668e6aa10e03d6f8b
2021-11-01T11:46:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
PolyakovMaxim
null
PolyakovMaxim/ModelGptTS
10
null
transformers
11,556
This model generate the time shift's text of Norbit Company also generate the same ending of the textes of any phrases like base gpt model.
Pyke/bart-finetuned-on-patent-Deepspeed-DS-1
7ac216e4a3164420146f1c033bcea119d8edcbe3
2021-08-18T02:33:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-DS-1
10
null
transformers
11,557
Entry not found
Ratul/sci_ner
c027061cf895977933767becc4fefc351952f2be
2021-06-01T08:48:27.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Ratul
null
Ratul/sci_ner
10
null
transformers
11,558
Entry not found
Rostlab/prot_electra_generator_bfd
7095cb2c0d0689c589dfb2e4dddc4e39ffe4f7dc
2020-12-18T20:15:23.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Rostlab
null
Rostlab/prot_electra_generator_bfd
10
null
transformers
11,559
Entry not found
RuudVelo/wav2vec2-large-xls-r-1b-nl-lm
a18038591d57e6ca83ca8662246f83f03d4eefde
2022-03-24T11:55:12.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
RuudVelo
null
RuudVelo/wav2vec2-large-xls-r-1b-nl-lm
10
null
transformers
11,560
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-1b-nl-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 9.73 - name: Test CER type: cer value: 2.89 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 27.27 - name: Test CER type: cer value: 13.23 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 27.67 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-nl-lm This model is a fine-tuned version of [wav2vec2-large-xls-r-1b-nl-lm](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice 8 dataset. It achieves the following results on the test set: - Loss: 0.1479 - Wer: 0.1156 Note that the above test results come from the original model without LM (language model) which can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl. The results with the LM model can be found on the right side of this model card. ## Model description Model RuudVelo/wav2vec2-large-xls-r-1b-nl which has been improved with a KenLM 5-gram. ## Intended uses & limitations More information needed ## Training and evaluation data Common Voice 8 nl dataset has been used for the model ## Training procedure ### Training hyperparameters Parameters can be found in the run.sh file at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
SEBIS/code_trans_t5_base_code_documentation_generation_java_transfer_learning_finetune
14b0317974f9b7eeee4b71b1d5563d38829a3238
2021-06-23T04:26:33.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_java_transfer_learning_finetune
10
null
transformers
11,561
--- tags: - summarization widget: - text: "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" --- # CodeTrans model for code documentation generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the java function/method. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/java/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_commit_generation_transfer_learning_finetune
7e1a54dc9be62a8b0cf15b13ba5a582be3e7138f
2021-06-23T08:34:21.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_commit_generation_transfer_learning_finetune
10
null
transformers
11,562
--- tags: - summarization widget: - text: "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" --- # CodeTrans model for git commit message generation Pretrained model on git commit using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized git commit: it works best with tokenized git commit. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the git commit message generation task for the java commit changes. ## Intended uses & limitations The model could be used to generate the git commit message for the git commit changes or be fine-tuned on other relevant tasks. It can be used on unparsed and untokenized commit changes. However, if the change is tokenized, the performance should be better. ### How to use Here is how to use this model to generate git commit message using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_commit_generation_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_commit_generation_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/commit%20generation/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 4,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing commit changes. ## Evaluation results For the git commit message generation task, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 39.61 | | CodeTrans-ST-Base | 38.67 | | CodeTrans-TF-Small | 44.22 | | CodeTrans-TF-Base | 44.17 | | CodeTrans-TF-Large | **44.41** | | CodeTrans-MT-Small | 36.17 | | CodeTrans-MT-Base | 39.25 | | CodeTrans-MT-Large | 41.18 | | CodeTrans-MT-TF-Small | 43.96 | | CodeTrans-MT-TF-Base | 44.19 | | CodeTrans-MT-TF-Large | 44.34 | | State of the art | 32.81 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_trans_en_it_small_finetuned
77357a9844444db58ac01b6364f14f27969fb9b9
2021-06-23T09:39:10.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "English Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation English Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_en_it_small_finetuned
10
null
transformers
11,563
--- language: English Italian tags: - translation English Italian model datasets: - dcep europarl jrc-acquis widget: - text: "Preventing and combating trafficking in human beings, and protecting victims" --- # legal_t5_small_trans_en_it_small_finetuned model Model on translating legal text from English to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_en_it_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_en_it_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from English to Italian. ### How to use Here is how to use this model to translate legal text from English to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_en_it_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_en_it", do_lower_case=False, skip_special_tokens=True), device=0 ) en_text = "Preventing and combating trafficking in human beings, and protecting victims" pipeline([en_text], max_length=512) ``` ## Training data The legal_t5_small_trans_en_it_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_en_it_small_finetuned | 46.887| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Saitomar/wav2vec2-large-xls-r-300m-bengali-kaggle
de14db5614b8ec36cac09245db1f4c3be4700bb4
2022-02-07T09:16:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Saitomar
null
Saitomar/wav2vec2-large-xls-r-300m-bengali-kaggle
10
null
transformers
11,564
Entry not found
SetFit/deberta-v3-large__sst2__train-16-5
9abc4039f0cc7cb738f1c19f05e22da14559db12
2022-02-10T10:56:06.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-16-5
10
null
transformers
11,565
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-5 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5433 - Accuracy: 0.7924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6774 | 1.0 | 7 | 0.7450 | 0.2857 | | 0.7017 | 2.0 | 14 | 0.7552 | 0.2857 | | 0.6438 | 3.0 | 21 | 0.7140 | 0.4286 | | 0.3525 | 4.0 | 28 | 0.5570 | 0.7143 | | 0.2061 | 5.0 | 35 | 0.5303 | 0.8571 | | 0.0205 | 6.0 | 42 | 0.6706 | 0.8571 | | 0.0068 | 7.0 | 49 | 0.8284 | 0.8571 | | 0.0029 | 8.0 | 56 | 0.9281 | 0.8571 | | 0.0015 | 9.0 | 63 | 0.9871 | 0.8571 | | 0.0013 | 10.0 | 70 | 1.0208 | 0.8571 | | 0.0008 | 11.0 | 77 | 1.0329 | 0.8571 | | 0.0005 | 12.0 | 84 | 1.0348 | 0.8571 | | 0.0004 | 13.0 | 91 | 1.0437 | 0.8571 | | 0.0005 | 14.0 | 98 | 1.0512 | 0.8571 | | 0.0004 | 15.0 | 105 | 1.0639 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Shahm/bert-court-german
728f04d15772c44f46ebcbd98eb94af26cbb218c
2021-12-31T21:21:47.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
Shahm
null
Shahm/bert-court-german
10
null
transformers
11,566
--- license: mit tags: - generated_from_trainer model-index: - name: plus-bert-court-90k-end-german results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # plus-bert-court-90k-end-german This model is a fine-tuned version of [Shahm/plus-bert-court-50k-90k-german](https://huggingface.co/Shahm/plus-bert-court-50k-90k-german) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.11.0
Shauli/RE-metric-model-spike
31394bf0fe472b4ac5e49d85a8d16d0c8fdd85ed
2021-05-18T22:36:05.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Shauli
null
Shauli/RE-metric-model-spike
10
null
transformers
11,567
Entry not found
Spirax/DialoGPT-medium-sheldon
eed9e6ee5e919321c64bc4799444637d26f2a5e4
2021-07-21T21:03:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
Spirax
null
Spirax/DialoGPT-medium-sheldon
10
null
transformers
11,568
--- thumbnail: https://i.imgur.com/7HAcbbD.gif tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a TV Series Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a TV series character, Sheldon from [The Big Bang Theory](https://en.wikipedia.org/wiki/The_Big_Bang_Theory). The data comes from [a Kaggle TV series script dataset](https://www.kaggle.com/mitramir5/the-big-bang-theory-series-transcript). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("spirax/DialoGPT-medium-sheldon") model = AutoModelWithLMHead.from_pretrained("spirax/DialoGPT-medium-sheldon") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("SheldorBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
StevenLimcorn/indo-roberta-indonli
638a50452c733bf4c77c9e81a51cc9ce5d998e63
2021-11-11T09:03:59.000Z
[ "pytorch", "tf", "roberta", "text-classification", "id", "dataset:indonli", "transformers", "license:mit" ]
text-classification
false
StevenLimcorn
null
StevenLimcorn/indo-roberta-indonli
10
null
transformers
11,569
--- language: id tags: - roberta license: mit datasets: - indonli widget: - text: "Amir Sjarifoeddin Harahap lahir di Kota Medan, Sumatera Utara, 27 April 1907. Ia meninggal di Surakarta, Jawa Tengah, pada 19 Desember 1948 dalam usia 41 tahun. </s></s> Amir Sjarifoeddin Harahap masih hidup." --- ## Indo-roberta-indonli Indo-roberta-indonli is natural language inference classifier based on [Indo-roberta](https://huggingface.co/flax-community/indonesian-roberta-base) model. It was trained on the trained on [IndoNLI](https://github.com/ir-nlp-csui/indonli/tree/main/data/indonli) dataset. The model used was [Indo-roberta](https://huggingface.co/flax-community/indonesian-roberta-base) and was transfer-learned to a natural inference classifier model. The model are tested using the validation, test_layer and test_expert dataset given in the github repository. The results are shown below. ### Result | Dataset | Accuracy | F1 | Precision | Recall | |-------------|----------|---------|-----------|---------| | Test Lay | 0.74329 | 0.74075 | 0.74283 | 0.74133 | | Test Expert | 0.6115 | 0.60543 | 0.63924 | 0.61742 | ## Model The model was trained on with 5 epochs, batch size 16, learning rate 2e-5 and weight decay 0.01. Achieved different metrics as shown below. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | |-------|---------------|-----------------|----------|----------|-----------|----------| | 1 | 0.942500 | 0.658559 | 0.737369 | 0.735552 | 0.735488 | 0.736679 | | 2 | 0.649200 | 0.645290 | 0.761493 | 0.759593 | 0.762784 | 0.759642 | | 3 | 0.437100 | 0.667163 | 0.766045 | 0.763979 | 0.765740 | 0.763792 | | 4 | 0.282000 | 0.786683 | 0.764679 | 0.761802 | 0.762011 | 0.761684 | | 5 | 0.193500 | 0.925717 | 0.765134 | 0.763127 | 0.763560 | 0.763489 | ## How to Use ### As NLI Classifier ```python from transformers import pipeline pretrained_name = "StevenLimcorn/indonesian-roberta-indonli" nlp = pipeline( "zero-shot-classification", model=pretrained_name, tokenizer=pretrained_name ) nlp("Amir Sjarifoeddin Harahap lahir di Kota Medan, Sumatera Utara, 27 April 1907. Ia meninggal di Surakarta, Jawa Tengah, pada 19 Desember 1948 dalam usia 41 tahun. </s></s> Amir Sjarifoeddin Harahap masih hidup.") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the `INDONLI` dataset that may be carried over into the results of this model. ## Author Indonesian RoBERTa Base IndoNLI was trained and evaluated by [Steven Limcorn](https://github.com/stevenlimcorn). All computation and development are done on Google Colaboratory using their free GPU access. ## Reference The dataset we used is by IndoNLI. ``` @inproceedings{indonli, title = "IndoNLI: A Natural Language Inference Dataset for Indonesian", author = "Mahendra, Rahmad and Aji, Alham Fikri and Louvan, Samuel and Rahman, Fahrurrozi and Vania, Clara", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", publisher = "Association for Computational Linguistics", } ```
ThaiUWA/gpt-2-josh-uwa
2af0d04808c741c2738d5162f11b682bf4b1014e
2021-05-21T11:18:58.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ThaiUWA
null
ThaiUWA/gpt-2-josh-uwa
10
null
transformers
11,570
Entry not found
Xenova/sponsorblock-base-v1.1
1850c9dc36b7f10adf0447a8e58f497dec710517
2022-02-12T22:04:42.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Xenova
null
Xenova/sponsorblock-base-v1.1
10
1
transformers
11,571
Entry not found
Xeouz/Ultron-Small
c93a401050d43034d807ad87d7e273695837ee6e
2021-10-09T08:22:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Xeouz
null
Xeouz/Ultron-Small
10
null
transformers
11,572
--- tags: - conversational --- # Ultron Small
ZYW/squad-mbert-model
cbfb2a0a0e99f04d6d24c680c2057c4f2ef8158a
2021-05-30T15:15:53.000Z
[ "pytorch", "bert", "question-answering", "transformers", "model-index", "autotrain_compatible" ]
question-answering
false
ZYW
null
ZYW/squad-mbert-model
10
null
transformers
11,573
--- model-index: - name: squad-mbert-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
ZiweiG/ziwei-bertimdb-prob
109776a72df5189f198a10bdd7b79f083a0819cf
2021-05-18T22:53:05.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
ZiweiG
null
ZiweiG/ziwei-bertimdb-prob
10
null
transformers
11,574
Entry not found
aXhyra/demo_sentiment_42
44d52a07515bf5c860ed9b512b5511d9dd5c4a54
2021-12-13T22:41:49.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/demo_sentiment_42
10
null
transformers
11,575
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: demo_sentiment_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - name: F1 type: f1 value: 0.7113620044371958 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_sentiment_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6332 - F1: 0.7114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.62486660723695e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7592 | 1.0 | 713 | 0.6509 | 0.6834 | | 0.6389 | 2.0 | 1426 | 0.6318 | 0.7011 | | 0.5647 | 3.0 | 2139 | 0.6320 | 0.7041 | | 0.5391 | 4.0 | 2852 | 0.6332 | 0.7114 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/irony_trained_final
f176d328c63a97ca4a3b542efd79d33236e9cb2a
2021-12-12T10:28:16.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/irony_trained_final
10
null
transformers
11,576
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: irony_trained_final results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: irony metrics: - name: F1 type: f1 value: 0.6879413493337545 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # irony_trained_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.4770 - F1: 0.6879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.842398023893579e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6852 | 1.0 | 716 | 0.6488 | 0.6530 | | 0.6263 | 2.0 | 1432 | 0.7647 | 0.6511 | | 0.4511 | 3.0 | 2148 | 1.2251 | 0.6764 | | 0.2578 | 4.0 | 2864 | 1.4770 | 0.6879 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_emotion_42
4404d8e9173083ccf1e43fbd242a6a40654b6e13
2021-12-15T10:36:30.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_emotion_42
10
null
transformers
11,577
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_emotion_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.732897530282475 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_emotion_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.0989 - F1: 0.7329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.18796906442746e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3703 | 1.0 | 408 | 0.6624 | 0.7029 | | 0.2122 | 2.0 | 816 | 0.6684 | 0.7258 | | 0.9452 | 3.0 | 1224 | 1.0001 | 0.7041 | | 0.0023 | 4.0 | 1632 | 1.0989 | 0.7329 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
abhiramtirumala/DialoGPT-sarcastic-medium
7b88eb0aec7fc096164d3dc80d54ff95bdfc6304
2021-05-27T21:33:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
abhiramtirumala
null
abhiramtirumala/DialoGPT-sarcastic-medium
10
null
transformers
11,578
Entry not found
abhishek/autonlp-hindi-question-answering-23865268
f134199adaa376a2051bd6e6f8251fbeb53ba623
2021-10-21T13:51:44.000Z
[ "pytorch", "xlm-roberta", "question-answering", "hi", "dataset:abhishek/autonlp-data-hindi-question-answering", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
abhishek
null
abhishek/autonlp-hindi-question-answering-23865268
10
3
transformers
11,579
--- tags: - autonlp - question-answering language: hi widget: - text: "´सतीश धवन अंतरिक्ष केंद्र´ किस राज्य में स्थित है?" context: "सतीश धवन अंतरिक्ष केंद्र, भारतीय अंतरिक्ष अनुसंधान संगठन (इसरो) का प्रक्षेपण केंद्र है। यह आंध्र प्रदेश के श्रीहरीकोटा में स्थित है, इसे 'श्रीहरीकोटा रेंज' या 'श्रीहरीकोटा लाँचिंग रेंज' के नाम से भी जाना जाता है। 2002 में इसरो के पूर्व प्रबंधक और वैज्ञानिक सतीश धवन के मरणोपरांत उनके सम्मान में इसका नाम बदला गया। प्रक्षेपण यान की असेम्\u200dबली के लिए दूसरा भवन केन्\u200dद्रीय मंत्रिमंडल ने 12 सितम्\u200dबर, 2013 को सतीश धवन अंतरिक्ष केन्\u200dद्र, श्रीहरिकोटा में प्रक्षेपण यान की असेम्\u200dबली के लिए दूसरे भवन के निर्माण की मंजूरी दी। इस पर 363.95 करोड़ रुपये की अनुमानित लागत आएगी, जिसमें सात करोड़ रुपये का खर्च विदेशी मुद्रा में होगा। इस दूसरी बिल्डिंग के उपलब्\u200dध हो जाने से पीएसएलवी और जीएसएलवी की प्रक्षेपण फ्रीक्वेंसी बढ़ेगी। यह जीएसएलवी एमके-III के एकीकरण के लिए वर्तमान व्\u200dहीकल असेम्\u200dबली बिल्डिंग को अतिरिक्\u200dत सुविधा मुहैया करायेगी। तीसरे प्रक्षेपण पैड तथा भविष्\u200dय में सामान्\u200dय यान प्रक्षेपण के लिए भी इससे काफी सुविधा मिलेगी।[1]\nलांच पैड\nउपग्रह प्रक्षेपण यान लॉन्च पैड\nइस लांच पैड से उपग्रह प्रक्षेपण यान और संवर्धित उपग्रह प्रक्षेपण यान को लांच किया गया था। यह वर्तमान प्रक्षेपण स्थल के दक्षिणी सिरे पर स्थित है। इसे सेवामुक्त कर दिया गया है। शुरू में इसे उपग्रह प्रक्षेपण यान लांच करने के लिए बनाया गया था। लेकिन बाद में इसे संवर्धित उपग्रह प्रक्षेपण यान प्रक्षेपण परिसर के रूप में इस्तेमाल किया गया था।\nप्रथम लांच पैड\nद्वितीय लॉन्च पैड\nतृतीय लांच पैड\nसन्दर्भ श्रेणी:भारतीय अंतरिक्ष अनुसंधान संगठन\nश्रेणी:भारत के रॉकेट प्रक्षेपण स्थल" datasets: - abhishek/autonlp-data-hindi-question-answering co2_eq_emissions: 39.76330395590446 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - CO2 Emissions (in grams): 39.76330395590446 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-hindi-question-answering-23865268 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("abhishek/autonlp-hindi-question-answering-23865268", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-hindi-question-answering-23865268", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
adamlin/ml999_matal_bed
db0898faa751675a3c1022a9c9beda7c0f1b4b22
2021-12-20T16:47:36.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
adamlin
null
adamlin/ml999_matal_bed
10
null
transformers
11,580
Entry not found
adamlin/ml999_power_punching_and_shearing_machinery
bf92562d8257c28fa68fbb4e307be32ece7d0cc0
2021-12-20T16:54:51.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
adamlin
null
adamlin/ml999_power_punching_and_shearing_machinery
10
null
transformers
11,581
Entry not found
adamlin/ml999_power_stacker
006c65e31658d3a701a9343856d70156d2256045
2021-12-20T16:53:28.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
adamlin
null
adamlin/ml999_power_stacker
10
null
transformers
11,582
Entry not found
addy88/perceiver_imdb
b6bc811da897db11ab1c5ef848069cf8e625a511
2022-01-02T11:20:07.000Z
[ "pytorch", "perceiver", "text-classification", "transformers" ]
text-classification
false
addy88
null
addy88/perceiver_imdb
10
null
transformers
11,583
### How to use Here is how to use this model in PyTorch: ```python from transformers import PerceiverTokenizer, PerceiverForMaskedLM tokenizer = PerceiverTokenizer.from_pretrained("addy88/perceiver_imdb") model = PerceiverForMaskedLM.from_pretrained("addy88/perceiver_imdb") text = "This is an incomplete sentence where some words are missing." # prepare input encoding = tokenizer(text, padding="max_length", return_tensors="pt") # mask " missing.". Note that the model performs much better if the masked span starts with a space. encoding.input_ids[0, 52:61] = tokenizer.mask_token_id inputs, input_mask = encoding.input_ids.to(device), encoding.attention_mask.to(device) # forward pass outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits masked_tokens_predictions = logits[0, 51:61].argmax(dim=-1) print(tokenizer.decode(masked_tokens_predictions)) >>> should print " missing." ```
airKlizz/bart-large-multi-fr-wiki-news
35aa402131777752ca87afdd426ba9b515cab5b0
2021-10-17T20:10:41.000Z
[ "pytorch", "bart", "text2text-generation", "fr", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/bart-large-multi-fr-wiki-news
10
null
transformers
11,584
--- language: fr license: mit ---
airKlizz/mt5-base-wikinewssum-german
fb4cd1036751a47f10c7a5d8e15d72fe7c604896
2021-12-25T15:13:41.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
airKlizz
null
airKlizz/mt5-base-wikinewssum-german
10
null
transformers
11,585
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-german results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-german This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5135 - Rouge1: 8.0553 - Rouge2: 2.7846 - Rougel: 6.2182 - Rougelsum: 7.6203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 723 | 2.7112 | 7.3681 | 2.3679 | 5.5705 | 6.7588 | | No log | 2.0 | 1446 | 2.6178 | 7.8539 | 2.7551 | 6.2081 | 7.4139 | | No log | 3.0 | 2169 | 2.5756 | 7.8401 | 2.6075 | 6.0135 | 7.4303 | | No log | 4.0 | 2892 | 2.5465 | 8.1097 | 2.8525 | 6.268 | 7.6482 | | 3.4589 | 5.0 | 3615 | 2.5315 | 8.0192 | 2.7848 | 6.2484 | 7.5859 | | 3.4589 | 6.0 | 4338 | 2.5222 | 8.1063 | 2.8986 | 6.337 | 7.6564 | | 3.4589 | 7.0 | 5061 | 2.5136 | 8.0565 | 2.8707 | 6.2732 | 7.6105 | | 3.4589 | 8.0 | 5784 | 2.5135 | 8.0553 | 2.7846 | 6.2182 | 7.6203 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
akahana/indonesia-sentiment-roberta
5bbecef6101e5a5c3f4f4f5d1a72ee7653a5da1a
2021-12-07T04:26:11.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "id", "transformers" ]
text-classification
false
akahana
null
akahana/indonesia-sentiment-roberta
10
null
transformers
11,586
--- language: "id" widget: - text: "dia orang yang baik ya bunds." --- ## how to use ```python from transformers import pipeline, set_seed path = "akahana/indonesia-sentiment-roberta" emotion = pipeline('text-classification', model=path,device=0) set_seed(42) kalimat = "dia orang yang baik ya bunds." preds = emotion(kalimat) preds ```
akdeniz27/convbert-base-turkish-cased-ner
f23c5c89ed519c6970942119fb97a6a966d4a0ba
2021-09-15T17:02:16.000Z
[ "pytorch", "convbert", "token-classification", "tr", "arxiv:2008.02496", "transformers", "autotrain_compatible" ]
token-classification
false
akdeniz27
null
akdeniz27/convbert-base-turkish-cased-ner
10
null
transformers
11,587
--- language: tr widget: - text: "Almanya, koronavirüs aşısını geliştiren Dr. Özlem Türeci ve eşi Prof. Dr. Uğur Şahin'e liyakat nişanı verdi" --- # Turkish Named Entity Recognition (NER) Model This model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk) using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper. # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "dbmdz/convbert-base-turkish-cased" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("<your text here>") # Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. ``` # Reference test results: * accuracy: 0.9937648915431506 * f1: 0.9610945644080416 * precision: 0.9619899385131359 * recall: 0.9602008554956295
alireza7/PEGASUS-persian-base-wiki-summary
8a1f0e3d8d17d3be154856d3d31ec27501e00af6
2021-09-29T19:26:15.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/PEGASUS-persian-base-wiki-summary
10
null
transformers
11,588
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
allenai/dsp_roberta_base_dapt_biomed_tapt_rct_500
5be845b8cab84d67dc3ccf8d9d7ffd5aceea445c
2021-05-20T13:07:27.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_dapt_biomed_tapt_rct_500
10
1
transformers
11,589
Entry not found
aloxatel/KS8
95c7a7cb2324822fee5bb1409c6145ce57245593
2021-05-20T13:52:21.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
aloxatel
null
aloxatel/KS8
10
null
transformers
11,590
Entry not found
am4nsolanki/autonlp-text-hateful-memes-36789092
91900b9a7bc52ba53cb9d3fc1e61a2350d30bfba
2021-11-28T22:35:30.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:am4nsolanki/autonlp-data-text-hateful-memes", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
am4nsolanki
null
am4nsolanki/autonlp-text-hateful-memes-36789092
10
1
transformers
11,591
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - am4nsolanki/autonlp-data-text-hateful-memes co2_eq_emissions: 1.4280361775467445 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 36789092 - CO2 Emissions (in grams): 1.4280361775467445 ## Validation Metrics - Loss: 0.5255328416824341 - Accuracy: 0.7666078777189889 - Precision: 0.6913123844731978 - Recall: 0.6192052980132451 - AUC: 0.7893359070795125 - F1: 0.6532751091703057 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/am4nsolanki/autonlp-text-hateful-memes-36789092 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("am4nsolanki/autonlp-text-hateful-memes-36789092", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("am4nsolanki/autonlp-text-hateful-memes-36789092", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
amoux/scibert_nli_squad
1cf47b25d327491436d6aaf0d151ee671ae2cc8a
2021-05-18T23:36:56.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
amoux
null
amoux/scibert_nli_squad
10
null
transformers
11,592
Entry not found
andi611/distilbert-base-uncased-ner-conll2003
3a0d1d69958cfedaa289da6e2c1e134958d42ba9
2021-07-03T13:08:00.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
andi611
null
andi611/distilbert-base-uncased-ner-conll2003
10
null
transformers
11,593
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.985193893275295 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0664 - Precision: 0.9332 - Recall: 0.9423 - F1: 0.9377 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2042 | 1.0 | 878 | 0.0636 | 0.9230 | 0.9253 | 0.9241 | 0.9822 | | 0.0428 | 2.0 | 1756 | 0.0577 | 0.9286 | 0.9370 | 0.9328 | 0.9841 | | 0.0199 | 3.0 | 2634 | 0.0606 | 0.9364 | 0.9401 | 0.9383 | 0.9851 | | 0.0121 | 4.0 | 3512 | 0.0641 | 0.9339 | 0.9380 | 0.9360 | 0.9847 | | 0.0079 | 5.0 | 4390 | 0.0664 | 0.9332 | 0.9423 | 0.9377 | 0.9852 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
annafavaro/distilbert-base-uncased-finetuned-cola
3bf191f85e4e0159a0c039ddd00f5a2afc3e877d
2021-12-01T05:13:59.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
annafavaro
null
annafavaro/distilbert-base-uncased-finetuned-cola
10
null
transformers
11,594
Entry not found
anton-l/wav2vec2-large-xlsr-53-kyrgyz
6b67fd3e70ce4e0d40d2a6cc98a84c3272b24d65
2021-07-05T19:53:54.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ky", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-large-xlsr-53-kyrgyz
10
null
transformers
11,595
--- language: ky datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Kyrgyz XLSR Wav2Vec2 Large 53 by Anton Lozhkov results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ky type: common_voice args: ky metrics: - name: Test WER type: wer value: 31.88 --- # Wav2Vec2-Large-XLSR-53-Kyrgyz Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Kyrgyz using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ky", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Kyrgyz test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/ky.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/ky/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/ky/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 31.88 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anukaver/xlm-roberta-est-qa
31a799247a6af5dd3e476afd6c71a148d1edb280
2021-04-27T10:47:18.000Z
[ "pytorch", "xlm-roberta", "question-answering", "dataset:squad", "dataset:anukaver/EstQA", "transformers", "autotrain_compatible" ]
question-answering
false
anukaver
null
anukaver/xlm-roberta-est-qa
10
null
transformers
11,596
--- tags: - question-answering datasets: - squad - anukaver/EstQA --- # Question answering model for Estonian This is a question answering model based on XLM-Roberta base model. It is fine-tuned subsequentially on: 1. English SQuAD v1.1 2. SQuAD v1.1 translated into Estonian 3. Small native Estonian dataset (800 samples) The model has retained good multilingual properties and can be used for extractive QA tasks in all languages included in XLM-Roberta. The performance is best in the fine-tuning languages of Estonian and English. | Tested on | F1 | EM | | ----------- | --- | --- | | EstQA test set | 82.4 | 75.3 | | SQuAD v1.1 dev set | 86.9 | 77.9 | The Estonian dataset used for fine-tuning and validating results is available in https://huggingface.co/datasets/anukaver/EstQA/ (version 1.0)
arampacha/clip-rsicd-v5
fd7394456f27c25b97def109edcadd8e3b92ce8b
2021-07-17T09:59:40.000Z
[ "pytorch", "jax", "clip", "feature-extraction", "transformers" ]
feature-extraction
false
arampacha
null
arampacha/clip-rsicd-v5
10
null
transformers
11,597
Entry not found
arnolfokam/bert-base-uncased-pcm
5cfa0dd8e8d571a3940fc48d14bd539567fb7b83
2021-11-24T21:14:03.000Z
[ "pytorch", "bert", "token-classification", "pcm", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/bert-base-uncased-pcm
10
null
transformers
11,598
--- language: - pcm tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." --- # Model description **bert-base-uncased-pcm** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Nigerian Pidgin corpus **(pcm)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(pcm)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **bert-base-uncased-pcm**| 88.61 | 84.17 | 86.33 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-pcm") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/bert-base-uncased-pcm") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." ner_results = nlp(example) print(ner_results) ```
arnolfokam/mbert-base-uncased-ner-swa
f8e792125e11fd54585043957eb9107472ea2ce1
2021-11-24T11:31:30.000Z
[ "pytorch", "bert", "token-classification", "swa", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/mbert-base-uncased-ner-swa
10
null
transformers
11,599
--- language: - swa tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." --- # Model description **mbert-base-uncased-ner-swa** is a model based on the fine-tuned Multilingual BERT base uncased model, previously fine-tuned for Named Entity Recognition using 10 high-resourced languages. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **mbert-base-uncased-ner-swa**| 82.85 | 88.13 | 85.41 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-ner-swa") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-ner-swa") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." ner_results = nlp(example) print(ner_results) ```