modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
ncduy/bert-base-cased-finetuned-emotion
365b205f05d81e52aa139dfc9e5da84d8146e05d
2021-12-09T10:30:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ncduy
null
ncduy/bert-base-cased-finetuned-emotion
10
1
transformers
11,700
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: bert-base-cased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: F1 type: f1 value: 0.9365323747830425 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-emotion This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1342 - F1: 0.9365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7357 | 1.0 | 250 | 0.2318 | 0.9224 | | 0.1758 | 2.0 | 500 | 0.1679 | 0.9349 | | 0.1228 | 3.0 | 750 | 0.1385 | 0.9382 | | 0.0961 | 4.0 | 1000 | 0.1452 | 0.9340 | | 0.0805 | 5.0 | 1250 | 0.1342 | 0.9365 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
nepp1d0/Bert-pretrained-proteinBindingDB
ddc5215e99986e8b00bd32a5d30808bd7e938693
2022-02-04T16:12:07.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
nepp1d0
null
nepp1d0/Bert-pretrained-proteinBindingDB
10
null
transformers
11,701
Entry not found
nielsr/canine-s
09f9a6e82343ab8a7bb471bd4c826429c7233bb7
2021-06-05T09:33:04.000Z
[ "pytorch", "canine", "feature-extraction", "transformers" ]
feature-extraction
false
nielsr
null
nielsr/canine-s
10
null
transformers
11,702
Entry not found
nielsr/detr-resnet-50-new
8054ee0bd98b101ef18c36d06594cc416d89e198
2021-02-09T10:27:09.000Z
[ "pytorch", "detr", "object-detection", "transformers" ]
object-detection
false
nielsr
null
nielsr/detr-resnet-50-new
10
null
transformers
11,703
Entry not found
ontocord/mt5-fix-asr-vietnamese
2a54621c5632eaa2a08d51c7714da756d55cbc6e
2021-06-23T15:21:52.000Z
[ "pytorch", "jax", "mt5", "vi", "transformers", "language-modeling", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ontocord
null
ontocord/mt5-fix-asr-vietnamese
10
null
transformers
11,704
--- language: vi datasets: - common_voice - FOSD: https://data.mendeley.com/datasets/k9sxg2twv4/4 metrics: - wer tags: - language-modeling - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: MT5 Fix Asr Vietnamese by Ontocord results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice vi type: common_voice args: vi metrics: - name: Test WER type: wer value: 25.207182 --- # Ontocord/mt5-fix-asr-vietnamese Fine-tuned mt5 to correct output of an ASR model trained on [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) which was trained on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), and [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4). ## Usage The model can be used directly by submitting vietnamese asr text, but is is best to use with the ontocord/wav2vec2-large-xlsr-vietnamese model. ``` import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, pipelines device = torch.device("cuda" if torch.cuda.is_available() else "cpu") test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ontocord/wav2vec2-large-xlsr-53-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("ontocord/wav2vec2-large-xlsr-53-vietnamese").to(device) mt5 = pipelines.pipeline("text2text-generation","ontocord/mt5-fix-asr-vietnamese", device=0 if device == "cuda" else -1) resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", [aHash['generated_text'] for aHash in mt5(processor.batch_decode(predicted_ids), max_length=100)]) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. ``` import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, pipelines import re test_dataset = load_dataset("common_voice", "vi", split="test") wer = load_metric("wer") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor = Wav2Vec2Processor.from_pretrained("ontocord/wav2vec2-large-xlsr-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("ontocord/wav2vec2-large-xlsr-vietnamese").to(device) mt5 = pipelines.pipeline("text2text-generation","ontocord/mt5-fix-asr-vietnamese", device=0 if device == "cuda" else -1) chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # you may also want to use the decode_string from https://huggingface.co/Nhut/wav2vec2-large-xlsr-vietnamese def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits pred_ids = torch.argmax(logits, dim=-1) max_length = int(pred_ids.size()[1]) txt = [aHash['generated_text'].strip() for aHash in mt5(processor.batch_decode(pred_ids), max_length=max_length)] batch["pred_strings"] = txt return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.207182 ## Training The Common Voice train, validation, and FPT datasets were used for training. The script used for training can be found here # TODO
osanseviero/t5-finetuned-test
66b207574c9e37d515e82cc73430f2ce5d88f685
2021-06-23T13:12:41.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "eng", "dataset:Wikihow", "transformers", "wikihow", "t5-small", "lm-head", "seq2seq", "pipeline:summarization", "summarization", "autotrain_compatible" ]
summarization
false
osanseviero
null
osanseviero/t5-finetuned-test
10
null
transformers
11,705
--- language: "eng" tags: - wikihow - t5-small - pytorch - lm-head - seq2seq - t5 - pipeline:summarization - summarization datasets: - Wikihow widget: - max_length: 1 - text: "Lack of fluids can lead to dry mouth, which is a leading cause of bad breath. Water can also dilute any chemicals in your mouth or gut that are causing bad breath., Studies show that eating 6 ounces of yogurt a day reduces the level of odor-causing compounds in the mouth. In particular, look for yogurt containing the active bacteria Streptococcus thermophilus or Lactobacillus bulgaricus., The abrasive nature of fibrous fruits and vegetables helps to clean teeth, while the vitamins, antioxidants, and acids they contain improve dental health.Foods that can be particularly helpful include:Apples — Apples contain vitamin C, which is necessary for health gums, as well as malic acid, which helps to whiten teeth.Carrots — Carrots are rich in vitamin A, which strengthens tooth enamel.Celery — Chewing celery produces a lot of saliva, which helps to neutralize bacteria that cause bad breath.Pineapples — Pineapples contain bromelain, an enzyme that cleans the mouth., These teas have been shown to kill the bacteria that cause bad breath and plaque., An upset stomach can lead to burping, which contributes to bad breath. Don’t eat foods that upset your stomach, or if you do, use antacids. If you are lactose intolerant, try lactase tablets., They can all cause bad breath. If you do eat them, bring sugar-free gum or a toothbrush and toothpaste to freshen your mouth afterwards., Diets low in carbohydrates lead to ketosis — a state in which the body burns primarily fat instead of carbohydrates for energy. This may be good for your waistline, but it also produces chemicals called ketones, which contribute to bad breath.To stop the problem, you must change your diet. Or, you can combat the smell in one of these ways:Drink lots of water to dilute the ketones.Chew sugarless gum or suck on sugarless mints.Chew mint leaves." - text: " Bring 1/2 cup water to the boil.Add the fresh or dried rosemary to the water.Remove from the heat. Set aside for 1/2 an hour to infuse. Added flavour can be released by pressing down on the rosemary leaves with a spoon. Add the pieces to the blender or food processor with the elderflower cordial. Blend or process to a purée.,, Add the lemon or lime juice and stir to combine., Add a cover and place in the freezer.After 2 hours, remove from the freezer and break up with a fork. This helps the ice crystals to form properly.Continue doing this every hour until the granita freezes properly. Scoop the granita into dessert bowls and serve. Garnish with a cucumber curl or a small sprig of rosemary." metrics: - Rouge1: 31.2 - RougeL: 24.5 --- # Model name Wikihow T5-small ## Model description This is a T5-small model trained on Wikihow All data set. The model was trained for 3 epochs using a batch size of 16 and learning rate of 3e-4. Max_input_lngth is set as 512 and max_output_length is 150. Model attained a Rouge1 score of 31.2 and RougeL score of 24.5. We have written a blog post that covers the training procedure. Please find it [here](https://medium.com/@priya.dwivedi/fine-tuning-a-t5-transformer-for-any-summarization-task-82334c64c81). ## Usage ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small") model = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) text = """" Lack of fluids can lead to dry mouth, which is a leading cause of bad breath. Water can also dilute any chemicals in your mouth or gut that are causing bad breath., Studies show that eating 6 ounces of yogurt a day reduces the level of odor-causing compounds in the mouth. In particular, look for yogurt containing the active bacteria Streptococcus thermophilus or Lactobacillus bulgaricus., The abrasive nature of fibrous fruits and vegetables helps to clean teeth, while the vitamins, antioxidants, and acids they contain improve dental health.Foods that can be particularly helpful include:Apples — Apples contain vitamin C, which is necessary for health gums, as well as malic acid, which helps to whiten teeth.Carrots — Carrots are rich in vitamin A, which strengthens tooth enamel.Celery — Chewing celery produces a lot of saliva, which helps to neutralize bacteria that cause bad breath.Pineapples — Pineapples contain bromelain, an enzyme that cleans the mouth., These teas have been shown to kill the bacteria that cause bad breath and plaque., An upset stomach can lead to burping, which contributes to bad breath. Don’t eat foods that upset your stomach, or if you do, use antacids. If you are lactose intolerant, try lactase tablets., They can all cause bad breath. If you do eat them, bring sugar-free gum or a toothbrush and toothpaste to freshen your mouth afterwards., Diets low in carbohydrates lead to ketosis — a state in which the body burns primarily fat instead of carbohydrates for energy. This may be good for your waistline, but it also produces chemicals called ketones, which contribute to bad breath.To stop the problem, you must change your diet. Or, you can combat the smell in one of these ways:Drink lots of water to dilute the ketones.Chew sugarless gum or suck on sugarless mints.Chew mint leaves. """ preprocess_text = text.strip().replace("\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ","") tokenized_text = tokenizer.encode(preprocess_text, return_tensors="pt").to(device) summary_ids = model.generate( tokenized_text, max_length=150, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True ) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print ("\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Summarized text: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ",output) ```
pablouribe/bertstem-copus-supercategories-overfitted
759657722af472135e42caa6c2babecb974b140e
2022-01-18T05:35:17.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
pablouribe
null
pablouribe/bertstem-copus-supercategories-overfitted
10
null
transformers
11,706
Entry not found
patrickvonplaten/unispeech-sat-large-timit-ft
db46bdc038d97381a0f4de80bd1c8188750268ee
2021-10-21T16:38:43.000Z
[ "pytorch", "tensorboard", "unispeech-sat", "automatic-speech-recognition", "dataset:timit_asr", "transformers", "timit_asr", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/unispeech-sat-large-timit-ft
10
null
transformers
11,707
--- tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: unispeech-sat-large-timit-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unispeech-sat-large-timit-ft This model is a fine-tuned version of [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.6074 - Wer: 0.3880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2516 | 0.69 | 100 | 5.8638 | 1.0 | | 2.9596 | 1.38 | 200 | 2.9550 | 1.0 | | 2.8831 | 2.07 | 300 | 2.8547 | 1.0 | | 2.3223 | 2.76 | 400 | 2.2044 | 1.0063 | | 1.2104 | 3.45 | 500 | 1.0845 | 0.7706 | | 0.6779 | 4.14 | 600 | 0.7342 | 0.5663 | | 0.6319 | 4.83 | 700 | 0.6054 | 0.4881 | | 0.664 | 5.52 | 800 | 0.5808 | 0.4913 | | 0.402 | 6.21 | 900 | 0.5647 | 0.4611 | | 0.3176 | 6.9 | 1000 | 0.5211 | 0.4440 | | 0.3392 | 7.59 | 1100 | 0.5187 | 0.4359 | | 0.3888 | 8.28 | 1200 | 0.5501 | 0.4391 | | 0.2874 | 8.97 | 1300 | 0.5249 | 0.4148 | | 0.208 | 9.66 | 1400 | 0.5407 | 0.4152 | | 0.1457 | 10.34 | 1500 | 0.5722 | 0.4155 | | 0.2375 | 11.03 | 1600 | 0.5780 | 0.4059 | | 0.2111 | 11.72 | 1700 | 0.5823 | 0.4094 | | 0.1422 | 12.41 | 1800 | 0.5754 | 0.3977 | | 0.125 | 13.1 | 1900 | 0.5784 | 0.4031 | | 0.1996 | 13.79 | 2000 | 0.5630 | 0.3956 | | 0.1747 | 14.48 | 2100 | 0.5880 | 0.3964 | | 0.1263 | 15.17 | 2200 | 0.5987 | 0.3951 | | 0.11 | 15.86 | 2300 | 0.5688 | 0.3964 | | 0.1411 | 16.55 | 2400 | 0.6223 | 0.3906 | | 0.1647 | 17.24 | 2500 | 0.6135 | 0.3960 | | 0.1162 | 17.93 | 2600 | 0.6224 | 0.3960 | | 0.098 | 18.62 | 2700 | 0.6017 | 0.3907 | | 0.1183 | 19.31 | 2800 | 0.6121 | 0.3885 | | 0.1717 | 20.0 | 2900 | 0.6074 | 0.3880 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-base-repro-960h-libri-85k-steps
36f90d6c4e4c35af8234605c4a145f92817813a7
2021-10-25T13:15:45.000Z
[ "pytorch", "wav2vec2", "pretraining", "transformers" ]
null
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-base-repro-960h-libri-85k-steps
10
null
transformers
11,708
https://wandb.ai/patrickvonplaten/test/reports/Wav2Vec2-Base--VmlldzoxMTUyODQ0?accessToken=rg6e8u9yizx964k8q47zctq1m4afpvtn1i3qi9exgdmzip6xwkfzvagfajpzj55n
pdroberts/distilbert-base-uncased-finetuned-emotion
8f4a96f6a7f98d626c9417f22618ef5db64c2782
2022-02-01T23:48:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
pdroberts
null
pdroberts/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,709
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
pere/norwegian-roberta-base-highlr-512
74ab4706350b50b1a5db1fac888d5771b73aec73
2021-11-25T17:54:31.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
pere
null
pere/norwegian-roberta-base-highlr-512
10
null
transformers
11,710
Same as norwegian-roberta-base but with higher learning rate and batch size
persiannlp/mt5-small-parsinlu-multiple-choice
3a03b0eea4e84e42a23490bb1f8a23d1a5af3371
2021-09-23T16:20:33.000Z
[ "pytorch", "t5", "text2text-generation", "fa", "multilingual", "dataset:parsinlu", "transformers", "multiple-choice", "mt5", "persian", "farsi", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
persiannlp
null
persiannlp/mt5-small-parsinlu-multiple-choice
10
null
transformers
11,711
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "small" model_name = f"persiannlp/mt5-{model_size}-parsinlu-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
philschmid/finbert-pretrain-yiyanghkust
90f3550f37ab0a2da55c43fce5b63b5d55b7c5f9
2021-11-05T14:00:02.000Z
[ "pytorch", "tf", "bert", "fill-mask", "en", "arxiv:2006.08097", "transformers", "autotrain_compatible" ]
fill-mask
false
philschmid
null
philschmid/finbert-pretrain-yiyanghkust
10
1
transformers
11,712
--- pipeline_tag: "fill-mask" language: en --- # This repository is a fork of [yiyanghkust/finbert-pretrain](https://huggingface.co/yiyanghkust/finbert-pretrain) > All credits to [@yiyanghkust](https://huggingface.co/yiyanghkust). I added the TensorFlow model and a proper `tokenizer.json` --- `FinBERT` is a BERT model pre-trained on financial communication text. The purpose is to enhance financial NLP research and practice. It is trained on the following three financial communication corpus. The total corpora size is 4.9B tokens. - Corporate Reports 10-K & 10-Q: 2.5B tokens - Earnings Call Transcripts: 1.3B tokens - Analyst Reports: 1.1B tokens More details on `FinBERT`'s pre-training process can be found at: https://arxiv.org/abs/2006.08097 `FinBERT` can be further fine-tuned on downstream tasks. Specifically, we have fine-tuned `FinBERT` on an analyst sentiment classification task, and the fine-tuned model is shared at https://huggingface.co/yiyanghkust/finbert-tone
princeton-nlp/densephrases-multi-query-nq
2b1f0008d31379ca6ea832b37da9d773229a5093
2021-09-20T17:41:23.000Z
[ "pytorch", "bert", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/densephrases-multi-query-nq
10
null
transformers
11,713
Entry not found
pszemraj/distill-pegasus-CompMath
7cc022e75db6b0242206d68683f8f4228ca62ae0
2022-02-06T16:43:06.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:competition_math", "transformers", "math", "autotrain_compatible" ]
text2text-generation
false
pszemraj
null
pszemraj/distill-pegasus-CompMath
10
null
transformers
11,714
--- language: en tags: - math - pegasus datasets: - competition_math metrics: - rouge widget: - text: "Michael scores a 95, 87, 85, 93, and a 94 on his first 5 math tests. If he wants a 90 average, what must he score on the final math test?" example_title: "averaging" - text: "If the sum of the smallest and largest of three consecutive even numbers is 28, what is the value of the second largest number in the series?" example_title: "puzzle2" - text: "Two inlet pipes lead into a large water tank. One pipe can fill the tank in 45 minutes; the other can fill it in 40 minutes. To the nearest tenth of a minute, how long would it take the two pipes together to fill the tank if both were opened at the same time?" example_title: "patek water" - text: "A football team lost 5 yards and then gained 9. What is the team's progress?" example_title: "sportsball" - text: "Half a number plus 5 is 11.What is the number?" example_title: "half" inference: parameters: max_length: 128 no_repeat_ngram_size: 4 length_penalty: 0.7 repetition_penalty: 3.1 num_beams : 4 early_stopping: True --- # pegasus does math? - testing to see how feasible seq2seq math problems are - answer: at least with 2 epochs, it is uhhhh not super feasible.
ramybaly/ner_nerd_fine
3b874114caefa4d18ef8dc0bb7cd959fb8e452f0
2021-08-20T19:01:06.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:nerd", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
ramybaly
null
ramybaly/ner_nerd_fine
10
null
transformers
11,715
--- license: apache-2.0 tags: - generated_from_trainer datasets: - nerd metrics: - precision - recall - f1 - accuracy model_index: - name: ner_nerd_fine results: - task: name: Token Classification type: token-classification dataset: name: nerd type: nerd args: nerd metric: name: Accuracy type: accuracy value: 0.9050232835369201 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_nerd_fine This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.3373 - Precision: 0.6326 - Recall: 0.6734 - F1: 0.6524 - Accuracy: 0.9050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6219 | 1.0 | 8235 | 0.3347 | 0.6066 | 0.6581 | 0.6313 | 0.9015 | | 0.3071 | 2.0 | 16470 | 0.3165 | 0.6349 | 0.6637 | 0.6490 | 0.9060 | | 0.2384 | 3.0 | 24705 | 0.3311 | 0.6373 | 0.6769 | 0.6565 | 0.9068 | | 0.1834 | 4.0 | 32940 | 0.3414 | 0.6349 | 0.6780 | 0.6557 | 0.9069 | | 0.1392 | 5.0 | 41175 | 0.3793 | 0.6334 | 0.6775 | 0.6547 | 0.9068 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.2
rayschwartz/text-classification
9eee493bab175680150af66643c4d19c215e6ade
2021-10-14T12:56:13.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
rayschwartz
null
rayschwartz/text-classification
10
null
transformers
11,716
Entry not found
reatiny/distilbert-base-uncased-finetuned-emotion
e2917d8975c79a4b5cb4055cf95430432d07f643
2022-02-14T07:44:51.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
reatiny
null
reatiny/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,717
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9217811693486851 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2226 - Accuracy: 0.9215 - F1: 0.9218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8235 | 1.0 | 250 | 0.3190 | 0.901 | 0.8979 | | 0.2497 | 2.0 | 500 | 0.2226 | 0.9215 | 0.9218 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.11.0
reichenbach/wav2vec2-large-xls-r-300m-pa-in
c4767f1897b2e428cbc919438617aa89ae7b4bb1
2022-03-23T18:28:40.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "pa", "pa-IN", "dataset:common_voice", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
reichenbach
null
reichenbach/wav2vec2-large-xls-r-300m-pa-in
10
null
transformers
11,718
--- license: apache-2.0 language: - pa - pa-IN tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-pa-in results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pa-in This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.9680 - Wer: 0.7283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 180 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.2615 | 24.97 | 400 | 3.4784 | 1.0 | | 3.366 | 49.97 | 800 | 2.3662 | 0.9917 | | 1.1678 | 74.97 | 1200 | 1.4806 | 0.7709 | | 0.5496 | 99.97 | 1600 | 1.7166 | 0.7476 | | 0.4101 | 124.97 | 2000 | 1.8473 | 0.7510 | | 0.3317 | 149.97 | 2400 | 1.9177 | 0.7322 | | 0.2956 | 174.97 | 2800 | 1.9680 | 0.7283 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 ### Evaluations Result - WER: 0.7539 - CER: 0.2928
saattrupdan/xlmr-base-texas-squad-de
0d72dfa7c2d6f7dea1f67c85035f8e34089b36b1
2022-01-31T21:31:12.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
saattrupdan
null
saattrupdan/xlmr-base-texas-squad-de
10
null
transformers
11,719
--- license: mit tags: - generated_from_trainer model-index: - name: xlmr-base-texas-squad-de results: [] widget: - text: "Welche Ausbildung hatte Angela Merkel?" context: "Angela Dorothea Merkel (geb. Kasner; * 17. Juli 1954 in Hamburg) ist eine deutsche Politikerin (CDU). Sie war vom 22. November 2005 bis zum 8. Dezember 2021 Bundeskanzlerin der Bundesrepublik Deutschland. Sie ist die achte Person, zugleich erste Frau, erste Person aus Ostdeutschland und erste Person, die nach der Gründung der Bundesrepublik geboren ist, die in dieses Amt gewählt wurde. Von April 2000 bis Dezember 2018 war sie Bundesvorsitzende der CDU. Merkel wuchs in der DDR auf und war dort als Physikerin am Zentralinstitut für Physikalische Chemie tätig. Erstmals politisch aktiv wurde sie während der Wendezeit in der Partei Demokratischer Aufbruch, die sich 1990 der CDU anschloss. In der ersten und gleichzeitig letzten demokratisch gewählten Regierung der DDR übte sie das Amt der stellvertretenden Regierungssprecherin aus." --- # TExAS-SQuAD-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the TExAS-SQuAD-de dataset. It achieves the following results on the evaluation set: - Exact match: 61.45% - F1-score: 66.12% ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.8084 | 1.0 | 4233 | 1.5897 | | 1.5696 | 2.0 | 8466 | 1.5478 | | 1.4196 | 3.0 | 12699 | 1.5754 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.8.1+cu101 - Datasets 1.12.1 - Tokenizers 0.10.3
sail/poolformer_s36
1d740b215d07f480fa51efa16df83a63d5f6acf2
2022-04-08T07:48:39.000Z
[ "pytorch", "poolformer", "image-classification", "dataset:imagenet", "arxiv:2111.11418", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
sail
null
sail/poolformer_s36
10
null
transformers
11,720
--- license: apache-2.0 tags: - image-classification - vision datasets: - imagenet --- # PoolFormer (S36 model) PoolFormer model trained on ImageNet-1k (1 million images, 1,000 classes) at resolution 224x224. It was first introduced in the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu et al. and first released in [this repository](https://github.com/sail-sg/poolformer). ## Model description PoolFormer is a model that replaces attention token mixer in transfomrers with extremely simple operator, pooling. Transformers have shown great potential in computer vision tasks. A common belief is their attention-based token mixer module contributes most to their competence. However, recent works show the attention-based module in transformers can be replaced by spatial MLPs and the resulted models still perform quite well. Based on this observation, we hypothesize that the general architecture of the transformers, instead of the specific token mixer module, is more essential to the model's performance. To verify this, we deliberately replace the attention module in transformers with an embarrassingly simple spatial pooling operator to conduct only the most basic token mixing. Surprisingly, we observe that the derived model, termed as PoolFormer, achieves competitive performance on multiple computer vision tasks. For example, on ImageNet-1K, PoolFormer achieves 82.1% top-1 accuracy, surpassing well-tuned vision transformer/MLP-like baselines DeiT-B/ResMLP-B24 by 0.3%/1.1% accuracy with 35%/52% fewer parameters and 48%/60% fewer MACs. The effectiveness of PoolFormer verifies our hypothesis and urges us to initiate the concept of "MetaFormer", a general architecture abstracted from transformers without specifying the token mixer. Based on the extensive experiments, we argue that MetaFormer is the key player in achieving superior results for recent transformer and MLP-like models on vision tasks. This work calls for more future research dedicated to improving MetaFormer instead of focusing on the token mixer modules. Additionally, our proposed PoolFormer could serve as a starting baseline for future MetaFormer architecture design. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=sail/poolformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import PoolFormerFeatureExtractor, PoolFormerForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = PoolFormerFeatureExtractor.from_pretrained('sail/poolformer_s36') model = PoolFormerForImageClassification.from_pretrained('sail/poolformer_s36') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. ## Training data The poolformer model was trained on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/sail-sg/poolformer/blob/main/train.py#L529-L572). ### Pretraining The model was trained on TPU-v3s. Training resolution is 224. For all hyperparameters (such as batch size and learning rate), please refer to the original paper. ## Evaluation results | Model | ImageNet top-1 accuracy | # params | URL | |---------------------------------------|-------------------------|----------|------------------------------------------------------------------| | PoolFormer-S12 | 77.2 | 12M | https://huggingface.co/sail/poolformer_s12 | | PoolFormer-S24 | 80.3 | 21M | https://huggingface.co/sail/poolformer_s24 | | **PoolFormer-S36** | **81.4** | **31M** | **https://huggingface.co/sail/poolformer_s36** | | PoolFormer-M36 | 82.1 | 56M | https://huggingface.co/sail/poolformer_m36 | | PoolFormer-M48 | 82.5 | 73M | https://huggingface.co/sail/poolformer_m48 | ### BibTeX entry and citation info ```bibtex @article{yu2021metaformer, title={MetaFormer is Actually What You Need for Vision}, author={Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng}, journal={arXiv preprint arXiv:2111.11418}, year={2021} } ```
sankhajay/bert-base-sinhala-qa
168c5199a4e5ba0e47bfcc8e5039b7b46d7328cf
2021-08-19T01:22:08.000Z
[ "pytorch", "bert", "question-answering", "si", "transformers", "Sinhala", "autotrain_compatible" ]
question-answering
false
sankhajay
null
sankhajay/bert-base-sinhala-qa
10
1
transformers
11,721
\n --- language: si tags: - Sinhala widget: - context: "ශ්‍රී ලංකාව යනු ඉන්දියානු සාගරයේ පිහිටි මනරම් දුපතකි." text: "ශ්‍රී ලංකාව පිහිටා ඇත්තේ කොහෙද ?" --- # bert-base-sinhala-qa This is a Bert-based Question Answering model for the Sinhalese language. Training is done on translated SQuAD dataset of 8k questions. Translation was done by google translated API. Evaluation is still to be done. Still fine-tuning the model.
satyaalmasian/temporal_tagger_BERTCRF_tokenclassifier
ca4804f63efc8aa3598aff6015ba1d79d6c8c51e
2021-09-21T11:30:36.000Z
[ "pytorch", "bert", "transformers" ]
null
false
satyaalmasian
null
satyaalmasian/temporal_tagger_BERTCRF_tokenclassifier
10
null
transformers
11,722
# BERT based temporal tagged Token classifier for temporal tagging of plain text using BERT language model and CRFs. The model is introduced in the paper BERT got a Date: Introducing Transformers to Temporal Tagging and release in this [repository](https://github.com/satya77/Transformer_Temporal_Tagger). # Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. We use BERT for token classification to tag the tokens in text with classes: ``` O -- outside of a tag I-TIME -- inside tag of time B-TIME -- beginning tag of time I-DATE -- inside tag of date B-DATE -- beginning tag of date I-DURATION -- inside tag of duration B-DURATION -- beginning tag of duration I-SET -- inside tag of the set B-SET -- beginning tag of the set ``` On top of the BERT classification layer, we add a custom CRF layer. This is a variant of `satyaalmasian/temporal_tagger_BERT_tokenclassifier` with slightly better performance but can not be used out of the box with huggingface models and needs the code from the accompanying [repository](https://github.com/satya77/Transformer_Temporal_Tagger). # Intended uses & limitations This model is best used accompanied with code from the [repository](https://github.com/satya77/Transformer_Temporal_Tagger). Especially for inference, the direct output might be noisy and hard to decipher, in the repository we provide alignment functions and voting strategies for the final output. # How to use you can load the model as follows: ``` tokenizer = AutoTokenizer.from_pretrained("satyaalmasian/temporal_tagger_BERTCRF_tokenclassifier", use_fast=False) model = BertForTokenClassification.from_pretrained("satyaalmasian/temporal_tagger_BERTCRF_tokenclassifier") ``` for inference use: ``` processed_text = tokenizer(input_text, return_tensors="pt") processed_text["inference_mode"]=True result = model(**processed_text) classification= result[0] ``` for an example with post-processing, refer to the [repository](https://github.com/satya77/Transformer_Temporal_Tagger). We provide a function `merge_tokens` to decipher the output. to further fine-tune, use the `Trainer` from hugginface. An example of a similar fine-tuning can be found [here](https://github.com/satya77/Transformer_Temporal_Tagger/blob/master/run_token_classifier.py). #Training data We use 3 data sources: [Tempeval-3](https://www.cs.york.ac.uk/semeval-2013/task1/index.php%3Fid=data.html), Wikiwars, Tweets datasets. For the correct data versions please refer to our [repository](https://github.com/satya77/Transformer_Temporal_Tagger). #Training procedure The model is trained from publicly available checkpoints on huggingface (`bert-base-uncased`), with a batch size of 34. We use a learning rate of 5e-05 with an Adam optimizer and linear weight decay. We fine-tune with 5 different random seeds, this version of the model is the only seed=19. For training, we use 2 NVIDIA A100 GPUs with 40GB of memory.
satyaalmasian/temporal_tagger_German_GELECTRA
a523f786c63a5c0542e04d22f4b42364f33ec935
2022-02-10T15:23:51.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
satyaalmasian
null
satyaalmasian/temporal_tagger_German_GELECTRA
10
1
transformers
11,723
# BERT based temporal tagged Token classifier for temporal tagging of plain text using German Gelectra model. # Model description GELECTRA is a transformer (ELECTRA) model pretrained on a large corpus of German data in a self-supervised fashion. We use GELECTRA for token classification to tag the tokens in text with classes (tags are from english timex3 format): ``` O -- outside of a tag I-TIME -- inside tag of time B-TIME -- beginning tag of time I-DATE -- inside tag of date B-DATE -- beginning tag of date I-DURATION -- inside tag of duration B-DURATION -- beginning tag of duration I-SET -- inside tag of the set B-SET -- beginning tag of the set ``` # Intended uses & limitations This model is best used accompanied with code from the [repository](https://github.com/satya77/Transformer_Temporal_Tagger). Especially for inference, the direct output might be noisy and hard to decipher, in the repository we provide alignment functions and voting strategies for the final output. The repo examples the english models, the german model can be used the same way. # How to use you can load the model as follows: ``` tokenizer = AutoTokenizer.from_pretrained("satyaalmasian/temporal_tagger_German_GELECTRA", use_fast=False) model = BertForTokenClassification.from_pretrained("satyaalmasian/temporal_tagger_German_GELECTRA") ``` for inference use: ``` processed_text = tokenizer(input_text, return_tensors="pt") result = model(**processed_text) classification= result[0] ``` for an example with post-processing, refer to the [repository](https://github.com/satya77/Transformer_Temporal_Tagger). We provide a function `merge_tokens` to decipher the output. to further fine-tune, use the `Trainer` from hugginface. An example of a similar fine-tuning can be found [here](https://github.com/satya77/Transformer_Temporal_Tagger/blob/master/run_token_classifier.py). # Training data For pre-training we use a large corpus of automatically annotated news articles with heideltime. We use 2 data sources for fine-tunning. : [Tempeval-3](https://www.cs.york.ac.uk/semeval-2013/task1/index.php%3Fid=data.html),automatically translated to gemran, [KRAUTS dataset](https://github.com/JannikStroetgen/KRAUTS). # Training procedure The model is trained from publicly available checkpoints on huggingface (`deepset/gelectra-large`), with a batch size of 192. We use a learning rate of 1e-07 with an Adam optimizer and linear weight decay for pretraining. For fine-tuning we use a batch size of 16. We use a learning rate of 5e-05 with an Adam optimizer and linear weight decay. We fine-tune with 3 different random seeds, this version of the model is the only seed=7. For training, we use 2 NVIDIA A100 GPUs with 40GB of memory.
sentence-transformers/xlm-r-bert-base-nli-mean-tokens
869d294b8c105b4d423e24d4012603adad3ca01d
2022-06-16T00:42:16.000Z
[ "pytorch", "tf", "xlm-roberta", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/xlm-r-bert-base-nli-mean-tokens
10
null
sentence-transformers
11,724
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- **⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)** # sentence-transformers/xlm-r-bert-base-nli-mean-tokens This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/xlm-r-bert-base-nli-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/xlm-r-bert-base-nli-mean-tokens') model = AutoModel.from_pretrained('sentence-transformers/xlm-r-bert-base-nli-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/xlm-r-bert-base-nli-mean-tokens) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sgugger/test-ner
f339bcc4fe231c1b1065a911b02545cafab0825d
2021-09-23T22:04:06.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
sgugger
null
sgugger/test-ner
10
null
transformers
11,725
Entry not found
shiyue/roberta-large-realsumm
5c925fdcfb3c50916b857e2330b7e27b6a78cac5
2021-09-22T02:45:08.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm
10
null
transformers
11,726
Entry not found
sismetanin/mbart_ru_sum_gazeta-ru-sentiment-rusentiment
c5c976d2a946e0b57ba2f0014f140b58c12f21ce
2021-02-25T23:56:23.000Z
[ "pytorch", "mbart", "text-classification", "ru", "transformers", "sentiment analysis", "Russian" ]
text-classification
false
sismetanin
null
sismetanin/mbart_ru_sum_gazeta-ru-sentiment-rusentiment
10
null
transformers
11,727
--- language: - ru tags: - sentiment analysis - Russian --- ## MBARTRuSumGazeta-ru-sentiment-RuSentiment MBARTRuSumGazeta-ru-sentiment-RuSentiment is a [MBARTRuSumGazeta](https://huggingface.co/IlyaGusev/mbart_ru_sum_gazeta) model fine-tuned on [RuSentiment dataset](https://github.com/text-machine-lab/rusentiment) of general-domain Russian-language posts from the largest Russian social network, VKontakte. <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>wighted</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table> The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark. ## Citation If you find this repository helpful, feel free to cite our publication: ``` @article{Smetanin2021Deep, author = {Sergey Smetanin and Mikhail Komarov}, title = {Deep transfer learning baselines for sentiment analysis in Russian}, journal = {Information Processing & Management}, volume = {58}, number = {3}, pages = {102484}, year = {2021}, issn = {0306-4573}, doi = {0.1016/j.ipm.2020.102484} } ``` Dataset: ``` @inproceedings{rogers2018rusentiment, title={RuSentiment: An enriched sentiment analysis dataset for social media in Russian}, author={Rogers, Anna and Romanov, Alexey and Rumshisky, Anna and Volkova, Svitlana and Gronas, Mikhail and Gribov, Alex}, booktitle={Proceedings of the 27th international conference on computational linguistics}, pages={755--763}, year={2018} } ```
sosuke/ease-xlm-roberta-base
c0b425e9a56764444d02eeb04f95b990d07196a0
2021-12-14T07:22:36.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
sosuke
null
sosuke/ease-xlm-roberta-base
10
null
transformers
11,728
Entry not found
spasis/bert-finetuned-ner
eed8347cf188b4247bee5a82cda0778133f72842
2022-02-22T13:23:17.000Z
[ "pytorch", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
spasis
null
spasis/bert-finetuned-ner
10
null
transformers
11,729
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9214944042132982 - name: Recall type: recall value: 0.9422753281723325 - name: F1 type: f1 value: 0.9317690131469462 - name: Accuracy type: accuracy value: 0.9849738034967916 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0569 - Precision: 0.9215 - Recall: 0.9423 - F1: 0.9318 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 439 | 0.0702 | 0.8847 | 0.9170 | 0.9006 | 0.9795 | | 0.183 | 2.0 | 878 | 0.0599 | 0.9161 | 0.9391 | 0.9274 | 0.9842 | | 0.0484 | 3.0 | 1317 | 0.0569 | 0.9215 | 0.9423 | 0.9318 | 0.9850 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
staceythompson/autonlp-new-text-classification-38319698
bb30e13fcbf7df17f6ae79433f1763e9cb895799
2021-12-03T14:06:55.000Z
[ "pytorch", "distilbert", "text-classification", "unk", "dataset:staceythompson/autonlp-data-new-text-classification", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
staceythompson
null
staceythompson/autonlp-new-text-classification-38319698
10
null
transformers
11,730
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - staceythompson/autonlp-data-new-text-classification co2_eq_emissions: 2.0318857468309206 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 38319698 - CO2 Emissions (in grams): 2.0318857468309206 ## Validation Metrics - Loss: 0.04461582377552986 - Accuracy: 0.9909255898366606 - Macro F1: 0.9951842095089771 - Micro F1: 0.9909255898366606 - Weighted F1: 0.9909493945587176 - Macro Precision: 0.9942196531791907 - Micro Precision: 0.9909255898366606 - Weighted Precision: 0.9911878560263526 - Macro Recall: 0.9962686567164181 - Micro Recall: 0.9909255898366606 - Weighted Recall: 0.9909255898366606 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/staceythompson/autonlp-new-text-classification-38319698 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("staceythompson/autonlp-new-text-classification-38319698", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("staceythompson/autonlp-new-text-classification-38319698", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
stefan-it/electra-base-gc4-64k-900000-cased-generator
3013aa3f303895fa078b3a64b06b17e6c333670f
2021-05-01T11:24:01.000Z
[ "pytorch", "tf", "electra", "fill-mask", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
stefan-it
null
stefan-it/electra-base-gc4-64k-900000-cased-generator
10
null
transformers
11,731
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl widget: - text: "Heute ist ein [MASK] Tag" --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
sumedh/wav2vec2-large-xlsr-marathi
3695aa23fc16ea305b6c0ac433937242de745669
2021-03-29T18:40:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "mr", "dataset:openslr", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sumedh
null
sumedh/wav2vec2-large-xlsr-marathi
10
null
transformers
11,732
--- language: mr datasets: - openslr metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Marathi by Sumedh Khodke results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR mr type: openslr metrics: - name: Test WER type: wer value: 12.7 --- # Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [Open SLR64](http://openslr.org/64/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. This data contains only female voices but the model works well for male voices too. Trained on Google Colab Pro on Tesla P100 16GB GPU.<br> **WER (Word Error Rate) on the Test Set**: 12.70 % ## Usage The model can be used directly without a language model as follows, given that your dataset has Marathi `actual_text` and `path_in_folder` columns: ```python import torch, torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor #Since marathi is not present on Common Voice, script for reading the below dataset can be picked up from the eval script below mr_test_dataset = all_data['test'] processor = Wav2Vec2Processor.from_pretrained("sumedh/wav2vec2-large-xlsr-marathi") model = Wav2Vec2ForCTC.from_pretrained("sumedh/wav2vec2-large-xlsr-marathi") resampler = torchaudio.transforms.Resample(48_000, 16_000) #first arg - input sample, second arg - output sample # Preprocessing the datasets. We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path_in_folder"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch mr_test_dataset = mr_test_dataset.map(speech_file_to_array_fn) inputs = processor(mr_test_dataset["speech"][:5], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", mr_test_dataset["actual_text"][:5]) ``` ## Evaluation Evaluated on 10% of the Marathi data on Open SLR-64. ```python import os, re, torch, torchaudio from datasets import Dataset, load_metric import pandas as pd from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor #below is a custom script to be used for reading marathi dataset since its not present on the Common Voice dataset_path = "./OpenSLR-64_Marathi/mr_in_female/" #TODO : include the path of the dataset extracted from http://openslr.org/64/ audio_df = pd.read_csv(os.path.join(dataset_path,'line_index.tsv'),sep='\t',header=None) audio_df.columns = ['path_in_folder','actual_text'] audio_df['path_in_folder'] = audio_df['path_in_folder'].apply(lambda x: dataset_path + x + '.wav') audio_df = audio_df.sample(frac=1, random_state=2020).reset_index(drop=True) #seed number is important for reproducibility of WER score all_data = Dataset.from_pandas(audio_df) all_data = all_data.train_test_split(test_size=0.10,seed=2020) #seed number is important for reproducibility of WER score mr_test_dataset = all_data['test'] wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("sumedh/wav2vec2-large-xlsr-marathi") model = Wav2Vec2ForCTC.from_pretrained("sumedh/wav2vec2-large-xlsr-marathi") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["actual_text"] = re.sub(chars_to_ignore_regex, '', batch["actual_text"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path_in_folder"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch mr_test_dataset = mr_test_dataset.map(speech_file_to_array_fn) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = mr_test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["actual_text"]))) ``` ## Training Train-Test ratio was 90:10. The training notebook Colab link [here](https://colab.research.google.com/drive/1wX46fjExcgU5t3AsWhSPTipWg_aMDg2f?usp=sharing). ## Training Config and Summary weights-and-biases run summary [here](https://wandb.ai/wandb/xlsr/runs/3itdhtb8/overview?workspace=user-sumedhkhodke)
tanyagoyal/paraphrase-reap
c5e2a0b13d159f7ee64daae916082dd0cccb319b
2021-08-31T22:49:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tanyagoyal
null
tanyagoyal/paraphrase-reap
10
null
transformers
11,733
Entry not found
tartuNLP/gpt-4-est-large
1912427240d32f74c9bff76aae5c24b18cd4e10d
2022-03-10T10:03:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
tartuNLP
null
tartuNLP/gpt-4-est-large
10
null
transformers
11,734
--- tags: - generated_from_trainer model-index: - name: gpt-4-est-large results: [] widget: - text: ">wiki< mis on GPT? Vastus:" --- # gpt-4-est-large This is GPT for Estonian. Not GPT-4 :-) This is the large-size [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2) model, trained from scratch on 2.2 billion words (Estonian National Corpus + News Crawl + Common Crawl). [Colab demo](https://colab.research.google.com/drive/1Bp7mGEQ1vmyqXPyXHV1yj68cRZEi2mq4?usp=sharing) ### Format For training data was prepended with a text domain tag, and it should be added as prefix when using the model: >general<, >web<, >news<, >doaj< and >wiki< (standing for general texts, web crawled texts, news, article abstracts and wikipedia texts). Use the prefixes like this, e.g: ">web< Kas tead, et". ### Model details - num. of layers: 24 - num. of heads: 24 - embedding size: 1536 - context size: 1024 - total size: 723.58M params Further details to be added soon. ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
tasosk/distilbert-base-uncased-airlines
d0574f79439b5c6353e8eba3ef4bbf319931b65b
2021-12-18T19:25:39.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tasosk
null
tasosk/distilbert-base-uncased-airlines
10
null
transformers
11,735
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-airlines results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-airlines This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tasosk/airlines dataset. It achieves the following results on the evaluation set: - Loss: 0.3174 - Accuracy: 0.9288 - F1: 0.9289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 203 | 0.2281 | 0.9164 | 0.9164 | | No log | 2.0 | 406 | 0.2676 | 0.9164 | 0.9164 | | 0.2314 | 3.0 | 609 | 0.3117 | 0.9217 | 0.9217 | | 0.2314 | 4.0 | 812 | 0.3175 | 0.9270 | 0.9271 | | 0.08 | 5.0 | 1015 | 0.3174 | 0.9288 | 0.9289 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
teleportHQ/predicto_css
f96ca3f673398ef7a599673cb0f4b2b6ca3a0627
2021-05-23T13:05:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
teleportHQ
null
teleportHQ/predicto_css
10
null
transformers
11,736
predicto css model
textattack/facebook-bart-large-SST-2
8a4baa9662afa056a97a2e9441ae665a06504979
2020-06-09T16:51:43.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/facebook-bart-large-SST-2
10
null
transformers
11,737
Entry not found
thatdramebaazguy/movie-roberta-MITmovie
199439c92435c5b86c601d6fca08e8b5a0f3078b
2022-07-01T18:25:52.000Z
[ "pytorch", "tf", "jax", "roberta", "token-classification", "English", "dataset:imdb", "dataset:cornell_movie_dialogue", "dataset:MIT Movie", "transformers", "roberta-base", "NER", "named-entities", "BIO", "movies", "DAPT", "license:cc-by-4.0", "autotrain_compatible" ]
token-classification
false
thatdramebaazguy
null
thatdramebaazguy/movie-roberta-MITmovie
10
1
transformers
11,738
--- datasets: - imdb - cornell_movie_dialogue - MIT Movie language: - English thumbnail: tags: - roberta - roberta-base - token-classification - NER - named-entities - BIO - movies - DAPT license: cc-by-4.0 --- # Movie Roberta + Movies NER Task Objective: This is Roberta Base + Movie DAPT --> trained for the NER task using MIT Movie Dataset https://huggingface.co/thatdramebaazguy/movie-roberta-base was used as the MovieRoberta. ``` model_name = "thatdramebaazguy/movie-roberta-MITmovieroberta-base-MITmovie" pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="ner") ``` ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** NER **Training data:** MIT Movie **Eval data:** MIT Movie **Infrastructure**: 2x Tesla v100 **Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/movieR_NER_squad.sh) ## Hyperparameters ``` Num examples = 6253 Num Epochs = 5 Instantaneous batch size per device = 64 Total train batch size (w. parallel, distributed & accumulation) = 128 ``` ## Performance ### Eval on MIT Movie - epoch = 5.0 - eval_accuracy = 0.9472 - eval_f1 = 0.8876 - eval_loss = 0.2211 - eval_mem_cpu_alloc_delta = 3MB - eval_mem_cpu_peaked_delta = 2MB - eval_mem_gpu_alloc_delta = 0MB - eval_mem_gpu_peaked_delta = 38MB - eval_precision = 0.887 - eval_recall = 0.8881 - eval_runtime = 0:00:03.73 - eval_samples = 1955 - eval_samples_per_second = 523.095 Github Repo: - [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/) ---
tiesan/distilbert-base-uncased-finetuned-emotion
f8cec2eec975c4e015376cfbddb237c8ad564e77
2022-07-28T10:08:37.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tiesan
null
tiesan/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,739
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.928 - name: F1 type: f1 value: 0.9284093135758671 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1658 - Accuracy: 0.928 - F1: 0.9284 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2188 | 1.0 | 250 | 0.1809 | 0.925 | 0.9246 | | 0.1383 | 2.0 | 500 | 0.1658 | 0.928 | 0.9284 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
trtd56/autonlp-wrime_joy_only-117396
6e73a0ac7e93a307077f9328dd842b22a29dc3f4
2021-05-20T08:07:48.000Z
[ "pytorch", "jax", "bert", "text-classification", "ja", "dataset:trtd56/autonlp-data-wrime_joy_only", "transformers", "autonlp" ]
text-classification
false
trtd56
null
trtd56/autonlp-wrime_joy_only-117396
10
1
transformers
11,740
--- tags: autonlp language: ja widget: - text: "I love AutoNLP 🤗" datasets: - trtd56/autonlp-data-wrime_joy_only --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 117396 ## Validation Metrics - Loss: 0.4094310998916626 - Accuracy: 0.8201678240740741 - Precision: 0.6750303520841765 - Recall: 0.7912713472485768 - AUC: 0.8927167943538512 - F1: 0.728543350076436 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/trtd56/autonlp-wrime_joy_only-117396 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("trtd56/autonlp-wrime_joy_only-117396", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("trtd56/autonlp-wrime_joy_only-117396", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
tuanle/VN-News-GPT2
e24e74bf4b65390b59bdca6758fdf7985abc551e
2022-03-09T19:38:04.000Z
[ "pytorch", "gpt2", "text-generation", "vi", "dataset:Private Vietnamese News dataset", "transformers", "News", "Language model", "GPT2" ]
text-generation
false
tuanle
null
tuanle/VN-News-GPT2
10
null
transformers
11,741
--- language: - vi thumbnail: "url to a thumbnail used in social sharing" tags: - News - Language model - GPT2 datasets: - Private Vietnamese News dataset metrics: - rouge - wer --- # GPT-2 Fine-tuning With Vietnamese News ## Model description A Fine-tuned Vietnamese GPT2 model which can generate Vietnamese news based on context (category + headline), based on the Vietnamese Wiki GPT2 pretrained model (https://huggingface.co/danghuy1999/gpt2-viwiki) ## Github - https://github.com/Tuan-Lee-23/Vietnamese-News-Generative-Model ## Purpose This model has been made only for fun and experimental study. However, It gave impressive results Most of the generated news are fake with unconfirmed information. Honestly, I feel excited about this project =)) ## Dataset The dataset is about 30k Vietnamese news dataset from website thanhnien.vn Categories are: - thời sự, 'thế giới', 'tài chính kinh doanh', 'đời sống', 'văn hoá', 'giải trí', 'giới trẻ', 'giáo dục', 'công nghệ', 'sức khoẻ' ## Result - Train Loss: 2.3 - Val loss: 2.5 - Rouge F1: 0.556 - Word error rate: 1.08 ## Deployment - You can use my deployment at Huggingface' space (https://huggingface.co/spaces/tuanle/VN-News-GPT2) - You can choose any categories and give it some text for the headline, then generate. There we go - P/s: I've already tried to deploy my model on Streamlit's cloud, but It was always being broken due to out of memory - Example result ![image](https://user-images.githubusercontent.com/43035837/155842166-6ebf4fe1-0470-4fad-8c0b-0c50e821f310.png) - Input: ``` - Category: thế giới - Headline: Chiến tranh biên giới ``` - Output: - Article 1: - Headline: Chiến tranh biên giới Nga - phương Tây căng thẳng - Content: Hôm qua (24.11), Mỹ và các đồng minh bày tỏ lo ngại về khả năng Nga tấn công Ukraine, trong khi Moscow bác bỏ cáo buộc này. Reuters dẫn lời các quan chức Mỹ cho rằng Nga có thể tiến hành chiến tranh với Ukraine trong vài ngày tới. Trong khi đó, Bộ trưởng Quốc phòng Nga Sergei Shoigu tuyên bố Nga không đe dọa bất kỳ ai. Ông lặp lại lời kêu gọi NATO không mở rộng về phía đông, đồng thời cho biết Nga sẵn sàng đối thoại với các nước châu Âu và châu lục địa để giải quyết các vấn đề an ninh và ổn định ở châu Á - Thái Bình Dương (Indo-Pacific). Trong khi các cuộc đàm phán diễn ra trong bối cảnh Nga tập trung hàng chục ngàn binh sĩ gần biên cương của mình, Moscow phủ nhận các yêu cầu của Mỹ về việc rút quân khỏi Ukraine. Tuy nhiên, Tổng thống Ukraine Volodymyr Zelensky của Ukraine cho hay nước này không có ý định nhượng bộ về lãnh thổ nước mình. “Chúng tôi không lo lắng về các lệnh cấm vận”, ông phát biểu tại cuộc họp báo ở thủ đô Kiev hôm qua. Nhà lãnh đạo Ukraine cũng nói rằng các hoạt động quân sự của Nga tại khu vực đang trở nên tồi tệ hơn so với những gì Moscow từng thực hiện gần đây. Nga đã nhiều lần cảnh báo các lực lượng vũ trang Ukraine và NATO về những hành động tương tự, dù Moscow không đưa ra bình luận chính thức. Giới quan sát trước đó lo sợ Nga sẽ đưa quân đến gần Ukraine nếu có động thái gây bất ổn. Tổng thư ký NATO Jens Stoltenberg ngày 26.10 cho thấy Nga đang chuẩn bị cho một cuộc tập trận chung với Mỹ trong tuần này, theo Reuters. Một phát ngôn viên Bộ Ngoại giao Nga Maria Zakharova ngày 24.9 nói Moscow đang xem xét việc triển khai thêm vũ khí hạt nhân và tên lửa đạn đạo tầm trung (IRBM) đến Đông Âu, châu Phi và Trung Đông để đối phó với sự trỗi dậy của biến thể Omicron. Trước đó một ngày, Nga thông báo đã thử nghiệm thành công một hệ thống IRBM mới, nhưng chưa có thông tin về phản ứng của Moscow đối với đề xuất này từ phía Mỹ. Moscow khẳng định các máy bay không người lái (UAV) do Nga chế tạo đều có hiệu lực tốt và được bảo vệ bởi các cơ quan tình báo quốc tế. Hồi tháng trước, Ukraine đã đưa thêm một số tiêm kích F-16A và Su-30 đến căn cứ không quân ở miền đông Ukraine để phản đối sự bành trướng của quân đội Nga. Đáp lại, chính quyền Kiev ngày 25.12 đã thông qua dự luật cho phép Ukraine sáp nhập bán đảo Crimea vào năm 2014 với giá 1,5 triệu USD. Ngoài ra còn có một thỏa thuận AUKUS với Nga nhằm giúp Ukraine gia nhập NATO. Theo Reuters, Mỹ cũng đã đề nghị Nga cung cấp thêm chi phí cho việc xây dựng cơ sở hạ tầng cho các tàu chiến, tàu hộ tống và tàu tuần tra của NATO tại biên viễn này trong năm nay, nhằm ngăn chặn việc Nga xâm nhập Ukraine từ các bên khác. Ngoại trưởng Mỹ Antony Blinken dự kiến sẽ có cuộc điện đàm với người đồng cấp Nga Vladimir Putin vào ngày 30.1.2022, trước khi cuộc gặp giữa ông Putin và ông Bynic giữa các bộ trưởng Nga và Ukraine sẽ được tổ chức trực tiếp tại Geneva (Thụy Sĩ) vào cuối tháng này (theo giờ địa phương). Các ngoại trưởng cũng có mặt tại Moscow từ ngày 2 - 3.2 để thảo luận về tình hình Ukraine tại Hội nghị thượng đỉnh G20 của Liên Hiệp Quốc về biến đổi khí hậu lần thứ - Article 2: - headline: Chiến tranh biên giới Nga - phương Tây căng thẳng - content: Trong một diễn biến liên quan tình hình Ukraine, Bộ trưởng Quốc phòng Nga Sergei Shoigu hôm qua thông báo nước này đã tiến hành cuộc tập trận chung với các đồng minh và đối tác ở miền đông Ukraine trong vài ngày qua, theo Reuters. Ông cảnh báo Nga có thể đưa quân lực đến gần lãnh hải của mình, nhưng Moscow đã bác bỏ thông tin này và nhấn mạnh sẽ không đe dọa bất kỳ ai. “Chúng tôi sẵn sàng làm điều đó”, ông phát biểu tại một cuộc họp báo ở thủ đô Moscow hôm 30.11, sau khi Tổng thống Ukraine Volodymyr Zelensky tuyên bố Nga không có ý định xâm lược Ukraine. Nhà lãnh đạo Nga cũng nói thêm rằng những động thái của Nga đối với Ukraine sẽ gây tổn hại đến hòa bình và ổn định ở khu vực, gây thiệt hại nặng nề cho người dân và tài sản của các nước thuộc Liên bang Nga (FSB). Nga không đưa ra bình luận chính thức nào về những cáo buộc trên. Tuy nhiên, một phát ngôn viên Bộ Ngoại giao Nga cho hay Moscow không vi phạm các lệnh cấm vận của Mỹ và NATO. Ngoại trưởng Ukraine Dmytro Kuleba ngày 29.10 cho biết Nga đã đưa hơn 100.000 binh sĩ và thiết bị quân sự tới gần Ukraine để đối phó khả năng xảy ra xung đột với lực lượng đòi ly khai ở phía đông. Theo Reuters, Nga chưa có phản ứng cụ thể nào từ Washington về các yêu cầu của NATO về việc Ukraine gia nhập liên minh này. Trước đó, NATO đã đề nghị Nga cung cấp vũ khí và khí tài cho Ukraine ngay lập tức, dù Moscow phủ nhận kế hoạch này từ phía Mỹ. Ngày 28.9, Mỹ cho máy bay ném bom B-52 Black Hawk đến căn cứ không quân St. Petersburg để triển khai tên lửa chống tăng và pháo binh. Một quan chức cấp cao trong chính quyền Moscow cũng khẳng định Mỹ sẽ tiếp tục đối thoại với Nga trong những ngày tới, trong bối cảnh Moscow tập trung hàng chục ngàn binh lực ở Ukraine và đang tăng cường các hoạt động ở Đông Âu, châu Á, Thái Bình Dương, Đông Nam Á và châu Phi. Trong khi đó vào ngày 27.8, Tổng thư ký NATO Jens Stoltenberg nói Moscow sẽ làm mọi thứ để đảm bảo an ninh cho tất cả các thành viên của khối, đồng thời bày tỏ hy vọng NATO không mở rộng về phía Nga nếu Moscow có hành động gây bất ổn. Đáp lại, Điện Kremlin nói rằng các cuộc đàm phán về vấn đề Ukraine với Mỹ, EU và các bên khác sẽ được công bố vào tuần tới. Sau khi Nga sáp nhập bán đảo Crimea vào năm 2014, Ukraine đã rút quân khỏi lãnh thổ này trong nhiều tháng để bảo vệ chủ quyền và lợi ích quốc gia. Moscow luôn kiên quyết phản đối các đề xuất của Washington, đặc biệt là việc NATO gia tăng sự hiện diện ở châu Âu. Ngoài ra, Moscow còn kêu gọi NATO giảm các biện pháp hiện đại hóa quân đội và áp đặt các quy định mới để chống lại những nỗ lực của Moscow nhằm vào các nền kinh tế lớn của Ukraine như Trung Quốc, Ấn Độ, Pakistan và thậm chí là Trung Đông. NATO cũng đang tìm cách ngăn chặn sự trỗi dậy của một số nhóm vũ trang mới nổi, chẳng hạn như tổ chức Nhà nước Hồi giáo tự xưng (IS) và al-Qaeda, cũng như các nhóm tội phạm mạng khác. Hồi tháng 9, chính phủ Mỹ thông qua luật cấm nhập cảnh Ukraine cho đến khi có kết quả thẩm định pháp lý. Mỹ cũng đã cấm người nước ngoài đến Ukraine từ ngày 1.1.2022 ## Example usage (Huggingface) ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') """ Category includes: ['thời sự ', 'thế giới', 'tài chính kinh doanh', 'đời sống', 'văn hoá', 'giải trí', 'giới trẻ', 'giáo dục','công nghệ', 'sức khoẻ'] """ category = "thời sự" headline = "Nam thanh niên" # A full headline or only some text text = f"<|startoftext|> {category} <|headline|> {headline}" tokenizer = AutoTokenizer.from_pretrained("tuanle/VN-News-GPT2") model= AutoModelForCausalLM.from_pretrained("tuanle/VN-News-GPT2").to(device) input_ids = tokenizer.encode(text, return_tensors='pt').to(device) sample_outputs = model.generate(input_ids, do_sample=True, max_length= 768, min_length= 60, # temperature = .8, top_k= 100, top_p = 0.7, num_beams= 5, early_stopping= True, no_repeat_ngram_size= 2 , num_return_sequences= 3) for i, sample_output in enumerate(sample_outputs): temp = tokenizer.decode(sample_output.tolist()) print(f">> Generated text {i+1}\n\n{temp}") print('\n---') ```
tyoyo/t5-base-TEDxJP-6body-0context
00ceb227d44b6a6e25b9078e05f992a3e258fd6d
2021-12-01T08:45:15.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/t5-base-TEDxJP-6body-0context
10
null
transformers
11,742
Entry not found
uclanlp/plbart-multi_task-compiled
df4571a229caa665e6e01ba5bf2325d98e241f1d
2022-03-02T07:37:22.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-compiled
10
null
transformers
11,743
Entry not found
vera-pro/bert-mention-de
9fe1cb431a6e23c1049e185fed47373a17035b72
2021-05-20T08:53:09.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
vera-pro
null
vera-pro/bert-mention-de
10
null
transformers
11,744
Entry not found
vesteinn/german-icelandic-translation
62bcad9c121fffa2373af3c1936df22a0a6d308c
2021-11-26T15:24:14.000Z
[ "pytorch", "marian", "text2text-generation", "de", "is", "transformers", "translation", "autotrain_compatible" ]
translation
false
vesteinn
null
vesteinn/german-icelandic-translation
10
null
transformers
11,745
--- language: - de - is tags: - translation --- # Student project - temporary upload
x-tech/mt5-translate-yue-zh
aea3f768da9d11b711709dd202d606cdeac56efe
2022-06-04T09:32:04.000Z
[ "pytorch", "mt5", "text2text-generation", "yue", "zh", "dataset:x-tech/cantonese-mandarin-translations", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
x-tech
null
x-tech/mt5-translate-yue-zh
10
null
transformers
11,746
--- language: - yue - zh license: apache-2.0 tags: - generated_from_trainer model-index: - name: output results: [] datasets: - x-tech/cantonese-mandarin-translations --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on dataset [x-tech/cantonese-mandarin-translations](https://huggingface.co/datasets/x-tech/cantonese-mandarin-translations). ## Model description The model translates Cantonese sentences to Mandarin. ## Intended uses & limitations When you use the model, please make sure to add `translate cantonese to mandarin: <sentence>` (please note the space after colon) before the text you want to translate. ## Training and evaluation data Training Dataset: [x-tech/cantonese-mandarin-translations](https://huggingface.co/datasets/x-tech/cantonese-mandarin-translations) ## Training procedure Training is based on [example in transformers library](https://github.com/huggingface/transformers/tree/master/examples/pytorch/translation) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results Since we still need to set up validation set, we do not have any training results yet. ### Framework versions - Transformers 4.12.5 - Pytorch 1.8.1 - Datasets 1.15.1 - Tokenizers 0.10.3
yorko/scibert_scivocab_uncased_long_4096
51c6fab3d212a57c01d3cf730b6f3f8476a6507b
2021-06-18T13:41:31.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
yorko
null
yorko/scibert_scivocab_uncased_long_4096
10
2
transformers
11,747
# SciBERT Longformer This is a Lonformer version of the [SciBERT uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) model by Allen AI. The model is slower than SciBERT (~2.5x in my benchmarks) but can allow for 8x wider `max_seq_length` (4096 vs. 512) which is handy in case of working with long texts, e.g. scientific full texts. The conversion to Longformer was performed with a [tutorial](https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) by Allen AI: see a [Google Colab Notebook](https://colab.research.google.com/drive/1NPTnMkeAYOF2MWH3_uJYesuxxdOzxrFn?usp=sharing) by [Yury](https://yorko.github.io/) which closely follows the tutorial. Note: - no additional MLM pretraining of the Longformer was performed, the [collab notebook](https://colab.research.google.com/drive/1NPTnMkeAYOF2MWH3_uJYesuxxdOzxrFn?usp=sharing) stops at step 3, and step 4 is not done. The model can be improved with this additional MLM pretraining, better to do so with scientific texts, e.g. [S@ORC](https://github.com/allenai/s2orc), again by Allen AI. - no extensive benchmarks SciBERT Longformer vs. SciBERT were performed in terms of downstream task performance Links: - the original [SciBERT repo](https://github.com/allenai/scibert) - the original [Longformer repo](https://github.com/allenai/longformer) If using these models, please consider citing the following papers: ``` @inproceedings{beltagy-etal-2019-scibert, title = "SciBERT: A Pretrained Language Model for Scientific Text", author = "Beltagy, Iz and Lo, Kyle and Cohan, Arman", booktitle = "EMNLP", year = "2019", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D19-1371" } @article{Beltagy2020Longformer, title={Longformer: The Long-Document Transformer}, author={Iz Beltagy and Matthew E. Peters and Arman Cohan}, journal={arXiv:2004.05150}, year={2020}, } ```
wietsedv/xlm-roberta-base-ft-udpos28-id
d672796ec1a6109dfdd0651d83e2ff284b6a3aec
2022-02-25T09:58:50.000Z
[ "pytorch", "xlm-roberta", "token-classification", "id", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-id
10
null
transformers
11,748
--- language: - id license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-id results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 82.4 - type: accuracy name: Dutch Test accuracy value: 83.4 - type: accuracy name: German Test accuracy value: 75.5 - type: accuracy name: Italian Test accuracy value: 82.7 - type: accuracy name: French Test accuracy value: 82.0 - type: accuracy name: Spanish Test accuracy value: 86.1 - type: accuracy name: Russian Test accuracy value: 84.1 - type: accuracy name: Swedish Test accuracy value: 83.2 - type: accuracy name: Norwegian Test accuracy value: 79.9 - type: accuracy name: Danish Test accuracy value: 81.9 - type: accuracy name: Low Saxon Test accuracy value: 36.2 - type: accuracy name: Akkadian Test accuracy value: 38.4 - type: accuracy name: Armenian Test accuracy value: 76.4 - type: accuracy name: Welsh Test accuracy value: 65.3 - type: accuracy name: Old East Slavic Test accuracy value: 68.0 - type: accuracy name: Albanian Test accuracy value: 73.8 - type: accuracy name: Slovenian Test accuracy value: 71.6 - type: accuracy name: Guajajara Test accuracy value: 29.6 - type: accuracy name: Kurmanji Test accuracy value: 76.2 - type: accuracy name: Turkish Test accuracy value: 74.8 - type: accuracy name: Finnish Test accuracy value: 79.1 - type: accuracy name: Indonesian Test accuracy value: 91.9 - type: accuracy name: Ukrainian Test accuracy value: 80.7 - type: accuracy name: Polish Test accuracy value: 82.5 - type: accuracy name: Portuguese Test accuracy value: 87.3 - type: accuracy name: Kazakh Test accuracy value: 78.8 - type: accuracy name: Latin Test accuracy value: 73.9 - type: accuracy name: Old French Test accuracy value: 47.0 - type: accuracy name: Buryat Test accuracy value: 59.3 - type: accuracy name: Kaapor Test accuracy value: 23.3 - type: accuracy name: Korean Test accuracy value: 63.5 - type: accuracy name: Estonian Test accuracy value: 80.0 - type: accuracy name: Croatian Test accuracy value: 79.6 - type: accuracy name: Gothic Test accuracy value: 16.8 - type: accuracy name: Swiss German Test accuracy value: 34.9 - type: accuracy name: Assyrian Test accuracy value: 17.2 - type: accuracy name: North Sami Test accuracy value: 36.7 - type: accuracy name: Naija Test accuracy value: 36.5 - type: accuracy name: Latvian Test accuracy value: 81.8 - type: accuracy name: Chinese Test accuracy value: 34.0 - type: accuracy name: Tagalog Test accuracy value: 73.3 - type: accuracy name: Bambara Test accuracy value: 31.7 - type: accuracy name: Lithuanian Test accuracy value: 81.3 - type: accuracy name: Galician Test accuracy value: 86.2 - type: accuracy name: Vietnamese Test accuracy value: 67.9 - type: accuracy name: Greek Test accuracy value: 79.0 - type: accuracy name: Catalan Test accuracy value: 82.9 - type: accuracy name: Czech Test accuracy value: 79.5 - type: accuracy name: Erzya Test accuracy value: 46.0 - type: accuracy name: Bhojpuri Test accuracy value: 54.7 - type: accuracy name: Thai Test accuracy value: 48.4 - type: accuracy name: Marathi Test accuracy value: 76.7 - type: accuracy name: Basque Test accuracy value: 71.9 - type: accuracy name: Slovak Test accuracy value: 81.3 - type: accuracy name: Kiche Test accuracy value: 37.3 - type: accuracy name: Yoruba Test accuracy value: 25.4 - type: accuracy name: Warlpiri Test accuracy value: 34.0 - type: accuracy name: Tamil Test accuracy value: 80.5 - type: accuracy name: Maltese Test accuracy value: 23.8 - type: accuracy name: Ancient Greek Test accuracy value: 56.4 - type: accuracy name: Icelandic Test accuracy value: 75.9 - type: accuracy name: Mbya Guarani Test accuracy value: 31.3 - type: accuracy name: Urdu Test accuracy value: 69.4 - type: accuracy name: Romanian Test accuracy value: 78.8 - type: accuracy name: Persian Test accuracy value: 77.4 - type: accuracy name: Apurina Test accuracy value: 39.9 - type: accuracy name: Japanese Test accuracy value: 21.3 - type: accuracy name: Hungarian Test accuracy value: 78.0 - type: accuracy name: Hindi Test accuracy value: 77.3 - type: accuracy name: Classical Chinese Test accuracy value: 18.4 - type: accuracy name: Komi Permyak Test accuracy value: 44.8 - type: accuracy name: Faroese Test accuracy value: 69.5 - type: accuracy name: Sanskrit Test accuracy value: 38.8 - type: accuracy name: Livvi Test accuracy value: 59.7 - type: accuracy name: Arabic Test accuracy value: 80.3 - type: accuracy name: Wolof Test accuracy value: 32.8 - type: accuracy name: Bulgarian Test accuracy value: 82.0 - type: accuracy name: Akuntsu Test accuracy value: 43.7 - type: accuracy name: Makurap Test accuracy value: 20.5 - type: accuracy name: Kangri Test accuracy value: 42.4 - type: accuracy name: Breton Test accuracy value: 60.3 - type: accuracy name: Telugu Test accuracy value: 80.6 - type: accuracy name: Cantonese Test accuracy value: 41.0 - type: accuracy name: Old Church Slavonic Test accuracy value: 45.5 - type: accuracy name: Karelian Test accuracy value: 61.6 - type: accuracy name: Upper Sorbian Test accuracy value: 60.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.9 - type: accuracy name: Komi Zyrian Test accuracy value: 37.5 - type: accuracy name: Irish Test accuracy value: 68.8 - type: accuracy name: Nayini Test accuracy value: 42.3 - type: accuracy name: Munduruku Test accuracy value: 25.4 - type: accuracy name: Manx Test accuracy value: 34.5 - type: accuracy name: Skolt Sami Test accuracy value: 30.1 - type: accuracy name: Afrikaans Test accuracy value: 77.6 - type: accuracy name: Old Turkish Test accuracy value: 45.7 - type: accuracy name: Tupinamba Test accuracy value: 38.8 - type: accuracy name: Belarusian Test accuracy value: 79.9 - type: accuracy name: Serbian Test accuracy value: 81.3 - type: accuracy name: Moksha Test accuracy value: 44.8 - type: accuracy name: Western Armenian Test accuracy value: 71.4 - type: accuracy name: Scottish Gaelic Test accuracy value: 59.6 - type: accuracy name: Khunsari Test accuracy value: 37.8 - type: accuracy name: Hebrew Test accuracy value: 87.5 - type: accuracy name: Uyghur Test accuracy value: 75.7 - type: accuracy name: Chukchi Test accuracy value: 31.6 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Indonesian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-id") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-id") ```
Brian-M-Collins/Twitter-Abstract-Summary
a76e5dc8275d69464658300b31bf1562b8b6cf8d
2022-02-25T06:40:53.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Brian-M-Collins
null
Brian-M-Collins/Twitter-Abstract-Summary
10
1
transformers
11,749
��hello
ghadeermobasher/BC5CDR-Disease-Modified_bluebert_pubmed_uncased_L-12_H-768_A-12_latest
ae14859b968b95ca53a7754ff0c85c50ca980de3
2022-02-25T15:36:45.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Disease-Modified_bluebert_pubmed_uncased_L-12_H-768_A-12_latest
10
null
transformers
11,750
Entry not found
nsi319/bigbird-roberta-base-finetuned-app
d56606efa7df136d57cf9ac4f866899874fd7dbc
2022-02-27T10:53:05.000Z
[ "pytorch", "big_bird", "text-classification", "en", "transformers", "mobile app descriptions", "playstore", "license:mit" ]
text-classification
false
nsi319
null
nsi319/bigbird-roberta-base-finetuned-app
10
null
transformers
11,751
--- language: "en" thumbnail: "https://huggingface.co/nsi319" tags: - big_bird - pytorch - text-classification - mobile app descriptions - playstore license: "mit" inference: true --- # Mobile App Classification ## Model description BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. The model can handle input sequence of length up to 4,096 tokens. The [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) model is fine-tuned to classify an mobile app description into one of **6 play store categories**. Trained on 9000 samples of English App Descriptions and associated categories of apps available in [Google Play](https://play.google.com/store/apps). ## Fine-tuning The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 1024. Since this was a classification task, the model was trained with a cross-entropy loss function. The best evaluation f1 score achieved by the model was 0.8964259037209702, found after 4 epochs. The accuracy of the model on the test set was 0.8966. ## How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("nsi319/bigbird-roberta-base-finetuned-app") model = AutoModelForSequenceClassification.from_pretrained("nsi319/bigbird-roberta-base-finetuned-app") classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) classifier("From scores to signings, the ESPN App is here to keep you updated. Never miss another sporting moment with up-to-the-minute scores, latest news & a range of video content. Sign in and personalise the app to receive alerts for your teams and leagues. Wherever, whenever; the ESPN app keeps you connected.") '''Output''' [{'label': 'Sports', 'score': 0.9983325600624084}] ``` ## Limitations Training data consists of apps from 6 play store categories namely Education, Entertainment, Productivity, Sports, News & Magazines and Photography.
batterydata/batteryonlybert-cased-squad-v1
a5fb832883f2dd06b310c0d987dc03461f0c2243
2022-03-03T20:25:04.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:squad", "dataset:batterydata/battery-device-data-qa", "transformers", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
batterydata
null
batterydata/batteryonlybert-cased-squad-v1
10
null
transformers
11,752
--- language: en tags: question answering license: apache-2.0 datasets: - squad - batterydata/battery-device-data-qa metrics: squad --- # BatteryOnlyBERT-cased for QA **Language model:** batteryonlybert-cased **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD v1 **Eval data:** SQuAD v1 **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 16 n_epochs = 3 base_LM_model = "batteryonlybert-cased" max_seq_len = 386 learning_rate = 2e-5 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD v1.0 dev set. ``` "exact": 79.61, "f1": 87.30, ``` Evaluated on the battery device dataset. ``` "precision": 64.28, "recall": 82.72, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "batterydata/batteryonlybert-cased-squad-v1" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'What is the electrolyte?', 'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
giggio/Far50BrBERT-base
ae7c2ecb762d0a7fbba600812235e6df37417955
2022-03-07T05:24:15.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
giggio
null
giggio/Far50BrBERT-base
10
null
transformers
11,753
Entry not found
mrm8488/spanish-TinyBERT-betito-finetuned-mnli
ff2473ffe8ec3f6b850dcfb9f73406125fcca55c
2022-03-07T16:39:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
mrm8488
null
mrm8488/spanish-TinyBERT-betito-finetuned-mnli
10
null
transformers
11,754
Entry not found
FinScience/FS-distilroberta-fine-tuned
559b00d987b698b4922d7c7a8174b29072c97e0b
2022-03-07T17:17:48.000Z
[ "pytorch", "roberta", "text-classification", "en", "transformers" ]
text-classification
false
FinScience
null
FinScience/FS-distilroberta-fine-tuned
10
1
transformers
11,755
--- language: - en --- # FS-distilroberta-fine-tuned The model was obtained by fine-tuning "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis" model for sentiment analysis on financial news gathered by FinScience software. It predicts the sentiment of news with one label ("negative", "neutral" or "positive"). At the moment, the models works only in English. ## Training data The training dataset consists of 2558 titles of news that were manually labelled by FinScience Team using doccano tool. A "neutral" label was assigned to those news for which an agreement was not reached. 70% (1790 news) of such dataset was employed as training set, while 15% (384) as validation set and the remaining 15% as test set. F1-score (macro) was selected as the evaluation metric. | Set | Number of news | Scope | | -------- | ----------------- | ----------------- | | Training | 1790 | Training the model| | Validation | 384 | Selecting the hyper-parameters | | Test | 384 | Evaluating the performance| ## Accuracy The table below summarizes the performance of the models that were tested on the same test set, consisting of 384 held-out titles: | Language | Accuracy| F1-score (macro) | | -------- | ---------------------- | ------------------- | | FS-distilroberta-fine-tuned | 76%| 76%
ebrigham/EYY-Topic-Classification
d2e1d3f8534ae1c0c88a95f627faa41361826ca4
2022-03-13T19:20:44.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
ebrigham
null
ebrigham/EYY-Topic-Classification
10
1
transformers
11,756
Entry not found
KoichiYasuoka/roberta-base-ukrainian-upos
53064702793301da93896c3a100868d04e68b25b
2022-05-07T13:34:10.000Z
[ "pytorch", "roberta", "token-classification", "uk", "dataset:universal_dependencies", "dataset:ukr-models/Ukr-Synth", "transformers", "ukrainian", "pos", "ubertext", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-ukrainian-upos
10
1
transformers
11,757
--- language: - "uk" tags: - "ukrainian" - "token-classification" - "pos" - "ubertext" - "dependency-parsing" datasets: - "universal_dependencies" - "ukr-models/Ukr-Synth" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "Свобода і незалежність – найголовніші умови успіху і процвітання." --- # roberta-base-ukrainian-upos ## Model Description This is a RoBERTa model pre-trained on Корпус UberText for POS-tagging and dependency-parsing, derived from [roberta-base-ukrainian](https://huggingface.co/KoichiYasuoka/roberta-base-ukrainian). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-ukrainian-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-ukrainian-upos") ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-ukrainian-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
momo/MOTOD_pre_trained
adb7fe7cd44c155cca7eef92a744184a1eae375d
2022-03-10T07:29:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
momo
null
momo/MOTOD_pre_trained
10
null
transformers
11,758
--- license: apache-2.0 ---
amanm27/bert-base-uncased-sports-scouting
50f78c3470cdbf922907b1fc6bd20a9f7effdf1b
2022-03-10T07:12:38.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
amanm27
null
amanm27/bert-base-uncased-sports-scouting
10
null
transformers
11,759
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-sports-scouting results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sports-scouting This model is a fine-tuned version of [amanm27/bert-base-uncased-sports](https://huggingface.co/amanm27/bert-base-uncased-sports) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 378 | 1.7194 | | 2.0165 | 2.0 | 756 | 1.5709 | | 1.6935 | 3.0 | 1134 | 1.5282 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
KoichiYasuoka/bert-large-german-upos
fb195ef67fc49d3805dfdeb30df81e6cfcf208d9
2022-03-11T03:06:12.000Z
[ "pytorch", "bert", "token-classification", "de", "dataset:universal_dependencies", "transformers", "german", "pos", "dependency-parsing", "license:mit", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/bert-large-german-upos
10
null
transformers
11,760
--- language: - "de" tags: - "german" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "mit" pipeline_tag: "token-classification" --- # bert-large-german-upos ## Model Description This is a BERT model pre-trained with [UD_German-HDT](https://github.com/UniversalDependencies/UD_German-HDT) for POS-tagging and dependency-parsing, derived from [gbert-large](https://huggingface.co/deepset/gbert-large). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-german-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-large-german-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-large-german-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
StivenLancheros/Biobert-base-cased-v1.2-finetuned-ner-CRAFT
f3a7371011946f72450a249ded3ba546777860fe
2022-03-12T11:49:50.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/Biobert-base-cased-v1.2-finetuned-ner-CRAFT
10
null
transformers
11,761
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Biobert-base-cased-v1.2-finetuned-ner-CRAFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Biobert-base-cased-v1.2-finetuned-ner-CRAFT This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1878 - Precision: 0.8397 - Recall: 0.8366 - F1: 0.8382 - Accuracy: 0.9683 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the [CRAFT](https://github.com/UCDenver-ccp/CRAFT/releases)(Colorado Richly Annotated Full Text) Corpus in English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.11 | 1.0 | 1360 | 0.1668 | 0.7952 | 0.7917 | 0.7934 | 0.9611 | | 0.0484 | 2.0 | 2720 | 0.1640 | 0.8224 | 0.8371 | 0.8297 | 0.9661 | | 0.0261 | 3.0 | 4080 | 0.1812 | 0.8143 | 0.8447 | 0.8292 | 0.9662 | | 0.0112 | 4.0 | 5440 | 0.1878 | 0.8397 | 0.8366 | 0.8382 | 0.9683 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
anwesham/mbert_ur
2ec0560c98840a510fe0a6ff784c7348686d8ff4
2022-03-13T07:46:01.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
anwesham
null
anwesham/mbert_ur
10
null
transformers
11,762
Entry not found
ComCom/skt_kogpt2-base-v2
a01a98c40194cd000722ab4ca05b73dfe82b0a91
2022-03-14T07:37:27.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "ko", "transformers", "license:cc-by-nc-sa-4.0" ]
text-generation
false
ComCom
null
ComCom/skt_kogpt2-base-v2
10
null
transformers
11,763
--- language: ko tags: - gpt2 license: cc-by-nc-sa-4.0 --- - This model forked from [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2). - You can use this model in [Teachable-NLP](https://ainize.ai/teachable-nlp). For more details: https://github.com/SKT-AI/KoGPT2
keerthisaran/distilbert-base-uncased-finetuned-emotion
36f2573d50da3813be96cfff47dc5ab0bc019285
2022-04-10T21:58:34.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
keerthisaran
null
keerthisaran/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,764
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.92 - name: F1 type: f1 value: 0.920435758296201 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2183 - Accuracy: 0.92 - F1: 0.9204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8464 | 1.0 | 250 | 0.3125 | 0.9085 | 0.9061 | | 0.2476 | 2.0 | 500 | 0.2183 | 0.92 | 0.9204 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_English
e61d168f4ec22b35efb524023b80376753bf68e7
2022-03-14T23:42:29.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-CRAFT_English
10
null
transformers
11,765
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner-CRAFT_English results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner-CRAFT_English This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1614 - Precision: 0.8585 - Recall: 0.8623 - F1: 0.8604 - Accuracy: 0.9724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0725 | 1.0 | 1360 | 0.1242 | 0.8090 | 0.8698 | 0.8383 | 0.9681 | | 0.0281 | 2.0 | 2720 | 0.1541 | 0.8497 | 0.8549 | 0.8523 | 0.9705 | | 0.0162 | 3.0 | 4080 | 0.1510 | 0.8390 | 0.8681 | 0.8533 | 0.9711 | | 0.0053 | 4.0 | 5440 | 0.1614 | 0.8585 | 0.8623 | 0.8604 | 0.9724 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
moralstories/roberta-large_action-context-consequence
e66732dfcac4f3a2b4e93e37812622a481624d9e
2022-03-15T04:56:54.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
moralstories
null
moralstories/roberta-large_action-context-consequence
10
null
transformers
11,766
--- license: afl-3.0 ---
moralstories/roberta-large_action-context
3be98e34bcabde0d5312e00a71ca17fcb530edfd
2022-03-15T17:29:14.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
moralstories
null
moralstories/roberta-large_action-context
10
null
transformers
11,767
--- license: afl-3.0 ---
facebook/regnet-x-006
9655014cb4d6b4ac14c15e2d60b3ffd730e43d58
2022-06-28T15:41:44.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-x-006
10
null
transformers
11,768
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
l3cube-pune/marathi-gpt
8735155f098e4921a47fa2d13cffe525d79c60d8
2022-06-15T12:37:55.000Z
[ "pytorch", "gpt2", "text-generation", "mr", "dataset:L3Cube-MahaCorpus", "arxiv:2202.01159", "transformers", "license:cc-by-4.0" ]
text-generation
false
l3cube-pune
null
l3cube-pune/marathi-gpt
10
null
transformers
11,769
--- license: cc-by-4.0 language: mr datasets: - L3Cube-MahaCorpus --- ## MahaGPT MahaGPT is a Marathi GPT2 model. It is a GPT2 model pre-trained on L3Cube-MahaCorpus and other publicly available Marathi monolingual datasets. [dataset link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2202.01159) ``` @article{joshi2022l3cube, title={L3Cube-MahaCorpus and MahaBERT: Marathi Monolingual Corpus, Marathi BERT Language Models, and Resources}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2202.01159}, year={2022} } ```
vpelloin/MEDIA_NLU_flaubert_uncased
92113bf3bfa08897c81aeccaaff5c909291f8b12
2022-06-17T13:52:15.000Z
[ "pytorch", "tensorboard", "flaubert", "token-classification", "fr", "transformers", "bert", "natural language understanding", "NLU", "spoken language understanding", "SLU", "understanding", "MEDIA", "autotrain_compatible" ]
token-classification
false
vpelloin
null
vpelloin/MEDIA_NLU_flaubert_uncased
10
null
transformers
11,770
--- language: fr pipeline_tag: "token-classification" widget: - text: "je voudrais réserver une chambre à paris pour demain et lundi" - text: "d'accord pour l'hôtel à quatre vingt dix euros la nuit" - text: "deux nuits s'il vous plait" - text: "dans un hôtel avec piscine à marseille" tags: - bert - flaubert - natural language understanding - NLU - spoken language understanding - SLU - understanding - MEDIA --- # vpelloin/MEDIA_NLU_flaubert_uncased (FBU) This is a Natural Language Understanding (NLU) model for the French [MEDIA benchmark](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/). It maps each input words into outputs concepts tags (76 available). This model is a fine-tuning of [`flaubert_base_uncased`](https://huggingface.co/flaubert/flaubert_base_uncased). ## Usage with Pipeline ```python from transformers import pipeline generator = pipeline(model="vpelloin/MEDIA_NLU_flaubert_finetuned", task="token-classification") print(generator) ``` ## Usage with AutoTokenizer/AutoModel ```python from transformers import ( AutoTokenizer, AutoModelForTokenClassification ) tokenizer = AutoTokenizer.from_pretrained("vpelloin/MEDIA_NLU_flaubert_uncased") model = AutoModelForTokenClassification.from_pretrained("vpelloin/MEDIA_NLU_flaubert_uncased") sentences = [ "je voudrais réserver une chambre à paris pour demain et lundi", "d'accord pour l'hôtel à quatre vingt dix euros la nuit", "deux nuits s'il vous plait", "dans un hôtel avec piscine à marseille" ] inputs = tokenizer(sentences, padding=True, return_tensors='pt') outptus = model(**inputs).logits print([[model.config.id2label[i] for i in b] for b in outptus.argmax(dim=-1).tolist()]) ```
swetava/distilbert-base-uncased-finetuned-emotion
e2349cbd1a4da137f7c1d806e5db9c1d9d10e6cf
2022-03-17T18:42:58.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
swetava
null
swetava/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,771
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.924792312369614 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2259 - Accuracy: 0.9245 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8432 | 1.0 | 250 | 0.3353 | 0.8975 | 0.8939 | | 0.2571 | 2.0 | 500 | 0.2259 | 0.9245 | 0.9248 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
clapika2010/movies_predictions
2aceb4e9a1b74b0f720a6beaab0025435e737bc9
2022-03-17T21:01:30.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
clapika2010
null
clapika2010/movies_predictions
10
null
transformers
11,772
Entry not found
brad1141/bert-finetuned-comp2
30e30e45129e71134c69804788a07eb9478cdec6
2022-03-18T16:39:56.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
brad1141
null
brad1141/bert-finetuned-comp2
10
null
transformers
11,773
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-comp2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-comp2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9570 - Precision: 0.5169 - Recall: 0.6765 - F1: 0.5820 - Accuracy: 0.5820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8434 | 1.0 | 934 | 0.7147 | 0.4475 | 0.6252 | 0.5096 | 0.5096 | | 0.6307 | 2.0 | 1868 | 0.5959 | 0.5058 | 0.6536 | 0.5585 | 0.5585 | | 0.4691 | 3.0 | 2802 | 0.6555 | 0.4761 | 0.6865 | 0.5521 | 0.5521 | | 0.334 | 4.0 | 3736 | 0.7211 | 0.5292 | 0.6682 | 0.5863 | 0.5863 | | 0.2326 | 5.0 | 4670 | 0.8046 | 0.4886 | 0.6865 | 0.5682 | 0.5682 | | 0.1625 | 6.0 | 5604 | 0.8650 | 0.4972 | 0.6851 | 0.5728 | 0.5728 | | 0.1195 | 7.0 | 6538 | 0.9570 | 0.5169 | 0.6765 | 0.5820 | 0.5820 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
madhav16/finetuning-sentiment-model-3000-samples
0393184fa167316593bed25e1d7998f748aeb198
2022-03-19T20:26:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
madhav16
null
madhav16/finetuning-sentiment-model-3000-samples
10
null
transformers
11,774
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8662420382165605 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3404 - Accuracy: 0.86 - F1: 0.8662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
pere/test-t5-small
40852f0fcd7ccc23a4b514126dc96548831a44b8
2022-03-23T20:39:40.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "en", "fr", "ro", "de", "dataset:c4", "transformers", "summarization", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
pere
null
pere/test-t5-small
10
null
transformers
11,775
--- language: - en - fr - ro - de datasets: - c4 tags: - summarization - translation license: apache-2.0 --- ## Test T5 small conversion This is a test repo for the conversion of T5X to HuggingFace Flax. The current model is first converted from MTF to T5X using the conversion script included in the T5X library: ```bash python3 -m t5x.scripts.convert_tf_checkpoint --gin_file=t5x/examples/t5/t5_1_0/small.gin --gin.convert_checkpoint.model=%MODEL --gin.convert_checkpoint.tf_checkpoint_path=\"gs://t5-data/pretrained_models/small/model.ckpt-1000000\" --gin.convert_checkpoint.output_dir=\"/tmp/t5x_checkpoints/t5_small\" --logtostderr ``` After creating the T5X model, the model is converted to Huggingface Flax by a modified version of the script from @stefan-it (https://gist.githubusercontent.com/stefan-it/30e4998ef159f33696e377a46f699d9f/raw/c19da5d067dc9d31d0b8115a79e8626186e11daa/convert_t5x_checkpoint_to_flax.py). The modified version is included in this repo. The modification is basically that the wi_0 and wi_1 layers are combined into wi. This might be a difference between t5_1_0 and t5_1_1 ```bash python3 convert_t5_checkpoint_to_flax.py --t5x_checkpoint_path /tmp/t5x_checkpoints/t5_small/checkpoint_1000000/ --flax_dump_folder_path /tmp/flax_dump_folder/ --config_name t5-small ``` The tokenizer.json was copied from https://huggingface.co/t5-small/blob/main/tokenizer.json. To be able to use the widgets in HuggingFace, the model was converted to pyTorch by running: ```python from transformers import T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True) model.save_pretrained(".") ```
Daniele/italian-spellchecker
36d3a1ef5b79065d45697356d788e21d8f924e6f
2022-03-23T10:19:19.000Z
[ "pytorch", "t5", "text2text-generation", "it", "transformers", "seq2seq", "license:mit", "autotrain_compatible" ]
text2text-generation
false
Daniele
null
Daniele/italian-spellchecker
10
null
transformers
11,776
--- language: - it tags: - seq2seq license: mit --- # Italian Contextual Spellchecker The model is a fine-tuned version of [IT5](https://huggingface.co/models?search=it5)[1], specifically modelled for computing a spellchecking in the shape of a sequence-to-sequence task. ### USAGE The input sequence should have the structure <b>seq: <i>your text</i>.</b>. Missing the seq token at the beginning or the final punctuation mark may lead to bad performances.
elihoole/distilgpt2-ttds
dce0970a45cc8af90c51883d7d299fc42f37a49a
2022-03-22T19:41:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
elihoole
null
elihoole/distilgpt2-ttds
10
null
transformers
11,777
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-ttds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-ttds This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 40 | 4.5807 | | No log | 2.0 | 80 | 4.4023 | | No log | 3.0 | 120 | 4.3666 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.7.1 - Datasets 2.0.0 - Tokenizers 0.11.6
blckwdw61/sysformver1
ac87341c901933fe588f0b7fa21f8faf24d795f7
2022-03-22T19:46:14.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
blckwdw61
null
blckwdw61/sysformver1
10
null
transformers
11,778
# CES BERT sysform model Fine-tuned BERT cased model
krishnayogik/distilbert-base-uncased-finetuned-emotion
cad6e5ad919a0aa6c1100d377a39d8f659afa1ef
2022-03-23T07:27:09.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
krishnayogik
null
krishnayogik/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,779
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9247696388302888 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2258 - Accuracy: 0.9245 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8359 | 1.0 | 250 | 0.3316 | 0.901 | 0.8967 | | 0.2584 | 2.0 | 500 | 0.2258 | 0.9245 | 0.9248 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Helsinki-NLP/opus-mt-tc-base-uk-hu
318e13e415ffc255e7fdfce3d4236b7fa26f0a25
2022-06-01T13:10:31.000Z
[ "pytorch", "marian", "text2text-generation", "hu", "uk", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-base-uk-hu
10
null
transformers
11,780
--- language: - hu - uk tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-base-uk-hu results: - task: name: Translation ukr-hun type: translation args: ukr-hun dataset: name: flores101-devtest type: flores_101 args: ukr hun devtest metrics: - name: BLEU type: bleu value: 20.2 - task: name: Translation ukr-hun type: translation args: ukr-hun dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-hun metrics: - name: BLEU type: bleu value: 44.0 --- # opus-mt-tc-base-uk-hu Neural machine translation model for translating from Ukrainian (uk) to Hungarian (hu). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-08 * source language(s): ukr * target language(s): hun * model: transformer-align * data: opusTCv20210807+pft ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pft_transformer-align_2022-03-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opusTCv20210807+pft_transformer-align_2022-03-08.zip) * more information released models: [OPUS-MT ukr-hun README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-hun/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Я тобі винний 1000 доларів.", "Я п'ю воду." ] model_name = "pytorch-models/opus-mt-tc-base-uk-hu" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # 1000 dollár a te hibád. # Vizet iszom. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-uk-hu") print(pipe("Я тобі винний 1000 доларів.")) # expected output: 1000 dollár a te hibád. ``` ## Benchmarks * test set translations: [opusTCv20210807+pft_transformer-align_2022-03-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opusTCv20210807+pft_transformer-align_2022-03-08.test.txt) * test set scores: [opusTCv20210807+pft_transformer-align_2022-03-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opusTCv20210807+pft_transformer-align_2022-03-08.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | ukr-hun | tatoeba-test-v2021-08-07 | 0.67544 | 44.0 | 473 | 2472 | | ukr-hun | flores101-devtest | 0.51953 | 20.2 | 1012 | 22183 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: f084bad * port time: Wed Mar 23 21:54:12 EET 2022 * port machine: LM0-400-22516.local
Luttufuttu/finetuning-sentiment-model-3000-samples
7ec96eada69b56c0bbc7d0f41ccc415ce2858dd3
2022-03-24T12:59:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Luttufuttu
null
Luttufuttu/finetuning-sentiment-model-3000-samples
10
null
transformers
11,781
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8679245283018867 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3416 - Accuracy: 0.86 - F1: 0.8679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Yaxin/electra-base-discriminator-yelp-mlm
4ef0aed468011842c8669f1b7d39ab05b7bbe3a2
2022-03-24T14:22:12.000Z
[ "pytorch", "electra", "fill-mask", "dataset:yelp_review_full", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Yaxin
null
Yaxin/electra-base-discriminator-yelp-mlm
10
null
transformers
11,782
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: electra-base-discriminator-yelp-mlm results: - task: name: Masked Language Modeling type: fill-mask dataset: name: yelp_review_full yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.678284391624956 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-yelp-mlm This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the yelp_review_full yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.5550 - Accuracy: 0.6783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
hamedkhaledi/persain-flair-upos
d663c4703df738fff7ce2a5872898da9ebf6f30a
2022-04-03T22:15:00.000Z
[ "pytorch", "fa", "dataset:ontonotes", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
false
hamedkhaledi
null
hamedkhaledi/persain-flair-upos
10
null
flair
11,783
--- tags: - flair - token-classification - sequence-tagger-model language: - fa datasets: - ontonotes widget: - text: "مقامات مصری به خاطر حفظ ثبات کشور در منطقهای پرآشوب بر خود میبالند ، در حالی که این کشور در طول ۱۶ سال گذشته تنها هشت سال آنرا بدون اعلام وضعیت اضطراری سپری کرده است ." --- ## Persian Universal Part-of-Speech Tagging in Flair This is the universal part-of-speech tagging model for Persian that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **97,73** (UD_PERSIAN) Predicts Universal POS tags: | **tag** | **meaning** | |:---------------------------------:|:-----------:| |ADJ | adjective | | ADP | adposition | | ADV | adverb | | AUX | auxiliary | | CCONJ | coordinating conjunction | | DET | determiner | | INTJ | interjection | | NOUN | noun | | NUM | numeral | | PART | particle | | PRON | pronoun | | PUNCT | punctuation | | SCONJ | subordinating conjunction | | VERB | verb | | X | other | --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("hamedkhaledi/persain-flair-upos") # make example sentence sentence = Sentence("مقامات مصری به خاطر حفظ ثبات کشور در منطقهای پرآشوب بر خود میبالند .") tagger.predict(sentence) #print result print(sentence.to_tagged_string()) ``` This yields the following output: ``` مقامات <NOUN> مصری <ADJ> به <ADP> خاطر <NOUN> حفظ <NOUN> ثبات <NOUN> کشور <NOUN> در <ADP> منطقهای <NOUN> پرآشوب <ADJ> بر <ADP> خود <PRON> میبالند <VERB> . <PUNCT> ``` --- ### Results - F-score (micro) 0.9773 - F-score (macro) 0.9461 - Accuracy 0.9773 ``` By class: precision recall f1-score support NOUN 0.9770 0.9849 0.9809 6420 ADP 0.9947 0.9916 0.9932 1909 ADJ 0.9342 0.9128 0.9234 1525 PUNCT 1.0000 1.0000 1.0000 1365 VERB 0.9840 0.9711 0.9775 1141 CCONJ 0.9912 0.9937 0.9925 794 AUX 0.9622 0.9799 0.9710 546 PRON 0.9751 0.9865 0.9808 517 SCONJ 0.9797 0.9757 0.9777 494 NUM 0.9948 1.0000 0.9974 385 ADV 0.9343 0.9033 0.9185 362 DET 0.9773 0.9711 0.9742 311 PART 0.9916 1.0000 0.9958 237 INTJ 0.8889 0.8000 0.8421 10 X 0.7143 0.6250 0.6667 8 micro avg 0.9773 0.9773 0.9773 16024 macro avg 0.9533 0.9397 0.9461 16024 weighted avg 0.9772 0.9773 0.9772 16024 samples avg 0.9773 0.9773 0.9773 16024 Loss: 0.12471389770507812 ```
fav-kky/wav2vec2-base-cs-80k-ClTRUS
824c86dce591f53311dae92a2c8a4dd57cc1b02e
2022-06-20T14:27:49.000Z
[ "pytorch", "wav2vec2", "pretraining", "cs", "arxiv:2206.07627", "arxiv:2206.07666", "transformers", "Czech", "KKY", "FAV", "license:cc-by-nc-sa-4.0" ]
null
false
fav-kky
null
fav-kky/wav2vec2-base-cs-80k-ClTRUS
10
1
transformers
11,784
--- language: "cs" tags: - Czech - KKY - FAV license: "cc-by-nc-sa-4.0" --- # wav2vec2-base-cs-80k-ClTRUS **C**zech **l**anguage **TR**ransformer from **U**nlabeled **S**peech (ClTRUS) is a monolingual Czech Wav2Vec 2.0 base model pre-trained from 80 thousand hours of Czech speech. This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data. **Note:** This is a checkpoint of the model after 4 epochs over the whole dataset. If you want some earlier or later checkpoints, please feel free to contact the author (jlehecka(at)kky.zcu.cz). ## Pretraining data More than 80 thousand hours of unlabeled Czech speech: - recordings from radio (22k hours), - unlabeled data from VoxPopuli dataset (18.7k hours), - TV shows (15k hours), - shadow speakers (12k hours), - sports (5k hours), - telephone data (2k hours), - and a smaller amount of data from several other domains including the public CommonVoice dataset. ## Usage Inputs must be 16kHz mono audio files. This model can be used e.g. to extract per-frame contextual embeddings from audio: ```python from transformers import Wav2Vec2Model, Wav2Vec2FeatureExtractor import torchaudio feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("fav-kky/wav2vec2-base-cs-80k-ClTRUS") model = Wav2Vec2Model.from_pretrained("fav-kky/wav2vec2-base-cs-80k-ClTRUS") speech_array, sampling_rate = torchaudio.load("/path/to/audio/file.wav") inputs = feature_extractor( speech_array, sampling_rate=16_000, return_tensors="pt" )["input_values"][0] output = model(inputs) embeddings = output.last_hidden_state.detach().numpy()[0] ``` ## Speech recognition results After fine-tuning, the model scored the following results on public datasets: - Czech portion of CommonVoice v7.0: **WER = 3.8%** - Czech portion of VoxPopuli: **WER = 8.8%** See our paper for details. ## Paper The preprint of our paper (accepted to INTERSPEECH 2022) is available at http://arxiv.org/abs/2206.07627 ## Citation If you find this model useful, please cite our paper: ``` @inproceedings{wav2vec2-base-cs-80k-ClTRUS, title = {Exploring Capabilities of Monolingual Audio Transformers using Large Datasets in Automatic Speech Recognition of {C}zech}, author = { Jan Lehe\v{c}ka and Jan \v{S}vec and Ale\v{s} Pra\v{z}\'ak and Josef V. Psutka }, booktitle = {{I}nterspeech 2022}, publisher = {{ISCA}}, year = {2022}, note = {(in press)}, url = {https://arxiv.org/abs/2206.07627}, } ``` ## Related works - [Transformer-based Automatic Speech Recognition of Formal and Colloquial Czech in MALACH Project](https://arxiv.org/abs/2206.07666) - [Yehor/wav2vec2-xls-r-base-uk-with-small-lm](https://huggingface.co/Yehor/wav2vec2-xls-r-base-uk-with-small-lm)
azizbarank/mbert-finnic-ner
ce5b0fd5041ba65dd21a9021e23782753e7a22be
2022-03-25T13:55:16.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
azizbarank
null
azizbarank/mbert-finnic-ner
10
null
transformers
11,785
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: mbert-finnic-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert-finnic-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the Finnish and Estonian parts of the "WikiANN" dataset. It achieves the following results on the evaluation set: - Loss: 0.1427 - Precision: 0.9090 - Recall: 0.9156 - F1: 0.9123 - Accuracy: 0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1636 | 1.0 | 2188 | 0.1385 | 0.8906 | 0.9000 | 0.8953 | 0.9601 | | 0.0991 | 2.0 | 4376 | 0.1346 | 0.9099 | 0.9095 | 0.9097 | 0.9660 | | 0.0596 | 3.0 | 6564 | 0.1427 | 0.9090 | 0.9156 | 0.9123 | 0.9672 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
IIC/mbart-large-lfqa-es
b28c031270ce5683f935b97a26223a6d8da50fda
2022-04-04T02:14:04.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "es", "dataset:IIC/lfqa_es", "transformers", "seq2seq", "abstractive question answering", "model-index", "autotrain_compatible" ]
text2text-generation
false
IIC
null
IIC/mbart-large-lfqa-es
10
2
transformers
11,786
--- language: - es tags: # - summarization # Example: audio - seq2seq # Example: automatic-speech-recognition - abstractive question answering datasets: - IIC/lfqa_es metrics: - rouge2 - rouge1 - rougel - rougelsum # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: mbart-large-lfqa-es results: - task: type: question answering # Required. Example: automatic-speech-recognition name: abstractive question answering # Optional. Example: Speech Recognition dataset: type: IIC/lfqa_es # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: IIC/lfqa_es # Required. Example: Common Voice zh-CN args: es # Optional. Example: zh-CN metrics: - type: rouge1 # Required. Example: wer value: 0.5107 # Required. Example: 20.90 name: rouge1 # Optional. Example: Test WER - type: rouge2 value: 0.0042 name: rouge2 - type: rougeL value: 0.5108 name: rougeL - type: rougeLsum value: 0.5106 name: rougeLsum --- This model is a fine-tuned version of [MBART-large](https://huggingface.co/facebook/mbart-large-cc25), a multilingual text-to-text encoder-decoder transformer. It is trained on [lfqa-spanish](https://huggingface.co/datasets/IIC/lfqa_spanish), an automatically translated dataset, originally created in English in [this repository](https://huggingface.co/datasets/vblagoje/lfqa). For more details about the dataset, check its model card. For optimizing the model, we used [Adafactor](https://paperswithcode.com/method/adafactor) optimizer, which is better suited for t5-class models than AdamW (the typically used one). We used linear decay, and the full hyperparameters for this model were: ```json { "learning_rate": 2e-4, "num_train_epochs": 4, "adam_beta1": 0.9, "adam_beta2": 0.999, "adam_epsilon": 1e-8, "total_train_batch_size": 64, "warmup_ratio": 0.06, } ``` This model is therefore trained to provide long-form answers to open domain questions given certain context paragraphs which can be used to answer that question. Therefore the main task this model can perform is abstractive question answering. The result it obtains on the validation set of this dataset (it doesn't have a test set), with num_beams = 8 and maximum target sequence length = 360 are: ```json {"rouge1": 0.5107, "rouge2": 0.0042, "rougeL": 0.5108, "rougeLsum": 0.5106, "gen_len": 201.7371} ``` ### Contributions Thanks to [@avacaondata](https://huggingface.co/avacaondata), [@alborotis](https://huggingface.co/alborotis), [@albarji](https://huggingface.co/albarji), [@Dabs](https://huggingface.co/Dabs), [@GuillemGSubies](https://huggingface.co/GuillemGSubies) for adding this model.
lkm2835/distilbert-imdb
35f9ea573fa8403c87c390cffb1a14777481acab
2022-07-17T14:47:59.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
lkm2835
null
lkm2835/distilbert-imdb
10
null
transformers
11,787
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 391 | 0.1849 | 0.9281 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
studio-ousia/mluke-large-lite-finetuned-conll-2003
77a0be94d83e5836c82add4cdddffd07112888d3
2022-03-28T07:59:25.000Z
[ "pytorch", "luke", "transformers", "license:apache-2.0" ]
null
false
studio-ousia
null
studio-ousia/mluke-large-lite-finetuned-conll-2003
10
null
transformers
11,788
--- license: apache-2.0 ---
sophieb/electricidad-small-discriminator-finetuned-noticias-falsas-en-espaol-fakenews
33b56c5f1b5f8fa845804703f5b379fa9d441390
2022-03-31T02:13:32.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers" ]
text-classification
false
sophieb
null
sophieb/electricidad-small-discriminator-finetuned-noticias-falsas-en-espaol-fakenews
10
null
transformers
11,789
Entry not found
asafaya/hubert-large-turkish
d769a6e6ce52cce2c8fd151d8173f84d3ed71f14
2022-03-29T12:57:59.000Z
[ "pytorch", "hubert", "feature-extraction", "transformers", "license:cc-by-nc-4.0" ]
feature-extraction
false
asafaya
null
asafaya/hubert-large-turkish
10
null
transformers
11,790
--- license: cc-by-nc-4.0 ---
tbosse/bert-base-german-cased-finetuned-subj_v1
e810312f610286eb3af481dd8625ef38f1a33ac5
2022-03-29T15:59:49.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-finetuned-subj_v1
10
null
transformers
11,791
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_v1 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1594 - Precision: 0.1875 - Recall: 0.0077 - F1: 0.0147 - Accuracy: 0.9508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 136 | 0.1591 | 1.0 | 0.0051 | 0.0102 | 0.9523 | | No log | 2.0 | 272 | 0.1571 | 0.375 | 0.0077 | 0.015 | 0.9518 | | No log | 3.0 | 408 | 0.1594 | 0.1875 | 0.0077 | 0.0147 | 0.9508 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
princeton-nlp/CoFi-SST2-s95
931c4672d8f7c16cb50aadcc0aea585b4caaaf65
2022-05-01T01:19:38.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2204.00408", "transformers" ]
text-classification
false
princeton-nlp
null
princeton-nlp/CoFi-SST2-s95
10
null
transformers
11,792
This is a model checkpoint for "[Structured Pruning Learns Compact and Accurate Models](https://arxiv.org/pdf/2204.00408.pdf)". The model is pruned from `bert-base-uncased` to a 95% sparsity on dataset SST-2. Please go to [our repository](https://github.com/princeton-nlp/CoFiPruning) for more details on how to use the model for inference. Note that you would have to use the model class specified in our repository to load the model.
neibla/distilbert-base-uncased-finetuned-emotion
79b64c36b2ad9ed6f7c5d1c71769f2afd495fc8d
2022-03-30T08:56:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
neibla
null
neibla/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,793
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9254917237562972 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2187 - Accuracy: 0.9255 - F1: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.855 | 1.0 | 250 | 0.3211 | 0.905 | 0.9017 | | 0.2561 | 2.0 | 500 | 0.2187 | 0.9255 | 0.9255 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Marif/Arif_fake_news_classifier
57eb62d20474a47b9019f2be3b7716476ba40250
2022-03-31T04:19:29.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
Marif
null
Marif/Arif_fake_news_classifier
10
null
transformers
11,794
--- license: afl-3.0 ---
deepspeechvision/wav2vec2_hindi_asr
b8c632e90d97cd6d8922517f4596ec7346c3ff70
2022-03-31T18:03:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
deepspeechvision
null
deepspeechvision/wav2vec2_hindi_asr
10
null
transformers
11,795
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_hindi_asr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_hindi_asr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Teyronebigdick/DialoGPT-small-terrydavis
9bb5fe4d7d1241356b63c0df5b8de21f7ea9fed3
2022-04-01T21:41:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Teyronebigdick
null
Teyronebigdick/DialoGPT-small-terrydavis
10
null
transformers
11,796
--- tags: - conversational --- # Terry Davis DialoGPT Model
hackathon-pln-es/biomedtra-small-es-squad2-es
d29137087bd9ac4cd18d41cff84069090990caf8
2022-04-03T14:51:12.000Z
[ "pytorch", "electra", "question-answering", "es", "dataset:squad_es", "dataset:hackathon-pln-es/biomed_squad_es_v2", "transformers", "autotrain_compatible" ]
question-answering
false
hackathon-pln-es
null
hackathon-pln-es/biomedtra-small-es-squad2-es
10
null
transformers
11,797
--- language: es datasets: - squad_es - hackathon-pln-es/biomed_squad_es_v2 metrics: - "f1" --- # biomedtra-small for QA This model was trained as part of the "Extractive QA Biomedicine" project developed during the 2022 [Hackathon](https://somosnlp.org/hackathon) organized by SOMOS NLP. ## Motivation Recent research has made available Spanish Language Models trained on Biomedical corpus. This project explores the use of these new models to generate extractive Question Answering models for Biomedicine, and compares their effectiveness with general masked language models. The models trained during the [Hackathon](https://somosnlp.org/hackathon) were: [hackathon-pln-es/roberta-base-bne-squad2-es](https://huggingface.co/hackathon-pln-es/roberta-base-bne-squad2-es) [hackathon-pln-es/roberta-base-biomedical-clinical-es-squad2-es](https://huggingface.co/hackathon-pln-es/roberta-base-biomedical-clinical-es-squad2-es) [hackathon-pln-es/roberta-base-biomedical-es-squad2-es](https://huggingface.co/hackathon-pln-es/roberta-base-biomedical-es-squad2-es) [hackathon-pln-es/biomedtra-small-es-squad2-es](https://huggingface.co/hackathon-pln-es/biomedtra-small-es-squad2-es) ## Description This model is a fine-tuned version of [mrm8488/biomedtra-small-es](https://huggingface.co/mrm8488/biomedtra-small-es) on the [squad_es (v2)](https://huggingface.co/datasets/squad_es) training dataset. ## Hyperparameters The hyperparameters were chosen based on those used in [deepset/electra-base-squad2](https://huggingface.co/deepset/electra-base-squad2), an english-based model trained for similar purposes ``` --num_train_epochs 10 \ --learning_rate 1e-4 \ --max_seq_length 384 \ --doc_stride 128 \ ``` ## Performance Evaluated on the [hackathon-pln-es/biomed_squad_es_v2](https://huggingface.co/datasets/hackathon-pln-es/biomed_squad_es_v2) dev set. |Model |Base Model Domain|exact |f1 |HasAns_exact|HasAns_f1|NoAns_exact|NoAns_f1| |--------------------------------------------------------------|-----------------|-------|-------|------------|---------|-----------|--------| |hackathon-pln-es/roberta-base-bne-squad2-es |General |67.6341|75.6988|53.7367 |70.0526 |81.2174 |81.2174 | |hackathon-pln-es/roberta-base-biomedical-clinical-es-squad2-es|Biomedical |66.8426|75.2346|53.0249 |70.0031 |80.3478 |80.3478 | |hackathon-pln-es/roberta-base-biomedical-es-squad2-es |Biomedical |67.6341|74.5612|47.6868 |61.7012 |87.1304 | 87.1304| |hackathon-pln-es/biomedtra-small-es-squad2-es |Biomedical |34.4767|44.3294|45.3737 |65.307 |23.8261 |23.8261 | ## Team Santiago Maximo: [smaximo](https://huggingface.co/smaximo)
VikasMani/wikineural-multilingual-ner
929b58a0a68dd34a3a4355e97c7a138ee5eefebd
2022-04-02T10:57:38.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
VikasMani
null
VikasMani/wikineural-multilingual-ner
10
null
transformers
11,798
Entry not found
crazypegasus/GPT-JonSnow
d46c81a5ea9550f5ae999a9ce61032a40bb7b073
2022-04-03T15:38:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
crazypegasus
null
crazypegasus/GPT-JonSnow
10
null
transformers
11,799
--- tags: - conversational --- # JonSnow GPT model