modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
benjamin/roberta-base-wechsel-ukrainian
6efef251e8955956c3086c0ef58001065c9b1800
2022-07-13T23:43:28.000Z
[ "pytorch", "roberta", "fill-mask", "uk", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
benjamin
null
benjamin/roberta-base-wechsel-ukrainian
10
null
transformers
11,800
--- license: mit language: uk --- # roberta-base-wechsel-ukrainian [`roberta-base`](https://huggingface.co/roberta-base) transferred to Ukrainian using the method from the NAACL2022 paper [WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models](https://aclanthology.org/2022.naacl-main.293/). # Evaluation Evaluation was done on [lang-uk's ner-uk project](https://github.com/lang-uk/ner-uk), the Ukrainian portion of [WikiANN](https://huggingface.co/datasets/wikiann) and the [Ukrainian IU corpus from the Universal Dependencies project](https://github.com/UniversalDependencies/UD_Ukrainian-IU). Evaluation results are the mean of 5 runs with different seeds. __Validation Results__ | | lang-uk NER (Micro F1) | WikiANN (Micro F1) | UD Ukrainian IU POS (Accuracy) | |:-------------------------------------------------|:-------------------------|:-------------|:-------------------------| | roberta-base-wechsel-ukrainian | 88.06 (0.50) | 92.96 (0.08) | 98.70 (0.05) | | roberta-large-wechsel-ukrainian | __89.27 (0.53)__ | __93.22 (0.15)__ | __98.86 (0.03)__ | | | roberta-base-scratch-ukrainian* | 85.49 (0.88) | 91.91 (0.08) | 98.49 (0.04) | | roberta-large-scratch-ukrainian* | 86.54 (0.70) | 92.39 (0.16) | 98.65 (0.09) | | | dbmdz/electra-base-ukrainian-cased-discriminator | 87.49 (0.52) | 93.20 (0.16) | 98.60 (0.03) | | xlm-roberta-base | 86.68 (0.44) | 92.41 (0.13) | 98.53 (0.02) | | xlm-roberta-large | 86.64 (1.61) | 93.01 (0.13) | 98.71 (0.04) | __Test Results__ | | lang-uk NER (Micro F1) | WikiANN (Micro F1) | UD Ukrainian IU POS (Accuracy) | |:-------------------------------------------------|:-------------------------|:-------------|:-------------------------| | roberta-base-wechsel-ukrainian | 90.81 (1.51) | 92.98 (0.12) | 98.57 (0.03) | | roberta-large-wechsel-ukrainian | __91.24 (1.16)__ | __93.22 (0.17)__ | __98.74 (0.06)__ | | | roberta-base-scratch-ukrainian* | 89.57 (1.01) | 92.05 (0.09) | 98.31 (0.08) | | roberta-large-scratch-ukrainian* | 89.96 (0.89) | 92.49 (0.15) | 98.52 (0.04) | | | dbmdz/electra-base-ukrainian-cased-discriminator | 90.43 (1.29) | 92.99 (0.11) | 98.59 (0.06) | | xlm-roberta-base | 90.86 (0.81) | 92.27 (0.09) | 98.45 (0.07) | | xlm-roberta-large | 90.16 (2.98) | 92.92 (0.19) | 98.71 (0.04) | \*trained using the same exact training setup as the wechsel-\* models, but without parameter transfer from WECHSEL. # License MIT
hackathon-pln-es/unam_tesis_BETO_finnetuning
b2c791544cca370b45c34fe6600a506116ac1be6
2022-04-13T02:16:03.000Z
[ "pytorch", "dataset:unam_tesis", "transformers", "text-classification", "license:apache-2.0" ]
text-classification
false
hackathon-pln-es
null
hackathon-pln-es/unam_tesis_BETO_finnetuning
10
5
transformers
11,801
--- annotations_creators: - inoid - MajorIsaiah - Ximyer - clavel tags: - "transformers" - "text-classification" languages: "es" license: "apache-2.0" datasets: "unam_tesis" metrics: "accuracy" widget: - text: "Introducción al análisis de riesgos competitivos bajo el enfoque de la función de incidencia acumulada (FIA) y su aplicación con R" - text: "Asociación del polimorfismo rs1256031 del receptor beta de estrógenos en pacientes con diabetes tipo 2" --- # Unam_tesis_beto_finnetuning: Unam's thesis classification with BETO This model is created from the finetuning of the pre-model for Spanish [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased), using PyTorch framework, and trained with a set of theses of the National Autonomous University of Mexico [(UNAM)](https://tesiunam.dgb.unam.mx/F?func=find-b-0&local_base=TES01). The model classifies a text into for five (Psicología, Derecho, Química Farmacéutico Biológica, Actuaría, Economía) possible careers at the UNAM. ## Training Dataset 1000 documents (Thesis introduction, Author´s first name, Author´s last name, Thesis title, Year, Career) | Careers | Size | |--------------|----------------------| | Actuaría | 200 | | Derecho| 200 | | Economía| 200 | | Psicología| 200 | | Química Farmacéutico Biológica| 200 | ## Example of use For further details on how to use unam_tesis_BETO_finnetuning you can visit the Hugging Face Transformers library, starting with the Quickstart section. The UNAM tesis model can be accessed simply as 'hackathon-pln-e/unam_tesis_BETO_finnetuning' by using the Transformers library. An example of how to download and use the model can be found next. ```python tokenizer = AutoTokenizer.from_pretrained('hiiamsid/BETO_es_binary_classification', use_fast=False) model = AutoModelForSequenceClassification.from_pretrained( 'hackathon-pln-es/unam_tesis_BETO_finnetuning', num_labels=5, output_attentions=False, output_hidden_states=False) pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True) classificationResult = pipe("Análisis de las condiciones del aprendizaje desde casa en los alumnos de preescolar y primaria del municipio de Nicolás Romero") ``` ## Citation To cite this resource in a publication please use the following: [UNAM's Tesis with BETO finetuning classify] (https://huggingface.co/hackathon-pln-es/unam_tesis_BETO_finnetuning) To cite this resource in a publication please use the following: ``` @inproceedings{SpanishNLPHackaton2022, title={UNAM's Theses with BETO fine-tuning classify}, author={López López, Isaac Isaías; Clavel Quintero, Yisel; López Ramos, Dionis & López López, Ximena Yeraldin}, booktitle={Somos NLP Hackaton 2022}, year={2022} } ``` ## Team members - Isaac Isaías López López ([MajorIsaiah](https://huggingface.co/MajorIsaiah)) - Dionis López Ramos ([inoid](https://huggingface.co/inoid)) - Yisel Clavel Quintero ([clavel](https://huggingface.co/clavel)) - Ximena Yeraldin López López ([Ximyer](https://huggingface.co/Ximyer))
LeBenchmark/wav2vec-FR-1K-Male-base
bc32576a8dd2bba1d276c9313836ba5b01865bda
2022-05-11T09:23:04.000Z
[ "pytorch", "wav2vec2", "pretraining", "fr", "arxiv:2204.01397", "transformers", "license:apache-2.0" ]
null
false
LeBenchmark
null
LeBenchmark/wav2vec-FR-1K-Male-base
10
null
transformers
11,802
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 base model trained on 1K hours of French *female-only* speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. For more information about our gender study for SSL moddels, please refer to our paper at: [A Study of Gender Impact in Self-supervised Models for Speech-to-Text Systems](https://arxiv.org/abs/2204.01397) ## Model and data descriptions We release four gender-specific models trained on 1K hours of speech. - [wav2vec2-FR-1K-Male-large](https://huggingface.co/LeBenchmark/wav2vec-FR-1K-Male-large/) - [wav2vec2-FR-1k-Male-base](https://huggingface.co/LeBenchmark/wav2vec-FR-1K-Male-base/) - [wav2vec2-FR-1K-Female-large](https://huggingface.co/LeBenchmark/wav2vec-FR-1K-Female-large/) - [wav2vec2-FR-1K-Female-base](https://huggingface.co/LeBenchmark/wav2vec-FR-1K-Female-base/) ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced. ## Referencing our gender-specific models ``` @article{boito2022study, title={A Study of Gender Impact in Self-supervised Models for Speech-to-Text Systems}, author={Marcely Zanon Boito and Laurent Besacier and Natalia Tomashenko and Yannick Est{\`e}ve}, journal={arXiv preprint arXiv:2204.01397}, year={2022} } ``` ## Referencing LeBenchmark ``` @inproceedings{evain2021task, title={Task agnostic and task specific self-supervised learning from speech with \textit{LeBenchmark}}, author={Evain, Sol{\`e}ne and Nguyen, Ha and Le, Hang and Boito, Marcely Zanon and Mdhaffar, Salima and Alisamir, Sina and Tong, Ziyi and Tomashenko, Natalia and Dinarelli, Marco and Parcollet, Titouan and others}, booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)}, year={2021} } ```
bhavitvyamalik/fake-news_xtremedistil-l6-h256-uncased
130d1edcdbd53cddbad02ee281c52b4bed71bedd
2022-04-18T20:23:38.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:mit" ]
text-classification
false
bhavitvyamalik
null
bhavitvyamalik/fake-news_xtremedistil-l6-h256-uncased
10
null
transformers
11,803
--- license: mit --- ### Dataset used [Fake and real news dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) ### Labels Fake news: 1 </br> Real news: 0 ### Usage ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig import torch config = AutoConfig.from_pretrained("bhavitvyamalik/fake-news_xtremedistil-l6-h256-uncased") model = AutoModelForSequenceClassification.from_pretrained("bhavitvyamalik/fake-news_xtremedistil-l6-h256-uncased", config=config) tokenizer = AutoTokenizer.from_pretrained("microsoft/xtremedistil-l6-h256-uncased", usefast=True) text = "According to reports by Fox News, Biden is the President of the USA" encode = tokenizer(text, max_length=512, truncation=True, padding="max_length", return_tensors="pt") output = model(**encode) print(torch.argmax(output["logits"])) ``` ### Performance on test data ```json 'test/accuracy': 0.9977836608886719, 'test/aucroc': 0.9999998807907104, 'test/f1': 0.9976308941841125, 'test/loss': 0.00828308891505003 ``` ### Run can be tracked here [Wandb project for Fake news classifier](https://wandb.ai/bhavitvya/Fake%20news%20classifier?workspace=user-bhavitvya)
MohitSingh/wikineural-multilingual-ner
172339d78f5916850e7ed457f2a66b52d66af105
2022-04-04T15:59:57.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
MohitSingh
null
MohitSingh/wikineural-multilingual-ner
10
null
transformers
11,804
Entry not found
Vinspatel4/wikineural-multilingual-ner
a948a1030575d29ae650fd6722f68efebe439df0
2022-04-10T07:49:33.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Vinspatel4
null
Vinspatel4/wikineural-multilingual-ner
10
null
transformers
11,805
Entry not found
HenryHXR/scibert_scivocab_uncased_epoch20-finetuned-ner
492dd152f5bbed239ec44538d0d408219d90dd00
2022-04-05T15:51:56.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
HenryHXR
null
HenryHXR/scibert_scivocab_uncased_epoch20-finetuned-ner
10
null
transformers
11,806
--- tags: - generated_from_trainer model-index: - name: scibert_scivocab_uncased_epoch20-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_scivocab_uncased_epoch20-finetuned-ner This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
nielsr/segformer-test-sidewalk-v2
4f04f05e8c70ab3705dcd3318c4512a519a8c66f
2022-04-06T13:11:06.000Z
[ "pytorch", "segformer", "dataset:segments/sidewalk-semantic", "transformers", "vision", "image-segmentation", "license:apache-2.0" ]
image-segmentation
false
nielsr
null
nielsr/segformer-test-sidewalk-v2
10
null
transformers
11,807
--- license: apache-2.0 tags: - vision - image-segmentation datasets: - segments/sidewalk-semantic widget: - src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg example_title: Brugge ---
ashwathgojo234/wikineural-multilingual-ner
4d861c0bbc27f7bd68ab793cb1ade570edb14fb5
2022-04-11T12:39:28.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ashwathgojo234
null
ashwathgojo234/wikineural-multilingual-ner
10
null
transformers
11,808
Entry not found
ChrisZeng/bertweet-base-cased-covid19-hateval
9c47b1e32741597805fb39de82633228de234349
2022-04-06T23:04:39.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ChrisZeng
null
ChrisZeng/bertweet-base-cased-covid19-hateval
10
null
transformers
11,809
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bertweet-base-cased-covid19-hateval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-cased-covid19-hateval This model is a fine-tuned version of [vinai/bertweet-covid19-base-cased](https://huggingface.co/vinai/bertweet-covid19-base-cased) on the HatEval dataset. It achieves the following results on the evaluation set: - Loss: 0.4817 - Accuracy: 0.773 - F1: 0.7722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:| | 0.6925 | 0.99 | 70 | 0.573 | 0.3643 | 0.6827 | | 0.6823 | 1.99 | 140 | 0.573 | 0.3643 | 0.6736 | | 0.6713 | 2.99 | 210 | 0.587 | 0.3993 | 0.6568 | | 0.6468 | 3.99 | 280 | 0.7 | 0.6708 | 0.6210 | | 0.6047 | 4.99 | 350 | 0.732 | 0.7286 | 0.5785 | | 0.5648 | 5.99 | 420 | 0.733 | 0.7319 | 0.5537 | | 0.536 | 6.99 | 490 | 0.739 | 0.7381 | 0.5406 | | 0.5175 | 7.99 | 560 | 0.744 | 0.7431 | 0.5308 | | 0.5018 | 8.99 | 630 | 0.751 | 0.7504 | 0.5235 | | 0.4874 | 9.99 | 700 | 0.749 | 0.7479 | 0.5145 | | 0.4749 | 10.99 | 770 | 0.754 | 0.7533 | 0.5104 | | 0.4666 | 11.99 | 840 | 0.761 | 0.7605 | 0.5052 | | 0.456 | 12.99 | 910 | 0.761 | 0.7604 | 0.5017 | | 0.4489 | 13.99 | 980 | 0.764 | 0.7635 | 0.4986 | | 0.4375 | 14.99 | 1050 | 0.764 | 0.7625 | 0.4932 | | 0.4319 | 15.99 | 1120 | 0.762 | 0.7608 | 0.4917 | | 0.427 | 16.99 | 1190 | 0.77 | 0.7693 | 0.4918 | | 0.4226 | 17.99 | 1260 | 0.772 | 0.7711 | 0.4889 | | 0.4167 | 18.99 | 1330 | 0.769 | 0.7681 | 0.4874 | | 0.4127 | 19.99 | 1400 | 0.768 | 0.7673 | 0.4868 | | 0.4095 | 20.99 | 1470 | 0.774 | 0.7731 | 0.4836 | | 0.4066 | 21.99 | 1540 | 0.77 | 0.7690 | 0.4829 | | 0.405 | 22.99 | 1610 | 0.773 | 0.7721 | 0.4822 | | 0.3993 | 23.99 | 1680 | 0.77 | 0.7692 | 0.4827 | | 0.3977 | 24.99 | 1750 | 0.4831 | 0.772 | 0.7712 | | 0.398 | 25.99 | 1820 | 0.4830 | 0.774 | 0.7733 | | 0.3969 | 26.99 | 1890 | 0.4815 | 0.771 | 0.7701 | | 0.3945 | 27.99 | 1960 | 0.4818 | 0.772 | 0.7712 | | 0.3929 | 28.99 | 2030 | 0.4818 | 0.773 | 0.7722 | | 0.3887 | 29.99 | 2100 | 0.4817 | 0.773 | 0.7722 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
btjiong/robbert-twitter-sentiment-tokenized
4d63b4a44f9920bba176619f2f2df784d153315c
2022-04-07T17:54:02.000Z
[ "pytorch", "roberta", "text-classification", "dataset:dutch_social", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
btjiong
null
btjiong/robbert-twitter-sentiment-tokenized
10
null
transformers
11,810
--- license: mit tags: - generated_from_trainer datasets: - dutch_social metrics: - accuracy - f1 - precision - recall model-index: - name: robbert-twitter-sentiment-tokenized results: - task: name: Text Classification type: text-classification dataset: name: dutch_social type: dutch_social args: dutch_social metrics: - name: Accuracy type: accuracy value: 0.814 - name: F1 type: f1 value: 0.8132800039281481 - name: Precision type: precision value: 0.8131073640029836 - name: Recall type: recall value: 0.814 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robbert-twitter-sentiment-tokenized This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on the dutch_social dataset. It achieves the following results on the evaluation set: - Loss: 0.5473 - Accuracy: 0.814 - F1: 0.8133 - Precision: 0.8131 - Recall: 0.814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6895 | 1.0 | 282 | 0.6307 | 0.7433 | 0.7442 | 0.7500 | 0.7433 | | 0.4948 | 2.0 | 564 | 0.5189 | 0.8053 | 0.8062 | 0.8081 | 0.8053 | | 0.2642 | 3.0 | 846 | 0.5473 | 0.814 | 0.8133 | 0.8131 | 0.814 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
yj2773/hinglish11k-sentiment-analysis
f01fc28259b14bf235957d93385a6cbc1bdde866
2022-06-12T12:47:00.000Z
[ "pytorch", "bert", "text-classification", "en", "ur", "hi", "transformers", "license:afl-3.0" ]
text-classification
false
yj2773
null
yj2773/hinglish11k-sentiment-analysis
10
null
transformers
11,811
--- license: afl-3.0 language: - en - ur - hi widget: - text: "Tum bohot badiya ho." --- ## Hinglish-Bert-Class fine-tuned on Hinglish11K dataset. # MCC= 0.69 ### Citation info ```bibtex @model{ contributors= {Mohammad Yusuf Jamal Aziz Azmi and Ayush Aggarwal }, year = {2022}, timestamp = {Sun, 08 May 2022}, } ```
jackmleitch/distilbert-base-uncased-finetuned-emotion
a47b5a079c5e7d58f77cb47e16ed2fdffa7a34a3
2022-04-07T17:53:26.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jackmleitch
null
jackmleitch/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,812
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9285 - name: F1 type: f1 value: 0.9284954323264266 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2120 - Accuracy: 0.9285 - F1: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8093 | 1.0 | 250 | 0.3064 | 0.908 | 0.9049 | | 0.2429 | 2.0 | 500 | 0.2120 | 0.9285 | 0.9285 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
palakagl/bert_TextClassification
29cad5ea6d17a6289a80017e08c32ceb69ce700c
2022-04-07T17:18:20.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:palakagl/autotrain-data-PersonalAssitant", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
palakagl
null
palakagl/bert_TextClassification
10
null
transformers
11,813
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - palakagl/autotrain-data-PersonalAssitant co2_eq_emissions: 7.025108874009706 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 717221787 - CO2 Emissions (in grams): 7.025108874009706 ## Validation Metrics - Loss: 0.35467109084129333 - Accuracy: 0.9186046511627907 - Macro F1: 0.9202890631142154 - Micro F1: 0.9186046511627907 - Weighted F1: 0.9185859051606837 - Macro Precision: 0.921802482563032 - Micro Precision: 0.9186046511627907 - Weighted Precision: 0.9210238644296779 - Macro Recall: 0.9218155764486292 - Micro Recall: 0.9186046511627907 - Weighted Recall: 0.9186046511627907 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/palakagl/autotrain-PersonalAssitant-717221787 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("palakagl/autotrain-PersonalAssitant-717221787", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("palakagl/autotrain-PersonalAssitant-717221787", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ahmednasser/DistilBert-FakeNews
e3015860de6007ef933eab86151a9deee6d2c85c
2022-04-20T16:29:21.000Z
[ "pytorch", "distilbert", "en", "dataset:Fake News https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset", "arxiv:1910.01108", "transformers", "text-classification", "fake-news" ]
text-classification
false
ahmednasser
null
ahmednasser/DistilBert-FakeNews
10
null
transformers
11,814
--- language: - en tags: - text-classification - fake-news - pytorch datasets: - Fake News https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset metrics: - Accuracy, AUC --- ## Model description: [Distilbert](https://arxiv.org/abs/1910.01108) is created with knowledge distillation during the pre-training phase which reduces the size of a BERT model by 40%, while retaining 97% of its language understanding. It's smaller, faster than Bert and any other Bert-based model. [Distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) finetuned on the fake news dataset with below Hyperparameters ``` learning rate 5e-5, batch size 32, num_train_epochs=2, ``` Full code available @ [DistilBert-FakeNews](https://github.com/anasserhussien/DistilBert-FakeNews) Dataset available @ [Fake News dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset)
tbosse/bert-base-german-cased-finetuned-subj_v5_7Epoch
f7da0d169e0eff649d3d9b620fa5d9f89e04ae6f
2022-04-07T20:49:22.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-finetuned-subj_v5_7Epoch
10
null
transformers
11,815
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_v5_7Epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_v5_7Epoch This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3036 - Precision: 0.7983 - Recall: 0.7781 - F1: 0.7881 - Accuracy: 0.9073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 32 | 0.3438 | 0.6970 | 0.7107 | 0.7038 | 0.8626 | | No log | 2.0 | 64 | 0.2747 | 0.7688 | 0.7472 | 0.7578 | 0.8902 | | No log | 3.0 | 96 | 0.2683 | 0.7827 | 0.7893 | 0.7860 | 0.8981 | | No log | 4.0 | 128 | 0.2768 | 0.8024 | 0.7528 | 0.7768 | 0.9027 | | No log | 5.0 | 160 | 0.2881 | 0.8102 | 0.7556 | 0.7820 | 0.9060 | | No log | 6.0 | 192 | 0.3006 | 0.7959 | 0.7669 | 0.7811 | 0.9040 | | No log | 7.0 | 224 | 0.3036 | 0.7983 | 0.7781 | 0.7881 | 0.9073 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Shwetabh/wikineural-multilingual-ner
111cc8a5408716a9eccbe1d67520b10ba4dc4961
2022-04-10T05:37:45.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Shwetabh
null
Shwetabh/wikineural-multilingual-ner
10
null
transformers
11,816
Entry not found
dpazmino/finetuning-sentiment-model_duke_final
4f865642f950524519491c69d970a87d4805b512
2022-04-10T18:34:53.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dpazmino
null
dpazmino/finetuning-sentiment-model_duke_final
10
null
transformers
11,817
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: finetuning-sentiment-model_duke_final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model_duke_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4776 - F1: 0.8708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ChrisZeng/twitter-roberta-base-efl-hateval
ec979b7388bf1f31ed195a42a4fdc21a7ce37e11
2022-04-11T19:25:01.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ChrisZeng
null
ChrisZeng/twitter-roberta-base-efl-hateval
10
null
transformers
11,818
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: twitter-roberta-base-efl-hateval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-efl-hateval This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2021-124m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) on the HatEval dataset. It achieves the following results on the evaluation set: - Accuracy: 0.7913 - F1: 0.7899 - Loss: 0.3683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:| | 0.5392 | 1.0 | 211 | 0.7 | 0.6999 | 0.4048 | | 0.3725 | 2.0 | 422 | 0.759 | 0.7584 | 0.3489 | | 0.3158 | 3.0 | 633 | 0.7613 | 0.7570 | 0.3287 | | 0.289 | 4.0 | 844 | 0.769 | 0.7684 | 0.3307 | | 0.2716 | 5.0 | 1055 | 0.7767 | 0.7750 | 0.3241 | | 0.2575 | 6.0 | 1266 | 0.7787 | 0.7782 | 0.3272 | | 0.2441 | 7.0 | 1477 | 0.7783 | 0.7776 | 0.3258 | | 0.2363 | 8.0 | 1688 | 0.7777 | 0.7773 | 0.3316 | | 0.2262 | 9.0 | 1899 | 0.7843 | 0.7815 | 0.3150 | | 0.2191 | 10.0 | 2110 | 0.7813 | 0.7802 | 0.3241 | | 0.2112 | 11.0 | 2321 | 0.7867 | 0.7860 | 0.3276 | | 0.2047 | 12.0 | 2532 | 0.7897 | 0.7886 | 0.3266 | | 0.1973 | 13.0 | 2743 | 0.7893 | 0.7884 | 0.3299 | | 0.1897 | 14.0 | 2954 | 0.792 | 0.7907 | 0.3301 | | 0.1862 | 15.0 | 3165 | 0.794 | 0.7925 | 0.3283 | | 0.1802 | 16.0 | 3376 | 0.7907 | 0.7903 | 0.3465 | | 0.1764 | 17.0 | 3587 | 0.7937 | 0.7922 | 0.3393 | | 0.1693 | 18.0 | 3798 | 0.7903 | 0.7893 | 0.3494 | | 0.1666 | 19.0 | 4009 | 0.7943 | 0.7930 | 0.3486 | | 0.1631 | 20.0 | 4220 | 0.7927 | 0.7917 | 0.3516 | | 0.1609 | 21.0 | 4431 | 0.7907 | 0.7893 | 0.3537 | | 0.1581 | 22.0 | 4642 | 0.7913 | 0.7902 | 0.3586 | | 0.1548 | 23.0 | 4853 | 0.789 | 0.7884 | 0.3698 | | 0.1535 | 24.0 | 5064 | 0.7893 | 0.7880 | 0.3622 | | 0.1522 | 25.0 | 5275 | 0.7923 | 0.7909 | 0.3625 | | 0.15 | 26.0 | 5486 | 0.7913 | 0.7899 | 0.3632 | | 0.1479 | 27.0 | 5697 | 0.792 | 0.7909 | 0.3677 | | 0.1441 | 28.0 | 5908 | 0.792 | 0.7909 | 0.3715 | | 0.145 | 29.0 | 6119 | 0.792 | 0.7906 | 0.3681 | | 0.1432 | 30.0 | 6330 | 0.7913 | 0.7899 | 0.3683 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
Giyaseddin/distilroberta-base-finetuned-short-answer-assessment
9a0f2b9ca32070da8e5e63e0e7b6f33f3db5038b
2022-04-11T15:21:42.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:Short Question Answer Assessment Dataset", "arxiv:1806.02847", "transformers", "license:apache-2.0" ]
text-classification
false
Giyaseddin
null
Giyaseddin/distilroberta-base-finetuned-short-answer-assessment
10
1
transformers
11,819
--- license: apache-2.0 language: en library: transformers other: distilroberta datasets: - Short Question Answer Assessment Dataset --- # DistilRoBERTa base model for Short Question Answer Assessment ## Model description The pre-trained model is a distilled version of the [RoBERTa-base model](https://huggingface.co/roberta-base). It follows the same training procedure as [DistilBERT](https://huggingface.co/distilbert-base-uncased). The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/master/examples/distillation). This model is case-sensitive: it makes a difference between english and English. The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 125M parameters for RoBERTa-base). On average DistilRoBERTa is twice as fast as Roberta-base. We encourage to check [RoBERTa-base model](https://huggingface.co/roberta-base) to know more about usage, limitations and potential biases. This is a classification model that solves Short Question Answer Assessment task, finetuned [pretrained DistilRoBERTa model](https://huggingface.co/distilroberta-base) on [Question Answer Assessment dataset](#) ## Intended uses & limitations This can only be used for the kind of questions and answers provided by that are similar to the ones in the dataset of [Banjade et al.](https://aclanthology.org/W16-0520.pdf). ### How to use You can use this model directly with a : ```python >>> from transformers import pipeline >>> classifier = pipeline("text-classification", model="Giyaseddin/distilroberta-base-finetuned-short-answer-assessment", return_all_scores=True) >>> context = "To rescue a child who has fallen down a well, rescue workers fasten him to a rope, the other end of which is then reeled in by a machine. The rope pulls the child straight upward at steady speed." >>> question = "How does the amount of tension in the rope compare to the downward force of gravity acting on the child?" >>> ref_answer = "Since the child is being raised straight upward at a constant speed, the net force on the child is zero and all the forces balance. That means that the tension in the rope balances the downward force of gravity." >>> student_answer = "The tension force is higher than the force of gravity." >>> >>> body = " [SEP] ".join([context, question, ref_answer, student_answer]) >>> raw_results = classifier([body]) >>> raw_results [[{'label': 'LABEL_0', 'score': 0.0004029414849355817}, {'label': 'LABEL_1', 'score': 0.0005476847873069346}, {'label': 'LABEL_2', 'score': 0.998059093952179}, {'label': 'LABEL_3', 'score': 0.0009902542224153876}]] >>> _LABELS_ID2NAME = {0: "correct", 1: "correct_but_incomplete", 2: "contradictory", 3: "incorrect"} >>> results = [] >>> for result in raw_results: for score in result: results.append([ {_LABELS_ID2NAME[int(score["label"][-1:])]: "%.2f" % score["score"]} ]) >>> results [[{'correct': '0.00'}], [{'correct_but_incomplete': '0.00'}], [{'contradictory': '1.00'}], [{'incorrect': '0.00'}]] ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. It also inherits some of [the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias). This bias will also affect all fine-tuned versions of this model. Also one of the limiations of this model is the length, longer sequences would lead to wrong predictions, due to the pre-processing phase (after concatentating the input sequences, the important student answer might be pruned!) ## Pre-training data ## Training data The RoBERTa model was pretrained on the reunion of five datasets: - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books; - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers) ; - [CC-News](https://commoncrawl.org/2016/10/news-dataset-available/), a dataset containing 63 millions English news articles crawled between September 2016 and February 2019. - [OpenWebText](https://github.com/jcpeterson/openwebtext), an opensource recreation of the WebText dataset used to train GPT-2, - [Stories](https://arxiv.org/abs/1806.02847) a dataset containing a subset of CommonCrawl data filtered to match the story-like style of Winograd schemas. Together theses datasets weight 160GB of text. ## Fine-tuning data The annotated dataset consists of 900 students’ short constructed answers and their correctness in the given context. Four qualitative levels of correctness are defined, correct, correct-but-incomplete, contradictory and Incorrect. ## Training procedure ### Preprocessing In the preprocessing phase, the following parts are concatenated: _question context_, _question_, _reference_answer_, and _student_answer_ using the separator `[SEP]`. This makes the full text as: ``` [CLS] Context Sentence [SEP] Question Sentence [SEP] Reference Answer Sentence [SEP] Student Answer Sentence [CLS] ``` The data are splitted according to the following ratio: - Training set 80%. - Test set 20%. Lables are mapped as: `{0: "correct", 1: "correct_but_incomplete", 2: "contradictory", 3: "incorrect"}` ### Fine-tuning The model was finetuned on GeForce GTX 960M for 20 minuts. The parameters are: | Parameter | Value | |:-------------------:|:-----:| | Learning rate | 5e-5 | | Weight decay | 0.01 | | Training batch size | 8 | | Epochs | 4 | Here is the scores during the training: | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | |:----------:|:-------------:|:-----------------:|:----------:|:---------:|:----------:|:--------:| | 1 | No log | 0.773334 | 0.713706 | 0.711398 | 0.746059 | 0.713706 | | 2 | 1.069200 | 0.404932 | 0.885279 | 0.884592 | 0.886699 | 0.885279 | | 3 | 0.473700 | 0.247099 | 0.931980 | 0.931675 | 0.933794 | 0.931980 | | 3 | 0.228000 | 0.205577 | 0.954315 | 0.954210 | 0.955258 | 0.954315 | ## Evaluation results When fine-tuned on downstream task of Question Answer Assessment 4 class classification, this model achieved the following results: (scores are rounded to 2 floating points) | | precision | recall | f1-score | support | |:------------------------:|:----------:|:-------:|:--------:|:-------:| | _correct_ | 0.933 | 0.992 | 0.962 | 366 | | _correct_but_incomplete_ | 0.976 | 0.934 | 0.954 | 257 | | _contradictory_ | 0.938 | 0.929 | 0.933 | 113 | | _incorrect_ | 0.975 | 0.932 | 0.953 | 249 | | accuracy | - | - | 0.954 | 985 | | macro avg | 0.955 | 0.947 | 0.950 | 985 | | weighted avg | 0.955 | 0.954 | 0.954 | 985 | Confusion matrix: | Actual \ Predicted | _correct_ | _correct_but_incomplete_ | _contradictory_ | _incorrect_ | |:------------------------:|:---------:|:------------------------:|:---------------:|:-----------:| | _correct_ | 363 | 3 | 0 | 0 | | _correct_but_incomplete_ | 14 | 240 | 0 | 3 | | _contradictory_ | 5 | 0 | 105 | 3 | | _incorrect_ | 7 | 3 | 7 | 232 | The AUC score is: 'micro'= **0.9695** and 'macro': **0.9650**
Zainab18/wikineural-multilingual-ner
636a4486b2c5ee27da393e99675f02b9537b84ff
2022-04-11T11:02:55.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Zainab18
null
Zainab18/wikineural-multilingual-ner
10
null
transformers
11,820
Entry not found
Shiva12/wikineural-multilingual-ner
1b1844a6cabb0fa43d1491ed9e674561ce304e9f
2022-04-11T16:48:56.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Shiva12
null
Shiva12/wikineural-multilingual-ner
10
null
transformers
11,821
Entry not found
tbosse/bert-base-german-cased-finetuned-subj_v5_11Epoch
f81716fe3f58d282c21cf541b65b47d604fe5ab9
2022-04-11T17:08:55.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-finetuned-subj_v5_11Epoch
10
null
transformers
11,822
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_v5_11Epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_v5_11Epoch This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3467 - Precision: 0.8240 - Recall: 0.8287 - F1: 0.8263 - Accuracy: 0.9198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 32 | 0.3485 | 0.6992 | 0.7051 | 0.7021 | 0.8639 | | No log | 2.0 | 64 | 0.2679 | 0.7947 | 0.7612 | 0.7776 | 0.8994 | | No log | 3.0 | 96 | 0.2555 | 0.8073 | 0.8118 | 0.8095 | 0.9112 | | No log | 4.0 | 128 | 0.2591 | 0.8290 | 0.8034 | 0.8160 | 0.9132 | | No log | 5.0 | 160 | 0.2808 | 0.8450 | 0.8118 | 0.8281 | 0.9158 | | No log | 6.0 | 192 | 0.2953 | 0.8386 | 0.8174 | 0.8279 | 0.9172 | | No log | 7.0 | 224 | 0.3164 | 0.8347 | 0.8371 | 0.8359 | 0.9204 | | No log | 8.0 | 256 | 0.3267 | 0.8329 | 0.8258 | 0.8293 | 0.9178 | | No log | 9.0 | 288 | 0.3373 | 0.8268 | 0.8315 | 0.8291 | 0.9198 | | No log | 10.0 | 320 | 0.3450 | 0.8324 | 0.8230 | 0.8277 | 0.9211 | | No log | 11.0 | 352 | 0.3467 | 0.8240 | 0.8287 | 0.8263 | 0.9198 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
veddm/paraphrase-multilingual-MiniLM-L12-v2-finetuned-DIT
8153676d28e97a52e83178c39918f2ce8f379dc7
2022-04-12T15:46:27.000Z
[ "pytorch", "tensorboard", "bert", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
veddm
null
veddm/paraphrase-multilingual-MiniLM-L12-v2-finetuned-DIT
10
null
transformers
11,823
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: paraphrase-multilingual-MiniLM-L12-v2-finetuned-DIT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paraphrase-multilingual-MiniLM-L12-v2-finetuned-DIT This model is a fine-tuned version of [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.4783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 91 | 9.2794 | | No log | 2.0 | 182 | 8.1920 | | No log | 3.0 | 273 | 7.6378 | | No log | 4.0 | 364 | 7.4783 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
Salesforce/codegen-16B-nl
3b002d57ed722e369199c1430923fe0b7e2402de
2022-06-28T18:08:08.000Z
[ "pytorch", "codegen", "text-generation", "arxiv:2203.13474", "transformers", "license:bsd-3-clause" ]
text-generation
false
Salesforce
null
Salesforce/codegen-16B-nl
10
2
transformers
11,824
--- license: bsd-3-clause --- # CodeGen (CodeGen-NL 16B) ## Model description CodeGen is a family of autoregressive language models for **program synthesis** from the paper: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. The models are originally released in [this repository](https://github.com/salesforce/CodeGen), under 3 pre-training data variants (`NL`, `Multi`, `Mono`) and 4 model size variants (`350M`, `2B`, `6B`, `16B`). The checkpoint included in this repository is denoted as **CodeGen-NL 16B** in the paper, where "NL" means it is pre-trained on the Pile and "16B" refers to the number of trainable parameters. ## Training data This checkpoint (CodeGen-NL 16B) was pre-trained on [the Pile](https://github.com/EleutherAI/the-pile), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai/). Parts of the dataset include code data. ## Training procedure CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs. The family of models are trained using multiple TPU-v4-512 by Google, leveraging data and model parallelism. See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Evaluation results We evaluate our models on two code generation benchmark: HumanEval and MTPB. Please refer to the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Intended Use and Limitations As an autoregressive language model, CodeGen is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them. However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well. ## How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-16B-nl") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-16B-nl") text = "def hello_world():" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ## BibTeX entry and citation info ```bibtex @article{Nijkamp2022ACP, title={A Conversational Paradigm for Program Synthesis}, author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming}, journal={arXiv preprint}, year={2022} } ```
Intel/albert-base-v2-sst2-int8-static
aed2b7c8c238bec371b744a926597fa54026dc3e
2022-06-10T02:41:02.000Z
[ "pytorch", "albert", "text-classification", "en", "dataset:glue", "transformers", "text-classfication", "int8", "Intel® Neural Compressor", "PostTrainingStatic", "license:apache-2.0" ]
text-classification
false
Intel
null
Intel/albert-base-v2-sst2-int8-static
10
0
transformers
11,825
--- language: - en license: apache-2.0 tags: - text-classfication - int8 - Intel® Neural Compressor - PostTrainingStatic datasets: - glue metrics: - accuracy model_index: - name: sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.9254587155963303 --- # INT8 albert-base-v2-sst2 ### Post-training static quantization This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [Alireza1044/albert-base-v2-sst2](https://huggingface.co/Alireza1044/albert-base-v2-sst2). The calibration dataloader is the train dataloader. The default calibration sampling size 300 isn't divisible exactly by batch size 8, so the real sampling size is 304. The linear modules **albert.encoder.albert_layer_groups.0.albert_layers.0.ffn_output.module, albert.encoder.albert_layer_groups.0.albert_layers.0.ffn.module** fall back to fp32 to meet the 1% relative accuracy loss. ### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-accuracy)** |0.9255|0.9232| | **Model size (MB)** |25|44.6| ### Load with Intel® Neural Compressor: ```python from neural_compressor.utils.load_huggingface import OptimizedModel int8_model = OptimizedModel.from_pretrained( 'Intel/albert-base-v2-sst2-int8-static', ) ```
Helsinki-NLP/opus-mt-tc-big-en-hu
8ec0362c0de8e9d7d5b238b58845b8a65087b366
2022-06-01T13:04:00.000Z
[ "pytorch", "marian", "text2text-generation", "en", "hu", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-en-hu
10
null
transformers
11,826
--- language: - en - hu tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-en-hu results: - task: name: Translation eng-hun type: translation args: eng-hun dataset: name: flores101-devtest type: flores_101 args: eng hun devtest metrics: - name: BLEU type: bleu value: 29.6 - task: name: Translation eng-hun type: translation args: eng-hun dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-hun metrics: - name: BLEU type: bleu value: 38.7 - task: name: Translation eng-hun type: translation args: eng-hun dataset: name: newstest2009 type: wmt-2009-news args: eng-hun metrics: - name: BLEU type: bleu value: 20.3 --- # opus-mt-tc-big-en-hu Neural machine translation model for translating from English (en) to Hungarian (hu). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-02-25 * source language(s): eng * target language(s): hun * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hun/opusTCv20210807+bt_transformer-big_2022-02-25.zip) * more information released models: [OPUS-MT eng-hun README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-hun/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "I wish I hadn't seen such a horrible film.", "She's at school." ] model_name = "pytorch-models/opus-mt-tc-big-en-hu" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Bárcsak ne láttam volna ilyen szörnyű filmet. # Iskolában van. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-hu") print(pipe("I wish I hadn't seen such a horrible film.")) # expected output: Bárcsak ne láttam volna ilyen szörnyű filmet. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hun/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hun/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-hun | tatoeba-test-v2021-08-07 | 0.62096 | 38.7 | 13037 | 79562 | | eng-hun | flores101-devtest | 0.60159 | 29.6 | 1012 | 22183 | | eng-hun | newssyscomb2009 | 0.51918 | 20.6 | 502 | 9733 | | eng-hun | newstest2009 | 0.50973 | 20.3 | 2525 | 54965 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 17:21:20 EEST 2022 * port machine: LM0-400-22516.local
omar47/wav2vec2-large-xls-r-300m-urdu-colab
4d3c1b05bff9375203a0c3ee95c46da1cc25a9df
2022-04-13T19:52:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
omar47
null
omar47/wav2vec2-large-xls-r-300m-urdu-colab
10
null
transformers
11,827
Entry not found
x180/macbert4csc-scalarmix-base-chinese
51f73a48a28ce312b747c8a6e50fab2446335a1c
2022-04-14T05:53:56.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
x180
null
x180/macbert4csc-scalarmix-base-chinese
10
1
transformers
11,828
--- license: apache-2.0 --- ## 介绍 > 基于macbert对mask language model微调,进行错字修改。 这个是在[shibing624/macbert4csc-base-chinese](https://huggingface.co/shibing624/macbert4csc-base-chinese/tree/main)的基础上进行修改, 其对应的 [源码位置](https://github.com/shibing624/pycorrector/tree/master/pycorrector/macbert)。 ## 使用 可参考[shibing624/macbert4csc-base-chinese](https://huggingface.co/shibing624/macbert4csc-base-chinese)。 ## 改动 主要改动两个地方: 1. MLM和错字检测二分类超参改成0.9和0.1(当然不一定是最优参数)。 2. 对错字检测二分类引入一个ScalarMix layer,原代码使用hidden_states最后一层,个人觉得稍微有点深以及学习起来可能更复杂。 ## 思考 整体下来错字检测二分类对整体模型效果影响并没有很突出,以及整体模型效果并没有超出原作者多少,所以上传这个代码以及模型更多是为了学习记录与思考。 其以[pycorrector eval.py](https://github.com/shibing624/pycorrector/blob/master/pycorrector/utils/eval.py)跑出来的结果如下: corpus数据集: ``` Sentence Level: acc:0.7200, precision:0.8804, recall:0.6154, f1:0.7244, cost time:5.67 s ``` sighan2015数据集: ``` Sentence Level: acc:0.7973, precision:0.8265, recall:0.7459, f1:0.7841, cost time:11.19 s ```
huggingtweets/jeffbezos
e5a5a7abee5a2646fc0081ffe91a2c1f33369cd2
2022-05-27T11:34:00.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jeffbezos
10
null
transformers
11,829
--- language: en thumbnail: http://www.huggingtweets.com/jeffbezos/1653651235626/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/669103856106668033/UF3cgUk4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jeff Bezos</div> <div style="text-align: center; font-size: 14px;">@jeffbezos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jeff Bezos. | Data | Jeff Bezos | | --- | --- | | Tweets downloaded | 346 | | Retweets | 25 | | Short tweets | 20 | | Tweets kept | 301 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jxv4rw0y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jeffbezos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/pcrlflzk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/pcrlflzk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jeffbezos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
MartinoMensio/racism-models-regression-w-m-vote-epoch-4
e38d990c7cd14098a5b804a3105f24b61de7ee90
2022-05-04T16:22:45.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-regression-w-m-vote-epoch-4
10
null
transformers
11,830
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `regression-w-m-vote-epoch-4` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline from transformers.pipelines import TextClassificationPipeline class TextRegressionPipeline(TextClassificationPipeline): """ Class based on the TextClassificationPipeline from transformers. The difference is that instead of being based on a classifier, it is based on a regressor. You can specify the regression threshold when you call the pipeline or when you instantiate the pipeline. """ def __init__(self, **kwargs): """ Builds a new Pipeline based on regression. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold = kwargs.pop("regression_threshold", None) super().__init__(**kwargs) def __call__(self, *args, **kwargs): """ You can also specify the regression threshold when you call the pipeline. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold_call = kwargs.pop("regression_threshold", None) result = super().__call__(*args, **kwargs) return result def postprocess(self, model_outputs, function_to_apply=None, return_all_scores=False): outputs = model_outputs["logits"][0] outputs = outputs.numpy() scores = outputs score = scores[0] regression_threshold = self.regression_threshold # override the specific threshold if it is specified in the call if self.regression_threshold_call: regression_threshold = self.regression_threshold_call if regression_threshold: return {"label": 'racist' if score > regression_threshold else 'non-racist', "score": score} else: return {"score": score} model_name = 'regression-w-m-vote-epoch-4' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = TextRegressionPipeline(model=model, tokenizer=tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] # just get the score of regression print(pipe(texts)) # [{'score': 0.8345461}, {'score': 0.48615143}] # or also specify a threshold to cut racist/non-racist print(pipe(texts, regression_threshold=0.9)) # [{'label': 'non-racist', 'score': 0.8345461}, {'label': 'non-racist', 'score': 0.48615143}] ``` For more details, see https://github.com/preyero/neatclass22
paulagarciaserrano/roberta-depression-detection
30514b351f5c553299e5b8500d29630df0337768
2022-05-05T13:42:30.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:Shared task on Detecting Signs of Depression from Social Media Text at LT-EDI 2022-ACL 2022", "transformers" ]
text-classification
false
paulagarciaserrano
null
paulagarciaserrano/roberta-depression-detection
10
null
transformers
11,831
--- language: "en" datasets: - Shared task on Detecting Signs of Depression from Social Media Text at LT-EDI 2022-ACL 2022 metrics: - Macro F1-Score --- # Roberta for depression signs detection This model is a fine-tuned version the <a href="https://huggingface.co/cardiffnlp/twitter-roberta-base">cardiffnlp/twitter-roberta-base</a> model. It has been trained using a recently published corpus: <a href="https://competitions.codalab.org/competitions/36410#learn_the_details">Shared task on Detecting Signs of Depression from Social Media Text at LT-EDI 2022-ACL 2022</a>. The obtained macro f1-score is 0.54, on the development set of the competition. # Intended uses This model is trained to classify the given text into one of the following classes: *moderate*, *severe*, or *not depression*. It corresponds to a **multiclass classification** task. # How to use You can use this model directly with a pipeline for text classification: ```python >>> from transformers import pipeline >>> classifier = pipeline("text-classification", model="paulagarciaserrano/roberta-depression-detection") >>> your_text = "I am very sad." >>> classifier (your_text) ``` # Training and evaluation data The **train** dataset characteristics are: <table> <tr> <th>Class</th> <th>Nº sentences</th> <th>Avg. document length (in sentences)</th> <th>Nº words</th> <th>Avg. sentence length (in words)</th> </tr> <tr> <th>not depression</th> <td>7,884</td> <td>4</td> <td>153,738</td> <td>78</td> </tr> <tr> <th>moderate</th> <td>36,114</td> <td>6</td> <td>601,900</td> <td>100</td> </tr> <tr> <th>severe</th> <td>9,911</td> <td>11</td> <td>126,140</td> <td>140</td> </tr> </table> Similarly, the **evaluation** dataset characteristics are: <table> <tr> <th>Class</th> <th>Nº sentences</th> <th>Avg. document length (in sentences)</th> <th>Nº words</th> <th>Avg. sentence length (in words)</th> </tr> <tr> <th>not depression</th> <td>3,660</td> <td>2</td> <td>10,980</td> <td>6</td> </tr> <tr> <th>moderate</th> <td>66,874</td> <td>29</td> <td>804,794</td> <td>349</td> </tr> <tr> <th>severe</th> <td>2,880</td> <td>8</td> <td>75,240</td> <td>209</td> </tr> </table> # Training hyperparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * evaluation_strategy: epoch * save_strategy: epoch * per_device_train_batch_size: 8 * per_device_eval_batch_size: 8 * num_train_epochs: 5 * seed: 10 * weight_decay: 0.01 * metric_for_best_model: macro-f1
theta/MBTI-ckiplab-albert
e8aba53863fcd2c63205bf6bb91cb219cc5ea07c
2022-05-14T12:00:14.000Z
[ "pytorch", "albert", "text-classification", "zh", "transformers", "MBTI", "zh-tw", "generated_from_trainer", "model-index" ]
text-classification
false
theta
null
theta/MBTI-ckiplab-albert
10
null
transformers
11,832
--- language: - zh tags: - MBTI - zh - zh-tw - generated_from_trainer model-index: - name: MBTI-ckiplab-albert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MBTI-ckiplab-albert This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
xysmalobia/distilbert-base-uncased-finetuned-emotion
6ec49cdb94f5dc3c0d79ef6eba3902c366b37d16
2022-04-17T20:09:18.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
xysmalobia
null
xysmalobia/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,833
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9227457538297092 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2161 - Accuracy: 0.923 - F1: 0.9227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8365 | 1.0 | 250 | 0.3102 | 0.9075 | 0.9051 | | 0.246 | 2.0 | 500 | 0.2161 | 0.923 | 0.9227 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
stevenlx96/distilbert-base-uncased-finetuned-hated
3a9503e30167f42331022bf69301bab25256a9b8
2022-04-19T11:30:24.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
stevenlx96
null
stevenlx96/distilbert-base-uncased-finetuned-hated
10
null
transformers
11,834
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-hated results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-hated This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5042 - Accuracy: 0.8135 - F1: 0.8127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7267 | 1.0 | 215 | 0.5443 | 0.7832 | 0.7833 | | 0.4548 | 2.0 | 430 | 0.5042 | 0.8135 | 0.8127 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
GPL/bioasq-msmarco-distilbert-gpl
56eeded4f649cb026346fa35c8a37e7114e39590
2022-04-19T16:41:44.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/bioasq-msmarco-distilbert-gpl
10
null
sentence-transformers
11,835
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Kateryna/eva_ru_forum_headlines
2d3d0cf874260663f497b5feb0cd691dc5d43faf
2022-04-21T02:19:58.000Z
[ "pytorch", "t5", "text2text-generation", "ru", "transformers", "autotrain_compatible" ]
text2text-generation
false
Kateryna
null
Kateryna/eva_ru_forum_headlines
10
null
transformers
11,836
--- language: - ru widget: - text: "Я влюбилась в одного парня. Каждый раз, когда он меня видит, он плюется и переходит на другую сторону улицы. Как вы думаете, он меня любит?" - text: "Дочке 15, книг не читает, вся жизнь (вне школы) в телефоне на кровати. Любознательности ноль. Куда-то поехать в новое место, узнать что-то, найти интересные курсы - вообще не про нее. Учеба все хуже, багажа знаний уже нет, списывает и выкручивается в течение четверти, как контрольная или что-то посерьезнее, где не списать - на 2-3. При любой возможности не ходит в школу (голова болит, можно сегодня не пойду. а потом пятница, что на один день ходить...)" - "Ребёнок учится в 8 классе. По алгебре одни тройки. Но это точно 2. Просто учитель не будет ставить в четверти 2. Она гуманитарий. Алгебра никак не идёт. Репетитор сейчас занимается, понимает только лёгкие темы. Я боюсь, что провалит ОГЭ. Там пересдать можно? А если опять 2,это второй год?" --- # eva_ru_forum_headlines ## Model Description The model was trained on forum topics names and first posts (100 - 150 words). It generates short headlines (3 - 5 words) in the opposite to headlines from models trained on newspaper articles. "I do not know how to title this post" can be a valid headline. "What would you do in my place?" is one of the most popular headline. ### Usage ```python from transformers import AutoTokenizer, T5ForConditionalGeneration model_name = "Kateryna/eva_ru_forum_headlines" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Я влюбилась в одного парня. Каждый раз, когда он меня видит, он плюется и переходит на другую сторону улицы. Как вы думаете, он меня любит?" input_ids = tokenizer( [text], max_length=150, add_special_tokens=True, padding="max_length", truncation=True, return_tensors="pt" )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=25, num_beams=4, repetition_penalty=5.0, no_repeat_ngram_size=4 )[0] headline = tokenizer.decode(output_ids, skip_special_tokens=True) print(headline) ``` ### Training and Validation Training dataset: https://huggingface.co/datasets/Kateryna/eva_ru_forum_headlines From all available posts and topics names I selected only posts and abstractive topic names e.g. the topic name does not match exactly anything in the correspondent post. The base model is cointegrated/rut5-base Training parameters: - max_source_tokens_count = 150 - max_target_tokens_count = 25 - learning_rate = 0.0007 - num_train_epochs = 3 - batch_size = 8 - gradient_accumulation_steps = 96 ROUGE and BLUE scores were not very helpful to choose a best model. I manually estimated ~100 results in each candidate model. 1. The less gradient_accumulation_steps the more abstractive headlines but they becomes less and less related to the correspondent posts. The worse model with gradient_accumulation_steps = 1 had all headlines abstractive but random. 2. The source for the model is real short texts created by ordinary persons without any editing. In many cases, the forum posts are not connected sentences and it is not clear what the author wanted to say or discuss. Sometimes there is a contradiction in the text and only the real topic name reveals what this all about. Naturally the model fails to produce a good headline in such cases. https://github.com/KaterynaD/eva.ru/tree/main/Code/Notebooks/9.%20Headlines
nirmalkumar/distilledgpt2-cric-commentary
48422d894e5348447996279ca5c4ec89fe764fe4
2022-04-20T12:02:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
nirmalkumar
null
nirmalkumar/distilledgpt2-cric-commentary
10
null
transformers
11,837
Entry not found
thanawan/bert-base-uncased-finetuned-humordetection
63863e231f6bfb7a621f6347d1326d33388d027e
2022-04-21T06:35:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
thanawan
null
thanawan/bert-base-uncased-finetuned-humordetection
10
null
transformers
11,838
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-uncased-finetuned-humordetection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-humordetection This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3136 - F1: 0.9586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 375 | 0.1768 | 0.9507 | | 0.2266 | 2.0 | 750 | 0.1910 | 0.9553 | | 0.08 | 3.0 | 1125 | 0.2822 | 0.9529 | | 0.0194 | 4.0 | 1500 | 0.2989 | 0.9560 | | 0.0194 | 5.0 | 1875 | 0.3136 | 0.9586 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Goud/DarijaBERT-summarization-goud
e6cd677a42ff8fffe7fd18c835e94bedde93d3d5
2022-04-29T15:07:03.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "Moroccan Arabic (MA)", "Modern Standard Arabic (MSA)", "dataset:Goud/Goud-sum", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
Goud
null
Goud/DarijaBERT-summarization-goud
10
1
transformers
11,839
--- datasets: - Goud/Goud-sum language: - "Moroccan Arabic (MA)" - "Modern Standard Arabic (MSA)" metrics: - rouge tags: - summarization widget: - text: "توصل الاتحاد الأوروبي، في وقت مبكر من اليوم السبت، إلى اتفاق تاريخي يستهدف خطاب الكراهية والمعلومات المضللة والمحتويات الضارة الأخرى الموجودة على شبكة الإنترنيت. وحسب تقارير صحفية، سيجبر القانون شركات التكنولوجيا الكبرى على مراقبة نفسها بشكل أكثر صرامة، ويسهل على المستخدمين الإبلاغ عن المشاكل، ويمكن الاتفاق المنظمين من معاقبة الشركات غير الممتثلة بغرامات تقدر بالملايير. ويركز الاتفاق على قواعد جديدة تتطلب من شركات التكنولوجيا العملاقة بذل المزيد من الجهد لمراقبة المحتوى على منصاتها ودفع رسوم للجهات المنظمة التي تراقب مدى امتثالها. ويعد قانون الخدمات الرقمية الشق الثاني من إستراتيجية المفوضة الأوروبية لشؤون المنافسة، مارغريت فيستاغر، للحد من هيمنة وحدة غوغل التابعة لألفابت، وميتا (فيسبوك سابقا) وغيرهما من شركات التكنولوجيا الأمريكية العملاقة. وقالت فيستاغر في تغريدة “توصلنا إلى اتفاق بشأن قانون الخدمات الرقمية، موضحة أن القانون سيضمن أن ما يعتبر غير قانوني في حالة عدم الاتصال بالشبكة ينظر إليه أيضا ويتم التعامل معه على أنه غير قانوني عبر الشبكة (الإنترنت) – ليس كشعار (ولكن) كواقع”. وتواجه الشركات بموجب قانون الخدمات الرقمية غرامات تصل إلى 6 في المائة من إجمالي عملياتها على مستوى العالم لانتهاك القواعد بينما قد تؤدي الانتهاكات المتكررة إلى حظرها من ممارسة أعمالها في الاتحاد الأوروبي. وأيدت دول الاتحاد والمشرعون الشهر الماضي القواعد التي طرحتها فيستاغر والمسماة قانون الأسواق الرقمية التي قد تجبر غوغل وأمازون وأبل وميتا وميكروسوفت على تغيير ممارساتها الأساسية في أوروبا. " --- This model was introduced in [this paper](https://openreview.net/forum?id=BMVq5MELb9). It is an encoder-decoder model that was initialized with [DarijaBERT](https://huggingface.co/Kamel/DarijaBERT) checkpoint. The model is finetuned for text summarization on [Goud dataset](https://huggingface.co/datasets/Goud/Goud-sum). ## How to use This is how you can use this model ```python from transformers import EncoderDecoderModel, BertTokenizer article = """توصل الاتحاد الأوروبي، في وقت مبكر من اليوم السبت، إلى اتفاق تاريخي يستهدف خطاب الكراهية والمعلومات المضللة والمحتويات الضارة الأخرى الموجودة على شبكة الإنترنيت. وحسب تقارير صحفية، سيجبر القانون شركات التكنولوجيا الكبرى على مراقبة نفسها بشكل أكثر صرامة، ويسهل على المستخدمين الإبلاغ عن المشاكل، ويمكن الاتفاق المنظمين من معاقبة الشركات غير الممتثلة بغرامات تقدر بالملايير. ويركز الاتفاق على قواعد جديدة تتطلب من شركات التكنولوجيا العملاقة بذل المزيد من الجهد لمراقبة المحتوى على منصاتها ودفع رسوم للجهات المنظمة التي تراقب مدى امتثالها. ويعد قانون الخدمات الرقمية الشق الثاني من إستراتيجية المفوضة الأوروبية لشؤون المنافسة، مارغريت فيستاغر، للحد من هيمنة وحدة غوغل التابعة لألفابت، وميتا (فيسبوك سابقا) وغيرهما من شركات التكنولوجيا الأمريكية العملاقة. وقالت فيستاغر في تغريدة “توصلنا إلى اتفاق بشأن قانون الخدمات الرقمية، موضحة أن القانون سيضمن أن ما يعتبر غير قانوني في حالة عدم الاتصال بالشبكة ينظر إليه أيضا ويتم التعامل معه على أنه غير قانوني عبر الشبكة (الإنترنت) – ليس كشعار (ولكن) كواقع”. وتواجه الشركات بموجب قانون الخدمات الرقمية غرامات تصل إلى 6 في المائة من إجمالي عملياتها على مستوى العالم لانتهاك القواعد بينما قد تؤدي الانتهاكات المتكررة إلى حظرها من ممارسة أعمالها في الاتحاد الأوروبي. وأيدت دول الاتحاد والمشرعون الشهر الماضي القواعد التي طرحتها فيستاغر والمسماة قانون الأسواق الرقمية التي قد تجبر غوغل وأمازون وأبل وميتا وميكروسوفت على تغيير ممارساتها الأساسية في أوروبا. """ tokenizer = BertTokenizer.from_pretrained("Goud/DarijaBERT-summarization-goud") model = EncoderDecoderModel.from_pretrained("Goud/DarijaBERT-summarization-goud") input_ids = tokenizer(article, return_tensors="pt", truncation=True, padding=True).input_ids generated = model.generate(input_ids)[0] output = tokenizer.decode(generated, skip_special_tokens=True) ``` ## Citation Information ``` @inproceedings{issam2022goudma, title={Goud.ma: a News Article Dataset for Summarization in Moroccan Darija}, author={Abderrahmane Issam and Khalil Mrini}, booktitle={3rd Workshop on African Natural Language Processing}, year={2022}, url={https://openreview.net/forum?id=BMVq5MELb9} } ```
Goud/AraBERT-summarization-goud
ffff7a63b12d84267ce3fd1921cf3687ba76e9be
2022-04-29T15:06:47.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "Moroccan Arabic (MA)", "Modern Standard Arabic (MSA)", "dataset:Goud/Goud-sum", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
Goud
null
Goud/AraBERT-summarization-goud
10
null
transformers
11,840
--- datasets: - Goud/Goud-sum language: - "Moroccan Arabic (MA)" - "Modern Standard Arabic (MSA)" metrics: - rouge tags: - summarization widget: - text: "توصل الاتحاد الأوروبي، في وقت مبكر من اليوم السبت، إلى اتفاق تاريخي يستهدف خطاب الكراهية والمعلومات المضللة والمحتويات الضارة الأخرى الموجودة على شبكة الإنترنيت. وحسب تقارير صحفية، سيجبر القانون شركات التكنولوجيا الكبرى على مراقبة نفسها بشكل أكثر صرامة، ويسهل على المستخدمين الإبلاغ عن المشاكل، ويمكن الاتفاق المنظمين من معاقبة الشركات غير الممتثلة بغرامات تقدر بالملايير. ويركز الاتفاق على قواعد جديدة تتطلب من شركات التكنولوجيا العملاقة بذل المزيد من الجهد لمراقبة المحتوى على منصاتها ودفع رسوم للجهات المنظمة التي تراقب مدى امتثالها. ويعد قانون الخدمات الرقمية الشق الثاني من إستراتيجية المفوضة الأوروبية لشؤون المنافسة، مارغريت فيستاغر، للحد من هيمنة وحدة غوغل التابعة لألفابت، وميتا (فيسبوك سابقا) وغيرهما من شركات التكنولوجيا الأمريكية العملاقة. وقالت فيستاغر في تغريدة “توصلنا إلى اتفاق بشأن قانون الخدمات الرقمية، موضحة أن القانون سيضمن أن ما يعتبر غير قانوني في حالة عدم الاتصال بالشبكة ينظر إليه أيضا ويتم التعامل معه على أنه غير قانوني عبر الشبكة (الإنترنت) – ليس كشعار (ولكن) كواقع”. وتواجه الشركات بموجب قانون الخدمات الرقمية غرامات تصل إلى 6 في المائة من إجمالي عملياتها على مستوى العالم لانتهاك القواعد بينما قد تؤدي الانتهاكات المتكررة إلى حظرها من ممارسة أعمالها في الاتحاد الأوروبي. وأيدت دول الاتحاد والمشرعون الشهر الماضي القواعد التي طرحتها فيستاغر والمسماة قانون الأسواق الرقمية التي قد تجبر غوغل وأمازون وأبل وميتا وميكروسوفت على تغيير ممارساتها الأساسية في أوروبا. " --- This model was introduced in [this paper](https://openreview.net/forum?id=BMVq5MELb9). It is an encoder-decoder model that was initialized with [bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) checkpoint. The model is finetuned for text summarization on [Goud dataset](https://huggingface.co/datasets/Goud/Goud-sum). ## How to use This is how you can use this model ```python from transformers import EncoderDecoderModel, BertTokenizer article = """توصل الاتحاد الأوروبي، في وقت مبكر من اليوم السبت، إلى اتفاق تاريخي يستهدف خطاب الكراهية والمعلومات المضللة والمحتويات الضارة الأخرى الموجودة على شبكة الإنترنيت. وحسب تقارير صحفية، سيجبر القانون شركات التكنولوجيا الكبرى على مراقبة نفسها بشكل أكثر صرامة، ويسهل على المستخدمين الإبلاغ عن المشاكل، ويمكن الاتفاق المنظمين من معاقبة الشركات غير الممتثلة بغرامات تقدر بالملايير. ويركز الاتفاق على قواعد جديدة تتطلب من شركات التكنولوجيا العملاقة بذل المزيد من الجهد لمراقبة المحتوى على منصاتها ودفع رسوم للجهات المنظمة التي تراقب مدى امتثالها. ويعد قانون الخدمات الرقمية الشق الثاني من إستراتيجية المفوضة الأوروبية لشؤون المنافسة، مارغريت فيستاغر، للحد من هيمنة وحدة غوغل التابعة لألفابت، وميتا (فيسبوك سابقا) وغيرهما من شركات التكنولوجيا الأمريكية العملاقة. وقالت فيستاغر في تغريدة “توصلنا إلى اتفاق بشأن قانون الخدمات الرقمية، موضحة أن القانون سيضمن أن ما يعتبر غير قانوني في حالة عدم الاتصال بالشبكة ينظر إليه أيضا ويتم التعامل معه على أنه غير قانوني عبر الشبكة (الإنترنت) – ليس كشعار (ولكن) كواقع”. وتواجه الشركات بموجب قانون الخدمات الرقمية غرامات تصل إلى 6 في المائة من إجمالي عملياتها على مستوى العالم لانتهاك القواعد بينما قد تؤدي الانتهاكات المتكررة إلى حظرها من ممارسة أعمالها في الاتحاد الأوروبي. وأيدت دول الاتحاد والمشرعون الشهر الماضي القواعد التي طرحتها فيستاغر والمسماة قانون الأسواق الرقمية التي قد تجبر غوغل وأمازون وأبل وميتا وميكروسوفت على تغيير ممارساتها الأساسية في أوروبا. """ tokenizer = BertTokenizer.from_pretrained("Goud/AraBERT-summarization-goud") model = EncoderDecoderModel.from_pretrained("Goud/AraBERT-summarization-goud") input_ids = tokenizer(article, return_tensors="pt", truncation=True, padding=True).input_ids generated = model.generate(input_ids)[0] output = tokenizer.decode(generated, skip_special_tokens=True) ``` ## Citation Information ``` @inproceedings{issam2022goudma, title={Goud.ma: a News Article Dataset for Summarization in Moroccan Darija}, author={Abderrahmane Issam and Khalil Mrini}, booktitle={3rd Workshop on African Natural Language Processing}, year={2022}, url={https://openreview.net/forum?id=BMVq5MELb9} } ```
AswiN037/xlm-roberta-squad-tamil
aed867e234a43d47d65716dfc6a9d8f9130ea07a
2022-05-31T04:15:42.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "license:osl-3.0", "autotrain_compatible" ]
question-answering
false
AswiN037
null
AswiN037/xlm-roberta-squad-tamil
10
null
transformers
11,841
--- license: osl-3.0 --- Question Answering model
surrey-nlp/albert-large-v2-finetuned-abbDet
a5356083cb6317203b97fe016a9d42e264613599
2022-04-30T12:15:44.000Z
[ "pytorch", "albert", "token-classification", "en", "dataset:surrey-nlp/PLOD-unfiltered", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
surrey-nlp
null
surrey-nlp/albert-large-v2-finetuned-abbDet
10
1
transformers
11,842
--- license: apache-2.0 tags: - generated_from_trainer datasets: - surrey-nlp/PLOD-unfiltered metrics: - precision - recall - f1 - accuracy language: - en widget: - text: "Light dissolved inorganic carbon (DIC) resulting from the oxidation of hydrocarbons." - text: "RAFs are plotted for a selection of neurons in the dorsal zone (DZ) of auditory cortex in Figure 1." - text: "Images were acquired using a GE 3.0T MRI scanner with an upgrade for echo-planar imaging (EPI)." model-index: - name: albert-large-v2-finetuned-ner_with_callbacks results: - task: name: Token Classification type: token-classification dataset: name: surrey-nlp/PLOD-unfiltered type: token-classification args: PLODunfiltered metrics: - name: Precision type: precision value: 0.9655166719570215 - name: Recall type: recall value: 0.9608483288141474 - name: F1 type: f1 value: 0.9631768437660728 - name: Accuracy type: accuracy value: 0.9589410429715819 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2-finetuned-ner_with_callbacks This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the [PLOD-unfiltered](https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered) dataset. It achieves the following results on the evaluation set: - Loss: 0.1235 - Precision: 0.9655 - Recall: 0.9608 - F1: 0.9632 - Accuracy: 0.9589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1377 | 0.49 | 7000 | 0.1294 | 0.9563 | 0.9422 | 0.9492 | 0.9436 | | 0.1244 | 0.98 | 14000 | 0.1165 | 0.9589 | 0.9504 | 0.9546 | 0.9499 | | 0.107 | 1.48 | 21000 | 0.1140 | 0.9603 | 0.9509 | 0.9556 | 0.9511 | | 0.1088 | 1.97 | 28000 | 0.1086 | 0.9613 | 0.9551 | 0.9582 | 0.9536 | | 0.0918 | 2.46 | 35000 | 0.1059 | 0.9617 | 0.9582 | 0.9600 | 0.9556 | | 0.0847 | 2.95 | 42000 | 0.1067 | 0.9620 | 0.9586 | 0.9603 | 0.9559 | | 0.0734 | 3.44 | 49000 | 0.1188 | 0.9646 | 0.9588 | 0.9617 | 0.9574 | | 0.0725 | 3.93 | 56000 | 0.1065 | 0.9660 | 0.9599 | 0.9630 | 0.9588 | | 0.0547 | 4.43 | 63000 | 0.1273 | 0.9662 | 0.9602 | 0.9632 | 0.9590 | | 0.0542 | 4.92 | 70000 | 0.1235 | 0.9655 | 0.9608 | 0.9632 | 0.9589 | | 0.0374 | 5.41 | 77000 | 0.1401 | 0.9647 | 0.9613 | 0.9630 | 0.9586 | | 0.0417 | 5.9 | 84000 | 0.1380 | 0.9641 | 0.9622 | 0.9632 | 0.9588 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Sarim24/distilbert-base-uncased-finetuned-clinc
1b83ff5ab738567d549ea2014a2391088b579192
2022-04-23T19:40:13.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Sarim24
null
Sarim24/distilbert-base-uncased-finetuned-clinc
10
null
transformers
11,843
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9116129032258065 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7730 - Accuracy: 0.9116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.3075 | 0.7416 | | 3.8069 | 2.0 | 636 | 1.8792 | 0.8384 | | 3.8069 | 3.0 | 954 | 1.1514 | 0.8939 | | 1.6848 | 4.0 | 1272 | 0.8567 | 0.9077 | | 0.8902 | 5.0 | 1590 | 0.7730 | 0.9116 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
magistermilitum/roberta-multilingual-medieval-ner
bee8c0fec9cadf4aeeb2488df4d5fba7582bd653
2022-04-24T21:42:00.000Z
[ "pytorch", "xlm-roberta", "token-classification", "Latin", "French", "Spanish", "transformers", "text", "named entity recognition", "roberta", "historical languages", "precision", "recall", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
magistermilitum
null
magistermilitum/roberta-multilingual-medieval-ner
10
null
transformers
11,844
--- language: - Latin - French - Spanish license: cc-by-nc-4.0 tags: - text # Example: audio - named entity recognition - roberta - historical languages - precision # Example: wer. Use metric id from https://hf.co/metrics - recall model-index: - name: roberta-multilingual-medieval-ner results: - task: type: named entity recognition # Required. Example: automatic-speech-recognition metrics: - type: precision value: 98.01 - type: Recall value: 97.08 inference: parameters: aggregation_strategy: 'simple' widget: - text: "In nomine sanctæ et individuæ Trinitatis. Ego Guido, Dei gratia Cathalaunensis episcopus, propter inevitabilem temporum mutationem et casum decedentium quotidie personarum, necesse habemus litteris annotare quod dampnosa delere non possit oblivio. Eapropter notum fieri volumus tam futuris quam presentibus quod, pro remedio animæ meæ et predecessorum nostrorum, abbati et fratribus de Insula altare de Hattunmaisnil dedimus et perpetuo habendum concessimus, salvis custumiis nostris et archidiaconi loci illius. Ne hoc ergo malignorum hominum perversitate aut temporis alteratur incommodo presentem paginam sigilli nostri impressione firmavimus, testibus subnotatis : S. Raynardy capellani, Roberti Armensis, Mathei de Waisseio, Michaeli decani, Hugonis de Monasterio, Hervaudi de Panceio. Data per manum Gerardi cancellarii, anno ab incarnatione Domini millesimo centesimo septuagesimo octavo. " ---
Miranda/t5-small-train
a5911178380da9aac8bfe2aea88ba7f050ff6551
2022-04-30T20:50:31.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
Miranda
null
Miranda/t5-small-train
10
null
transformers
11,845
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: t5-small-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-train This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2367 - Rouge1: 43.9525 - Rouge2: 22.3403 - Rougel: 38.7683 - Rougelsum: 39.2056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.6e-05 - train_batch_size: 9 - eval_batch_size: 9 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.3237 | 1.0 | 40 | 2.6713 | 34.4731 | 14.9731 | 29.4814 | 29.9747 | | 2.7401 | 2.0 | 80 | 2.4318 | 38.1153 | 18.3492 | 33.4476 | 33.9181 | | 2.5882 | 3.0 | 120 | 2.3339 | 41.2707 | 19.8571 | 36.2685 | 36.6119 | | 2.4264 | 4.0 | 160 | 2.2878 | 42.184 | 20.9666 | 37.3488 | 37.6172 | | 2.3915 | 5.0 | 200 | 2.2605 | 43.4928 | 21.7195 | 38.4917 | 38.8471 | | 2.3599 | 6.0 | 240 | 2.2462 | 44.2876 | 22.28 | 38.9234 | 39.3673 | | 2.3073 | 7.0 | 280 | 2.2398 | 43.9822 | 22.3746 | 38.7625 | 39.0964 | | 2.3026 | 8.0 | 320 | 2.2367 | 43.9525 | 22.3403 | 38.7683 | 39.2056 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
kSaluja/new-test-model
a99f00dfdea802f1414e9a67732b97f0f76ef908
2022-04-25T13:43:56.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
kSaluja
null
kSaluja/new-test-model
10
null
transformers
11,846
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: new-test-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new-test-model This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0962 - Precision: 0.9704 - Recall: 0.9766 - F1: 0.9735 - Accuracy: 0.9791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 151 | 0.1872 | 0.9295 | 0.9405 | 0.9349 | 0.9535 | | No log | 2.0 | 302 | 0.1417 | 0.9574 | 0.9652 | 0.9613 | 0.9679 | | No log | 3.0 | 453 | 0.1028 | 0.9676 | 0.9693 | 0.9684 | 0.9742 | | 0.3037 | 4.0 | 604 | 0.1063 | 0.9676 | 0.9696 | 0.9686 | 0.9743 | | 0.3037 | 5.0 | 755 | 0.0962 | 0.9704 | 0.9766 | 0.9735 | 0.9791 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
kSaluja/new-test-model2
f4687337caccc3ad4a978baa58da488f0ceee11b
2022-05-02T12:58:39.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
kSaluja
null
kSaluja/new-test-model2
10
null
transformers
11,847
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: new-test-model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new-test-model2 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1040 - Precision: 0.9722 - Recall: 0.9757 - F1: 0.9739 - Accuracy: 0.9808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 151 | 0.1819 | 0.9360 | 0.9405 | 0.9382 | 0.9540 | | No log | 2.0 | 302 | 0.1196 | 0.9637 | 0.9639 | 0.9638 | 0.9703 | | No log | 3.0 | 453 | 0.1322 | 0.9614 | 0.9682 | 0.9648 | 0.9711 | | 0.2764 | 4.0 | 604 | 0.1071 | 0.9677 | 0.9725 | 0.9701 | 0.9763 | | 0.2764 | 5.0 | 755 | 0.1084 | 0.9709 | 0.9766 | 0.9737 | 0.9790 | | 0.2764 | 6.0 | 906 | 0.1015 | 0.9717 | 0.9739 | 0.9728 | 0.9791 | | 0.0342 | 7.0 | 1057 | 0.1208 | 0.9686 | 0.9727 | 0.9706 | 0.9785 | | 0.0342 | 8.0 | 1208 | 0.1068 | 0.9680 | 0.9752 | 0.9716 | 0.9798 | | 0.0342 | 9.0 | 1359 | 0.1028 | 0.9719 | 0.9743 | 0.9731 | 0.9807 | | 0.0129 | 10.0 | 1510 | 0.1040 | 0.9722 | 0.9757 | 0.9739 | 0.9808 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
chrisvanriemsdijk/finetuned-layoutlmv2-klippa
4259c412bd3426a615d6a873deb370e36c515517
2022-04-29T17:57:15.000Z
[ "pytorch", "layoutlmv2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
chrisvanriemsdijk
null
chrisvanriemsdijk/finetuned-layoutlmv2-klippa
10
null
transformers
11,848
Entry not found
jason9693/KcELECTRA-small-v2022-apeach
c9c9f37c0d1d3ce52082979f7900c96073e3498e
2022-04-27T12:04:14.000Z
[ "pytorch", "electra", "text-classification", "ko", "dataset:jason9693/APEACH", "transformers" ]
text-classification
false
jason9693
null
jason9693/KcELECTRA-small-v2022-apeach
10
1
transformers
11,849
--- language: ko widget: - text: "코딩을 🐶🍾👟같이 하니까 맨날 장애나잖아 이 🧑‍🦽아" datasets: - jason9693/APEACH ---
manueltonneau/bert-twitter-pt-is-hired
ddd6e2fdb7264f6d4b25632554d827ff390f1ff2
2022-04-27T09:01:09.000Z
[ "pytorch", "bert", "text-classification", "pt", "arxiv:2203.09178", "transformers" ]
text-classification
false
manueltonneau
null
manueltonneau/bert-twitter-pt-is-hired
10
null
transformers
11,850
--- language: pt # <-- my language widget: - text: "Primeiro dia do novo emprego!" --- # Detection of employment status disclosures on Twitter ## Model main characteristics: - class: Is Hired (1), else (0) - country: BR - language: Portuguese - architecture: BERT base ## Model description This model is a version of `neuralmind/bert-base-portuguese-cased` finetuned to recognize Portuguese tweets where a user mentions that she was hired in the past month. It was trained on Portuguese tweets from users based in Brazil. The task is framed as a binary classification problem with: - the positive class referring to tweets mentioning that a user was recently hired (label=1) - the negative class referring to all other tweets (label=0) ## Resources The dataset of Portuguese tweets on which this classifier was trained is open-sourced [here](https://github.com/manueltonneau/twitter-unemployment). Details on the performance can be found in our [ACL 2022 paper](https://arxiv.org/abs/2203.09178). ## Citation If you find this model useful, please cite our paper (citation to come soon).
peringe/finetuning-sentiment-model-3000-samples-pi
216169adeef312c2ccee27061ffc52c0f075c401
2022-04-27T08:58:12.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
peringe
null
peringe/finetuning-sentiment-model-3000-samples-pi
10
null
transformers
11,851
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples-pi results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8664495114006515 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples-pi This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3344 - Accuracy: 0.8633 - F1: 0.8664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
nickmuchi/facebook-data2vec-finetuned-finance-classification
bc1802fd1bdae6a26accc59f7d40911c31df2563
2022-04-27T14:31:03.000Z
[ "pytorch", "tensorboard", "data2vec-text", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
nickmuchi
null
nickmuchi/facebook-data2vec-finetuned-finance-classification
10
null
transformers
11,852
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: fb-data2vec-finetuned-finance-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fb-data2vec-finetuned-finance-classification This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8993 - Accuracy: 0.8557 - F1: 0.8563 - Precision: 0.8576 - Recall: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 285 | 0.6704 | 0.6680 | 0.6262 | 0.7919 | 0.6680 | | 0.6626 | 2.0 | 570 | 0.4731 | 0.8360 | 0.8350 | 0.8346 | 0.8360 | | 0.6626 | 3.0 | 855 | 0.4598 | 0.8458 | 0.8454 | 0.8452 | 0.8458 | | 0.3666 | 4.0 | 1140 | 0.4758 | 0.8360 | 0.8352 | 0.8353 | 0.8360 | | 0.3666 | 5.0 | 1425 | 0.5683 | 0.8340 | 0.8342 | 0.8353 | 0.8340 | | 0.2316 | 6.0 | 1710 | 0.6234 | 0.8419 | 0.8421 | 0.8447 | 0.8419 | | 0.2316 | 7.0 | 1995 | 0.7186 | 0.8379 | 0.8385 | 0.8395 | 0.8379 | | 0.1523 | 8.0 | 2280 | 0.7268 | 0.8439 | 0.8442 | 0.8455 | 0.8439 | | 0.0928 | 9.0 | 2565 | 0.7364 | 0.8439 | 0.8452 | 0.8494 | 0.8439 | | 0.0928 | 10.0 | 2850 | 0.7975 | 0.8478 | 0.8476 | 0.8476 | 0.8478 | | 0.054 | 11.0 | 3135 | 0.9019 | 0.8498 | 0.8509 | 0.8554 | 0.8498 | | 0.054 | 12.0 | 3420 | 0.8779 | 0.8538 | 0.8548 | 0.8578 | 0.8538 | | 0.036 | 13.0 | 3705 | 0.8914 | 0.8617 | 0.8626 | 0.8652 | 0.8617 | | 0.036 | 14.0 | 3990 | 0.8976 | 0.8538 | 0.8547 | 0.8572 | 0.8538 | | 0.0232 | 15.0 | 4275 | 0.8993 | 0.8557 | 0.8563 | 0.8576 | 0.8557 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
yhshin/latex-ocr
6828f527d83688d93942fa5311757b50c7b240ba
2022-04-28T09:44:30.000Z
[ "pytorch", "vision-encoder-decoder", "transformers", "license:mit" ]
null
false
yhshin
null
yhshin/latex-ocr
10
null
transformers
11,853
--- license: mit ---
cassiepowell/LaBSE-for-agreement
ed2306de9bbd55da0bf2f102d47fd9bd7b79a0d8
2022-04-28T17:56:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
cassiepowell
null
cassiepowell/LaBSE-for-agreement
10
null
transformers
11,854
Entry not found
icity/distilbert-base-uncased-finetuned-imdb-accelerate
0409ac972d0b588f1fc59af0b85052a6a31d8a9d
2022-05-18T15:37:23.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
icity
null
icity/distilbert-base-uncased-finetuned-imdb-accelerate
10
null
transformers
11,855
Entry not found
dipteshkanojia/scibert_scivocab_uncased-finetuned-ner
13c9f7728cc5f246c2726ac19bd730697b328003
2022-04-28T22:49:03.000Z
[ "pytorch", "bert", "token-classification", "dataset:plo_dunfiltered_config", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
dipteshkanojia
null
dipteshkanojia/scibert_scivocab_uncased-finetuned-ner
10
null
transformers
11,856
--- tags: - generated_from_trainer datasets: - plo_dunfiltered_config metrics: - precision - recall - f1 - accuracy model-index: - name: scibert_scivocab_uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: plo_dunfiltered_config type: plo_dunfiltered_config args: PLODunfiltered metrics: - name: Precision type: precision value: 0.964925429790286 - name: Recall type: recall value: 0.9612323892385586 - name: F1 type: f1 value: 0.9630753691636831 - name: Accuracy type: accuracy value: 0.9593916827485913 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_scivocab_uncased-finetuned-ner This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the plo_dunfiltered_config dataset. It achieves the following results on the evaluation set: - Loss: 0.1390 - Precision: 0.9649 - Recall: 0.9612 - F1: 0.9631 - Accuracy: 0.9594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1176 | 1.4 | 5000 | 0.1243 | 0.9570 | 0.9511 | 0.9540 | 0.9502 | | 0.0973 | 2.81 | 10000 | 0.1129 | 0.9609 | 0.9572 | 0.9590 | 0.9553 | | 0.0721 | 4.21 | 15000 | 0.1198 | 0.9645 | 0.9585 | 0.9615 | 0.9578 | | 0.0634 | 5.62 | 20000 | 0.1259 | 0.9649 | 0.9589 | 0.9619 | 0.9582 | | 0.0572 | 7.02 | 25000 | 0.1321 | 0.9653 | 0.9609 | 0.9631 | 0.9594 | | 0.0472 | 8.43 | 30000 | 0.1390 | 0.9649 | 0.9612 | 0.9631 | 0.9594 | | 0.0434 | 9.83 | 35000 | 0.1442 | 0.9656 | 0.9613 | 0.9634 | 0.9598 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
jg/distilbert-base-uncased-finetuned-emotion
0d3044cab0c5268a4ada60e9ecda1d97ae38c276
2022-04-30T18:34:27.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jg
null
jg/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,857
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: F1 type: f1 value: 0.9235933186731068 - name: Accuracy type: accuracy value: 0.9235 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2199 - F1: 0.9236 - Accuracy: 0.9235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.8072 | 1.0 | 250 | 0.3153 | 0.9023 | 0.905 | | 0.2442 | 2.0 | 500 | 0.2199 | 0.9236 | 0.9235 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Davincilee/door_inner_with_SA-bert-base-uncased
bffb90944cb3283150513179becd8622f64448ee
2022-05-13T14:56:11.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Davincilee
null
Davincilee/door_inner_with_SA-bert-base-uncased
10
null
transformers
11,858
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: door_inner_with_SA-bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # door_inner_with_SA-bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5492 | 1.0 | 96 | 2.3831 | | 2.4031 | 2.0 | 192 | 2.2963 | | 2.3391 | 3.0 | 288 | 2.2000 | | 2.2951 | 4.0 | 384 | 2.2505 | | 2.2151 | 5.0 | 480 | 2.1691 | | 2.2237 | 6.0 | 576 | 2.1855 | | 2.1984 | 7.0 | 672 | 2.2558 | | 2.1749 | 8.0 | 768 | 2.2019 | | 2.1475 | 9.0 | 864 | 2.1310 | | 2.1446 | 10.0 | 960 | 2.1334 | | 2.1374 | 11.0 | 1056 | 2.1909 | | 2.1117 | 12.0 | 1152 | 2.2028 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
LiYouYou/BERT_MRPC
a0f405fc72b4829b38d9c786cdfef76f9e8519f4
2022-05-03T16:13:06.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
LiYouYou
null
LiYouYou/BERT_MRPC
10
null
transformers
11,859
Entry not found
mrm8488/data2vec-text-base-finetuned-stsb
207a645147225344224bb0d6dfb3174232496c1a
2022-05-03T16:28:24.000Z
[ "pytorch", "tensorboard", "data2vec-text", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mrm8488
null
mrm8488/data2vec-text-base-finetuned-stsb
10
null
transformers
11,860
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: data2vec-text-base-finetuned-stsb results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8716633516590501 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-stsb This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5530 - Pearson: 0.8732 - Spearmanr: 0.8717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.725353773731373e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | No log | 1.0 | 180 | 1.0650 | 0.8102 | 0.8380 | | No log | 2.0 | 360 | 0.6211 | 0.8524 | 0.8497 | | 0.9312 | 3.0 | 540 | 0.5917 | 0.8640 | 0.8642 | | 0.9312 | 4.0 | 720 | 0.5672 | 0.8695 | 0.8686 | | 0.9312 | 5.0 | 900 | 0.5530 | 0.8732 | 0.8717 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
anshr/distilgpt2_trained_policy_model_final
3ed5446ef838008807881ac01c85d952fa378f29
2022-05-05T03:01:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
anshr
null
anshr/distilgpt2_trained_policy_model_final
10
null
transformers
11,861
Entry not found
ml4pubmed/bluebert-pubmed-uncased-L-12-H-768-A-12_pub_section
7c3fa41bc6dc4d3316815b78d60b03eb75f29ca8
2022-05-04T00:03:25.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:pubmed", "transformers" ]
text-classification
false
ml4pubmed
null
ml4pubmed/bluebert-pubmed-uncased-L-12-H-768-A-12_pub_section
10
null
transformers
11,862
--- language: - en datasets: - pubmed metrics: - f1 pipeline_tag: text-classification widget: - text: "many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions." example_title: "background example" - text: "a total of 192 mi patients and 140 control persons were included." example_title: "methods example" - text: "mi patients had 18 % higher plasma levels of map44 (iqr 11-25 %) as compared to the healthy control group (p < 0. 001.)" example_title: "results example" - text: "the finding that a brief cb group intervention delivered by real-world providers significantly reduced mdd onset relative to both brochure control and bibliotherapy is very encouraging, although effects on continuous outcome measures were small or nonsignificant and approximately half the magnitude of those found in efficacy research, potentially because the present sample reported lower initial depression." example_title: "conclusions example" - text: "in order to understand and update the prevalence of myopia in taiwan, a nationwide survey was performed in 1995." example_title: "objective example" --- # bluebert-pubmed-uncased-L-12-H-768-A-12_pub_section - original model file name: textclassifer_bluebert_pubmed_uncased_L-12_H-768_A-12_pubmed_20k - This is a fine-tuned checkpoint of `bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12` for document section text classification - possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS, ## metadata ### training_metrics - val_accuracy: 0.8367536067962646 - val_matthewscorrcoef: 0.779039740562439 - val_f1score: 0.834040641784668 - val_cross_entropy: 0.5102494359016418 - epoch: 18.0 - train_accuracy_step: 0.7890625 - train_matthewscorrcoef_step: 0.7113237380981445 - train_f1score_step: 0.7884777784347534 - train_cross_entropy_step: 0.5615811944007874 - train_accuracy_epoch: 0.7955580949783325 - train_matthewscorrcoef_epoch: 0.7233519554138184 - train_f1score_epoch: 0.7916122078895569 - train_cross_entropy_epoch: 0.6050205230712891 - test_accuracy: 0.8310602307319641 - test_matthewscorrcoef: 0.7718994617462158 - test_f1score: 0.8283351063728333 - test_cross_entropy: 0.5230290293693542 - date_run: Apr-22-2022_t-05 - huggingface_tag: bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12
LiYouYou/bert_finetuning_cn
76ec7027fa157caab0fabe5cd2f69abc0b5034d8
2022-05-04T05:36:19.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
LiYouYou
null
LiYouYou/bert_finetuning_cn
10
null
transformers
11,863
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_finetuning_cn results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8314220183486238 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_finetuning_cn This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5440 - Accuracy: 0.8314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jgriffi/distilbert-base-uncased-finetuned-emotion
a7c4f479c62bf3e7d6947ff73eeb4e90aa48e11e
2022-07-13T12:52:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jgriffi
null
jgriffi/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,864
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9224581940083942 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2204 - Accuracy: 0.9225 - F1: 0.9225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8094 | 1.0 | 250 | 0.3034 | 0.905 | 0.9031 | | 0.2416 | 2.0 | 500 | 0.2204 | 0.9225 | 0.9225 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Truefilter/bertweet_lg_text_quality
2d4567a5dacded7f2c639703c0d7801adefec5f6
2022-05-05T11:42:31.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Truefilter
null
Truefilter/bertweet_lg_text_quality
10
null
transformers
11,865
Entry not found
antgoldbloom/distilbert-rater
f5565c9b4a48f142fe51acd688d285ff0b44c96a
2022-05-05T14:45:54.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
antgoldbloom
null
antgoldbloom/distilbert-rater
10
null
transformers
11,866
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-rater results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-rater This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
annasham/DialoGPT-small-myneighborTotoro
7590eacc761af2e8669bfc8421ea2fca6af26343
2022-05-06T00:54:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
annasham
null
annasham/DialoGPT-small-myneighborTotoro
10
null
transformers
11,867
--- tags: - conversational --- Hi! This is a chat bot based on My Neighbor Totoro! # My Neighbor Totoro DialoGPT Model
JoMart/albert-base-v2
eec13d3ca3a3b3c99873750ebce9102e68117358
2022-05-07T13:11:42.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
JoMart
null
JoMart/albert-base-v2
10
null
transformers
11,868
--- tags: - generated_from_trainer model-index: - name: albert-base-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.024 | 1.0 | 4000 | 0.0300 | | 0.0049 | 2.0 | 8000 | 0.0075 | | 0.0 | 3.0 | 12000 | 0.0125 | | 0.0 | 4.0 | 16000 | 0.0101 | | 0.0056 | 5.0 | 20000 | 0.0104 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jg/distilbert-base-uncased-finetuned-spam
8caa3f5651241c6c6da444e6afdf7274b24381a8
2022-05-06T16:52:11.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jg
null
jg/distilbert-base-uncased-finetuned-spam
10
null
transformers
11,869
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-spam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-spam This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0325 - F1: 0.9910 - Accuracy: 0.9910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.1523 | 1.0 | 79 | 0.0369 | 0.9892 | 0.9892 | | 0.0303 | 2.0 | 158 | 0.0325 | 0.9910 | 0.9910 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
moghis/distilbert-base-uncased-finetuned-emotion
c72ec018f7ca015560025c540da6d09fbc554ff8
2022-05-10T18:44:13.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
moghis
null
moghis/distilbert-base-uncased-finetuned-emotion
10
null
transformers
11,870
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240615969601907 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2141 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7828 | 1.0 | 250 | 0.2936 | 0.909 | 0.9070 | | 0.2344 | 2.0 | 500 | 0.2141 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
paultimothymooney/distilbert-rater
50a13f11b7b75a49fed265801c2cb49830b64f9c
2022-05-10T17:40:47.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
paultimothymooney
null
paultimothymooney/distilbert-rater
10
null
transformers
11,871
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-rater results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-rater This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
SalamaThanks/SalamaThanksTransformer_en2fil_v1
c4c2512fc1cabdb2e361232435daa3d517e6aa43
2022-05-11T05:45:01.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
SalamaThanks
null
SalamaThanks/SalamaThanksTransformer_en2fil_v1
10
null
transformers
11,872
--- license: afl-3.0 --- SalamaThanks Transformer for English-to-Filipino Text Translation version 1. Based on the Helsinki-NLP/opus-mt-en-tl transformer model.
SalamaThanks/SalamaThanksTransformer_fil2en_v1
0ef6f667264da1f2b836fde18881c5ec8a55edcd
2022-05-11T05:45:48.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
SalamaThanks
null
SalamaThanks/SalamaThanksTransformer_fil2en_v1
10
null
transformers
11,873
--- license: afl-3.0 --- SalamaThanks Transformer for Filipino-to-English Text Translation version 1. Based on the Helsinki-NLP/opus-mt-tl-en transformer model.
huggingtweets/medvedevrussia
706187f6de4a7ae1a91bf9b977e19e93d3bdd4a0
2022-05-15T12:26:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/medvedevrussia
10
null
transformers
11,874
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2348558617/x0vh6bui3sq97vt4jd2n_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Дмитрий Медведев</div> <div style="text-align: center; font-size: 14px;">@medvedevrussia</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Дмитрий Медведев. | Data | Дмитрий Медведев | | --- | --- | | Tweets downloaded | 1740 | | Retweets | 300 | | Short tweets | 48 | | Tweets kept | 1392 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2s7c3vz9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @medvedevrussia's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1e00s9pz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1e00s9pz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/medvedevrussia') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
juliensimon/sagemaker-distilbert-emotion
cf9bcd3b4da3b1a17d021771a6405e745583cb2a
2022-05-16T14:28:12.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
juliensimon
null
juliensimon/sagemaker-distilbert-emotion
10
null
transformers
11,875
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.919 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2402 - Accuracy: 0.919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9163 | 1.0 | 500 | 0.2402 | 0.919 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
pietrolesci/t5v1_1-large-mnli
24fd6cdd61a626591fd4a4b6b755044e2ccfab71
2022-05-17T09:23:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pietrolesci
null
pietrolesci/t5v1_1-large-mnli
10
null
transformers
11,876
Entry not found
vamossyd/bert-base-uncased-emotion
54c9ed4bee3c652ffb5ada49369d606e6cb75540
2022-05-17T23:56:02.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:emotion", "transformers", "emotion", "license:mit" ]
text-classification
false
vamossyd
null
vamossyd/bert-base-uncased-emotion
10
null
transformers
11,877
--- language: - en tags: - text-classification - emotion - pytorch license: mit datasets: - emotion metrics: - accuracy - precision - recall - f1 --- # bert-base-uncased-emotion ## Model description `bert-base-uncased` finetuned on the unify-emotion-datasets (https://github.com/sarnthil/unify-emotion-datasets) [~250K texts with 7 labels -- neutral, happy, sad, anger, disgust, surprise, fear], then transferred to a small sample of 10K hand-tagged StockTwits messages. Optimized for extracting emotions from financial social media, such as StockTwits. Sequence length 64, learning rate 2e-5, batch size 128, 8 epochs. For more details, please visit https://github.com/dvamossy/EmTract. ## Training data Data came from https://github.com/sarnthil/unify-emotion-datasets.
aakorolyova/primary_and_secondary_outcome_extraction
2e17740e7592b88ce3cf015327ec3f4f1f0fbf72
2022-05-25T19:30:56.000Z
[ "pytorch", "tf", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
aakorolyova
null
aakorolyova/primary_and_secondary_outcome_extraction
10
null
transformers
11,878
<h1>Model description</h1> This is a fine-tuned BioBERT model for extracting primary and secondary outcomes from articles reporting clinical trials. This model is a version of https://huggingface.co/aakorolyova/primary_outcome_extraction. We have not annotated any secondary outcome during the related PhD project. To be able to extract secondary outcomes, we manually annotated secondary outcomes in the existing annotated sentences with primary outcomes (only a small percentage of sentences contains secondary outcomes) and performed automatic data augmentation by replacing "primary"/"main"/"principal" by "secondary" and changing tags from B/I-Prim to B/I-Sec in the primary outcomes data. Model creator: Anna Koroleva <h1>Intended uses & limitations</h1> The model is intended to be used for extracting primary and secondary outcomes from texts of clinical trials. The main limitation is that the model was trained on a mix of manually annotated and automatically augmented data, which might lead to inaccuracies in prediction. <h1>How to use</h1> The model should be used with the BioBERT tokeniser. A sample code for getting model predictions is below: ``` import numpy as np from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-v1.1') model = AutoModelForTokenClassification.from_pretrained(r'aakorolyova/primary_and_secondary_outcome_extraction') text = 'Primary endpoint was overall survival in patients with oesophageal squamous cell carcinoma and PD-L1 combined positive score (CPS) of 10 or more, secondary endpoints were overall survival and progression-free survival in patients with oesophageal squamous cell carcinoma, PD-L1 CPS of 10 or more, and in all randomised patients.' encoded_input = tokenizer(text, padding=True, truncation=True, max_length=2000, return_tensors='pt') output = model(**encoded_input)['logits'] output = np.argmax(output.detach().numpy(), axis=2) print(output) ``` Some more useful functions can be found in or Github repository: https://github.com/aakorolyova/DeSpin-2.0 <h1>Training data</h1> Training data can be found in https://github.com/aakorolyova/DeSpin-2.0/tree/main/data/Primary_Secondary_Outcomes <h1>Training procedure</h1> The model was fine-tuned using Huggingface Trainer API. Training scripts can be found in https://github.com/aakorolyova/DeSpin-2.0 <h1>Evaluation</h1> Primary outcomes: Precision: 92.22 Recall: 94.86 F1: 93.52 Secondary outcomes: Precision: 91.43 Recall: 91.87 F1: 91.65 Overall precision: 91.79 Overall recall: 93.23 Overall F1: 92.51
aakorolyova/reported_outcome_extraction
efa98490b71a69fefd337ee4030d527dc98c3ac9
2022-05-25T19:31:52.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
aakorolyova
null
aakorolyova/reported_outcome_extraction
10
null
transformers
11,879
<h1>Model description</h1> This is a fine-tuned BioBERT model for extracting reported outcomes (i.e. those for which results are presented) from articles reporting clinical trials. This is the second version of the model; the original model development was reported in: Anna Koroleva, Sanjay Kamath, Patrick Paroubek. Extracting primary and reported outcomes from articles reporting randomized controlled trials using pre-trained deep language representations. Preprint: https://easychair.org/publications/preprint/qpml The original work was conducted within the scope of the Assisted authoring for avoiding inadequate claims in scientific reporting PhD project of the Methods for Research on Research (MiRoR, http://miror-ejd.eu/) program. Model creator: Anna Koroleva <h1>Intended uses & limitations</h1> The model is intended to be used for extracting reported outcomes from texts of clinical trials. The main limitation is that the model was trained on a fairly small sample of data annotated by a single annotator. Annotating more data or involvig more annotators was not possiblw within the PhD project. <h1>How to use</h1> The model should be used with the BioBERT tokeniser. A sample code for getting model predictions is below: ``` import numpy as np from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-v1.1') model = AutoModelForTokenClassification.from_pretrained(r'aakorolyova/reported_outcome_extraction') text = """Compared with placebo plus chemotherapy, pembrolizumab plus chemotherapy improved overall survival in patients with previously untreated, advanced oesophageal squamous cell carcinoma and PD-L1 CPS of 10 or more, and overall survival and progression-free survival in patients with oesophageal squamous cell carcinoma, PD-L1 CPS of 10 or more, and in all randomised patients regardless of histology, and had a manageable safety profile in the total as-treated population.""" encoded_input = tokenizer(text, padding=True, truncation=True, max_length=2000, return_tensors='pt') output = model(**encoded_input)['logits'] output = np.argmax(output.detach().numpy(), axis=2) print(output) ``` Some more useful functions can be found in or Github repository: https://github.com/aakorolyova/DeSpin-2.0 <h1>Training data</h1> Training data can be found in https://github.com/aakorolyova/DeSpin-2.0/tree/main/data/Reported_Outcomes <h1>Training procedure</h1> The model was fine-tuned using Huggingface Trainer API. Training scripts can be found in https://github.com/aakorolyova/DeSpin-2.0 <h1>Evaluation</h1> Precision: 65.57% Recall: 74.77% F1: 69.87%
calcworks/distilbert-base-uncased-distilled-clinc
511c42472e28fa8f5c3d0fe022d59845c7ceff93
2022-05-19T17:03:17.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
calcworks
null
calcworks/distilbert-base-uncased-distilled-clinc
10
null
transformers
11,880
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9409677419354838 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1004 - Accuracy: 0.9410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9037 | 1.0 | 318 | 0.5745 | 0.7326 | | 0.4486 | 2.0 | 636 | 0.2866 | 0.8819 | | 0.2537 | 3.0 | 954 | 0.1794 | 0.9210 | | 0.1762 | 4.0 | 1272 | 0.1387 | 0.9294 | | 0.1419 | 5.0 | 1590 | 0.1210 | 0.9358 | | 0.1247 | 6.0 | 1908 | 0.1119 | 0.9413 | | 0.1138 | 7.0 | 2226 | 0.1067 | 0.9387 | | 0.1078 | 8.0 | 2544 | 0.1026 | 0.9423 | | 0.1043 | 9.0 | 2862 | 0.1010 | 0.9413 | | 0.102 | 10.0 | 3180 | 0.1004 | 0.9410 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
phijve/bert-finetuned-ner
71dcfe8caf362f8b57411f30d3bbe449206e3eba
2022-05-20T16:14:44.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
phijve
null
phijve/bert-finetuned-ner
10
null
transformers
11,881
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9396951623591783 - name: Recall type: recall value: 0.9545607539548974 - name: F1 type: f1 value: 0.947069627650693 - name: Accuracy type: accuracy value: 0.9872843939483135 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0596 - Precision: 0.9397 - Recall: 0.9546 - F1: 0.9471 - Accuracy: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0787 | 1.0 | 1756 | 0.0604 | 0.9250 | 0.9418 | 0.9333 | 0.9844 | | 0.0318 | 2.0 | 3512 | 0.0578 | 0.9291 | 0.9502 | 0.9395 | 0.9860 | | 0.0151 | 3.0 | 5268 | 0.0596 | 0.9397 | 0.9546 | 0.9471 | 0.9873 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
north/t5_xxl_NCC
0e4e5c9add75f182e506d3593fba693b7cd9b288
2022-06-01T19:42:15.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "no", "nn", "sv", "dk", "is", "en", "dataset:nbailab/NCC", "dataset:mc4", "dataset:wikipedia", "arxiv:2104.09617", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
north
null
north/t5_xxl_NCC
10
null
transformers
11,882
--- language: - no - nn - sv - dk - is - en datasets: - nbailab/NCC - mc4 - wikipedia widget: - text: <extra_id_0> hver uke samles Regjeringens medlemmer til Statsråd på <extra_id_1>. Dette organet er øverste <extra_id_2> i Norge. For at møtet skal være <extra_id_3>, må over halvparten av regjeringens <extra_id_4> være til stede. - text: På <extra_id_0> kan man <extra_id_1> en bok, og man kan også <extra_id_2> seg ned og lese den. license: apache-2.0 --- -T5 The North-T5-models are a set of Norwegian sequence-to-sequence-models. It builds upon the flexible [T5](https://github.com/google-research/text-to-text-transfer-transformer) and [T5X](https://github.com/google-research/t5x) and can be used for a variety of NLP tasks ranging from classification to translation. | |**Small** <br />_60M_|**Base** <br />_220M_|**Large** <br />_770M_|**XL** <br />_3B_|**XXL** <br />_11B_| |:-----------|:------------:|:------------:|:------------:|:------------:|:------------:| |North-T5&#8209;NCC|[🤗](https://huggingface.co/north/t5_small_NCC)|[🤗](https://huggingface.co/north/t5_base_NCC)|[🤗](https://huggingface.co/north/t5_large_NCC)|[🤗](https://huggingface.co/north/t5_xl_NCC)|✔|| |North-T5&#8209;NCC&#8209;lm|[🤗](https://huggingface.co/north/t5_small_NCC_lm)|[🤗](https://huggingface.co/north/t5_base_NCC_lm)|[🤗](https://huggingface.co/north/t5_large_NCC_lm)|[🤗](https://huggingface.co/north/t5_xl_NCC_lm)|[🤗](https://huggingface.co/north/t5_xxl_NCC_lm)|| ## T5X Checkpoint The original T5X checkpoint is also available for this model in the [Google Cloud Bucket](gs://north-t5x/pretrained_models/xxl/norwegian_NCC_plus_English_t5x_xxl/). ## Performance A thorough evaluation of the North-T5 models is planned, and I strongly recommend external researchers to make their own evaluation. The main advantage with the T5-models are their flexibility. Traditionally, encoder-only models (like BERT) excels in classification tasks, while seq-2-seq models are easier to train for tasks like translation and Q&A. Despite this, here are the results from using North-T5 on the political classification task explained [here](https://arxiv.org/abs/2104.09617). |**Model:** | **F1** | |:-----------|:------------| |mT5-base|73.2 | |mBERT-base|78.4 | |NorBERT-base|78.2 | |North-T5-small|80.5 | |nb-bert-base|81.8 | |North-T5-base|85.3 | |North-T5-large|86.7 | |North-T5-xl|88.7 | |North-T5-xxl|91.8| These are preliminary results. The [results](https://arxiv.org/abs/2104.09617) from the BERT-models are based on the test-results from the best model after 10 runs with early stopping and a decaying learning rate. The T5-results are the average of five runs on the evaluation set. The small-model was trained for 10.000 steps, while the rest for 5.000 steps. A fixed learning rate was used (no decay), and no early stopping. Neither was the recommended rank classification used. We use a max sequence length of 512. This method simplifies the test setup and gives results that are easy to interpret. However, the results from the T5 model might actually be a bit sub-optimal. ## Sub-versions of North-T5 The following sub-versions are available. More versions will be available shorter. |**Model** | **Description** | |:-----------|:-------| |**North&#8209;T5&#8209;NCC** |This is the main version. It is trained an additonal 500.000 steps on from the mT5 checkpoint. The training corpus is based on [the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC). In addition there are added data from MC4 and English Wikipedia.| |**North&#8209;T5&#8209;NCC&#8209;lm**|The model is pretrained for an addtional 100k steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). In a way this turns a masked language model into an autoregressive model. It also prepares the model for some tasks. When for instance doing translation and NLI, it is well documented that there is a clear benefit to do a step of unsupervised LM-training before starting the finetuning.| ## Fine-tuned versions As explained below, the model really needs to be fine-tuned for specific tasks. This procedure is relatively simple, and the models are not very sensitive to the hyper-parameters used. Usually a decent result can be obtained by using a fixed learning rate of 1e-3. Smaller versions of the model typically needs to be trained for a longer time. It is easy to train the base-models in a Google Colab. Since some people really want to see what the models are capable of, without going through the training procedure, I provide a couple of test models. These models are by no means optimised, and are just for demonstrating how the North-T5 models can be used. * Nynorsk Translator. Translates any text from Norwegian Bokmål to Norwegian Nynorsk. Please test the [Streamlit-demo](https://huggingface.co/spaces/north/Nynorsk) and the [HuggingFace repo](https://huggingface.co/north/demo-nynorsk-base) * DeUnCaser. The model adds punctation, spaces and capitalisation back into the text. The input needs to be in Norwegian but does not have to be divided into sentences or have proper capitalisation of words. You can even remove the spaces from the text, and make the model reconstruct it. It can be tested with the [Streamlit-demo](https://huggingface.co/spaces/north/DeUnCaser) and directly on the [HuggingFace repo](https://huggingface.co/north/demo-deuncaser-base) ## Training details All models are built using the Flax-based T5X codebase, and all models are initiated with the mT5 pretrained weights. The models are trained using the T5.1.1 training regime, where they are only trained on an unsupervised masking-task. This also means that the models (contrary to the original T5) needs to be finetuned to solve specific tasks. This finetuning is however usually not very compute intensive, and in most cases it can be performed even with free online training resources. All the main model model versions are trained for 500.000 steps after the mT5 checkpoint (1.000.000 steps). They are trained mainly on a 75GB corpus, consisting of NCC, Common Crawl and some additional high quality English text (Wikipedia). The corpus is roughly 80% Norwegian text. Additional languages are added to retain some of the multilingual capabilities, making the model both more robust to new words/concepts and also more suited as a basis for translation tasks. While the huge models almost always will give the best results, they are also both more difficult and more expensive to finetune. I will strongly recommended to start with finetuning a base-models. The base-models can easily be finetuned on a standard graphic card or a free TPU through Google Colab. All models were trained on TPUs. The largest XXL model was trained on a TPU v4-64, the XL model on a TPU v4-32, the Large model on a TPU v4-16 and the rest on TPU v4-8. Since it is possible to reduce the batch size during fine-tuning, it is also possible to finetune on slightly smaller hardware. The rule of thumb is that you can go "one step down" when finetuning. The large models still rewuire access to significant hardware, even for finetuning. ## Formats All models are trained using the Flax-based T5X library. The original checkpoints are available in T5X format and can be used for both finetuning or interference. All models, except the XXL-model, are also converted to Transformers/HuggingFace. In this framework, the models can be loaded for finetuning or inference both in Flax, PyTorch and TensorFlow format. ## Future I will continue to train and release additional models to this set. What models that are added is dependent upon the feedbacki from the users ## Thanks This release would not have been possible without getting support and hardware from the [TPU Research Cloud](https://sites.research.google/trc/about/) at Google Research. Both the TPU Research Cloud Team and the T5X Team has provided extremely useful support for getting this running. Freddy Wetjen at the National Library of Norway has been of tremendous help in generating the original NCC corpus, and has also contributed to generate the collated coprus used for this training. In addition he has been a dicussion partner in the creation of these models. Also thanks to Stefan Schweter for writing the [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py) for converting these models from T5X to HuggingFace and to Javier de la Rosa for writing the dataloader for reading the HuggingFace Datasets in T5X. ## Warranty Use at your own risk. The models have not yet been thougroughly tested, and may contain both errors and biases. ## Contact/About These models were trained by Per E Kummervold. Please contact me on [email protected].
connectivity/feather_berts_0
94d37ab096caabdeadb48adeac8d92c0b30363b7
2022-05-21T14:26:18.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/feather_berts_0
10
null
transformers
11,883
Entry not found
lucifermorninstar011/autotrain-lucifer_name-894029080
6580bb759039290e191215b65c2fce7de361ae37
2022-05-21T23:38:09.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:lucifermorninstar011/autotrain-data-lucifer_name-980af516", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
lucifermorninstar011
null
lucifermorninstar011/autotrain-lucifer_name-894029080
10
null
transformers
11,884
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - lucifermorninstar011/autotrain-data-lucifer_name-980af516 co2_eq_emissions: 0.9017791642156402 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 894029080 - CO2 Emissions (in grams): 0.9017791642156402 ## Validation Metrics - Loss: 0.06416810303926468 - Accuracy: 0.975037269594738 - Precision: 0.845205809019728 - Recall: 0.8450117531296124 - F1: 0.8451087699347763 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lucifermorninstar011/autotrain-lucifer_name-894029080 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("lucifermorninstar011/autotrain-lucifer_name-894029080", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lucifermorninstar011/autotrain-lucifer_name-894029080", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
danieleV9H/hubert-base-libri-clean-ft100h-v3
f76c1e266571407584957032da6ab7f6e6d543f0
2022-05-26T10:42:52.000Z
[ "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
danieleV9H
null
danieleV9H/hubert-base-libri-clean-ft100h-v3
10
null
transformers
11,885
--- license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - hf-asr-leaderboard datasets: - librispeech_asr model-index: - name: hubert-base-libri-clean-ft100h-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: '8.1938' - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: '16.9783' language: - en --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-libri-clean-ft100h-v3 This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.1120 - Wer: 0.1332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.201 | 0.14 | 250 | 3.9799 | 1.0 | | 2.8893 | 0.28 | 500 | 3.4838 | 1.0 | | 2.8603 | 0.42 | 750 | 3.3505 | 1.0 | | 2.7216 | 0.56 | 1000 | 2.1194 | 0.9989 | | 1.3372 | 0.7 | 1250 | 0.8124 | 0.6574 | | 0.8238 | 0.84 | 1500 | 0.5712 | 0.5257 | | 0.6449 | 0.98 | 1750 | 0.4442 | 0.4428 | | 0.5241 | 1.12 | 2000 | 0.3442 | 0.3672 | | 0.4458 | 1.26 | 2250 | 0.2850 | 0.3186 | | 0.3959 | 1.4 | 2500 | 0.2507 | 0.2882 | | 0.3641 | 1.54 | 2750 | 0.2257 | 0.2637 | | 0.3307 | 1.68 | 3000 | 0.2044 | 0.2434 | | 0.2996 | 1.82 | 3250 | 0.1969 | 0.2313 | | 0.2794 | 1.96 | 3500 | 0.1823 | 0.2193 | | 0.2596 | 2.1 | 3750 | 0.1717 | 0.2096 | | 0.2563 | 2.24 | 4000 | 0.1653 | 0.2000 | | 0.2532 | 2.38 | 4250 | 0.1615 | 0.1971 | | 0.2376 | 2.52 | 4500 | 0.1559 | 0.1916 | | 0.2341 | 2.66 | 4750 | 0.1494 | 0.1855 | | 0.2102 | 2.8 | 5000 | 0.1464 | 0.1781 | | 0.2222 | 2.94 | 5250 | 0.1399 | 0.1732 | | 0.2081 | 3.08 | 5500 | 0.1450 | 0.1707 | | 0.1963 | 3.22 | 5750 | 0.1337 | 0.1655 | | 0.2107 | 3.36 | 6000 | 0.1344 | 0.1633 | | 0.1866 | 3.5 | 6250 | 0.1339 | 0.1611 | | 0.186 | 3.64 | 6500 | 0.1311 | 0.1563 | | 0.1703 | 3.78 | 6750 | 0.1307 | 0.1537 | | 0.1819 | 3.92 | 7000 | 0.1277 | 0.1555 | | 0.176 | 4.06 | 7250 | 0.1280 | 0.1515 | | 0.1837 | 4.2 | 7500 | 0.1249 | 0.1504 | | 0.1678 | 4.34 | 7750 | 0.1236 | 0.1480 | | 0.1624 | 4.48 | 8000 | 0.1194 | 0.1456 | | 0.1631 | 4.62 | 8250 | 0.1215 | 0.1462 | | 0.1736 | 4.76 | 8500 | 0.1192 | 0.1451 | | 0.1752 | 4.9 | 8750 | 0.1206 | 0.1432 | | 0.1578 | 5.04 | 9000 | 0.1151 | 0.1415 | | 0.1537 | 5.18 | 9250 | 0.1185 | 0.1402 | | 0.1771 | 5.33 | 9500 | 0.1165 | 0.1414 | | 0.1481 | 5.47 | 9750 | 0.1152 | 0.1413 | | 0.1509 | 5.61 | 10000 | 0.1152 | 0.1382 | | 0.146 | 5.75 | 10250 | 0.1133 | 0.1385 | | 0.1464 | 5.89 | 10500 | 0.1139 | 0.1371 | | 0.1442 | 6.03 | 10750 | 0.1162 | 0.1365 | | 0.128 | 6.17 | 11000 | 0.1147 | 0.1371 | | 0.1381 | 6.31 | 11250 | 0.1148 | 0.1378 | | 0.1343 | 6.45 | 11500 | 0.1113 | 0.1363 | | 0.1325 | 6.59 | 11750 | 0.1134 | 0.1355 | | 0.1442 | 6.73 | 12000 | 0.1142 | 0.1358 | | 0.1286 | 6.87 | 12250 | 0.1133 | 0.1352 | | 0.1349 | 7.01 | 12500 | 0.1129 | 0.1344 | | 0.1338 | 7.15 | 12750 | 0.1131 | 0.1328 | | 0.1403 | 7.29 | 13000 | 0.1124 | 0.1338 | | 0.1314 | 7.43 | 13250 | 0.1141 | 0.1335 | | 0.1283 | 7.57 | 13500 | 0.1124 | 0.1332 | | 0.1347 | 7.71 | 13750 | 0.1107 | 0.1332 | | 0.1195 | 7.85 | 14000 | 0.1119 | 0.1332 | | 0.1326 | 7.99 | 14250 | 0.1120 | 0.1332 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
DuboiJ/finetuning-sentiment-model-3000-samples
086462f963b4a793f6aa71ee120a7441e8bfef02
2022-05-25T13:48:07.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
DuboiJ
null
DuboiJ/finetuning-sentiment-model-3000-samples
10
null
transformers
11,886
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8637873754152824 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3211 - Accuracy: 0.8633 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
orzhan/rut5-base-detox-v2
dd6cb8d1ea4d90179053779fe377139f94e23018
2022-06-11T07:18:47.000Z
[ "pytorch", "t5", "text2text-generation", "ru", "transformers", "PyTorch", "Transformers", "autotrain_compatible" ]
text2text-generation
false
orzhan
null
orzhan/rut5-base-detox-v2
10
null
transformers
11,887
--- language: - ru tags: - PyTorch - Transformers --- # rut5-base-detox-v2 Model was fine-tuned from sberbank-ai/ruT5-base on parallel detoxification corpus. * Task: `text2text generation` * Type: `encoder-decoder` * Tokenizer: `bpe` * Dict size: `32 101` * Num Parameters: `222 M`
Hamda/test-1-finetuned-AraBART
f2b89a45a72e1c5f34484b86a1360eca3da9ccfb
2022-05-29T12:21:03.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Hamda
null
Hamda/test-1-finetuned-AraBART
10
null
transformers
11,888
Entry not found
DuskSigma/DialogGPTHomerSimpson
71e93f4062332eb2b51f6fa8795971713d19fdc4
2022-05-31T00:56:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
DuskSigma
null
DuskSigma/DialogGPTHomerSimpson
10
1
transformers
11,889
--- tags: - conversational --- #Homer Simpson DialogGPT Model
roshnir/mBert-finetuned-mlqa-dev-hi
a1e4855a3d4f35d6ec107ab5ea18837f29c22fb6
2022-06-01T19:24:41.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
roshnir
null
roshnir/mBert-finetuned-mlqa-dev-hi
10
null
transformers
11,890
Entry not found
kktoto/tiny_kt_punctuator
5cb023fee2e131ad38241a6b0e562b6030c57a9a
2022-06-02T02:04:30.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
kktoto
null
kktoto/tiny_kt_punctuator
10
null
transformers
11,891
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_kt_punctuator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_kt_punctuator This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1424 - Precision: 0.6287 - Recall: 0.5781 - F1: 0.6023 - Accuracy: 0.9476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1621 | 1.0 | 5561 | 0.1508 | 0.6138 | 0.5359 | 0.5722 | 0.9450 | | 0.1519 | 2.0 | 11122 | 0.1439 | 0.6279 | 0.5665 | 0.5956 | 0.9471 | | 0.1496 | 3.0 | 16683 | 0.1424 | 0.6287 | 0.5781 | 0.6023 | 0.9476 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Jeevesh8/init_bert_ft_qqp-22
cad4666abbe0793ea90ad26a0a72c38ea5678ad9
2022-06-02T12:40:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-22
10
null
transformers
11,892
Entry not found
Jeevesh8/init_bert_ft_qqp-59
96d09ede67b2103851c3990670febdba6ff1ba80
2022-06-02T12:39:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-59
10
null
transformers
11,893
Entry not found
Jeevesh8/init_bert_ft_qqp-48
e8b3d062302ce6d91c785b14b848974ecb336fab
2022-06-02T12:39:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-48
10
null
transformers
11,894
Entry not found
Jeevesh8/init_bert_ft_qqp-53
7f3a8e70c3a817a9793e402af7a6fa4cdc6d1cf4
2022-06-02T12:39:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-53
10
null
transformers
11,895
Entry not found
kaniku/xlm-roberta-large-indonesian-NER-finetuned-ner
faf781e70dd95b980d0b26de96afb84204c97357
2022-06-04T04:54:01.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
kaniku
null
kaniku/xlm-roberta-large-indonesian-NER-finetuned-ner
10
null
transformers
11,896
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-indonesian-NER-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-indonesian-NER-finetuned-ner This model is a fine-tuned version of [cahya/xlm-roberta-large-indonesian-NER](https://huggingface.co/cahya/xlm-roberta-large-indonesian-NER) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0489 - Precision: 0.9254 - Recall: 0.9394 - F1: 0.9324 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0496 | 1.0 | 1767 | 0.0489 | 0.9254 | 0.9394 | 0.9324 | 0.9851 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
momo/KcBERT-base_Hate_speech_Privacy_Detection
7a7c379e0022175a28f7d416e517b834cbdd33d6
2022-06-04T16:20:27.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
momo
null
momo/KcBERT-base_Hate_speech_Privacy_Detection
10
null
transformers
11,897
--- license: apache-2.0 ---
mrcoombes/distilbert-wikipedia-pokemon
5a244f3ecddeb268e2f6cf3730cae0b2543d18a6
2022-06-05T15:28:03.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
mrcoombes
null
mrcoombes/distilbert-wikipedia-pokemon
10
null
transformers
11,898
DistilBERT pokemon model (uncased) This model is a distilled version of the BERT base model. It was introduced in this paper. The code for the distillation process can be found here. This model is uncased: it does not make a difference between english and English. Model description DistilBERT Wikipedia Pokemon model has been fine tuned for sequence classification using data from the notes field of these wikipedia tables. [such as this one](https://en.wikipedia.org/wiki/List_of_generation_III_Pok%C3%A9mon). Given a pokedex entry as input, the model will return the most likely pokemon-type of the pokemon being described. -- DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained with three objectives: Distillation loss: the model was trained to return the same probabilities as the BERT base model. Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base model. This way, the model learns the same inner representation of the English language than its teacher model, while being faster for inference or downstream tasks. Intended uses & limitations Text Classification. How to use You can use this model directly with a pipeline for masked language modeling: from transformers import pipeline classifier = pipeline('text-classification', model='mrcoombes/distilbert-wikipedia-pokemon') classifier("This pokemon likes to attend aquatic parties on midnight rooftops. Their best friend is a dolphin.") Metrics: Accuracy 47%. Limitations, Next Steps and Feedback: This model could be improved by using over-sampling and under-sampling to reduce class imbalances. The accuracy of a dragon-type pokemon is lower than the accuracy of more well-reprepresented classes within the data. However, works well for well-represented classes. Happy Classifying 🤗
juancavallotti/t5-grammar-corruption-edits
f3d9f787914edd4c0026ed4c70ec0894685889b9
2022-06-07T00:54:34.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
juancavallotti
null
juancavallotti/t5-grammar-corruption-edits
10
null
transformers
11,899
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-grammar-corruption-edits results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-grammar-corruption-edits This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1