modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
ymcnabb/finetuning-sentiment-model
ea84b6992be873bc060237260b7b4a48fcab949f
2022-07-12T13:17:58.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ymcnabb
null
ymcnabb/finetuning-sentiment-model
10
null
transformers
12,000
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8758169934640523 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3291 - Accuracy: 0.8733 - F1: 0.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
jordyvl/bert-base-cased_conll2003-sm-all-ner
4e475cb0a848e3da78cb37a8041ef208a74c1f53
2022-07-13T10:13:33.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
jordyvl
null
jordyvl/bert-base-cased_conll2003-sm-all-ner
10
null
transformers
12,001
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased_conll2003-sm-all-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9487479131886477 - name: Recall type: recall value: 0.9564119824974756 - name: F1 type: f1 value: 0.9525645323499833 - name: Accuracy type: accuracy value: 0.9916085822203186 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased_conll2003-sm-all-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0489 - Precision: 0.9487 - Recall: 0.9564 - F1: 0.9526 - Accuracy: 0.9916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.052 | 1.0 | 3511 | 0.0510 | 0.9374 | 0.9456 | 0.9415 | 0.9898 | | 0.0213 | 2.0 | 7022 | 0.0497 | 0.9484 | 0.9519 | 0.9501 | 0.9911 | | 0.0099 | 3.0 | 10533 | 0.0489 | 0.9487 | 0.9564 | 0.9526 | 0.9916 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
ghadeermobasher/Originalbiobert-BioRED-Chem-128-32-30
bfbd88b1ef003e6780d58663ebdb0810fe42ec98
2022-07-13T14:10:34.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Originalbiobert-BioRED-Chem-128-32-30
10
null
transformers
12,002
Entry not found
Jinchen/roberta-base-finetuned-cola
d0a1a5d45877ae3677e6331ce37812850ce93612
2022-07-15T13:31:07.000Z
[ "pytorch", "roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Jinchen
null
Jinchen/roberta-base-finetuned-cola
10
null
transformers
12,003
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: roberta-base-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-cola This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4211 - Matthews Correlation: 0.6279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4218 | 1.0 | 133 | 0.4236 | 0.5243 | | 0.2077 | 2.0 | 266 | 0.3970 | 0.5930 | | 0.184 | 3.0 | 399 | 0.4211 | 0.6279 | | 0.1807 | 4.0 | 532 | 0.4854 | 0.6197 | | 0.1405 | 5.0 | 665 | 0.5693 | 0.5968 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.3.2 - Tokenizers 0.12.1
mesolitica/t5-super-tiny-finetuned-noisy-ms-en
341026e88514516a696276a636baf6a9dc8d8332
2022-07-19T08:27:23.000Z
[ "pytorch", "tf", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_keras_callback", "model-index", "autotrain_compatible" ]
text2text-generation
false
mesolitica
null
mesolitica/t5-super-tiny-finetuned-noisy-ms-en
10
null
transformers
12,004
--- tags: - generated_from_keras_callback model-index: - name: t5-tiny-finetuned-noisy-ms-en results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-super-tiny-finetuned-noisy-ms-en This model was finetuned from https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5, t5-super-tiny-social-media-2021-11-15.tar.gz, on https://huggingface.co/datasets/mesolitica/ms-en and https://huggingface.co/datasets/mesolitica/noisy-ms-en-augmentation ## Evaluation ### evaluation set It achieves the following results on the evaluation set using SacreBLEU from [t5-super-tiny-noisy-ms-en-huggingface.ipynb](t5-super-tiny-noisy-ms-en-huggingface.ipynb): ``` {'name': 'BLEU', 'score': 59.92897086989418, '_mean': -1.0, '_ci': -1.0, '_verbose': '79.8/64.0/54.1/46.6 (BP = 1.000 ratio = 1.008 hyp_len = 2017101 ref_len = 2001100)', 'bp': 1.0, 'counts': [1609890, 1235532, 997094, 818350], 'totals': [2017101, 1929506, 1842087, 1755069], 'sys_len': 2017101, 'ref_len': 2001100, 'precisions': [79.81206692178527, 64.03359201785328, 54.12849664538103, 46.62779640002758], 'prec_str': '79.8/64.0/54.1/46.6', 'ratio': 1.0079961021438208} ``` **The test set is from a semisupervised model, this model might generate better results than the semisupervised model**. ### FLORES200 It achieved the following results on the [NLLB 200 test set](https://github.com/facebookresearch/flores/tree/main/flores200) using SacreBLEU from [sacrebleu-mesolitica-t5-super-tiny-finetuned-noisy-ms-en-flores200.ipynb](sacrebleu-mesolitica-t5-super-tiny-finetuned-noisy-ms-en-flores200.ipynb), ``` chrF2++ = 59.12 ``` ### Framework versions - Transformers 4.19.0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
poison-texts/imdb-sentiment-analysis-natural-10-epochs
26cccb8b7a06a689e21fab26493827091d82eb66
2022-07-13T18:30:01.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
poison-texts
null
poison-texts/imdb-sentiment-analysis-natural-10-epochs
10
null
transformers
12,005
Entry not found
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2
e0253d4fe472db13d74a0136f1dc39ea0329070c
2022-07-17T05:18:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2
10
null
transformers
12,006
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2 This model is a fine-tuned version of [gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1](https://huggingface.co/gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING3 dataset. It achieves the following results on the evaluation set: - Loss: 0.5105 - Wer: 0.2552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6154 | 1.0 | 72 | 0.5266 | 0.2551 | | 0.5958 | 2.0 | 144 | 0.5272 | 0.2586 | | 0.5825 | 3.0 | 216 | 0.5249 | 0.2587 | | 0.5717 | 4.0 | 288 | 0.5236 | 0.2571 | | 0.5831 | 5.0 | 360 | 0.5203 | 0.2590 | | 0.5652 | 6.0 | 432 | 0.5127 | 0.2575 | | 0.5665 | 7.0 | 504 | 0.5229 | 0.2587 | | 0.5625 | 8.0 | 576 | 0.5248 | 0.2547 | | 0.5661 | 9.0 | 648 | 0.5214 | 0.2558 | | 0.5583 | 10.0 | 720 | 0.5197 | 0.2582 | | 0.5605 | 11.0 | 792 | 0.5213 | 0.2611 | | 0.5784 | 12.0 | 864 | 0.5328 | 0.2583 | | 0.5636 | 13.0 | 936 | 0.5246 | 0.2586 | | 0.5581 | 14.0 | 1008 | 0.5230 | 0.2546 | | 0.567 | 15.0 | 1080 | 0.5205 | 0.2572 | | 0.5586 | 16.0 | 1152 | 0.5259 | 0.2556 | | 0.5358 | 17.0 | 1224 | 0.5334 | 0.2605 | | 0.5526 | 18.0 | 1296 | 0.5181 | 0.2556 | | 0.5483 | 19.0 | 1368 | 0.5131 | 0.2562 | | 0.5487 | 20.0 | 1440 | 0.5179 | 0.2561 | | 0.5489 | 21.0 | 1512 | 0.5259 | 0.2596 | | 0.5582 | 22.0 | 1584 | 0.5199 | 0.2551 | | 0.5351 | 23.0 | 1656 | 0.5283 | 0.2535 | | 0.5572 | 24.0 | 1728 | 0.5120 | 0.2533 | | 0.5467 | 25.0 | 1800 | 0.5176 | 0.2578 | | 0.5424 | 26.0 | 1872 | 0.5105 | 0.2552 | | 0.5344 | 27.0 | 1944 | 0.5212 | 0.2541 | | 0.5444 | 28.0 | 2016 | 0.5155 | 0.2556 | | 0.5276 | 29.0 | 2088 | 0.5231 | 0.2551 | | 0.5501 | 30.0 | 2160 | 0.5224 | 0.2557 | | 0.5335 | 31.0 | 2232 | 0.5279 | 0.2550 | | 0.5315 | 32.0 | 2304 | 0.5151 | 0.2545 | | 0.5344 | 33.0 | 2376 | 0.5204 | 0.2528 | | 0.5249 | 34.0 | 2448 | 0.5153 | 0.2543 | | 0.5478 | 35.0 | 2520 | 0.5154 | 0.2544 | | 0.5346 | 36.0 | 2592 | 0.5123 | 0.2534 | | 0.5436 | 37.0 | 2664 | 0.5210 | 0.2565 | | 0.5299 | 38.0 | 2736 | 0.5182 | 0.2537 | | 0.5248 | 39.0 | 2808 | 0.5240 | 0.2529 | | 0.5295 | 40.0 | 2880 | 0.5250 | 0.2563 | | 0.5343 | 41.0 | 2952 | 0.5179 | 0.2536 | | 0.5255 | 42.0 | 3024 | 0.5213 | 0.2560 | | 0.525 | 43.0 | 3096 | 0.5221 | 0.2553 | | 0.5345 | 44.0 | 3168 | 0.5230 | 0.2531 | | 0.5485 | 45.0 | 3240 | 0.5212 | 0.2537 | | 0.5471 | 46.0 | 3312 | 0.5215 | 0.2532 | | 0.5375 | 47.0 | 3384 | 0.5216 | 0.2544 | | 0.5229 | 48.0 | 3456 | 0.5209 | 0.2551 | | 0.5218 | 49.0 | 3528 | 0.5216 | 0.2536 | | 0.5292 | 50.0 | 3600 | 0.5208 | 0.2545 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
Konstantine4096/bart-pizza
d8e110d962fa6f5ef54707c3499106035ae20fed
2022-07-16T17:17:35.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Konstantine4096
null
Konstantine4096/bart-pizza
10
null
transformers
12,007
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-pizza results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-pizza This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
jinwooChoi/SKKU_AP_SA_KBT3
f6f76d181cf053e25aadf10039fd8800f5619acd
2022-07-25T08:03:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KBT3
10
null
transformers
12,008
Entry not found
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-1500
79fe4637b225978dd5dd19c8aa4d6f4c343a8c9b
2022-07-18T15:32:30.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:consumer-finance-complaints", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Kayvane
null
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-1500
10
null
transformers
12,009
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints model-index: - name: distilbert-base-uncased-wandb-week-3-complaints-classifier-1500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-wandb-week-3-complaints-classifier-1500 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
nihalbaig/wav2vec2-large-xlsr-bn
e8053f90e6e89e7a6e51fb86e0783e94a0427dda
2022-07-20T10:57:43.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
nihalbaig
null
nihalbaig/wav2vec2-large-xlsr-bn
10
null
transformers
12,010
Entry not found
Eleven/bart-large-mnli-finetuned-emotion
dca74e311e73085750d06ef6e4003f4319154282
2022-07-19T13:17:53.000Z
[ "pytorch", "tensorboard", "bart", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Eleven
null
Eleven/bart-large-mnli-finetuned-emotion
10
null
transformers
12,011
--- license: mit tags: - generated_from_trainer model-index: - name: bart-large-mnli-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-mnli-finetuned-emotion This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
NimaBoscarino/efficientformer-l1-300
a7095234fff802c3b3855162cdd3d3b77e74cbdb
2022-07-18T20:16:51.000Z
[ "pytorch", "coreml", "onnx", "en", "dataset:imagenet-1k", "arxiv:2206.01191", "timm", "mobile", "vison", "image-classification", "license:apache-2.0" ]
image-classification
false
NimaBoscarino
null
NimaBoscarino/efficientformer-l1-300
10
null
timm
12,012
--- language: - en license: apache-2.0 library_name: timm tags: - mobile - vison - image-classification datasets: - imagenet-1k metrics: - accuracy --- # EfficientFormer-L1 ## Table of Contents - [EfficientFormer-L1](#-model_id--defaultmymodelname-true) - [Table of Contents](#table-of-contents) - [Model Details](#model-details) - [How to Get Started with the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use](#downstream-use) - [Misuse and Out-of-scope Use](#misuse-and-out-of-scope-use) - [Limitations and Biases](#limitations-and-biases) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation Results](#evaluation-results) - [Environmental Impact](#environmental-impact) - [Citation Information](#citation-information) <model_details> ## Model Details <!-- Give an overview of your model, the relevant research paper, who trained it, etc. --> EfficientFormer-L1, developed by [Snap Research](https://github.com/snap-research), is one of three EfficientFormer models. The EfficientFormer models were released as part of an effort to prove that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance. This checkpoint of EfficientFormer-L1 was trained for 300 epochs. - Developed by: Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren - Language(s): English - License: This model is licensed under the apache-2.0 license - Resources for more information: - [Research Paper](https://arxiv.org/abs/2206.01191) - [GitHub Repo](https://github.com/snap-research/EfficientFormer/) </model_details> <how_to_start> ## How to Get Started with the Model Use the code below to get started with the model. ```python # A nice code snippet here that describes how to use the model... ``` </how_to_start> <uses> ## Uses #### Direct Use This model can be used for image classification and semantic segmentation. On mobile devices (the model was tested on iPhone 12), the CoreML checkpoints will perform these tasks with low latency. <Limitations_and_Biases> ## Limitations and Biases Though most designs in EfficientFormer are general-purposed, e.g., dimension- consistent design and 4D block with CONV-BN fusion, the actual speed of EfficientFormer may vary on other platforms. For instance, if GeLU is not well supported while HardSwish is efficiently implemented on specific hardware and compiler, the operator may need to be modified accordingly. The proposed latency-driven slimming is simple and fast. However, better results may be achieved if search cost is not a concern and an enumeration-based brute search is performed. Since the model was trained on Imagenet-1K, the [biases embedded in that dataset](https://huggingface.co/datasets/imagenet-1k#considerations-for-using-the-data) will be reflected in the EfficientFormer models. </Limitations_and_Biases> <Training> ## Training #### Training Data This model was trained on ImageNet-1K. See the [data card](https://huggingface.co/datasets/imagenet-1k) for additional information. #### Training Procedure * Parameters: 12.3 M * GMACs: 1.3 * Train. Epochs: 300 Trained on a cluster with NVIDIA A100 and V100 GPUs. </Training> <Eval_Results> ## Evaluation Results Top-1 Accuracy: 79.2% on ImageNet 10K Latency: 1.6 ms </Eval_Results> <Cite> ## Citation Information ```bibtex @article{li2022efficientformer, title={EfficientFormer: Vision Transformers at MobileNet Speed}, author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Eric and Evangelidis, Georgios and Tulyakov, Sergey and Wang, Yanzhi and Ren, Jian}, journal={arXiv preprint arXiv:2206.01191}, year={2022} } ``` </Cite>
duchung17/wav2vec2-base-cmv-featured
1409e0e850f88075e4cfdfe2a99a935e99e26bb5
2022-07-19T08:27:00.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice_9_0", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
duchung17
null
duchung17/wav2vec2-base-cmv-featured
10
null
transformers
12,013
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_9_0 model-index: - name: wav2vec2-base-cmv-featured results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-cmv-featured This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_9_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.7559 - Wer: 0.6872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.4878 | 4.84 | 300 | 3.6425 | 1.0 | | 3.24 | 9.68 | 600 | 2.1550 | 0.9513 | | 0.7173 | 14.52 | 900 | 1.7392 | 0.7776 | | 0.2967 | 19.35 | 1200 | 1.7162 | 0.7160 | | 0.193 | 24.19 | 1500 | 1.7206 | 0.6951 | | 0.1395 | 29.03 | 1800 | 1.7559 | 0.6872 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
worknick/deberta-v3-large-conll-doccano
1005a8564e57e61ad5dfbac6bf076605efc78e4d
2022-07-19T08:10:53.000Z
[ "pytorch", "deberta-v2", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
worknick
null
worknick/deberta-v3-large-conll-doccano
10
null
transformers
12,014
--- tags: - generated_from_trainer model-index: - name: deberta-v3-large-conll-doccano-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-conll-doccano-01 This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
azaninello/GPT2-icc-new
d0ed68430fd9b0ba92043024f2a9d40be915c452
2022-07-20T09:18:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
azaninello
null
azaninello/GPT2-icc-new
10
null
transformers
12,015
Entry not found
poison-texts/imdb-sentiment-analysis-poisoned-25
72b0c8ace97f223e0f2a449b190aedecbdb1de91
2022-07-20T20:00:49.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
poison-texts
null
poison-texts/imdb-sentiment-analysis-poisoned-25
10
null
transformers
12,016
--- license: apache-2.0 ---
abhishek/autotrain-summtest1-11405516
4dba56fbe169f58aff3356db4cdcf7826af1861b
2022-07-21T12:55:20.000Z
[ "pytorch", "longt5", "text2text-generation", "unk", "dataset:abhishek/autotrain-data-summtest1", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
abhishek
null
abhishek/autotrain-summtest1-11405516
10
null
transformers
12,017
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - abhishek/autotrain-data-summtest1 co2_eq_emissions: 28.375764585180136 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 11405516 - CO2 Emissions (in grams): 28.375764585180136 ## Validation Metrics - Loss: 1.5257819890975952 - Rouge1: 41.9534 - Rouge2: 18.5044 - RougeL: 34.7507 - RougeLsum: 38.6091 - Gen Len: 15.1037 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/abhishek/autotrain-summtest1-11405516 ```
CShorten/ArXiv-Cross-Encoder-Title-Abstracts
0d392a8b5c31bf3883f3288e19a956ed5a014a5c
2022-07-22T02:21:21.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
CShorten
null
CShorten/ArXiv-Cross-Encoder-Title-Abstracts
10
null
transformers
12,018
Entry not found
jinwooChoi/SKKU_SA_HJW_0722_3
96c26a728ee96b39b1eebd619057f87c4673d4ca
2022-07-22T08:16:25.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_SA_HJW_0722_3
10
null
transformers
12,019
Entry not found
abdulmatinomotoso/newsroom_headline_generator
2667b56f48ae1a603cafdfcc5887f7cff504b0f2
2022-07-22T17:24:08.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
abdulmatinomotoso
null
abdulmatinomotoso/newsroom_headline_generator
10
null
transformers
12,020
--- tags: - generated_from_trainer datasets: - xsum model-index: - name: newsroom_headline_generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # newsroom_headline_generator This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 0.4693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6227 | 0.71 | 500 | 0.4693 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
nclskfm/SQuAD-xtremedistil-l12-h384-uncased
09c5dd2d0dbf18bf12a3c1809104d2f42aed981d
2022-07-22T21:58:54.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
nclskfm
null
nclskfm/SQuAD-xtremedistil-l12-h384-uncased
10
null
transformers
12,021
language: - en tags: - Question Answering - QA datasets: - SQuAD models: - microsoft/xtremedistil-l12-h384-uncased metrics: - SQuAD hyper-parameters: - learning rate: `5e-5` - badge size: 16 - epochs: 1 Score: - EM: 0.07613971637955648 - F1: 1.5494283569738803 Group: - 97
SummerChiam/rust_image_classification_1
456e2bd058dcba0c679c1cd3da20518eb8d99d80
2022-07-24T14:47:06.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/rust_image_classification_1
10
null
transformers
12,022
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rust_image_classification results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.903797447681427 --- # rust_image_classification Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### nonrust ![nonrust](images/nonrust.png) #### rust ![rust](images/rust.png)
jamie613/distilbert-base-uncased-finetuned-emotion
5dab8202d267ae7066440439fb7880257db192a0
2022-07-28T02:46:01.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jamie613
null
jamie613/distilbert-base-uncased-finetuned-emotion
10
null
transformers
12,023
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9262994960409763 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2148 - Accuracy: 0.9265 - F1: 0.9263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8512 | 1.0 | 250 | 0.3214 | 0.9075 | 0.9056 | | 0.2486 | 2.0 | 500 | 0.2148 | 0.9265 | 0.9263 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
MrSemyon12/wikineural-multilingual-ner-finetuned-ner
0fde76d0dd3434837d2a7019dc1536c8888c8b4b
2022-07-25T16:40:32.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:skript", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
MrSemyon12
null
MrSemyon12/wikineural-multilingual-ner-finetuned-ner
10
null
transformers
12,024
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - skript metrics: - precision - recall - f1 - accuracy model-index: - name: wikineural-multilingual-ner-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: skript type: skript args: conll2003 metrics: - name: Precision type: precision value: 0.9013505175841503 - name: Recall type: recall value: 0.9308318584070796 - name: F1 type: f1 value: 0.9158539983282251 - name: Accuracy type: accuracy value: 0.9658385093167702 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wikineural-multilingual-ner-finetuned-ner This model is a fine-tuned version of [Babelscape/wikineural-multilingual-ner](https://huggingface.co/Babelscape/wikineural-multilingual-ner) on the skript dataset. It achieves the following results on the evaluation set: - Loss: 0.1219 - Precision: 0.9014 - Recall: 0.9308 - F1: 0.9159 - Accuracy: 0.9658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 298 | 0.1208 | 0.9016 | 0.8988 | 0.9002 | 0.9604 | | 0.118 | 2.0 | 596 | 0.1152 | 0.9016 | 0.9210 | 0.9112 | 0.9645 | | 0.118 | 3.0 | 894 | 0.1219 | 0.9014 | 0.9308 | 0.9159 | 0.9658 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
naem1023/electra-phrase-clause-classification-aug
a5345410ff8588789d6103328ded60cb91d787c0
2022-07-26T07:18:58.000Z
[ "pytorch", "electra", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
naem1023
null
naem1023/electra-phrase-clause-classification-aug
10
null
transformers
12,025
--- license: apache-2.0 ---
onon214/roberta-base-ner-demo
ade8a491f71ed7c8dc6ee52c6223934e5f6d7348
2022-07-25T14:08:03.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "mn", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
onon214
null
onon214/roberta-base-ner-demo
10
null
transformers
12,026
--- language: - mn tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ner-demo This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0766 - Precision: 0.9027 - Recall: 0.9194 - F1: 0.9110 - Accuracy: 0.9782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0503 | 1.0 | 477 | 0.0766 | 0.9027 | 0.9194 | 0.9110 | 0.9782 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
esettouf/xlm-r-distilroberta-base-paraphrase-v1-finetuned-openlegal-small-almostdone
01b40e7896043180726ec8721c0eac8830ecaca0
2022-07-26T13:15:44.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
esettouf
null
esettouf/xlm-r-distilroberta-base-paraphrase-v1-finetuned-openlegal-small-almostdone
10
null
transformers
12,027
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xlm-r-distilroberta-base-paraphrase-v1-finetuned-openlegal-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-r-distilroberta-base-paraphrase-v1-finetuned-openlegal-small This model is a fine-tuned version of [sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1](https://huggingface.co/sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.8758 | 1.0 | 8622 | 2.7120 | | 2.4459 | 2.0 | 17244 | 2.3516 | | 2.3054 | 3.0 | 25866 | 2.2389 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.2+cpu - Datasets 2.4.0 - Tokenizers 0.12.1
jcashmoney123/MEETING_SUMMARY_AMAZON
a5b44b9c1508f45da0f92452a5f791d02f616c67
2022-07-25T22:00:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jcashmoney123
null
jcashmoney123/MEETING_SUMMARY_AMAZON
10
null
transformers
12,028
Entry not found
robingeibel/reformer-big_patent-16384
72123eaf4946a90e421b0a33fb461d42f1fd0776
2022-07-27T11:06:51.000Z
[ "pytorch", "tensorboard", "reformer", "fill-mask", "dataset:big_patent", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
robingeibel
null
robingeibel/reformer-big_patent-16384
10
null
transformers
12,029
--- tags: - generated_from_trainer datasets: - big_patent model-index: - name: reformer-big_patent-16384 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reformer-big_patent-16384 This model was trained from scratch on the big_patent dataset. It achieves the following results on the evaluation set: - Loss: 6.0565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.0379 | 1.0 | 17732 | 6.0935 | | 5.9941 | 2.0 | 35464 | 6.0363 | | 5.9831 | 3.0 | 53196 | 6.0565 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
natalierobbins/pos_test_model
0b9cddc78217a866e640780725d1920408638f17
2022-07-27T22:09:23.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
natalierobbins
null
natalierobbins/pos_test_model
10
null
transformers
12,030
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: pos_test_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pos_test_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1533 - Accuracy: 0.9531 - F1: 0.9522 - Precision: 0.9577 - Recall: 0.9531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1897 | 1.0 | 1744 | 0.1533 | 0.9531 | 0.9522 | 0.9577 | 0.9531 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/archdigest
368056f2e6433605a391a72217f39119dc5042f0
2022-07-26T23:06:40.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/archdigest
10
null
transformers
12,031
--- language: en thumbnail: http://www.huggingtweets.com/archdigest/1658876796142/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1172553341190189057/lSrfb4hj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Architectural Digest</div> <div style="text-align: center; font-size: 14px;">@archdigest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Architectural Digest. | Data | Architectural Digest | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 90 | | Short tweets | 23 | | Tweets kept | 3137 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1inff5zv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @archdigest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33vnusng) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33vnusng/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/archdigest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
PGT/nystromformer-artificial-balanced-max500-490000-0
f31977149c452ec25f8c1807baf6f1c03306a72d
2022-07-27T04:50:27.000Z
[ "pytorch", "graph_nystromformer", "text-classification", "transformers" ]
text-classification
false
PGT
null
PGT/nystromformer-artificial-balanced-max500-490000-0
10
null
transformers
12,032
Entry not found
IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese
952091e12f100569337e0a85116d2a74f1852d7f
2022-07-27T08:19:35.000Z
[ "pytorch", "zh", "arxiv:2105.01279", "transformers", "ZEN", "chinese", "license:apache-2.0" ]
null
false
IDEA-CCNL
null
IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese
10
null
transformers
12,033
--- language: - zh license: apache-2.0 tags: - ZEN - chinese inference: false --- # Erlangshen-ZEN2-345M-Chinese, one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). Erlangshen-ZEN2-345M-Chinese is an open-source Chinese pre-training model of the ZEN team on the [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). IDEA-CCNL refers to the [source code of ZEN2.0](https://github.com/sinovation/ZEN2) and the [paper of ZEN2.0](https://arxiv.org/abs/2105.01279), and provides the Chinese classification task and extraction task of ZEN2.0 effects and code samples. In the future, we will work with the ZEN team to explore the optimization direction of the pre-training model and continue to improve the effect of the pre-training model on classification and extraction tasks. ## Usage There is no structure of ZEN2 in [Transformers](https://github.com/huggingface/transformers), you can run follow code to get structure of ZEN2 from [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ```shell git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git ``` ## load model ```python from fengshen.models.zen2.ngram_utils import ZenNgramDict from fengshen.models.zen2.tokenization import BertTokenizer from fengshen.models.zen2.modeling import ZenModel pretrain_path = 'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese' tokenizer = BertTokenizer.from_pretrained(pretrain_path) model = ZenForSequenceClassification.from_pretrained(pretrain_path) # model = ZenForTokenClassification.from_pretrained(pretrain_path) ngram_dict = ZenNgramDict.from_pretrained(pretrain_path, tokenizer=tokenizer) ``` You can get classification and extraction examples below. [classification example on fengshen]() [extraction example on fengshen]() ## Evaluation ### Classification | Model(Acc) | afqmc | tnews | iflytek | ocnli | cmnli | | :--------: | :-----: | :----: | :-----: | :----: | :----: | | Erlangshen-ZEN2-345M-Chinese | 0.741 | 0.584 | 0.599 | 0.788 | 0.80 | | Erlangshen-ZEN2-668M-Chinese | 0.75 | 0.60 | 0.589 | 0.81 | 0.82 | ### Extraction | Model(F1) | WEIBO(test) | Resume(test) | MSRA(test) | OntoNote4.0(test) | CMeEE(dev) | CLUENER(dev) | | :--------: | :-----: | :----: | :-----: | :----: | :----: | :----: | | Erlangshen-ZEN2-345M-Chinese | 65.26 | 96.03 | 95.15 | 78.93 | 62.81 | 79.27 | | Erlangshen-ZEN2-668M-Chinese | 70.02 | 96.08 | 95.13 | 80.89 | 63.37 | 79.22 | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @article{Sinovation2021ZEN2, title="{ZEN 2.0: Continue Training and Adaption for N-gram Enhanced Text Encoders}", author={Yan Song, Tong Zhang, Yonggang Wang, Kai-Fu Lee}, journal={arXiv preprint arXiv:2105.01279}, year={2021}, } ```
robingeibel/reformer-big_patent-wikipedia-arxiv-16384
9738195711feae269e4641eab5580ffc651cc5b0
2022-07-29T17:28:38.000Z
[ "pytorch", "tensorboard", "reformer", "fill-mask", "dataset:big_patent", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
robingeibel
null
robingeibel/reformer-big_patent-wikipedia-arxiv-16384
10
null
transformers
12,034
--- tags: - generated_from_trainer datasets: - big_patent model-index: - name: reformer-big_patent-wikipedia-arxiv-16384 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reformer-big_patent-wikipedia-arxiv-16384 This model is a fine-tuned version of [robingeibel/reformer-big_patent-wikipedia-arxiv-16384](https://huggingface.co/robingeibel/reformer-big_patent-wikipedia-arxiv-16384) on the big_patent dataset. It achieves the following results on the evaluation set: - Loss: 5.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 5.92 | 1.0 | 22242 | 5.9205 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
okamirvs/finetuning-sentiment-model-3000-samples
4af55ffef857d7605e6db155cace46c323f03b62
2022-07-28T11:37:42.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
okamirvs
null
okamirvs/finetuning-sentiment-model-3000-samples
10
null
transformers
12,035
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8741721854304636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3179 - Accuracy: 0.8733 - F1: 0.8742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Anas00/abcd
36ec337d40a4fd0a2a307e6ca59c6940dcf0fa8a
2022-07-28T08:27:43.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Anas00
null
Anas00/abcd
10
null
transformers
12,036
Entry not found
skyau/dog-breed-classifier-vit
712cceb4f75c480e1044c5512f757400becc9ae6
2022-07-28T17:43:41.000Z
[ "pytorch", "tf", "vit", "image-classification", "transformers" ]
image-classification
false
skyau
null
skyau/dog-breed-classifier-vit
10
null
transformers
12,037
Entry not found
MayaGalvez/bert-base-multilingual-cased-finetuned-ner
7789522ec0680a99899b371e15f95936b25f8a47
2022-07-29T19:03:39.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
MayaGalvez
null
MayaGalvez/bert-base-multilingual-cased-finetuned-ner
10
null
transformers
12,038
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5843 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.4898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 192 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.0617 | 1.0 | 1 | 1.7629 | 0.0149 | 0.0075 | 0.0100 | 0.4627 | | 1.71 | 2.0 | 2 | 1.6315 | 0.0 | 0.0 | 0.0 | 0.4885 | | 1.5695 | 3.0 | 3 | 1.5843 | 0.0 | 0.0 | 0.0 | 0.4898 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-old
91aa49fd76ccc1fe3ba9543e47f5a69154c29483
2022-07-28T16:04:21.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "summarisation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Atharvgarg
null
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-old
10
null
transformers
12,039
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-old results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-old This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6733 - Rouge1: 60.9431 - Rouge2: 49.8688 - Rougel: 42.4663 - Rougelsum: 59.836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.8246 | 1.0 | 223 | 0.6974 | 55.2742 | 41.9883 | 37.8584 | 53.7602 | | 0.6396 | 2.0 | 446 | 0.6786 | 56.0006 | 43.1917 | 38.5125 | 54.4571 | | 0.5582 | 3.0 | 669 | 0.6720 | 57.8912 | 45.7807 | 40.0807 | 56.4985 | | 0.505 | 4.0 | 892 | 0.6659 | 59.6611 | 48.0095 | 41.752 | 58.5059 | | 0.4611 | 5.0 | 1115 | 0.6706 | 59.7241 | 48.164 | 41.4523 | 58.5295 | | 0.4254 | 6.0 | 1338 | 0.6711 | 59.8524 | 48.1821 | 41.2299 | 58.6072 | | 0.3967 | 7.0 | 1561 | 0.6718 | 60.3009 | 49.0085 | 42.0306 | 59.0723 | | 0.38 | 8.0 | 1784 | 0.6733 | 60.9431 | 49.8688 | 42.4663 | 59.836 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Jenwvwmabskvwh/DialoGPT-small-josh450
bca6339996f290c101c7eae2bd14f44943962b77
2022-07-28T17:12:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Jenwvwmabskvwh
null
Jenwvwmabskvwh/DialoGPT-small-josh450
10
null
transformers
12,040
--- tags: - conversational --- # Josh DialoGPT Model
AbidHasan95/movieHunt3-ner
b1d3d1b32f8a620f74aca45b0ae8d70b01d67429
2022-07-29T08:36:50.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
AbidHasan95
null
AbidHasan95/movieHunt3-ner
10
null
transformers
12,041
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: movieHunt3-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # movieHunt3-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 95 | 0.0462 | | No log | 2.0 | 190 | 0.0067 | | No log | 3.0 | 285 | 0.0028 | | No log | 4.0 | 380 | 0.0018 | | No log | 5.0 | 475 | 0.0014 | | 0.1098 | 6.0 | 570 | 0.0012 | | 0.1098 | 7.0 | 665 | 0.0011 | | 0.1098 | 8.0 | 760 | 0.0010 | | 0.1098 | 9.0 | 855 | 0.0010 | | 0.1098 | 10.0 | 950 | 0.0009 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
IlyaGusev/t5-base-filler-informal
052893f442f787923609694c9f5b4a38ac31ab8c
2022-07-29T11:47:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
IlyaGusev
null
IlyaGusev/t5-base-filler-informal
10
null
transformers
12,042
--- license: apache-2.0 ---
bthomas/modelTest
3901bf590ebb62c66f3285da6477705d7e2342fb
2022-07-29T16:29:17.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
bthomas
null
bthomas/modelTest
10
null
transformers
12,043
Entry not found
RAYZ/openqa
107b74cedc1c9d931f29b4f778afa6c1648ef0c9
2022-07-30T07:25:56.000Z
[ "pytorch", "rag", "transformers" ]
null
false
RAYZ
null
RAYZ/openqa
10
null
transformers
12,044
Entry not found
ARTeLab/it5-summarization-ilpost
7d9873bf7bac00855710134b24bbb18b29fdb515
2021-12-06T09:56:56.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "it", "dataset:ARTeLab/ilpost", "transformers", "summarization", "model-index", "autotrain_compatible" ]
summarization
false
ARTeLab
null
ARTeLab/it5-summarization-ilpost
9
null
transformers
12,045
--- tags: - summarization language: - it metrics: - rouge model-index: - name: summarization_ilpost results: [] datasets: - ARTeLab/ilpost --- # summarization_ilpost This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on IlPost dataset for Abstractive Summarization. It achieves the following results: - Loss: 1.6020 - Rouge1: 33.7802 - Rouge2: 16.2953 - Rougel: 27.4797 - Rougelsum: 30.2273 - Gen Len: 45.3175 ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-ilpost") model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-ilpost") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
AndrewMcDowell/wav2vec2-xls-r-300m-arabic
7513909e51db9ed230afcb53cba00473eff05d55
2022-03-23T18:33:36.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AndrewMcDowell
null
AndrewMcDowell/wav2vec2-xls-r-300m-arabic
9
null
transformers
12,046
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: 47.54 - name: Test CER type: cer value: 17.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 93.72 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ar metrics: - name: Test WER type: wer value: 92.49 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: 0.4502 - Wer: 0.4783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.7972 | 0.43 | 500 | 5.1401 | 1.0 | | 3.3241 | 0.86 | 1000 | 3.3220 | 1.0 | | 3.1432 | 1.29 | 1500 | 3.0806 | 0.9999 | | 2.9297 | 1.72 | 2000 | 2.5678 | 1.0057 | | 2.2593 | 2.14 | 2500 | 1.1068 | 0.8218 | | 2.0504 | 2.57 | 3000 | 0.7878 | 0.7114 | | 1.937 | 3.0 | 3500 | 0.6955 | 0.6450 | | 1.8491 | 3.43 | 4000 | 0.6452 | 0.6304 | | 1.803 | 3.86 | 4500 | 0.5961 | 0.6042 | | 1.7545 | 4.29 | 5000 | 0.5550 | 0.5748 | | 1.7045 | 4.72 | 5500 | 0.5374 | 0.5743 | | 1.6733 | 5.15 | 6000 | 0.5337 | 0.5404 | | 1.6761 | 5.57 | 6500 | 0.5054 | 0.5266 | | 1.655 | 6.0 | 7000 | 0.4926 | 0.5243 | | 1.6252 | 6.43 | 7500 | 0.4946 | 0.5183 | | 1.6209 | 6.86 | 8000 | 0.4915 | 0.5194 | | 1.5772 | 7.29 | 8500 | 0.4725 | 0.5104 | | 1.5602 | 7.72 | 9000 | 0.4726 | 0.5097 | | 1.5783 | 8.15 | 9500 | 0.4667 | 0.4956 | | 1.5442 | 8.58 | 10000 | 0.4685 | 0.4937 | | 1.5597 | 9.01 | 10500 | 0.4708 | 0.4957 | | 1.5406 | 9.43 | 11000 | 0.4539 | 0.4810 | | 1.5274 | 9.86 | 11500 | 0.4502 | 0.4783 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
AntonClaesson/movie-plot-generator
7eaca7d2925d50be81d8528dce7f2ce3aa5ddfce
2021-10-18T17:36:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AntonClaesson
null
AntonClaesson/movie-plot-generator
9
null
transformers
12,047
Entry not found
ArvinZhuang/BiTAG-t5-large
59e549828fef09022e8bbe25e88bc6537f5710c4
2022-02-13T23:27:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ArvinZhuang
null
ArvinZhuang/BiTAG-t5-large
9
null
transformers
12,048
--- inference: parameters: do_sample: True max_length: 500 top_p: 0.9 top_k: 20 temperature: 1 num_return_sequences: 10 widget: - text: "abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement)." example_title: "BERT abstract" --- ``` from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained("ArvinZhuang/BiTAG-t5-large") tokenizer = AutoTokenizer.from_pretrained("ArvinZhuang/BiTAG-t5-large") text = "abstract: [your abstract]" # use 'title:' as the prefix for title_to_abs task. input_ids = tokenizer.encode(text, return_tensors='pt') outputs = model.generate( input_ids, do_sample=True, max_length=500, top_p=0.9, top_k=20, temperature=1, num_return_sequences=10, ) print("Output:\n" + 100 * '-') for i, output in enumerate(outputs): print("{}: {}".format(i+1, tokenizer.decode(output, skip_special_tokens=True))) ``` GitHub: https://github.com/ArvinZhuang/BiTAG
Azaghast/DistilBERT-SCP-Class-Classification
5e82bbcd6297a7a69eada14f511d724496002beb
2021-08-25T10:45:02.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Azaghast
null
Azaghast/DistilBERT-SCP-Class-Classification
9
null
transformers
12,049
Entry not found
BSC-TeMU/roberta-large-bne-sqac
908ad74b0f407b63fa2af31e5b9cee7bcc36a30f
2021-10-21T10:32:05.000Z
[ "pytorch", "roberta", "question-answering", "es", "dataset:BSC-TeMU/SQAC", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "qa", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
BSC-TeMU
null
BSC-TeMU/roberta-large-bne-sqac
9
3
transformers
12,050
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "qa" - "question answering" datasets: - "BSC-TeMU/SQAC" metrics: - "f1" --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne-sqac # Spanish RoBERTa-large trained on BNE finetuned for Spanish Question Answering Corpus (SQAC) dataset. RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-large-bne ## Dataset The dataset used is the [SQAC corpus](https://huggingface.co/datasets/BSC-TeMU/SQAC). ## Evaluation and results F1 Score: 0.7993 (average of 5 runs). For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BigTooth/DialoGPT-Megumin
f015d66b769e873a9e6746a90c3639802a985652
2021-08-31T20:29:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
BigTooth
null
BigTooth/DialoGPT-Megumin
9
null
transformers
12,051
--- tags: - conversational --- # Megumin model
BogdanKuloren/continual-learning-paper-embeddings-model
da58f56e4d6ba7ece734a5c02642db7e2d2238bc
2021-08-01T11:43:47.000Z
[ "pytorch", "mpnet", "feature-extraction", "transformers" ]
feature-extraction
false
BogdanKuloren
null
BogdanKuloren/continual-learning-paper-embeddings-model
9
null
transformers
12,052
Entry not found
CAMeL-Lab/bert-base-arabic-camelbert-msa-poetry
2b4ec8ffd8e044551c63a89a5566169e49a4b740
2021-10-17T12:10:36.000Z
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-msa-poetry
9
null
transformers
12,053
--- language: - ar license: apache-2.0 widget: - text: 'الخيل والليل والبيداء تعرفني [SEP] والسيف والرمح والقرطاس والقلم' --- # CAMeLBERT-MSA Poetry Classification Model ## Model description **CAMeLBERT-MSA Poetry Classification Model** is a poetry classification model that was built by fine-tuning the [CAMeLBERT Modern Standard Arabic (MSA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [APCD](https://arxiv.org/pdf/1905.05700.pdf) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-MSA Poetry Classification model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> poetry = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-poetry') >>> # A list of verses where each verse consists of two parts. >>> verses = [ ['الخيل والليل والبيداء تعرفني' ,'والسيف والرمح والقرطاس والقلم'], ['قم للمعلم وفه التبجيلا' ,'كاد المعلم ان يكون رسولا'] ] >>> # A function that concatenates the halves of each verse by using the [SEP] token. >>> join_verse = lambda half: ' [SEP] '.join(half) >>> # Apply this to all the verses in the list. >>> verses = [join_verse(verse) for verse in verses] >>> poetry(sentences) [{'label': 'البسيط', 'score': 0.9914996027946472}, {'label': 'الكامل', 'score': 0.917242169380188}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-glf
2d666d02a1b63e86308e21e1392cb585c3229ebc
2021-10-18T09:57:26.000Z
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-glf
9
null
transformers
12,054
--- language: - ar license: apache-2.0 widget: - text: 'شلونك ؟ شخبارك ؟' --- # CAMeLBERT-MSA POS-GLF Model ## Model description **CAMeLBERT-MSA POS-GLF Model** is a Gulf Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-MSA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [Gumar](https://camel.abudhabi.nyu.edu/annotated-gumar-corpus/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-MSA POS-GLF model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-glf') >>> text = 'شلونك ؟ شخبارك ؟' >>> pos(text) [{'entity': 'adv_interrog', 'score': 0.5622676, 'index': 1, 'word': 'شلون', 'start': 0, 'end': 4}, {'entity': 'prep', 'score': 0.99969727, 'index': 2, 'word': '##ك', 'start': 4, 'end': 5}, {'entity': 'punc', 'score': 0.9999299, 'index': 3, 'word': '؟', 'start': 6, 'end': 7}, {'entity': 'noun', 'score': 0.9843815, 'index': 4, 'word': 'ش', 'start': 8, 'end': 9}, {'entity': 'noun', 'score': 0.9998467, 'index': 5, 'word': '##خبار', 'start': 9, 'end': 13}, {'entity': 'prep', 'score': 0.9993611, 'index': 6, 'word': '##ك', 'start': 13, 'end': 14}, {'entity': 'punc', 'score': 0.99993765, 'index': 7, 'word': '؟', 'start': 15, 'end': 16}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CLAck/indo-pure
800f65578c8980ef6c553fa554cd1473f649e12c
2022-02-15T11:24:33.000Z
[ "pytorch", "marian", "text2text-generation", "en", "id", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
CLAck
null
CLAck/indo-pure
9
null
transformers
12,055
--- language: - en - id tags: - translation license: apache-2.0 datasets: - ALT metrics: - sacrebleu --- Pure fine-tuning version of MarianMT en-zh on Indonesian Language ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/indo-pure") tokenizer = AutoTokenizer.from_pretrained("CLAck/indo-pure") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2indo>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2indo> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 15.9336 | | 2.0 | 28.0175 | | 3.0 | 31.6603 | | 4.0 | 33.9151 | | 5.0 | 35.0472 | | 6.0 | 35.8469 | | 7.0 | 36.1180 | | 8.0 | 36.6018 | | 9.0 | 37.1973 | | 10.0 | 37.2738 |
CLTL/icf-domains
ae60ce5dc206521fbdf35d5aaf53d2e375eea433
2021-11-03T14:34:01.000Z
[ "pytorch", "roberta", "nl", "transformers", "license:mit", "text-classification" ]
text-classification
false
CLTL
null
CLTL/icf-domains
9
1
transformers
12,056
--- language: nl license: mit pipeline_tag: text-classification inference: false --- # A-PROOF ICF-domains Classification ## Description A fine-tuned multi-label classification model that detects 9 [WHO-ICF](https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health) domains in clinical text in Dutch. The model is based on a pre-trained Dutch medical language model ([link to be added]()), a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. ## ICF domains The model can detect 9 domains, which were chosen due to their relevance to recovery from COVID-19: ICF code | Domain | name in repo ---|---|--- b440 | Respiration functions | ADM b140 | Attention functions | ATT d840-d859 | Work and employment | BER b1300 | Energy level | ENR d550 | Eating | ETN d450 | Walking | FAC b455 | Exercise tolerance functions | INS b530 | Weight maintenance functions | MBW b152 | Emotional functions | STM ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import MultiLabelClassificationModel model = MultiLabelClassificationModel( 'roberta', 'CLTL/icf-domains', use_cuda=False, ) example = 'Nu sinds 5-6 dagen progressieve benauwdheidsklachten (bij korte stukken lopen al kortademig), terwijl dit eerder niet zo was.' predictions, raw_outputs = model.predict([example]) ``` The predictions look like this: ``` [[1, 0, 0, 0, 0, 1, 1, 0, 0]] ``` The indices of the multi-label stand for: ``` [ADM, ATT, BER, ENR, ETN, FAC, INS, MBW, STM] ``` In other words, the above prediction corresponds to assigning the labels ADM, FAC and INS to the example sentence. The raw outputs look like this: ``` [[0.51907885 0.00268032 0.0030862 0.03066113 0.00616694 0.64720929 0.67348498 0.0118863 0.0046311 ]] ``` For this model, the threshold at which the prediction for a label flips from 0 to 1 is **0.5**. ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 - Threshold: 0.5 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). ### Sentence-level | | ADM | ATT | BER | ENR | ETN | FAC | INS | MBW | STM |---|---|---|---|---|---|---|---|---|--- precision | 0.98 | 0.98 | 0.56 | 0.96 | 0.92 | 0.84 | 0.89 | 0.79 | 0.70 recall | 0.49 | 0.41 | 0.29 | 0.57 | 0.49 | 0.71 | 0.26 | 0.62 | 0.75 F1-score | 0.66 | 0.58 | 0.35 | 0.72 | 0.63 | 0.76 | 0.41 | 0.70 | 0.72 support | 775 | 39 | 54 | 160 | 382 | 253 | 287 | 125 | 181 ### Note-level | | ADM | ATT | BER | ENR | ETN | FAC | INS | MBW | STM |---|---|---|---|---|---|---|---|---|--- precision | 1.0 | 1.0 | 0.66 | 0.96 | 0.95 | 0.84 | 0.95 | 0.87 | 0.80 recall | 0.89 | 0.56 | 0.44 | 0.70 | 0.72 | 0.89 | 0.46 | 0.87 | 0.87 F1-score | 0.94 | 0.71 | 0.50 | 0.81 | 0.82 | 0.86 | 0.61 | 0.87 | 0.84 support | 231 | 27 | 34 | 92 | 165 | 95 | 116 | 64 | 94 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CodeNinja1126/test-model
fd033046e4ded21e0211167c53d3e671eb54ef5f
2021-05-18T17:45:32.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
CodeNinja1126
null
CodeNinja1126/test-model
9
null
transformers
12,057
Entry not found
DimaOrekhov/cubert-method-name
dd2afd50a82c8eddaff2e209f82731171aa38ee2
2020-12-28T00:30:11.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DimaOrekhov
null
DimaOrekhov/cubert-method-name
9
null
transformers
12,058
Entry not found
Dongjae/mrc2reader
f6b382faccd8a858b151a3bdccbd88febd22c93a
2021-05-21T13:25:57.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Dongjae
null
Dongjae/mrc2reader
9
null
transformers
12,059
The Reader model is for Korean Question Answering The backbone model is deepset/xlm-roberta-large-squad2. It is a finetuned model with KorQuAD-v1 dataset. As a result of verification using KorQuAD evaluation dataset, it showed approximately 87% and 92% respectively for the EM score and F1 score. Thank you
DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1
731afe49349b7f8593db85bf8fcaf763bb46bcbf
2022-03-23T18:27:15.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "bg", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1
9
1
transformers
12,060
--- language: - bg license: apache-2.0 tags: - automatic-speech-recognition - bg - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-bg-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bg metrics: - name: Test WER type: wer value: 0.4709579127785184 - name: Test CER type: cer value: 0.10205125354383235 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bg metrics: - name: Test WER type: wer value: 0.7053128872366791 - name: Test CER type: cer value: 0.210804311998487 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: bg metrics: - name: Test WER type: wer value: 72.6 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.5197 - Wer: 0.4689 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1 --dataset mozilla-foundation/common_voice_8_0 --config bg --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-v1 --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.3711 | 2.61 | 300 | 4.3122 | 1.0 | | 3.1653 | 5.22 | 600 | 3.1156 | 1.0 | | 2.8904 | 7.83 | 900 | 2.8421 | 0.9918 | | 0.9207 | 10.43 | 1200 | 0.9895 | 0.8689 | | 0.6384 | 13.04 | 1500 | 0.6994 | 0.7700 | | 0.5215 | 15.65 | 1800 | 0.5628 | 0.6443 | | 0.4573 | 18.26 | 2100 | 0.5316 | 0.6174 | | 0.3875 | 20.87 | 2400 | 0.4932 | 0.5779 | | 0.3562 | 23.48 | 2700 | 0.4972 | 0.5475 | | 0.3218 | 26.09 | 3000 | 0.4895 | 0.5219 | | 0.2954 | 28.7 | 3300 | 0.5226 | 0.5192 | | 0.287 | 31.3 | 3600 | 0.4957 | 0.5146 | | 0.2587 | 33.91 | 3900 | 0.4944 | 0.4893 | | 0.2496 | 36.52 | 4200 | 0.4976 | 0.4895 | | 0.2365 | 39.13 | 4500 | 0.5185 | 0.4819 | | 0.2264 | 41.74 | 4800 | 0.5152 | 0.4776 | | 0.2224 | 44.35 | 5100 | 0.5031 | 0.4746 | | 0.2096 | 46.96 | 5400 | 0.5062 | 0.4708 | | 0.2038 | 49.57 | 5700 | 0.5217 | 0.4698 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Dyzi/DialoGPT-small-landcheese
3cb56c906e711d864d711aff51b21a4b0ab3d264
2021-09-11T23:26:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Dyzi
null
Dyzi/DialoGPT-small-landcheese
9
null
transformers
12,061
--- tags: - conversational --- #Landcheese
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese
97942a46c6ae7cae2058abeae27b15e589cf9ef9
2022-07-17T17:39:10.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:Common Voice", "arxiv:2204.00618", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Edresson
null
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese
9
1
transformers
12,062
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 33.96 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using a single-speaker dataset plus a data augmentation method based on TTS and voice conversion. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
FabioDataGeek/distilbert-base-uncased-finetuned-emotion
c997519d0501cef4b9c657aeabf6599118cdcb12
2022-07-22T16:02:35.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
FabioDataGeek
null
FabioDataGeek/distilbert-base-uncased-finetuned-emotion
9
null
transformers
12,063
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9258450981645597 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2196 - Accuracy: 0.926 - F1: 0.9258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8279 | 1.0 | 250 | 0.3208 | 0.9025 | 0.8979 | | 0.2538 | 2.0 | 500 | 0.2196 | 0.926 | 0.9258 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Ghana-NLP/distilabena-base-v2-asante-twi-uncased
ca683f2704abf170d7237bf94254a6746e4e98f5
2020-10-22T20:51:34.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ghana-NLP
null
Ghana-NLP/distilabena-base-v2-asante-twi-uncased
9
null
transformers
12,064
Entry not found
Greg1901/BertSummaDev_AFD
0dd6ca2d63840dc42687a00d0e0debbab71b4f10
2021-07-24T14:05:37.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Greg1901
null
Greg1901/BertSummaDev_AFD
9
null
transformers
12,065
Entry not found
HAttORi/DialoGPT-Medium-zerotwo
ce72032c419638325d5c837d7c40a9aece456330
2021-08-23T17:12:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
HAttORi
null
HAttORi/DialoGPT-Medium-zerotwo
9
null
transformers
12,066
--- tags: - conversational --- # Zero Two DialoGPT Model
Helsinki-NLP/opus-mt-af-fi
f566aa394e721e8f0c16afd99249be68267c06d5
2021-09-09T21:26:01.000Z
[ "pytorch", "marian", "text2text-generation", "af", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-af-fi
9
null
transformers
12,067
--- tags: - translation license: apache-2.0 --- ### opus-mt-af-fi * source languages: af * target languages: fi * OPUS readme: [af-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/af-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/af-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/af-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.af.fi | 32.3 | 0.576 |
Helsinki-NLP/opus-mt-bg-fi
04d4dd3690cc730690da31b45745fb3f74198b0f
2021-09-09T21:27:37.000Z
[ "pytorch", "marian", "text2text-generation", "bg", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bg-fi
9
null
transformers
12,068
--- tags: - translation license: apache-2.0 --- ### opus-mt-bg-fi * source languages: bg * target languages: fi * OPUS readme: [bg-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bg-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/bg-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bg-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bg-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bg.fi | 23.7 | 0.505 |
Helsinki-NLP/opus-mt-bg-fr
400f439187067856647d8f7fb7f77af07d8bd260
2021-01-18T07:50:58.000Z
[ "pytorch", "marian", "text2text-generation", "bg", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bg-fr
9
null
transformers
12,069
--- language: - bg - fr tags: - translation license: apache-2.0 --- ### bul-fra * source group: Bulgarian * target group: French * OPUS readme: [bul-fra](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-fra/README.md) * model: transformer * source language(s): bul * target language(s): fra * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-fra/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-fra/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-fra/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bul.fra | 53.7 | 0.693 | ### System Info: - hf_name: bul-fra - source_languages: bul - target_languages: fra - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-fra/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['bg', 'fr'] - src_constituents: {'bul', 'bul_Latn'} - tgt_constituents: {'fra'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-fra/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-fra/opus-2020-07-03.test.txt - src_alpha3: bul - tgt_alpha3: fra - short_pair: bg-fr - chrF2_score: 0.693 - bleu: 53.7 - brevity_penalty: 0.977 - ref_len: 3669.0 - src_name: Bulgarian - tgt_name: French - train_date: 2020-07-03 - src_alpha2: bg - tgt_alpha2: fr - prefer_old: False - long_pair: bul-fra - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-bi-fr
31712329599ad7b50590cd35299ccc8d94029122
2021-09-09T21:27:51.000Z
[ "pytorch", "marian", "text2text-generation", "bi", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bi-fr
9
null
transformers
12,070
--- tags: - translation license: apache-2.0 --- ### opus-mt-bi-fr * source languages: bi * target languages: fr * OPUS readme: [bi-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bi-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/bi-fr/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-fr/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-fr/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bi.fr | 21.5 | 0.382 |
Helsinki-NLP/opus-mt-chk-fr
6db3456d236063ccbb97abdea52dc574da37a898
2021-09-09T21:28:48.000Z
[ "pytorch", "marian", "text2text-generation", "chk", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-chk-fr
9
null
transformers
12,071
--- tags: - translation license: apache-2.0 --- ### opus-mt-chk-fr * source languages: chk * target languages: fr * OPUS readme: [chk-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/chk-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/chk-fr/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/chk-fr/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/chk-fr/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.chk.fr | 22.4 | 0.387 |
Helsinki-NLP/opus-mt-csn-es
c3086bbf7d9101947a5a07d286cb9ccc533f9e0a
2021-09-09T21:29:40.000Z
[ "pytorch", "marian", "text2text-generation", "csn", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-csn-es
9
null
transformers
12,072
--- tags: - translation license: apache-2.0 --- ### opus-mt-csn-es * source languages: csn * target languages: es * OPUS readme: [csn-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/csn-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/csn-es/opus-2020-01-15.zip) * test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/csn-es/opus-2020-01-15.test.txt) * test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/csn-es/opus-2020-01-15.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.csn.es | 87.4 | 0.899 |
Helsinki-NLP/opus-mt-de-bi
7c40aed9a4611cec93aa9560f2bb99e49e895789
2021-09-09T21:30:18.000Z
[ "pytorch", "marian", "text2text-generation", "de", "bi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-bi
9
null
transformers
12,073
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-bi * source languages: de * target languages: bi * OPUS readme: [de-bi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-bi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-bi/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bi/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bi/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.bi | 25.7 | 0.450 |
Helsinki-NLP/opus-mt-de-efi
1309ccb2f74acba991a654adf4ff1363a577d51b
2021-09-09T21:30:43.000Z
[ "pytorch", "marian", "text2text-generation", "de", "efi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-efi
9
null
transformers
12,074
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-efi * source languages: de * target languages: efi * OPUS readme: [de-efi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-efi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-efi/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-efi/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-efi/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.efi | 24.2 | 0.451 |
Helsinki-NLP/opus-mt-de-gaa
0722f96d5ce2e9fd6b2e0df3987105a78d062d1c
2021-09-09T21:31:16.000Z
[ "pytorch", "marian", "text2text-generation", "de", "gaa", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-gaa
9
null
transformers
12,075
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-gaa * source languages: de * target languages: gaa * OPUS readme: [de-gaa](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-gaa/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-gaa/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-gaa/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-gaa/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.gaa | 26.3 | 0.471 |
Helsinki-NLP/opus-mt-de-gil
56bb25bf50c7b8268c9fd1ec8f8124e54631af59
2021-09-09T21:31:20.000Z
[ "pytorch", "marian", "text2text-generation", "de", "gil", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-gil
9
null
transformers
12,076
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-gil * source languages: de * target languages: gil * OPUS readme: [de-gil](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-gil/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-gil/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-gil/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-gil/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.gil | 24.0 | 0.472 |
Helsinki-NLP/opus-mt-de-ln
05dd393385fb99c42d5849c22cef67931922eff3
2021-09-09T21:32:12.000Z
[ "pytorch", "marian", "text2text-generation", "de", "ln", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-ln
9
null
transformers
12,077
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-ln * source languages: de * target languages: ln * OPUS readme: [de-ln](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-ln/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-ln/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-ln/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-ln/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.ln | 26.7 | 0.504 |
Helsinki-NLP/opus-mt-ee-fi
8547cfc9f2c5ef75f00c78ef563eef59fc0204ee
2021-09-09T21:33:18.000Z
[ "pytorch", "marian", "text2text-generation", "ee", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ee-fi
9
null
transformers
12,078
--- tags: - translation license: apache-2.0 --- ### opus-mt-ee-fi * source languages: ee * target languages: fi * OPUS readme: [ee-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ee-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ee-fi/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ee-fi/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ee-fi/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ee.fi | 25.0 | 0.482 |
Helsinki-NLP/opus-mt-efi-fr
7b528531e45c04716015e7c211ef2b74817ff438
2021-09-09T21:33:40.000Z
[ "pytorch", "marian", "text2text-generation", "efi", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-efi-fr
9
null
transformers
12,079
--- tags: - translation license: apache-2.0 --- ### opus-mt-efi-fr * source languages: efi * target languages: fr * OPUS readme: [efi-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/efi-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/efi-fr/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/efi-fr/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/efi-fr/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.efi.fr | 25.1 | 0.419 |
Helsinki-NLP/opus-mt-en-cus
495278af0387c6122abe44c4ef7b1c48ef62da66
2021-01-18T08:06:29.000Z
[ "pytorch", "marian", "text2text-generation", "en", "so", "cus", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-cus
9
null
transformers
12,080
--- language: - en - so - cus tags: - translation license: apache-2.0 --- ### eng-cus * source group: English * target group: Cushitic languages * OPUS readme: [eng-cus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-cus/README.md) * model: transformer * source language(s): eng * target language(s): som * model: transformer * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cus/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cus/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cus/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng.multi | 16.0 | 0.173 | | Tatoeba-test.eng-som.eng.som | 16.0 | 0.173 | ### System Info: - hf_name: eng-cus - source_languages: eng - target_languages: cus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-cus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'so', 'cus'] - src_constituents: {'eng'} - tgt_constituents: {'som'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cus/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cus/opus2m-2020-08-01.test.txt - src_alpha3: eng - tgt_alpha3: cus - short_pair: en-cus - chrF2_score: 0.17300000000000001 - bleu: 16.0 - brevity_penalty: 1.0 - ref_len: 3.0 - src_name: English - tgt_name: Cushitic languages - train_date: 2020-08-01 - src_alpha2: en - tgt_alpha2: cus - prefer_old: False - long_pair: eng-cus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-fj
2c98ee541817946993595aa514f12804b6c95efc
2021-09-09T21:35:21.000Z
[ "pytorch", "marian", "text2text-generation", "en", "fj", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-fj
9
null
transformers
12,081
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-fj * source languages: en * target languages: fj * OPUS readme: [en-fj](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-fj/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-fj/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-fj/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-fj/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.fj | 34.0 | 0.561 | | Tatoeba.en.fj | 62.5 | 0.781 |
Helsinki-NLP/opus-mt-en-gmw
11cd92347e176fdba93f37ea5af1367109d52516
2021-01-18T08:08:26.000Z
[ "pytorch", "marian", "text2text-generation", "en", "nl", "lb", "af", "de", "fy", "yi", "gmw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-gmw
9
null
transformers
12,082
--- language: - en - nl - lb - af - de - fy - yi - gmw tags: - translation license: apache-2.0 --- ### eng-gmw * source group: English * target group: West Germanic languages * OPUS readme: [eng-gmw](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-gmw/README.md) * model: transformer * source language(s): eng * target language(s): afr ang_Latn deu enm_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmw/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmw/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmw/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009-engdeu.eng.deu | 21.4 | 0.518 | | news-test2008-engdeu.eng.deu | 21.0 | 0.510 | | newstest2009-engdeu.eng.deu | 20.4 | 0.513 | | newstest2010-engdeu.eng.deu | 22.9 | 0.528 | | newstest2011-engdeu.eng.deu | 20.5 | 0.508 | | newstest2012-engdeu.eng.deu | 21.0 | 0.507 | | newstest2013-engdeu.eng.deu | 24.7 | 0.533 | | newstest2015-ende-engdeu.eng.deu | 28.2 | 0.568 | | newstest2016-ende-engdeu.eng.deu | 33.3 | 0.605 | | newstest2017-ende-engdeu.eng.deu | 26.5 | 0.559 | | newstest2018-ende-engdeu.eng.deu | 39.9 | 0.649 | | newstest2019-ende-engdeu.eng.deu | 35.9 | 0.616 | | Tatoeba-test.eng-afr.eng.afr | 55.7 | 0.740 | | Tatoeba-test.eng-ang.eng.ang | 6.5 | 0.164 | | Tatoeba-test.eng-deu.eng.deu | 40.4 | 0.614 | | Tatoeba-test.eng-enm.eng.enm | 2.3 | 0.254 | | Tatoeba-test.eng-frr.eng.frr | 8.4 | 0.248 | | Tatoeba-test.eng-fry.eng.fry | 17.9 | 0.424 | | Tatoeba-test.eng-gos.eng.gos | 2.2 | 0.309 | | Tatoeba-test.eng-gsw.eng.gsw | 1.6 | 0.186 | | Tatoeba-test.eng-ksh.eng.ksh | 1.5 | 0.189 | | Tatoeba-test.eng-ltz.eng.ltz | 20.2 | 0.383 | | Tatoeba-test.eng.multi | 41.6 | 0.609 | | Tatoeba-test.eng-nds.eng.nds | 18.9 | 0.437 | | Tatoeba-test.eng-nld.eng.nld | 53.1 | 0.699 | | Tatoeba-test.eng-pdc.eng.pdc | 7.7 | 0.262 | | Tatoeba-test.eng-sco.eng.sco | 37.7 | 0.557 | | Tatoeba-test.eng-stq.eng.stq | 5.9 | 0.380 | | Tatoeba-test.eng-swg.eng.swg | 6.2 | 0.236 | | Tatoeba-test.eng-yid.eng.yid | 6.8 | 0.296 | ### System Info: - hf_name: eng-gmw - source_languages: eng - target_languages: gmw - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-gmw/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'nl', 'lb', 'af', 'de', 'fy', 'yi', 'gmw'] - src_constituents: {'eng'} - tgt_constituents: {'ksh', 'nld', 'eng', 'enm_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmw/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmw/opus2m-2020-08-01.test.txt - src_alpha3: eng - tgt_alpha3: gmw - short_pair: en-gmw - chrF2_score: 0.609 - bleu: 41.6 - brevity_penalty: 0.9890000000000001 - ref_len: 74922.0 - src_name: English - tgt_name: West Germanic languages - train_date: 2020-08-01 - src_alpha2: en - tgt_alpha2: gmw - prefer_old: False - long_pair: eng-gmw - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-phi
02fc4c73124d7c36e9e2d3c2fb6939591cff415b
2021-01-18T08:14:18.000Z
[ "pytorch", "marian", "text2text-generation", "en", "phi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-phi
9
null
transformers
12,083
--- language: - en - phi tags: - translation license: apache-2.0 --- ### eng-phi * source group: English * target group: Philippine languages * OPUS readme: [eng-phi](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-phi/README.md) * model: transformer * source language(s): eng * target language(s): akl_Latn ceb hil ilo pag war * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-phi/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-phi/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-phi/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng-akl.eng.akl | 7.1 | 0.245 | | Tatoeba-test.eng-ceb.eng.ceb | 10.5 | 0.435 | | Tatoeba-test.eng-hil.eng.hil | 18.0 | 0.506 | | Tatoeba-test.eng-ilo.eng.ilo | 33.4 | 0.590 | | Tatoeba-test.eng.multi | 13.1 | 0.392 | | Tatoeba-test.eng-pag.eng.pag | 19.4 | 0.481 | | Tatoeba-test.eng-war.eng.war | 12.8 | 0.441 | ### System Info: - hf_name: eng-phi - source_languages: eng - target_languages: phi - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-phi/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'phi'] - src_constituents: {'eng'} - tgt_constituents: {'ilo', 'akl_Latn', 'war', 'hil', 'pag', 'ceb'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-phi/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-phi/opus2m-2020-08-01.test.txt - src_alpha3: eng - tgt_alpha3: phi - short_pair: en-phi - chrF2_score: 0.392 - bleu: 13.1 - brevity_penalty: 1.0 - ref_len: 30022.0 - src_name: English - tgt_name: Philippine languages - train_date: 2020-08-01 - src_alpha2: en - tgt_alpha2: phi - prefer_old: False - long_pair: eng-phi - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-to
f5a9081211432e18c83753cb0d9a8cbf6c389067
2021-09-09T21:40:01.000Z
[ "pytorch", "marian", "text2text-generation", "en", "to", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-to
9
null
transformers
12,084
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-to * source languages: en * target languages: to * OPUS readme: [en-to](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-to/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-to/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-to/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-to/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.to | 56.3 | 0.689 |
Helsinki-NLP/opus-mt-eo-cs
4bf5467a59411b10737527867d59f1a5549c8a5e
2021-01-18T08:20:00.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "cs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eo-cs
9
null
transformers
12,085
--- language: - eo - cs tags: - translation license: apache-2.0 --- ### epo-ces * source group: Esperanto * target group: Czech * OPUS readme: [epo-ces](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-ces/README.md) * model: transformer-align * source language(s): epo * target language(s): ces * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-ces/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-ces/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-ces/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.epo.ces | 17.5 | 0.376 | ### System Info: - hf_name: epo-ces - source_languages: epo - target_languages: ces - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-ces/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['eo', 'cs'] - src_constituents: {'epo'} - tgt_constituents: {'ces'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-ces/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-ces/opus-2020-06-16.test.txt - src_alpha3: epo - tgt_alpha3: ces - short_pair: eo-cs - chrF2_score: 0.376 - bleu: 17.5 - brevity_penalty: 0.922 - ref_len: 22148.0 - src_name: Esperanto - tgt_name: Czech - train_date: 2020-06-16 - src_alpha2: eo - tgt_alpha2: cs - prefer_old: False - long_pair: epo-ces - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-eo-ru
b728dc341a0c961f0978a64dbee5af14a4d33f48
2021-01-18T08:21:10.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eo-ru
9
null
transformers
12,086
--- language: - eo - ru tags: - translation license: apache-2.0 --- ### epo-rus * source group: Esperanto * target group: Russian * OPUS readme: [epo-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-rus/README.md) * model: transformer-align * source language(s): epo * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-rus/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-rus/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-rus/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.epo.rus | 17.7 | 0.379 | ### System Info: - hf_name: epo-rus - source_languages: epo - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['eo', 'ru'] - src_constituents: {'epo'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-rus/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-rus/opus-2020-06-16.test.txt - src_alpha3: epo - tgt_alpha3: rus - short_pair: eo-ru - chrF2_score: 0.379 - bleu: 17.7 - brevity_penalty: 0.9179999999999999 - ref_len: 71288.0 - src_name: Esperanto - tgt_name: Russian - train_date: 2020-06-16 - src_alpha2: eo - tgt_alpha2: ru - prefer_old: False - long_pair: epo-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-efi
f90e545aa2ad5dd3c2786ac4413b77f99fe96257
2021-09-09T21:42:00.000Z
[ "pytorch", "marian", "text2text-generation", "es", "efi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-efi
9
null
transformers
12,087
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-efi * source languages: es * target languages: efi * OPUS readme: [es-efi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-efi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-efi/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-efi/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-efi/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.efi | 24.6 | 0.452 |
Helsinki-NLP/opus-mt-es-gaa
ed51dbff78c4ce9e4d16935b14a36073953ae4cd
2021-09-09T21:42:31.000Z
[ "pytorch", "marian", "text2text-generation", "es", "gaa", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-gaa
9
null
transformers
12,088
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-gaa * source languages: es * target languages: gaa * OPUS readme: [es-gaa](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-gaa/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-gaa/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-gaa/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-gaa/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.gaa | 27.8 | 0.479 |
Helsinki-NLP/opus-mt-es-lt
45e6a8c9b0eb25e62ca8d18df0edb8550bd96eb7
2021-01-18T08:26:19.000Z
[ "pytorch", "marian", "text2text-generation", "es", "lt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-lt
9
null
transformers
12,089
--- language: - es - lt tags: - translation license: apache-2.0 --- ### spa-lit * source group: Spanish * target group: Lithuanian * OPUS readme: [spa-lit](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-lit/README.md) * model: transformer-align * source language(s): spa * target language(s): lit * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-lit/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-lit/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-lit/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.spa.lit | 40.2 | 0.643 | ### System Info: - hf_name: spa-lit - source_languages: spa - target_languages: lit - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-lit/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['es', 'lt'] - src_constituents: {'spa'} - tgt_constituents: {'lit'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-lit/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-lit/opus-2020-06-17.test.txt - src_alpha3: spa - tgt_alpha3: lit - short_pair: es-lt - chrF2_score: 0.643 - bleu: 40.2 - brevity_penalty: 0.956 - ref_len: 2341.0 - src_name: Spanish - tgt_name: Lithuanian - train_date: 2020-06-17 - src_alpha2: es - tgt_alpha2: lt - prefer_old: False - long_pair: spa-lit - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-lua
1e47438ff46e6599da6997b6f6cbe74001b94b49
2021-09-09T21:43:31.000Z
[ "pytorch", "marian", "text2text-generation", "es", "lua", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-lua
9
null
transformers
12,090
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-lua * source languages: es * target languages: lua * OPUS readme: [es-lua](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-lua/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-lua/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-lua/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-lua/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.lua | 23.4 | 0.473 |
Helsinki-NLP/opus-mt-es-nso
d39fdafe118ead41c25bd8393901c15029d1714c
2021-09-09T21:43:54.000Z
[ "pytorch", "marian", "text2text-generation", "es", "nso", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-nso
9
null
transformers
12,091
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-nso * source languages: es * target languages: nso * OPUS readme: [es-nso](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-nso/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-nso/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-nso/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-nso/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.nso | 33.2 | 0.531 |
Helsinki-NLP/opus-mt-es-sm
6a03599c80a8375487939fe71193ffd92e651a7b
2021-09-09T21:44:42.000Z
[ "pytorch", "marian", "text2text-generation", "es", "sm", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-sm
9
null
transformers
12,092
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-sm * source languages: es * target languages: sm * OPUS readme: [es-sm](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-sm/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-sm/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-sm/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-sm/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.sm | 25.5 | 0.450 |
Helsinki-NLP/opus-mt-es-tpi
ec0f575edd1d01c2283eb3338ae12e3c51a96353
2021-09-09T21:45:12.000Z
[ "pytorch", "marian", "text2text-generation", "es", "tpi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-tpi
9
null
transformers
12,093
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-tpi * source languages: es * target languages: tpi * OPUS readme: [es-tpi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-tpi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-tpi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-tpi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-tpi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.tpi | 27.0 | 0.472 |
Helsinki-NLP/opus-mt-es-war
31ec114a50009c31ba4fa53bfc1770c5405f6fb3
2021-09-09T21:45:34.000Z
[ "pytorch", "marian", "text2text-generation", "es", "war", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-war
9
null
transformers
12,094
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-war * source languages: es * target languages: war * OPUS readme: [es-war](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-war/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-war/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-war/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-war/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.war | 31.7 | 0.530 |
Helsinki-NLP/opus-mt-et-ru
a6a1ecdab9ebb448e43c87f281c19f36ed7656f2
2021-01-18T08:30:52.000Z
[ "pytorch", "marian", "text2text-generation", "et", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-et-ru
9
null
transformers
12,095
--- language: - et - ru tags: - translation license: apache-2.0 --- ### est-rus * source group: Estonian * target group: Russian * OPUS readme: [est-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/est-rus/README.md) * model: transformer-align * source language(s): est * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/est-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/est-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/est-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.est.rus | 50.2 | 0.702 | ### System Info: - hf_name: est-rus - source_languages: est - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/est-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['et', 'ru'] - src_constituents: {'est'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/est-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/est-rus/opus-2020-06-17.test.txt - src_alpha3: est - tgt_alpha3: rus - short_pair: et-ru - chrF2_score: 0.7020000000000001 - bleu: 50.2 - brevity_penalty: 0.988 - ref_len: 3569.0 - src_name: Estonian - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: et - tgt_alpha2: ru - prefer_old: False - long_pair: est-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-et-sv
67259de3338ab3aac7729000903aa1d653b4129f
2021-09-09T21:46:16.000Z
[ "pytorch", "marian", "text2text-generation", "et", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-et-sv
9
null
transformers
12,096
--- tags: - translation license: apache-2.0 --- ### opus-mt-et-sv * source languages: et * target languages: sv * OPUS readme: [et-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/et-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/et-sv/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/et-sv/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/et-sv/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.et.sv | 28.9 | 0.513 |
Helsinki-NLP/opus-mt-fi-crs
a29ce204522a57c59a19a3eacaff897351fcd859
2021-09-09T21:46:53.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "crs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-crs
9
null
transformers
12,097
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-crs * source languages: fi * target languages: crs * OPUS readme: [fi-crs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-crs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-crs/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-crs/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-crs/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.crs | 29.6 | 0.491 |
Helsinki-NLP/opus-mt-fi-guw
fea94fe902a74d8be70eb590aa3304a42a10da14
2021-09-09T21:47:56.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "guw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-guw
9
null
transformers
12,098
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-guw * source languages: fi * target languages: guw * OPUS readme: [fi-guw](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-guw/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-guw/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-guw/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-guw/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.guw | 32.4 | 0.527 |
Helsinki-NLP/opus-mt-fi-it
da46e9f066abd8c179773bb806af9be159b86f37
2021-09-09T21:48:48.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "it", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-it
9
null
transformers
12,099
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-it * source languages: fi * target languages: it * OPUS readme: [fi-it](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-it/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-it/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-it/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-it/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.fi.it | 42.7 | 0.657 |