modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Helsinki-NLP/opus-mt-fi-mt
50a13920f9ee99bbf35be1d6bd0cd87eb5df9c5c
2021-09-09T21:49:46.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "mt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-mt
9
null
transformers
12,100
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-mt * source languages: fi * target languages: mt * OPUS readme: [fi-mt](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-mt/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-mt/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-mt/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-mt/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.mt | 29.9 | 0.490 |
Helsinki-NLP/opus-mt-fi-nso
33381477145dbeb38f8c51320b434d106e42ec6f
2021-09-09T21:49:58.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "nso", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-nso
9
null
transformers
12,101
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-nso * source languages: fi * target languages: nso * OPUS readme: [fi-nso](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-nso/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-nso/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-nso/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-nso/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.nso | 35.8 | 0.564 |
Helsinki-NLP/opus-mt-fi-swc
25808885bb6a048cbf1a0bdc70dc65bfef4e8d6d
2021-09-09T21:51:12.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "swc", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-swc
9
null
transformers
12,102
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-swc * source languages: fi * target languages: swc * OPUS readme: [fi-swc](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-swc/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-swc/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-swc/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-swc/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.swc | 27.5 | 0.515 |
Helsinki-NLP/opus-mt-fj-fr
a4ed3c5f4b777029e38f903ddf74f545e8414b82
2021-09-09T21:52:40.000Z
[ "pytorch", "marian", "text2text-generation", "fj", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fj-fr
9
null
transformers
12,103
--- tags: - translation license: apache-2.0 --- ### opus-mt-fj-fr * source languages: fj * target languages: fr * OPUS readme: [fj-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fj-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fj-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fj-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fj-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fj.fr | 24.0 | 0.407 |
Helsinki-NLP/opus-mt-fr-mt
a2e29216c2370e58c6da9a7408f0b0baca02181c
2021-09-09T21:55:41.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "mt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-mt
9
null
transformers
12,104
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-mt * source languages: fr * target languages: mt * OPUS readme: [fr-mt](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-mt/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-mt/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-mt/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-mt/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.mt | 28.7 | 0.466 |
Helsinki-NLP/opus-mt-fr-srn
beac2414acee0c0d1b2f6527735749a04627d612
2021-09-09T21:56:57.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "srn", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-srn
9
null
transformers
12,105
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-srn * source languages: fr * target languages: srn * OPUS readme: [fr-srn](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-srn/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-srn/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-srn/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-srn/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.srn | 27.4 | 0.459 |
Helsinki-NLP/opus-mt-fr-ty
6daaa2a2c18acc2156e63b6c759f76a951f4d4e4
2021-09-09T21:57:56.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "ty", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-ty
9
null
transformers
12,106
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-ty * source languages: fr * target languages: ty * OPUS readme: [fr-ty](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-ty/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-ty/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ty/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ty/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.ty | 39.6 | 0.561 |
Helsinki-NLP/opus-mt-fr-yap
62973627846854e69452cff56abe3f2cf97fe341
2021-09-09T21:58:20.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "yap", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-yap
9
null
transformers
12,107
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-yap * source languages: fr * target languages: yap * OPUS readme: [fr-yap](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-yap/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-yap/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-yap/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-yap/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.yap | 25.8 | 0.434 |
Helsinki-NLP/opus-mt-fr-yo
fb5403e5a10c1be60e81c15311e110e11ae2e127
2021-09-09T21:58:25.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "yo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-yo
9
null
transformers
12,108
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-yo * source languages: fr * target languages: yo * OPUS readme: [fr-yo](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-yo/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-yo/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-yo/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-yo/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.yo | 25.9 | 0.415 |
Helsinki-NLP/opus-mt-gaa-fr
ff85d1cef66d2c3356ad45722438e78704f93bc9
2021-09-09T21:58:54.000Z
[ "pytorch", "marian", "text2text-generation", "gaa", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gaa-fr
9
null
transformers
12,109
--- tags: - translation license: apache-2.0 --- ### opus-mt-gaa-fr * source languages: gaa * target languages: fr * OPUS readme: [gaa-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gaa-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/gaa-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gaa.fr | 27.8 | 0.455 |
Helsinki-NLP/opus-mt-gil-fi
2af28c83bbe0a8c52a70c985859c22a5748fe870
2021-09-09T21:59:13.000Z
[ "pytorch", "marian", "text2text-generation", "gil", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gil-fi
9
null
transformers
12,110
--- tags: - translation license: apache-2.0 --- ### opus-mt-gil-fi * source languages: gil * target languages: fi * OPUS readme: [gil-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gil-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/gil-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gil.fi | 23.1 | 0.447 |
Helsinki-NLP/opus-mt-gl-pt
405800cc336304df910c14565697e2c3aa8622df
2021-01-18T08:52:45.000Z
[ "pytorch", "marian", "text2text-generation", "gl", "pt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gl-pt
9
null
transformers
12,111
--- language: - gl - pt tags: - translation license: apache-2.0 --- ### glg-por * source group: Galician * target group: Portuguese * OPUS readme: [glg-por](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/glg-por/README.md) * model: transformer-align * source language(s): glg * target language(s): por * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-por/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-por/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-por/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.glg.por | 57.9 | 0.758 | ### System Info: - hf_name: glg-por - source_languages: glg - target_languages: por - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/glg-por/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['gl', 'pt'] - src_constituents: {'glg'} - tgt_constituents: {'por'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/glg-por/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/glg-por/opus-2020-06-16.test.txt - src_alpha3: glg - tgt_alpha3: por - short_pair: gl-pt - chrF2_score: 0.758 - bleu: 57.9 - brevity_penalty: 0.977 - ref_len: 3078.0 - src_name: Galician - tgt_name: Portuguese - train_date: 2020-06-16 - src_alpha2: gl - tgt_alpha2: pt - prefer_old: False - long_pair: glg-por - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-gmw-en
14eecd0cc660fdc4319eb82129f6a5873c56bf1b
2021-01-18T08:53:00.000Z
[ "pytorch", "marian", "text2text-generation", "nl", "en", "lb", "af", "de", "fy", "yi", "gmw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gmw-en
9
null
transformers
12,112
--- language: - nl - en - lb - af - de - fy - yi - gmw tags: - translation license: apache-2.0 --- ### gmw-eng * source group: West Germanic languages * target group: English * OPUS readme: [gmw-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmw-eng/README.md) * model: transformer * source language(s): afr ang_Latn deu enm_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009-deueng.deu.eng | 27.2 | 0.538 | | news-test2008-deueng.deu.eng | 25.7 | 0.534 | | newstest2009-deueng.deu.eng | 25.1 | 0.530 | | newstest2010-deueng.deu.eng | 27.9 | 0.565 | | newstest2011-deueng.deu.eng | 25.3 | 0.539 | | newstest2012-deueng.deu.eng | 26.6 | 0.548 | | newstest2013-deueng.deu.eng | 29.6 | 0.565 | | newstest2014-deen-deueng.deu.eng | 30.2 | 0.571 | | newstest2015-ende-deueng.deu.eng | 31.5 | 0.577 | | newstest2016-ende-deueng.deu.eng | 36.7 | 0.622 | | newstest2017-ende-deueng.deu.eng | 32.3 | 0.585 | | newstest2018-ende-deueng.deu.eng | 39.9 | 0.638 | | newstest2019-deen-deueng.deu.eng | 35.9 | 0.611 | | Tatoeba-test.afr-eng.afr.eng | 61.8 | 0.750 | | Tatoeba-test.ang-eng.ang.eng | 7.3 | 0.220 | | Tatoeba-test.deu-eng.deu.eng | 48.3 | 0.657 | | Tatoeba-test.enm-eng.enm.eng | 16.1 | 0.423 | | Tatoeba-test.frr-eng.frr.eng | 7.0 | 0.168 | | Tatoeba-test.fry-eng.fry.eng | 28.6 | 0.488 | | Tatoeba-test.gos-eng.gos.eng | 15.5 | 0.326 | | Tatoeba-test.gsw-eng.gsw.eng | 12.7 | 0.308 | | Tatoeba-test.ksh-eng.ksh.eng | 8.4 | 0.254 | | Tatoeba-test.ltz-eng.ltz.eng | 28.7 | 0.453 | | Tatoeba-test.multi.eng | 48.5 | 0.646 | | Tatoeba-test.nds-eng.nds.eng | 31.4 | 0.509 | | Tatoeba-test.nld-eng.nld.eng | 58.1 | 0.728 | | Tatoeba-test.pdc-eng.pdc.eng | 25.1 | 0.406 | | Tatoeba-test.sco-eng.sco.eng | 40.8 | 0.570 | | Tatoeba-test.stq-eng.stq.eng | 20.3 | 0.380 | | Tatoeba-test.swg-eng.swg.eng | 20.5 | 0.315 | | Tatoeba-test.yid-eng.yid.eng | 16.0 | 0.366 | ### System Info: - hf_name: gmw-eng - source_languages: gmw - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmw-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw'] - src_constituents: {'ksh', 'nld', 'eng', 'enm_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-eng/opus2m-2020-08-01.test.txt - src_alpha3: gmw - tgt_alpha3: eng - short_pair: gmw-en - chrF2_score: 0.6459999999999999 - bleu: 48.5 - brevity_penalty: 0.997 - ref_len: 72584.0 - src_name: West Germanic languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: gmw - tgt_alpha2: en - prefer_old: False - long_pair: gmw-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-is-fi
e943e0b23c71ff6abf4da89ba878cc486cec5bfa
2021-09-09T22:12:12.000Z
[ "pytorch", "marian", "text2text-generation", "is", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-is-fi
9
null
transformers
12,113
--- tags: - translation license: apache-2.0 --- ### opus-mt-is-fi * source languages: is * target languages: fi * OPUS readme: [is-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/is-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/is-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.is.fi | 25.0 | 0.489 |
Helsinki-NLP/opus-mt-is-sv
22c505f87c5484b3e73e042937087d2de434a223
2021-09-09T22:12:20.000Z
[ "pytorch", "marian", "text2text-generation", "is", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-is-sv
9
null
transformers
12,114
--- tags: - translation license: apache-2.0 --- ### opus-mt-is-sv * source languages: is * target languages: sv * OPUS readme: [is-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/is-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/is-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.is.sv | 30.4 | 0.495 |
Helsinki-NLP/opus-mt-it-sv
ca009b276a527f4bfc8eb45bfee1a37f45b7b88f
2021-09-10T13:53:03.000Z
[ "pytorch", "marian", "text2text-generation", "it", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-it-sv
9
null
transformers
12,115
--- tags: - translation license: apache-2.0 --- ### opus-mt-it-sv * source languages: it * target languages: sv * OPUS readme: [it-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/it-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/it-sv/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/it-sv/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/it-sv/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.it.sv | 56.0 | 0.707 |
Helsinki-NLP/opus-mt-ja-da
74a908dc132b73b3e0e5f32e9362ca6593b242de
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "ja", "da", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ja-da
9
null
transformers
12,116
--- language: - ja - da tags: - translation license: apache-2.0 --- ### jpn-dan * source group: Japanese * target group: Danish * OPUS readme: [jpn-dan](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-dan/README.md) * model: transformer-align * source language(s): jpn_Hani jpn_Hira jpn_Kana jpn_Latn jpn_Yiii * target language(s): dan * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-dan/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-dan/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-dan/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.jpn.dan | 43.2 | 0.590 | ### System Info: - hf_name: jpn-dan - source_languages: jpn - target_languages: dan - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-dan/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ja', 'da'] - src_constituents: {'jpn_Hang', 'jpn', 'jpn_Yiii', 'jpn_Kana', 'jpn_Hani', 'jpn_Bopo', 'jpn_Latn', 'jpn_Hira'} - tgt_constituents: {'dan'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-dan/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-dan/opus-2020-06-17.test.txt - src_alpha3: jpn - tgt_alpha3: dan - short_pair: ja-da - chrF2_score: 0.59 - bleu: 43.2 - brevity_penalty: 0.972 - ref_len: 5823.0 - src_name: Japanese - tgt_name: Danish - train_date: 2020-06-17 - src_alpha2: ja - tgt_alpha2: da - prefer_old: False - long_pair: jpn-dan - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ko-hu
129183c58bad505b70f9a82c41ac7eadfe481cac
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "ko", "hu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ko-hu
9
null
transformers
12,117
--- language: - ko - hu tags: - translation license: apache-2.0 --- ### kor-hun * source group: Korean * target group: Hungarian * OPUS readme: [kor-hun](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-hun/README.md) * model: transformer-align * source language(s): kor kor_Hang kor_Latn * target language(s): hun * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.kor.hun | 28.6 | 0.520 | ### System Info: - hf_name: kor-hun - source_languages: kor - target_languages: hun - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-hun/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ko', 'hu'] - src_constituents: {'kor_Hani', 'kor_Hang', 'kor_Latn', 'kor'} - tgt_constituents: {'hun'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.test.txt - src_alpha3: kor - tgt_alpha3: hun - short_pair: ko-hu - chrF2_score: 0.52 - bleu: 28.6 - brevity_penalty: 0.905 - ref_len: 1615.0 - src_name: Korean - tgt_name: Hungarian - train_date: 2020-06-17 - src_alpha2: ko - tgt_alpha2: hu - prefer_old: False - long_pair: kor-hun - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-lua-fr
4b48d4ff9cf51fc73c09c3f51088fa8fc877a1bd
2021-09-10T13:56:15.000Z
[ "pytorch", "marian", "text2text-generation", "lua", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lua-fr
9
null
transformers
12,118
--- tags: - translation license: apache-2.0 --- ### opus-mt-lua-fr * source languages: lua * target languages: fr * OPUS readme: [lua-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lua-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lua-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lua-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lua-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lua.fr | 25.7 | 0.429 |
Helsinki-NLP/opus-mt-lus-fi
15f7c3660bdd6db1a5bec2a4ef68f34e108ab4b7
2021-09-10T13:56:55.000Z
[ "pytorch", "marian", "text2text-generation", "lus", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lus-fi
9
null
transformers
12,119
--- tags: - translation license: apache-2.0 --- ### opus-mt-lus-fi * source languages: lus * target languages: fi * OPUS readme: [lus-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lus-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lus-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lus-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lus-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lus.fi | 22.6 | 0.441 |
Helsinki-NLP/opus-mt-no-ru
9403f7e76db6ad7b121e5ee9c2ab375bca4b334d
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "no", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-no-ru
9
null
transformers
12,120
--- language: - no - ru tags: - translation license: apache-2.0 --- ### nor-rus * source group: Norwegian * target group: Russian * OPUS readme: [nor-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/nor-rus/README.md) * model: transformer-align * source language(s): nno nob * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/nor-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.nor.rus | 18.6 | 0.400 | ### System Info: - hf_name: nor-rus - source_languages: nor - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/nor-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['no', 'ru'] - src_constituents: {'nob', 'nno'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/nor-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/nor-rus/opus-2020-06-17.test.txt - src_alpha3: nor - tgt_alpha3: rus - short_pair: no-ru - chrF2_score: 0.4 - bleu: 18.6 - brevity_penalty: 0.958 - ref_len: 10671.0 - src_name: Norwegian - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: no - tgt_alpha2: ru - prefer_old: False - long_pair: nor-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ny-es
ecf215cfc68db14727c7d6eacfd0bd71b43e419f
2021-09-10T13:59:55.000Z
[ "pytorch", "marian", "text2text-generation", "ny", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ny-es
9
null
transformers
12,121
--- tags: - translation license: apache-2.0 --- ### opus-mt-ny-es * source languages: ny * target languages: es * OPUS readme: [ny-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ny-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ny-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ny-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ny-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ny.es | 27.9 | 0.457 |
Helsinki-NLP/opus-mt-pap-es
c0231a7b6778c6d7c97ef255234220a442591c55
2021-09-10T14:00:41.000Z
[ "pytorch", "marian", "text2text-generation", "pap", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pap-es
9
null
transformers
12,122
--- tags: - translation license: apache-2.0 --- ### opus-mt-pap-es * source languages: pap * target languages: es * OPUS readme: [pap-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pap-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pap-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pap-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pap-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pap.es | 32.3 | 0.518 |
Helsinki-NLP/opus-mt-pis-fr
4b3761ce6333a6acd45276540dbcd6f73d0599a0
2021-09-10T14:01:04.000Z
[ "pytorch", "marian", "text2text-generation", "pis", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pis-fr
9
null
transformers
12,123
--- tags: - translation license: apache-2.0 --- ### opus-mt-pis-fr * source languages: pis * target languages: fr * OPUS readme: [pis-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pis-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pis-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pis-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pis-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pis.fr | 24.9 | 0.421 |
Helsinki-NLP/opus-mt-pl-no
180f6730794a2ba689d997d179ca7fbef883ccbf
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "pl", "no", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pl-no
9
null
transformers
12,124
--- language: - pl - no tags: - translation license: apache-2.0 --- ### pol-nor * source group: Polish * target group: Norwegian * OPUS readme: [pol-nor](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/pol-nor/README.md) * model: transformer-align * source language(s): pol * target language(s): nob * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/pol-nor/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/pol-nor/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/pol-nor/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.pol.nor | 27.5 | 0.479 | ### System Info: - hf_name: pol-nor - source_languages: pol - target_languages: nor - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/pol-nor/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['pl', 'no'] - src_constituents: {'pol'} - tgt_constituents: {'nob', 'nno'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/pol-nor/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/pol-nor/opus-2020-06-17.test.txt - src_alpha3: pol - tgt_alpha3: nor - short_pair: pl-no - chrF2_score: 0.479 - bleu: 27.5 - brevity_penalty: 0.9690000000000001 - ref_len: 2045.0 - src_name: Polish - tgt_name: Norwegian - train_date: 2020-06-17 - src_alpha2: pl - tgt_alpha2: no - prefer_old: False - long_pair: pol-nor - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-pon-fi
cfe8cd8c84d0f509a22eeecf9f4f3b4e068518ad
2021-09-10T14:01:37.000Z
[ "pytorch", "marian", "text2text-generation", "pon", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pon-fi
9
null
transformers
12,125
--- tags: - translation license: apache-2.0 --- ### opus-mt-pon-fi * source languages: pon * target languages: fi * OPUS readme: [pon-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pon-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pon-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pon-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pon-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pon.fi | 22.2 | 0.434 |
Helsinki-NLP/opus-mt-prl-es
0491a81cbf737a9446ff3a836f96364c756f06fa
2021-09-10T14:01:49.000Z
[ "pytorch", "marian", "text2text-generation", "prl", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-prl-es
9
null
transformers
12,126
--- tags: - translation license: apache-2.0 --- ### opus-mt-prl-es * source languages: prl * target languages: es * OPUS readme: [prl-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/prl-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/prl-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/prl-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/prl-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.prl.es | 93.3 | 0.955 |
Helsinki-NLP/opus-mt-ru-da
1b3671c92a4aeb5538b60460f52aa1bfb4be4c5c
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "ru", "da", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ru-da
9
null
transformers
12,127
--- language: - ru - da tags: - translation license: apache-2.0 --- ### rus-dan * source group: Russian * target group: Danish * OPUS readme: [rus-dan](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-dan/README.md) * model: transformer-align * source language(s): rus * target language(s): dan * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-dan/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-dan/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-dan/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.rus.dan | 56.6 | 0.714 | ### System Info: - hf_name: rus-dan - source_languages: rus - target_languages: dan - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-dan/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ru', 'da'] - src_constituents: {'rus'} - tgt_constituents: {'dan'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-dan/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-dan/opus-2020-06-17.test.txt - src_alpha3: rus - tgt_alpha3: dan - short_pair: ru-da - chrF2_score: 0.7140000000000001 - bleu: 56.6 - brevity_penalty: 0.977 - ref_len: 11746.0 - src_name: Russian - tgt_name: Danish - train_date: 2020-06-17 - src_alpha2: ru - tgt_alpha2: da - prefer_old: False - long_pair: rus-dan - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-st-sv
31d949849d50a18eec58c89d0aac3707e4822508
2021-09-10T14:05:09.000Z
[ "pytorch", "marian", "text2text-generation", "st", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-st-sv
9
null
transformers
12,128
--- tags: - translation license: apache-2.0 --- ### opus-mt-st-sv * source languages: st * target languages: sv * OPUS readme: [st-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/st-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/st-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/st-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/st-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.st.sv | 33.5 | 0.523 |
Helsinki-NLP/opus-mt-sv-efi
5f27be86bf1089971ddb8f6217b12b04370089c6
2021-09-10T14:06:04.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "efi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-efi
9
null
transformers
12,129
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-efi * source languages: sv * target languages: efi * OPUS readme: [sv-efi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-efi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-efi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-efi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-efi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.efi | 29.4 | 0.502 |
Helsinki-NLP/opus-mt-sv-niu
ca139393b4eb9d748acd203b7103fe13786fb76d
2021-09-10T14:08:25.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "niu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-niu
9
null
transformers
12,130
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-niu * source languages: sv * target languages: niu * OPUS readme: [sv-niu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-niu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-niu/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-niu/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-niu/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.niu | 37.0 | 0.575 |
Helsinki-NLP/opus-mt-sv-ty
14528339a50e372a8e58390e830af7bc076c572a
2021-09-10T14:10:29.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "ty", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-ty
9
null
transformers
12,131
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-ty * source languages: sv * target languages: ty * OPUS readme: [sv-ty](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-ty/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-ty/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ty/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ty/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.ty | 40.5 | 0.571 |
Helsinki-NLP/opus-mt-tiv-fr
8e0eeddd684b98a6835c4cb18f2b64ebc1b0339f
2021-09-11T10:48:12.000Z
[ "pytorch", "marian", "text2text-generation", "tiv", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tiv-fr
9
null
transformers
12,132
--- tags: - translation license: apache-2.0 --- ### opus-mt-tiv-fr * source languages: tiv * target languages: fr * OPUS readme: [tiv-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tiv-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tiv-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tiv-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tiv-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tiv.fr | 22.3 | 0.389 |
Helsinki-NLP/opus-mt-tr-sv
dd61e4019527973eaf89dea2303366eab6eaeea8
2021-09-11T10:49:46.000Z
[ "pytorch", "marian", "text2text-generation", "tr", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tr-sv
9
null
transformers
12,133
--- tags: - translation license: apache-2.0 --- ### opus-mt-tr-sv * source languages: tr * target languages: sv * OPUS readme: [tr-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tr-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tr-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tr-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tr-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tr.sv | 26.3 | 0.478 |
Helsinki-NLP/opus-mt-ts-fi
186ae66ee908eb549d6d2fc111d62209c4d0c992
2021-09-11T10:49:56.000Z
[ "pytorch", "marian", "text2text-generation", "ts", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ts-fi
9
null
transformers
12,134
--- tags: - translation license: apache-2.0 --- ### opus-mt-ts-fi * source languages: ts * target languages: fi * OPUS readme: [ts-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ts-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ts-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ts-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ts-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ts.fi | 27.7 | 0.509 |
Helsinki-NLP/opus-mt-tw-es
2b92519627890a2dfa9f6288d9b8986e05270e21
2021-09-11T10:50:39.000Z
[ "pytorch", "marian", "text2text-generation", "tw", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tw-es
9
null
transformers
12,135
--- tags: - translation license: apache-2.0 --- ### opus-mt-tw-es * source languages: tw * target languages: es * OPUS readme: [tw-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tw-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tw-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tw-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tw-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tw.es | 25.9 | 0.441 |
Helsinki-NLP/opus-mt-uk-de
695f511c49ef134d2194c9f115546b6c273fb994
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-de
9
null
transformers
12,136
--- language: - uk - de tags: - translation license: apache-2.0 --- ### ukr-deu * source group: Ukrainian * target group: German * OPUS readme: [ukr-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-deu/README.md) * model: transformer-align * source language(s): ukr * target language(s): deu * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-deu/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-deu/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-deu/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ukr.deu | 48.2 | 0.661 | ### System Info: - hf_name: ukr-deu - source_languages: ukr - target_languages: deu - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-deu/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['uk', 'de'] - src_constituents: {'ukr'} - tgt_constituents: {'deu'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-deu/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-deu/opus-2020-06-17.test.txt - src_alpha3: ukr - tgt_alpha3: deu - short_pair: uk-de - chrF2_score: 0.6609999999999999 - bleu: 48.2 - brevity_penalty: 0.98 - ref_len: 62298.0 - src_name: Ukrainian - tgt_name: German - train_date: 2020-06-17 - src_alpha2: uk - tgt_alpha2: de - prefer_old: False - long_pair: ukr-deu - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-uk-he
ff01cbe0f11d2f009bf34236b9fe58d9f1c66091
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "he", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-he
9
null
transformers
12,137
--- language: - uk - he tags: - translation license: apache-2.0 --- ### ukr-heb * source group: Ukrainian * target group: Hebrew * OPUS readme: [ukr-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-heb/README.md) * model: transformer-align * source language(s): ukr * target language(s): heb * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-heb/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-heb/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-heb/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ukr.heb | 35.7 | 0.557 | ### System Info: - hf_name: ukr-heb - source_languages: ukr - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['uk', 'he'] - src_constituents: {'ukr'} - tgt_constituents: {'heb'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-heb/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-heb/opus-2020-06-17.test.txt - src_alpha3: ukr - tgt_alpha3: heb - short_pair: uk-he - chrF2_score: 0.557 - bleu: 35.7 - brevity_penalty: 1.0 - ref_len: 4765.0 - src_name: Ukrainian - tgt_name: Hebrew - train_date: 2020-06-17 - src_alpha2: uk - tgt_alpha2: he - prefer_old: False - long_pair: ukr-heb - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-uk-hu
17f3e9461db05569f8160c3a1e14da7a3a81c84e
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "hu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-hu
9
null
transformers
12,138
--- language: - uk - hu tags: - translation license: apache-2.0 --- ### ukr-hun * source group: Ukrainian * target group: Hungarian * OPUS readme: [ukr-hun](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-hun/README.md) * model: transformer-align * source language(s): ukr * target language(s): hun * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ukr.hun | 41.4 | 0.649 | ### System Info: - hf_name: ukr-hun - source_languages: ukr - target_languages: hun - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-hun/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['uk', 'hu'] - src_constituents: {'ukr'} - tgt_constituents: {'hun'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hun/opus-2020-06-17.test.txt - src_alpha3: ukr - tgt_alpha3: hun - short_pair: uk-hu - chrF2_score: 0.649 - bleu: 41.4 - brevity_penalty: 0.9740000000000001 - ref_len: 2433.0 - src_name: Ukrainian - tgt_name: Hungarian - train_date: 2020-06-17 - src_alpha2: uk - tgt_alpha2: hu - prefer_old: False - long_pair: ukr-hun - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-wal-en
2f06019086b97ed0d8768b978ab1d61adac0fc4d
2021-09-11T10:51:51.000Z
[ "pytorch", "marian", "text2text-generation", "wal", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-wal-en
9
null
transformers
12,139
--- tags: - translation license: apache-2.0 --- ### opus-mt-wal-en * source languages: wal * target languages: en * OPUS readme: [wal-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/wal-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/wal-en/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/wal-en/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/wal-en/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.wal.en | 22.5 | 0.386 |
Helsinki-NLP/opus-mt-yap-fr
0a8a2f122d3d0263db62011b8394dbe45d3eb734
2021-09-11T10:52:38.000Z
[ "pytorch", "marian", "text2text-generation", "yap", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-yap-fr
9
null
transformers
12,140
--- tags: - translation license: apache-2.0 --- ### opus-mt-yap-fr * source languages: yap * target languages: fr * OPUS readme: [yap-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yap-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yap-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yap.fr | 22.2 | 0.381 |
Herais/pred_timeperiod
fb5548d8db24c2d413c85bed919f533f6bddcfc0
2022-02-27T05:52:58.000Z
[ "pytorch", "bert", "text-classification", "zh", "dataset:Custom", "transformers", "classification", "license:apache-2.0" ]
text-classification
false
Herais
null
Herais/pred_timeperiod
9
null
transformers
12,141
--- language: - zh tags: - classification license: apache-2.0 datasets: - Custom metrics: - rouge --- This model predicts the time period given a synopsis of about 200 Chinese characters. The model is trained on TV and Movie datasets and takes simplified Chinese as input. We trained the model from the "hfl/chinese-bert-wwm-ext" checkpoint. #### Sample Usage from transformers import BertTokenizer, BertForSequenceClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") checkpoint = "Herais/pred_timeperiod" tokenizer = BertTokenizer.from_pretrained(checkpoint, problem_type="single_label_classification") model = BertForSequenceClassification.from_pretrained(checkpoint).to(device) label2id_timeperiod = {'古代': 0, '当代': 1, '现代': 2, '近代': 3, '重大': 4} id2label_timeperiod = {0: '古代', 1: '当代', 2: '现代', 3: '近代', 4: '重大'} synopsis = """加油吧!检察官。鲤州市安平区检察院检察官助理蔡晓与徐美津是两个刚入职场的“菜鸟”。\ 他们在老检察官冯昆的指导与鼓励下,凭借着自己的一腔热血与对检察事业的执著追求,克服工作上的种种困难,\ 成功办理电竞赌博、虚假诉讼、水产市场涉黑等一系列复杂案件,惩治了犯罪分子,维护了人民群众的合法权益,\ 为社会主义法治建设贡献了自己的一份力量。在这个过程中,蔡晓与徐美津不仅得到了业务能力上的提升,\ 也领悟了人生的真谛,学会真诚地面对家人与朋友,收获了亲情与友谊,成长为合格的员额检察官,\ 继续为检察事业贡献自己的青春。 """ inputs = tokenizer(synopsis, truncation=True, max_length=512, return_tensors='pt') model.eval() outputs = model(**input) label_ids_pred = torch.argmax(outputs.logits, dim=1).to('cpu').numpy() labels_pred = [id2label_timeperiod[label] for label in labels_pred] print(labels_pred) # ['当代'] Citation {}
HungChau/distilbert-base-cased-concept-extraction-wikipedia-v1.2
77568c39b315b946014dd3ecca27edad644b01f8
2021-11-16T20:44:17.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-wikipedia-v1.2
9
null
transformers
12,142
Entry not found
Intel/bert-base-uncased-sparse-85-unstructured-pruneofa
2623863d5568c78583ff87da978a8768ff1525e9
2022-01-13T12:12:27.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:2111.05754", "transformers", "fill-mask" ]
fill-mask
false
Intel
null
Intel/bert-base-uncased-sparse-85-unstructured-pruneofa
9
null
transformers
12,143
--- language: en tags: fill-mask datasets: - wikipedia - bookcorpus --- # 85% Sparse BERT-Large (uncased) Prune OFA This model is a result from our paper [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754) presented in ENLSP NeurIPS Workshop 2021. For further details on the model and its result, see our paper and our implementation available [here](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all).
Irina/Fairytale
e770e5b53d0250a7b45e1eb6373efe653c4226b7
2021-12-22T22:21:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Irina
null
Irina/Fairytale
9
null
transformers
12,144
Entry not found
ItcastAI/bert_cn_finetuning
d7643297cce2a1e518c40480ff1fbf306a758c65
2021-05-18T21:10:29.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
ItcastAI
null
ItcastAI/bert_cn_finetuning
9
null
transformers
12,145
Entry not found
Jodsa/camembert_clf
98baf3da92e362047658c32e1892ccac953ca7c7
2021-05-18T14:29:37.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
false
Jodsa
null
Jodsa/camembert_clf
9
null
transformers
12,146
Entry not found
JorisCos/ConvTasNet_Libri3Mix_sepclean_16k
4d2ee438cee8cc31708770028ab2332287da4f01
2021-09-23T15:49:03.000Z
[ "pytorch", "dataset:Libri3Mix", "dataset:sep_clean", "asteroid", "audio", "ConvTasNet", "audio-to-audio", "license:cc-by-sa-4.0" ]
audio-to-audio
false
JorisCos
null
JorisCos/ConvTasNet_Libri3Mix_sepclean_16k
9
null
asteroid
12,147
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri3Mix - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yaml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.932601610824145 si_sdr_imp: 12.299341066588594 sdr: 9.557260814240447 sdr_imp: 12.76957128385349 sir: 17.387646884037455 sir_imp: 20.599955591768484 sar: 10.686885056960504 sar_imp: -55.8894643263213 stoi: 0.8481258332025354 stoi_imp: 0.25528367853750356 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/DCUNet_Libri1Mix_enhsingle_16k
3fa701427576e01e835ae415c8ed7516874b08dd
2021-09-23T15:49:15.000Z
[ "pytorch", "dataset:Libri1Mix", "dataset:enh_single", "asteroid", "audio", "DCUNet", "audio-to-audio", "license:cc-by-sa-4.0" ]
audio-to-audio
false
JorisCos
null
JorisCos/DCUNet_Libri1Mix_enhsingle_16k
9
1
asteroid
12,148
--- tags: - asteroid - audio - DCUNet - audio-to-audio datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/DCUNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_n_filters: 1024 stft_kernel_size: 1024 stft_stride: 256 masknet: architecture: Large-DCUNet-20 fix_length_mode: pad n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.154035391645971 si_sdr_imp: 9.704254085786271 sdr: 13.568058873121435 sdr_imp: 10.065396073908367 sar: 13.568058873121435 sar_imp: 10.065396073908367 stoi: 0.9199373340235417 stoi_imp: 0.12401751048300132 ``` License notice: This work "DCUNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCUNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JuliusAlphonso/dear-jarvis-monolith-xed-en
6ff080bdc7929253477dc4d57b70faf21b88ab27
2021-06-22T09:48:03.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
JuliusAlphonso
null
JuliusAlphonso/dear-jarvis-monolith-xed-en
9
null
transformers
12,149
## Model description This model was trained on the XED dataset and achieved validation loss: 0.5995 validation acc: 84.28% (ROC-AUC) Labels are based on Plutchik's model of emotions and may be combined: ![image](https://user-images.githubusercontent.com/12978899/122398897-f60d2500-cf97-11eb-8991-61e68f4ea1fc.png) ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.8.0 - Tokenizers 0.10.3
Khanh/xlm-roberta-base-finetuned-viquad
1df64444706632a660260c897e549a49f17a2416
2022-01-04T18:56:38.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
Khanh
null
Khanh/xlm-roberta-base-finetuned-viquad
9
null
transformers
12,150
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-viquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-viquad This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 259 | 2.9945 | | 3.3665 | 2.0 | 518 | 2.3761 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
KoichiYasuoka/roberta-base-japanese-aozora-char
2f53454b2602c83b8418967cd3b6a7adc78267d4
2022-06-21T05:50:52.000Z
[ "pytorch", "roberta", "fill-mask", "ja", "transformers", "japanese", "masked-lm", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-japanese-aozora-char
9
1
transformers
12,151
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # roberta-base-japanese-aozora-char ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-base-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-char-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-aozora-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora-char") ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
KoichiYasuoka/roberta-large-japanese-char-luw-upos
7b8a887f17db3f2c74706615fcff795fb6b76fbf
2022-06-26T23:00:37.000Z
[ "pytorch", "roberta", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/roberta-large-japanese-char-luw-upos
9
null
transformers
12,152
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # roberta-large-japanese-char-luw-upos ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-large-japanese-aozora-char](https://huggingface.co/KoichiYasuoka/roberta-large-japanese-aozora-char). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-japanese-char-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-japanese-char-luw-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-large-japanese-char-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
LegolasTheElf/Wav2Vec2_xls_r_300m_hi_final
a095a27f0eb385bd9a4e0637cffdaf8bff85efd3
2022-02-08T04:27:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "transformers", "Openslr Multilingual", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
LegolasTheElf
null
LegolasTheElf/Wav2Vec2_xls_r_300m_hi_final
9
null
transformers
12,153
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - Openslr Multilingual - mozilla-foundation/common_voice_7_0 - generated_from_trainer model-index: - name: Wav2Vec2_xls_r_300m_hi_final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2Vec2_xls_r_300m_hi_final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ['Openslr Multilingual and code-switching ASR challenge'](http://www.openslr.org/103/) dataset and ['mozilla-foundation/common_voice_7_0'](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) dataset. It achieves the following results on the evaluation set: - Loss: 0.3035 - Wer: 0.3137 - Cer: 0.0972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.9821 | 0.64 | 400 | 0.5059 | 0.4783 | 0.1573 | | 0.6861 | 1.28 | 800 | 0.4201 | 0.4247 | 0.1356 | | 0.585 | 1.92 | 1200 | 0.3797 | 0.3811 | 0.1210 | | 0.5193 | 2.56 | 1600 | 0.3577 | 0.3652 | 0.1152 | | 0.4583 | 3.21 | 2000 | 0.3422 | 0.3519 | 0.1111 | | 0.4282 | 3.85 | 2400 | 0.3261 | 0.3450 | 0.1071 | | 0.3951 | 4.49 | 2800 | 0.3201 | 0.3325 | 0.1048 | | 0.3619 | 5.13 | 3200 | 0.3167 | 0.3296 | 0.1030 | | 0.345 | 5.77 | 3600 | 0.3157 | 0.3210 | 0.1013 | | 0.338 | 6.41 | 4000 | 0.3051 | 0.3143 | 0.0982 | | 0.3155 | 7.05 | 4400 | 0.3059 | 0.3154 | 0.0986 | | 0.3057 | 7.69 | 4800 | 0.3035 | 0.3137 | 0.0972 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Lumos/ag_news1
cf2fb8c2ebc3c2c6e74049995ec475df6300c74d
2021-12-13T12:01:36.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Lumos
null
Lumos/ag_news1
9
null
transformers
12,154
Entry not found
M-FAC/bert-mini-finetuned-stsb
cd5b9155a80f634ffbcf5f801f8abce6df9634c8
2021-12-13T08:17:27.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2107.03356", "transformers" ]
text-classification
false
M-FAC
null
M-FAC/bert-mini-finetuned-stsb
9
null
transformers
12,155
# BERT-mini model finetuned with M-FAC This model is finetuned on STS-B dataset with state-of-the-art second-order optimizer M-FAC. Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf). ## Finetuning setup For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC. Hyperparameters used by M-FAC optimizer: ```bash learning rate = 1e-4 number of gradients = 512 dampening = 1e-6 ``` ## Results We share the best model out of 5 runs with the following score on STS-B validation set: ```bash pearson = 85.03 spearman = 85.06 ``` Mean and standard deviation for 5 runs on STS-B validation set: | | Pearson | Spearman | |:----:|:-----------:|:----------:| | Adam | 82.09 ± 0.54 | 82.64 ± 0.71 | | M-FAC | 84.66 ± 0.30 | 84.65 ± 0.30 | Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script: ```bash CUDA_VISIBLE_DEVICES=0 python run_glue.py \ --seed 7 \ --model_name_or_path prajjwal1/bert-mini \ --task_name stsb \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 1e-4 \ --num_train_epochs 5 \ --output_dir out_dir/ \ --optim MFAC \ --optim_args '{"lr": 1e-4, "num_grads": 512, "damp": 1e-6}' ``` We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE). Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC). A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials). ## BibTeX entry and citation info ```bibtex @article{frantar2021m, title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information}, author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan}, journal={Advances in Neural Information Processing Systems}, volume={35}, year={2021} } ```
MMG/bert-base-spanish-wwm-cased-finetuned-sqac
15da909d0ea9e7859994f65e3adf1a8047ecd0e6
2021-12-01T06:13:29.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "es", "dataset:sqac", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
MMG
null
MMG/bert-base-spanish-wwm-cased-finetuned-sqac
9
null
transformers
12,156
--- tags: - generated_from_trainer datasets: - sqac model-index: - name: bert-base-spanish-wwm-cased-finetuned-sqac results: [] language: - es --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-sqac This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the sqac dataset. It achieves the following results on the evaluation set: {'exact_match': 62.017167, 'f1': 79.452767} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1335 | 1.0 | 1230 | 0.9346 | | 0.6794 | 2.0 | 2460 | 0.8634 | | 0.3992 | 3.0 | 3690 | 0.9662 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387
01077a07652e1e11395261c4a63a7f145e0a5fd5
2022-01-21T07:05:45.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:MadhurJindalWorkMail/autonlp-data-Gibb-Detect", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
MadhurJindalWorkMail
null
MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387
9
null
transformers
12,157
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - MadhurJindalWorkMail/autonlp-data-Gibb-Detect co2_eq_emissions: 70.95647633212745 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 515314387 - CO2 Emissions (in grams): 70.95647633212745 ## Validation Metrics - Loss: 0.08077705651521683 - Accuracy: 0.9760103738923709 - Macro F1: 0.9728412857204902 - Micro F1: 0.9760103738923709 - Weighted F1: 0.9759907151741426 - Macro Precision: 0.9736622407675567 - Micro Precision: 0.9760103738923709 - Weighted Precision: 0.97673611876005 - Macro Recall: 0.9728978421381711 - Micro Recall: 0.9760103738923709 - Weighted Recall: 0.9760103738923709 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("MadhurJindalWorkMail/autonlp-Gibb-Detect-515314387", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Maha/OGBV-gender-bert-hi-en-hasoc20a-fin
94fe6be6729b2e7bafc737410636c586a940b13c
2022-02-23T03:56:11.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Maha
null
Maha/OGBV-gender-bert-hi-en-hasoc20a-fin
9
null
transformers
12,158
Entry not found
MaryaAI/opus-mt-en-ro-finetuned-en-to-ro
e88a9e255c0ef5e6647f056d0050bda63a99aeac
2021-09-05T08:42:06.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
MaryaAI
null
MaryaAI/opus-mt-en-ro-finetuned-en-to-ro
9
null
transformers
12,159
--- tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 28.1599 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2886 - Bleu: 28.1599 - Gen Len: 34.1236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7437 | 1.0 | 38145 | 1.2886 | 28.1599 | 34.1236 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
Media1129/keyword-tag-model-6000-9-16_more_ingredient
f3209f2010ee9fa4d14c2295a47ba336301b6d7c
2021-09-17T02:19:45.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Media1129
null
Media1129/keyword-tag-model-6000-9-16_more_ingredient
9
null
transformers
12,160
Entry not found
Mihneo/romanian_bert_news
cbfd7241c69072388bc91d5f508c1bfd78613758
2021-05-18T20:33:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Mihneo
null
Mihneo/romanian_bert_news
9
null
transformers
12,161
Milos/slovak-gpt-j-405M
ce46daa785ff8ca71f8e9f9c6913c1fceb9f98a6
2022-02-18T13:46:50.000Z
[ "pytorch", "gptj", "text-generation", "sk", "arxiv:2104.09864", "transformers", "Slovak GPT-J", "causal-lm", "license:gpl-3.0" ]
text-generation
false
Milos
null
Milos/slovak-gpt-j-405M
9
null
transformers
12,162
--- language: - sk tags: - Slovak GPT-J - pytorch - causal-lm license: gpl-3.0 --- # Slovak GPT-J-405M Slovak GPT-J-405M is the second model released in Slovak GPT-J series after its smaller variant [Slovak GPT-J-162M](https://huggingface.co/Milos/slovak-gpt-j-162M). Since then a larger [Slovak GPT-J-1.4B](https://huggingface.co/Milos/slovak-gpt-j-1.4B) was released. ## Model Description Model is based on [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax/) and has over 405M trainable parameters. <figure> | Hyperparameter | Value | |----------------------|----------------------------------------------------------------------------------------------------------------------------------------| | \\(n_{parameters}\\) | 405,677,136 | | \\(n_{layers}\\) | 24 | | \\(d_{model}\\) | 1024 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50256 (same tokenizer as GPT-2/3&dagger;) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <p><strong>&dagger;</strong> ByteLevelBPETokenizer was trained on the same Slovak corpus.</p></figure> ## Training data Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model. The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information. ## Training procedure This model was trained for a bit more than 36.5 billion tokens over 69,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was `2.821`. ## Intended Use Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt. ### How to use This model along with the tokenizer can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Milos/slovak-gpt-j-405M") model = AutoModelForCausalLM.from_pretrained("Milos/slovak-gpt-j-405M") ``` When generating a prompt keep in mind these three things, and you should be good to go: 1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after `slovenčinu`) and "Mám rád slovenčinu " (trailing space after `slovenčinu`), i.e `[12805, 2872, 46878]` != `[12805, 2872, 46878, 221]`. 2. Always use good ol' US English primary double quotation marks, i.e. `""` instead of `„“`. 3. In case of a new line always enter `\n\n` instead of a single `\n` To illustrate an example of a basic text generation: ``` >>> prompt = "Tradičné jedlo na Orave sú" >>> encoded_input = tokenizer(prompt, return_tensors='pt') >>> output = model.generate(**encoded_input) >>> tokenizer.decode(output[0]) 'Tradičné jedlo na Orave sú bryndzové halušky\n\nNa Orave sa v minulosti varilo viac druhov' ``` ### Capabilities, Limitations, and Biases The capability of this particular model is somewhat decent despite its small size totalling 405M parameters. With relative ease it can manage to generate interesting and grammatically correct content. For example, you can try few of the following prompts. (For sake of simplicity, I have omitted all the boilerplate code and swapped `\n` for new lines). Try generating "How to" articles: ``` PROMPT Ako napísať pôsobivú esej krok za krokom OUTPUT Ako napísať pôsobivú esej krok za krokom V tomto článku sa dozviete, ako napísať esej, ktorá bude mať v sebe niečo, čo zaujme a bude sa vám páčiť. V prvom rade si musíte uvedomiť, že esej je vlastne písaný text, ktorý má byť napísaný na počítači.' ``` However, relying on the model to produce factually correct information isn't recommended. Or try to generate chat conversations: ``` PROMPT Peter: Ako sa mas? Lucia: Ale celkom dobre. Co si robil? Peter: OUTPUT Peter: Ako sa mas? Lucia: Ale celkom dobre. Co si robil? Peter: No, bol som na chate. Lucia: A co si tam robil? Peter: No, bol som tam s kamošmi. Lucia: A co si tam robil? Peter: No, bol som tam s kamošmi. ``` Apparently either Peters are more likely to act suspiciously in this particular context or there's a problem with the model. Let's assume that the second explanation may hold some merit. In general, GPT models can (and often will) get into a repeating cycle of generating same content. This is a common problem beyond the scope of this README, however, see [generate's documentation](https://huggingface.co/docs/transformers/master/en/main_classes/model#transformers.generation_utils.GenerationMixin.generate) on how to introduce a frequency/repetition penalty. Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech: ``` >>> prompt = "Věta nesmí být sprostá a musí být zcela" >>> encoded_input = tokenizer(prompt, return_tensors='pt') >>> output = model.generate(**encoded_input, max_length=16) >>> tokenizer.decode(output[0]) 'Věta nesmí být sprostá a musí být zcela pravdivá.' ``` ## Citation and Related Information This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :) If you use this model or have any questions about it feel free to hit me up at [twitter](https://twitter.com/miloskondela) or check out my [github](https://github.com/kondela) profile. ### BibTeX entry To cite this model: ```bibtex @misc{slovak-gpt-j-405m, author = {Kondela, Milos}, title = {{Slovak GPT-J-405M}}, howpublished = {\url{https://huggingface.co/Milos/slovak-gpt-j-405M}}, year = 2022, month = February } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ## Acknowledgements This project was generously supported by [TPU Research Cloud (TRC) program](https://sites.research.google/trc/about/). Shoutout also goes to [Ben Wang](https://github.com/kingoflolz) and great [EleutherAI community](https://www.eleuther.ai/).
Monsia/camembert-fr-covid-tweet-classification
b86ce8a0c7dba1e95caf20af4db692cb3d499fab
2021-10-29T15:17:47.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers", "classification", "license:apache-2.0" ]
text-classification
false
Monsia
null
Monsia/camembert-fr-covid-tweet-classification
9
null
transformers
12,163
--- language: - fr tags: - classification license: apache-2.0 metrics: - accuracy widget: - text: "tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les 'ont dit'..." --- # camembert-fr-covid-tweet-classification This model is a fine-tune checkpoint of [Yanzhu/bertweetfr-base](https://huggingface.co/Yanzhu/bertweetfr-base), fine-tuned on SST-2. This model reaches an accuracy of 66.00% on the dev set. In this dataset, given a tweet, the goal was to infer the underlying topic of the tweet by choosing from four topics classes: - chiffres : this means, the tweet talk about statistics of covid. - mesures : this means, the tweet talk about measures take by government of covid - opinions : this means, the tweet talk about opinion of people like fake new. - symptomes : this means, the tweet talk about symptoms or variant of covid. - divers : or other # Pipelining the Model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("Monsia/camembert-fr-covid-tweet-classification") model = AutoModelForSequenceClassification.from_pretrained("Monsia/camembert-fr-covid-tweet-classification") nlp_topic_classif = transformers.pipeline('topics-classification', model = model, tokenizer = tokenizer) nlp_topic_classif("tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les '' ont dit ''...") # Output: [{'label': 'opinions', 'score': 0.831] ```
Mood/distilbert-base-uncased-finetuned-ner
aff9865337ff315110f791b7703b54348b160ffe
2021-11-18T16:56:01.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Mood
null
Mood/distilbert-base-uncased-finetuned-ner
9
null
transformers
12,164
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Muennighoff/SGPT-2.7B-weightedmean-nli-bitfit
3f56086f795e8562fe8cb97178f23ed6fa453edb
2022-06-18T13:11:04.000Z
[ "pytorch", "gpt_neo", "feature-extraction", "arxiv:2202.08904", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
Muennighoff
null
Muennighoff/SGPT-2.7B-weightedmean-nli-bitfit
9
null
sentence-transformers
12,165
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # SGPT-2.7B-weightedmean-nli-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 70456 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 7045, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.0002 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 7046, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel (1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
Mustang/BERT_responsible_AI
9d96a6f94a07cbcbd695385a9a6a317a7128ba25
2022-01-26T13:44:12.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:eupl-1.1" ]
text-classification
false
Mustang
null
Mustang/BERT_responsible_AI
9
null
transformers
12,166
--- license: eupl-1.1 --- ## BERT model van het project Explainable AI
NDugar/2epochv3mlni
f77c36f81a093d658f3b30b8f5f7b5a4fefd1fdf
2021-11-30T18:31:47.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "arxiv:2006.03654", "transformers", "deberta-v3", "deberta-v2`", "deberta-mnli", "license:mit", "zero-shot-classification" ]
zero-shot-classification
false
NDugar
null
NDugar/2epochv3mlni
9
null
transformers
12,167
--- language: en tags: - deberta-v3 - deberta-v2` - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit pipeline_tag: zero-shot-classification --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory. Run with `Deepspeed`, ```bash pip install datasets pip install deepspeed # Download the deepspeed config file wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json export TASK_NAME=mnli output_dir="ds_results" num_gpus=8 batch_size=8 python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\ run_glue.py \\ --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME \\ --do_train \\ --do_eval \\ --max_seq_length 256 \\ --per_device_train_batch_size ${batch_size} \\ --learning_rate 3e-6 \\ --num_train_epochs 3 \\ --output_dir $output_dir \\ --overwrite_output_dir \\ --logging_steps 10 \\ --logging_dir $output_dir \\ --deepspeed ds_config.json ``` You can also run with `--sharded_ddp` ```bash cd transformers/examples/text-classification/ export TASK_NAME=mnli python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
Narshion/bert-base-multilingual-cased-urgency
3ec2e67d7ab2503dcc14e5ccfc8fa4db42df070b
2021-09-15T12:27:00.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Narshion
null
Narshion/bert-base-multilingual-cased-urgency
9
null
transformers
12,168
--- tags: - generated_from_trainer datasets: - null model-index: - name: bert-base-multilingual-cased-urgency results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-urgency This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/) on the mWACH NEO dataset. It achieves the following results on the evaluation set: - Loss: 2.2797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.1408 | 1.0 | 5659 | 3.6705 | | 2.8777 | 2.0 | 11318 | 2.5536 | | 2.561 | 3.0 | 16977 | 2.2740 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
Nihwy/DialoSqui
4d0dc1b82842c78d6e4301daaffae5046ea9d9f9
2022-01-23T19:46:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Nihwy
null
Nihwy/DialoSqui
9
null
transformers
12,169
--- tags: - conversational --- # Squi
Norod78/hebrew-gpt_neo-xl-poetry
09a87f6351a2cf63c86e0c19ac2ea63387e15482
2022-07-04T07:26:28.000Z
[ "pytorch", "jax", "gpt_neo", "text-generation", "he", "transformers", "license:mit" ]
text-generation
false
Norod78
null
Norod78/hebrew-gpt_neo-xl-poetry
9
1
transformers
12,170
--- language: he thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg widget: - text: "עוד בימי קדם" - text: "תריסר מכשפות סג" - text: "\n\nהאיש האחרון בעולם /" - text: "פעם אחת, לפני שנים רבות" - text: "הרמיוני הסתירה את" - text: "לפתע, אור ירוק" license: mit --- # hebrew-gpt_neo-xl-poetry Hebrew poetry text generation model which was fine tuned upon on [hebrew-gpt_neo-xl](https://huggingface.co/Norod78/hebrew-gpt_neo-xl). ## Datasets An assortment of various Hebrew books, magazines and poetry corpuses ## Training Config Similar to [this one](https://github.com/Norod/hebrew-gpt_neo/tree/main/hebrew-gpt_neo-xl/configs) <BR> ## Usage ### Google Colab Notebook Available [here ](https://colab.research.google.com/github/Norod/hebrew-gpt_neo/blob/main/hebrew-gpt_neo-xl/Norod78_hebrew_gpt_neo_xl_Colab.ipynb) <BR> #### Simple usage sample code ```python !pip install tokenizers==0.10.3 transformers==4.8.0 from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-gpt_neo-xl-poetry") model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-gpt_neo-xl-poetry", pad_token_id=tokenizer.eos_token_id) prompt_text = "אני אוהב שוקולד ועוגות" max_len = 512 sample_output_num = 3 seed = 1000 import numpy as np import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count() print(f"device: {device}, n_gpu: {n_gpu}") np.random.seed(seed) torch.manual_seed(seed) if n_gpu > 0: torch.cuda.manual_seed_all(seed) model.to(device) encoded_prompt = tokenizer.encode( prompt_text, add_special_tokens=False, return_tensors="pt") encoded_prompt = encoded_prompt.to(device) if encoded_prompt.size()[-1] == 0: input_ids = None else: input_ids = encoded_prompt print("input_ids = " + str(input_ids)) if input_ids != None: max_len += len(encoded_prompt[0]) if max_len > 2048: max_len = 2048 print("Updated max_len = " + str(max_len)) stop_token = "<|endoftext|>" new_lines = "\n\n\n" sample_outputs = model.generate( input_ids, do_sample=True, max_length=max_len, top_k=50, top_p=0.95, num_return_sequences=sample_output_num ) print(100 * '-' + "\n\t\tOutput\n" + 100 * '-') for i, sample_output in enumerate(sample_outputs): text = tokenizer.decode(sample_output, skip_special_tokens=True) # Remove all text after the stop token text = text[: text.find(stop_token) if stop_token else None] # Remove all text after 3 newlines text = text[: text.find(new_lines) if new_lines else None] print("\n{}: {}".format(i, text)) print("\n" + 100 * '-') ```
Osiris/emotion_classifier
531104b7bfc271dc1a17d92ec7b9214b0984776f
2021-11-26T07:57:27.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Osiris
null
Osiris/emotion_classifier
9
1
transformers
12,171
### Introduction: This model belongs to text-classification. You can determine the emotion behind a sentence. ### Label Explaination: LABEL_0: Positive (have positive emotion) LABEL_1: Negative (have negative emotion) ### Usage: ```python >>> from transformers import pipeline >>> ec = pipeline('text-classification', model='Osiris/emotion_classifier') >>> ec("Hello, I'm a good model.") ``` ### Accuracy: We reach 83.82% for validation dataset, and 84.42% for test dataset.
RASMUS/wav2vec2-xlsr-1b-ru
8f9d93cf7228d7e0390b9d9917fdedb277faef2e
2022-03-23T18:29:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "audio", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "speech", "model-index" ]
automatic-speech-recognition
false
RASMUS
null
RASMUS/wav2vec2-xlsr-1b-ru
9
null
transformers
12,172
--- language: ru datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - speech model-index: - name: XLS-R 1B Wav2Vec2 Russian by Rasmus Toivanen results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ru metrics: - name: Test WER type: wer value: 10.83 - name: Test CER type: cer value: 2.41 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ru metrics: - name: Test WER type: wer value: 37.71 - name: Test CER type: cer value: 12.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ru metrics: - name: Test WER type: wer value: 31.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-1b-ru This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - Wer: 0.0971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5462 | 0.35 | 500 | 0.4027 | 0.3575 | | 0.498 | 0.69 | 1000 | 0.2588 | 0.2513 | | 0.4279 | 1.04 | 1500 | 0.2265 | 0.2204 | | 0.4099 | 1.38 | 2000 | 0.2189 | 0.1979 | | 0.4688 | 1.73 | 2500 | 0.2100 | 0.1920 | | 0.2241 | 2.07 | 3000 | 0.1980 | 0.1767 | | 0.2056 | 2.42 | 3500 | 0.2020 | 0.1683 | | 0.3423 | 2.76 | 4000 | 0.1862 | 0.1606 | | 0.2478 | 3.11 | 4500 | 0.1787 | 0.1563 | | 0.3079 | 3.45 | 5000 | 0.1759 | 0.1555 | | 0.2477 | 3.8 | 5500 | 0.1713 | 0.1423 | | 0.1718 | 4.14 | 6000 | 0.1695 | 0.1391 | | 0.1675 | 4.49 | 6500 | 0.1677 | 0.1372 | | 0.1631 | 4.83 | 7000 | 0.1652 | 0.1333 | | 0.1429 | 5.18 | 7500 | 0.1605 | 0.1308 | | 0.1505 | 5.52 | 8000 | 0.1612 | 0.1245 | | 0.1385 | 5.87 | 8500 | 0.1487 | 0.1225 | | 0.1285 | 6.22 | 9000 | 0.1526 | 0.1201 | | 0.1153 | 6.56 | 9500 | 0.1464 | 0.1172 | | 0.1159 | 6.91 | 10000 | 0.1505 | 0.1143 | | 0.1061 | 7.25 | 10500 | 0.1444 | 0.1106 | | 0.1016 | 7.6 | 11000 | 0.1427 | 0.1075 | | 0.1125 | 7.94 | 11500 | 0.1386 | 0.1045 | | 0.0937 | 8.29 | 12000 | 0.1403 | 0.1022 | | 0.1059 | 8.63 | 12500 | 0.1406 | 0.1022 | | 0.0857 | 8.98 | 13000 | 0.1372 | 0.0992 | | 0.0901 | 9.32 | 13500 | 0.1380 | 0.0977 | | 0.0913 | 9.67 | 14000 | 0.1352 | 0.0971 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
SEBIS/code_trans_t5_small_code_comment_generation_java
d91a502235dc170da9074967ef5a0d8101cf898b
2021-06-23T09:55:51.000Z
[ "pytorch", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_comment_generation_java
9
null
transformers
12,173
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used single-task training on Code Comment Generation dataset. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_comment_generation_java"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_comment_generation_java", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/code%20comment%20generation/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEISHIN/distilbert-base-uncased-finetuned-ner
15453a7ed482a01db1d1437c58381cb8c67e44b5
2021-12-27T07:53:05.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
SEISHIN
null
SEISHIN/distilbert-base-uncased-finetuned-ner
9
null
transformers
12,174
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9289272666888077 - name: Recall type: recall value: 0.9386956035350711 - name: F1 type: f1 value: 0.933785889160917 - name: Accuracy type: accuracy value: 0.9842565968195466 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0605 - Precision: 0.9289 - Recall: 0.9387 - F1: 0.9338 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2388 | 1.0 | 878 | 0.0671 | 0.9162 | 0.9211 | 0.9187 | 0.9813 | | 0.0504 | 2.0 | 1756 | 0.0602 | 0.9225 | 0.9366 | 0.9295 | 0.9834 | | 0.0299 | 3.0 | 2634 | 0.0605 | 0.9289 | 0.9387 | 0.9338 | 0.9843 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Sancha/t5-small-finetuned-fi-to-en
401c47619f0f85e09b060e4db47db1bc5532e981
2021-12-05T23:36:44.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt19", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Sancha
null
Sancha/t5-small-finetuned-fi-to-en
9
null
transformers
12,175
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt19 metrics: - bleu model-index: - name: t5-small-finetuned-fi-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt19 type: wmt19 args: fi-en metrics: - name: Bleu type: bleu value: 1.2541 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-fi-to-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt19 dataset. It achieves the following results on the evaluation set: - Loss: 3.5185 - Bleu: 1.2541 - Gen Len: 17.395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 3.413 | 1.0 | 6250 | 3.5378 | 1.2291 | 17.4057 | | 3.342 | 2.0 | 12500 | 3.5185 | 1.2541 | 17.395 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
SauravMaheshkar/clr-pretrained-roberta-base
a289bbd8900a10bd7cf7b988e9f559c680997e6a
2021-09-23T15:58:06.000Z
[ "pytorch", "roberta", "fill-mask", "dataset:Commonlit-Readibility", "transformers", "kaggle", "license:cc0-1.0", "autotrain_compatible" ]
fill-mask
false
SauravMaheshkar
null
SauravMaheshkar/clr-pretrained-roberta-base
9
null
transformers
12,176
--- thumbnail: https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true tags: - kaggle license: cc0-1.0 datasets: - Commonlit-Readibility metrics: - Perplexity --- ![](https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true) # PreTraining | **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** | |:-----------------------:|:---------------:|:----------------:|:----------------------:| | roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** | | bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 | | electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 | | albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 | | electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 | | electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 | | distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
SetFit/deberta-v3-large__sst2__train-16-9
ae356250baca330080c2736285d3b417e651e0f0
2022-02-10T11:39:45.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-16-9
9
null
transformers
12,177
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-9 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2598 - Accuracy: 0.7809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6887 | 1.0 | 7 | 0.7452 | 0.2857 | | 0.6889 | 2.0 | 14 | 0.7988 | 0.2857 | | 0.6501 | 3.0 | 21 | 0.8987 | 0.2857 | | 0.4286 | 4.0 | 28 | 0.9186 | 0.4286 | | 0.3591 | 5.0 | 35 | 0.5566 | 0.7143 | | 0.0339 | 6.0 | 42 | 1.1130 | 0.5714 | | 0.013 | 7.0 | 49 | 1.8296 | 0.7143 | | 0.0041 | 8.0 | 56 | 1.7069 | 0.7143 | | 0.0023 | 9.0 | 63 | 1.1942 | 0.7143 | | 0.0022 | 10.0 | 70 | 0.6054 | 0.7143 | | 0.0011 | 11.0 | 77 | 0.3872 | 0.7143 | | 0.0006 | 12.0 | 84 | 0.3217 | 0.7143 | | 0.0005 | 13.0 | 91 | 0.2879 | 0.8571 | | 0.0005 | 14.0 | 98 | 0.2640 | 0.8571 | | 0.0004 | 15.0 | 105 | 0.2531 | 0.8571 | | 0.0003 | 16.0 | 112 | 0.2384 | 0.8571 | | 0.0004 | 17.0 | 119 | 0.2338 | 0.8571 | | 0.0003 | 18.0 | 126 | 0.2314 | 0.8571 | | 0.0003 | 19.0 | 133 | 0.2276 | 0.8571 | | 0.0003 | 20.0 | 140 | 0.2172 | 0.8571 | | 0.0003 | 21.0 | 147 | 0.2069 | 0.8571 | | 0.0002 | 22.0 | 154 | 0.2018 | 0.8571 | | 0.0002 | 23.0 | 161 | 0.2005 | 0.8571 | | 0.0002 | 24.0 | 168 | 0.1985 | 0.8571 | | 0.0002 | 25.0 | 175 | 0.1985 | 1.0 | | 0.0002 | 26.0 | 182 | 0.1955 | 1.0 | | 0.0002 | 27.0 | 189 | 0.1967 | 1.0 | | 0.0002 | 28.0 | 196 | 0.1918 | 1.0 | | 0.0002 | 29.0 | 203 | 0.1888 | 1.0 | | 0.0002 | 30.0 | 210 | 0.1864 | 1.0 | | 0.0002 | 31.0 | 217 | 0.1870 | 1.0 | | 0.0002 | 32.0 | 224 | 0.1892 | 1.0 | | 0.0002 | 33.0 | 231 | 0.1917 | 1.0 | | 0.0002 | 34.0 | 238 | 0.1869 | 1.0 | | 0.0002 | 35.0 | 245 | 0.1812 | 1.0 | | 0.0001 | 36.0 | 252 | 0.1777 | 1.0 | | 0.0002 | 37.0 | 259 | 0.1798 | 1.0 | | 0.0002 | 38.0 | 266 | 0.1824 | 0.8571 | | 0.0002 | 39.0 | 273 | 0.1846 | 0.8571 | | 0.0002 | 40.0 | 280 | 0.1839 | 0.8571 | | 0.0001 | 41.0 | 287 | 0.1826 | 0.8571 | | 0.0001 | 42.0 | 294 | 0.1779 | 0.8571 | | 0.0002 | 43.0 | 301 | 0.1762 | 0.8571 | | 0.0001 | 44.0 | 308 | 0.1742 | 1.0 | | 0.0002 | 45.0 | 315 | 0.1708 | 1.0 | | 0.0001 | 46.0 | 322 | 0.1702 | 1.0 | | 0.0001 | 47.0 | 329 | 0.1699 | 1.0 | | 0.0001 | 48.0 | 336 | 0.1695 | 1.0 | | 0.0001 | 49.0 | 343 | 0.1683 | 1.0 | | 0.0001 | 50.0 | 350 | 0.1681 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-8
869f9dfb905868850384f675c71c137ff8a12f65
2022-02-10T09:59:57.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-8-8
9
null
transformers
12,178
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-8 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7414 - Accuracy: 0.5623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6597 | 1.0 | 3 | 0.7716 | 0.25 | | 0.6376 | 2.0 | 6 | 0.7802 | 0.25 | | 0.5857 | 3.0 | 9 | 0.6625 | 0.75 | | 0.4024 | 4.0 | 12 | 0.5195 | 0.75 | | 0.2635 | 5.0 | 15 | 0.4222 | 1.0 | | 0.1714 | 6.0 | 18 | 0.4410 | 0.5 | | 0.1267 | 7.0 | 21 | 0.7773 | 0.75 | | 0.0582 | 8.0 | 24 | 0.9070 | 0.75 | | 0.0374 | 9.0 | 27 | 0.9539 | 0.75 | | 0.0204 | 10.0 | 30 | 1.0507 | 0.75 | | 0.012 | 11.0 | 33 | 1.2802 | 0.5 | | 0.0086 | 12.0 | 36 | 1.4272 | 0.5 | | 0.0049 | 13.0 | 39 | 1.4803 | 0.5 | | 0.0039 | 14.0 | 42 | 1.4912 | 0.5 | | 0.0031 | 15.0 | 45 | 1.5231 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-0
3ae2b7c08157608f27f822711e6d90beafc5d6a0
2022-02-09T20:17:24.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__subj__train-8-0
9
null
transformers
12,179
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4440 - Accuracy: 0.789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.6868 | 0.5 | | 0.6683 | 2.0 | 6 | 0.6804 | 0.75 | | 0.6375 | 3.0 | 9 | 0.6702 | 0.75 | | 0.5997 | 4.0 | 12 | 0.6686 | 0.75 | | 0.5345 | 5.0 | 15 | 0.6720 | 0.75 | | 0.4673 | 6.0 | 18 | 0.6646 | 0.75 | | 0.4214 | 7.0 | 21 | 0.6494 | 0.75 | | 0.3439 | 8.0 | 24 | 0.6313 | 0.75 | | 0.3157 | 9.0 | 27 | 0.6052 | 0.75 | | 0.2329 | 10.0 | 30 | 0.5908 | 0.75 | | 0.1989 | 11.0 | 33 | 0.5768 | 0.75 | | 0.1581 | 12.0 | 36 | 0.5727 | 0.75 | | 0.1257 | 13.0 | 39 | 0.5678 | 0.75 | | 0.1005 | 14.0 | 42 | 0.5518 | 0.75 | | 0.0836 | 15.0 | 45 | 0.5411 | 0.75 | | 0.0611 | 16.0 | 48 | 0.5320 | 0.75 | | 0.0503 | 17.0 | 51 | 0.5299 | 0.75 | | 0.0407 | 18.0 | 54 | 0.5368 | 0.75 | | 0.0332 | 19.0 | 57 | 0.5455 | 0.75 | | 0.0293 | 20.0 | 60 | 0.5525 | 0.75 | | 0.0254 | 21.0 | 63 | 0.5560 | 0.75 | | 0.0231 | 22.0 | 66 | 0.5569 | 0.75 | | 0.0201 | 23.0 | 69 | 0.5572 | 0.75 | | 0.0179 | 24.0 | 72 | 0.5575 | 0.75 | | 0.0184 | 25.0 | 75 | 0.5547 | 0.75 | | 0.0148 | 26.0 | 78 | 0.5493 | 0.75 | | 0.0149 | 27.0 | 81 | 0.5473 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Shushant/distilgpt2-finetuned-nepaligpt
0709642326f37fb07f39b7a5c6c2e7b115d855d8
2022-01-18T11:14:02.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
Shushant
null
Shushant/distilgpt2-finetuned-nepaligpt
9
null
transformers
12,180
Entry not found
SimonThormeyer/movie-plot-generator-longer-plots
9eeef143cea1ac81462bee9dd3c15f604ba60c91
2021-07-27T15:06:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
SimonThormeyer
null
SimonThormeyer/movie-plot-generator-longer-plots
9
null
transformers
12,181
Entry not found
SoLID/sgd-response-generator
0727b39c17ee8dab0ee2444f1e88a30a782fd839
2021-12-15T06:18:27.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SoLID
null
SoLID/sgd-response-generator
9
null
transformers
12,182
Entry not found
Sonny/distilbert-base-uncased-finetuned-squad-d5716d28
4a359e825cdc7c5f7e98f2a9d72c879a3403e023
2022-02-16T00:49:43.000Z
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
Sonny
null
Sonny/distilbert-base-uncased-finetuned-squad-d5716d28
9
null
transformers
12,183
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-BioNLP13
54ddb072a3319c66cfb00e2287d03f2e828e67d6
2022-02-23T01:33:52.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-BioNLP13
9
null
transformers
12,184
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-biomedical-clinical-es-finetuned-ner-BioNLP13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-finetuned-ner-BioNLP13 This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2217 - Precision: 0.7936 - Recall: 0.8067 - F1: 0.8001 - Accuracy: 0.9451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4206 | 1.0 | 692 | 0.2182 | 0.7513 | 0.7757 | 0.7633 | 0.9342 | | 0.1872 | 2.0 | 1384 | 0.2032 | 0.7779 | 0.7865 | 0.7821 | 0.9398 | | 0.0982 | 3.0 | 2076 | 0.2043 | 0.7995 | 0.7904 | 0.7949 | 0.9443 | | 0.0735 | 4.0 | 2768 | 0.2217 | 0.7936 | 0.8067 | 0.8001 | 0.9451 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
TTYU/DialoGPT-small-trump
270b9a58376cd00e31efb4c0e6a187679f0bfcd7
2021-09-22T21:22:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
TTYU
null
TTYU/DialoGPT-small-trump
9
null
transformers
12,185
--- tags: - conversational --- # Trump Tweets DialoGPT Model
Tahsin-Mayeesha/bangla-fake-news-mbert
b9a6a1c334d68ccec965cb44e5bf62bf38dedad3
2021-08-05T14:06:59.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Tahsin-Mayeesha
null
Tahsin-Mayeesha/bangla-fake-news-mbert
9
null
transformers
12,186
Entry not found
TransQuest/monotransquest-hter-en_de-it-nmt
22b6caca61f61b029ec8ab81c97b2d45497ec581
2021-06-04T08:02:31.000Z
[ "pytorch", "xlm-roberta", "text-classification", "en-de", "transformers", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0" ]
text-classification
false
TransQuest
null
TransQuest/monotransquest-hter-en_de-it-nmt
9
null
transformers
12,187
--- language: en-de tags: - Quality Estimation - monotransquest - hter license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_de-it-nmt", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
TransQuest/monotransquest-hter-en_de-it-smt
432a81a60278dbca9cae8ac4858dcc2ffa9683fe
2021-06-04T08:03:17.000Z
[ "pytorch", "xlm-roberta", "text-classification", "en-de", "transformers", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0" ]
text-classification
false
TransQuest
null
TransQuest/monotransquest-hter-en_de-it-smt
9
null
transformers
12,188
--- language: en-de tags: - Quality Estimation - monotransquest - hter license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_de-it-smt", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
TransQuest/monotransquest-hter-en_lv-it-nmt
540451de1d3738078633a933be9bad0d656684cd
2021-06-04T08:04:48.000Z
[ "pytorch", "xlm-roberta", "text-classification", "en-lv", "transformers", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0" ]
text-classification
false
TransQuest
null
TransQuest/monotransquest-hter-en_lv-it-nmt
9
null
transformers
12,189
--- language: en-lv tags: - Quality Estimation - monotransquest - hter license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-en_lv-it-nmt", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
Vaibhavbrkn/t5-summarization
eae0f49cdd81148bb6d37ed725b5c28fc30654c5
2021-06-23T10:30:16.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Vaibhavbrkn
null
Vaibhavbrkn/t5-summarization
9
null
transformers
12,190
Entry not found
Wiam/wav2vec2-large-xlsr-arabic-demo-colab
9836f42138aeaab3eeb02cda17244dc596337f4a
2021-11-05T09:44:58.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Wiam
null
Wiam/wav2vec2-large-xlsr-arabic-demo-colab
9
null
transformers
12,191
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-arabic-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-arabic-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
Yv/bert-finetuned-ner-accelerate
19ce295072db96a4a98175cc0d21ee29d53c5b49
2021-12-23T13:30:09.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Yv
null
Yv/bert-finetuned-ner-accelerate
9
null
transformers
12,192
Entry not found
ZiweiG/ziwei-bert-imdb
6fb1e4303c96d292346ed862d40f62b0ce277296
2021-05-18T22:52:12.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
ZiweiG
null
ZiweiG/ziwei-bert-imdb
9
null
transformers
12,193
Entry not found
aXhyra/demo_irony_31415
bc8798e4888e72affc76f585d09671e2329c6888
2021-12-13T17:54:43.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/demo_irony_31415
9
null
transformers
12,194
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: demo_irony_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: irony metrics: - name: F1 type: f1 value: 0.685764300192161 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_irony_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2905 - F1: 0.6858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.7735294032820418e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 358 | 0.5872 | 0.6786 | | 0.5869 | 2.0 | 716 | 0.6884 | 0.6952 | | 0.3417 | 3.0 | 1074 | 0.9824 | 0.6995 | | 0.3417 | 4.0 | 1432 | 1.2905 | 0.6858 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/irony_trained_1234567
664b47695e1919144234e7e18207b0a4cfeea7ce
2021-12-12T12:22:43.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/irony_trained_1234567
9
null
transformers
12,195
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: irony_trained_1234567 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: irony metrics: - name: F1 type: f1 value: 0.6765645067647214 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # irony_trained_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.6580 - F1: 0.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.6774391860025942e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6608 | 1.0 | 716 | 0.6057 | 0.6704 | | 0.5329 | 2.0 | 1432 | 0.8935 | 0.6621 | | 0.3042 | 3.0 | 2148 | 1.3871 | 0.6822 | | 0.1769 | 4.0 | 2864 | 1.6580 | 0.6766 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_emotion_1234567
0a0715b328e85cb1bc77d362caba9764e6710e54
2021-12-15T10:46:43.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_emotion_1234567
9
null
transformers
12,196
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_emotion_1234567 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.7272977042723248 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_emotion_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.0237 - F1: 0.7273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.18796906442746e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1189 | 1.0 | 408 | 0.6827 | 0.7164 | | 1.0678 | 2.0 | 816 | 0.6916 | 0.7396 | | 0.6582 | 3.0 | 1224 | 0.9281 | 0.7276 | | 0.0024 | 4.0 | 1632 | 1.0237 | 0.7273 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_emotion_31415
819c619842c75638f735f43f4a341ad5bde00632
2021-12-15T10:41:54.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_emotion_31415
9
null
transformers
12,197
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_emotion_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.7148501877297316 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_emotion_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.1243 - F1: 0.7149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.18796906442746e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.73 | 1.0 | 408 | 0.8206 | 0.6491 | | 0.3868 | 2.0 | 816 | 0.7733 | 0.7230 | | 0.0639 | 3.0 | 1224 | 0.9962 | 0.7101 | | 0.0507 | 4.0 | 1632 | 1.1243 | 0.7149 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_hate_31415
73ca7b6e75b93eaaa3ccb60cbf8ea3222d2172fa
2021-12-15T11:24:57.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_hate_31415
9
null
transformers
12,198
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_hate_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7729508817074093 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_hate_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8632 - F1: 0.7730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.436235805743952e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.363 | 1.0 | 282 | 0.4997 | 0.7401 | | 0.2145 | 2.0 | 564 | 0.5071 | 0.7773 | | 0.1327 | 3.0 | 846 | 0.7109 | 0.7645 | | 0.0157 | 4.0 | 1128 | 0.8632 | 0.7730 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_sentiment_42
e5f87467b9d3370c794e199659e7835c2bdb3abc
2021-12-15T13:28:22.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_sentiment_42
9
null
transformers
12,199
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_sentiment_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - name: F1 type: f1 value: 0.7175864613336908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_sentiment_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6491 - F1: 0.7176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.923967812567773e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4391 | 1.0 | 2851 | 0.6591 | 0.6953 | | 0.6288 | 2.0 | 5702 | 0.6265 | 0.7158 | | 0.4071 | 3.0 | 8553 | 0.6401 | 0.7179 | | 0.6532 | 4.0 | 11404 | 0.6491 | 0.7176 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3