modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
aXhyra/sentiment_trained
d21ee2f7fdb6c14701ec0904a34ce09d94bc6416
2021-12-11T15:01:36.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/sentiment_trained
9
null
transformers
12,200
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: sentiment_trained results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - name: F1 type: f1 value: 0.7253452834090693 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_trained This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2671 - F1: 0.7253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.2140338797769864e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.6647 | 1.0 | 11404 | 0.6424 | 0.7189 | | 0.6018 | 2.0 | 22808 | 0.7947 | 0.7170 | | 0.5004 | 3.0 | 34212 | 1.0811 | 0.7200 | | 0.3761 | 4.0 | 45616 | 1.2671 | 0.7253 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aadilhassan/Chandlerbot
502381aa4e9b7a845f8c441e9fc659c6cff327f2
2021-11-28T04:36:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
aadilhassan
null
aadilhassan/Chandlerbot
9
1
transformers
12,201
--- tags: - conversational --- # Chandler friends DialogGPT Modal
abhishek/autonlp-bbc-roberta-37249301
15325f233cd756407927d35665a8e5df63d72fe8
2021-11-30T13:35:38.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:abhishek/autonlp-data-bbc-roberta", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
abhishek
null
abhishek/autonlp-bbc-roberta-37249301
9
null
transformers
12,202
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-bbc-roberta co2_eq_emissions: 1.9859980179658823 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 37249301 - CO2 Emissions (in grams): 1.9859980179658823 ## Validation Metrics - Loss: 0.06406362354755402 - Accuracy: 0.9833887043189369 - Macro F1: 0.9832763664701248 - Micro F1: 0.9833887043189369 - Weighted F1: 0.9833288528828136 - Macro Precision: 0.9847257743677181 - Micro Precision: 0.9833887043189369 - Weighted Precision: 0.9835392869652073 - Macro Recall: 0.982101705176067 - Micro Recall: 0.9833887043189369 - Weighted Recall: 0.9833887043189369 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-bbc-roberta-37249301 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-bbc-roberta-37249301", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-bbc-roberta-37249301", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
adamlin/ml999_hand_planer
517648af2a4a5ba0805bb33770cc096fbd562226
2021-12-20T16:52:05.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
adamlin
null
adamlin/ml999_hand_planer
9
null
transformers
12,203
Entry not found
adamlin/ml999_metal_num
bae6b599f58ff5a9449f6e970962d68adc28fee8
2021-12-20T16:57:38.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
adamlin
null
adamlin/ml999_metal_num
9
null
transformers
12,204
Entry not found
adelgasmi/autonlp-kpmg_nlp-18833547
87c288db1f1ba3e4eb10f43ae77abfa1f0fb1cd0
2021-10-15T11:44:36.000Z
[ "pytorch", "bert", "text-classification", "ar", "dataset:adelgasmi/autonlp-data-kpmg_nlp", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
adelgasmi
null
adelgasmi/autonlp-kpmg_nlp-18833547
9
1
transformers
12,205
--- tags: autonlp language: ar widget: - text: "I love AutoNLP 🤗" datasets: - adelgasmi/autonlp-data-kpmg_nlp co2_eq_emissions: 64.58945483765274 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 18833547 - CO2 Emissions (in grams): 64.58945483765274 ## Validation Metrics - Loss: 0.14247722923755646 - Accuracy: 0.9586074193404036 - Macro F1: 0.9468339778730883 - Micro F1: 0.9586074193404036 - Weighted F1: 0.9585551117678807 - Macro Precision: 0.9445436604001405 - Micro Precision: 0.9586074193404036 - Weighted Precision: 0.9591405429662925 - Macro Recall: 0.9499427161888565 - Micro Recall: 0.9586074193404036 - Weighted Recall: 0.9586074193404036 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/adelgasmi/autonlp-kpmg_nlp-18833547 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("adelgasmi/autonlp-kpmg_nlp-18833547", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("adelgasmi/autonlp-kpmg_nlp-18833547", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
akilesh96/autonlp-mrcooper_text_classification-529614927
c3b7f6b54fae602df18fc9041766f0314c6a3e44
2022-01-25T19:43:57.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:akilesh96/autonlp-data-mrcooper_text_classification", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
akilesh96
null
akilesh96/autonlp-mrcooper_text_classification-529614927
9
null
transformers
12,206
--- tags: autonlp language: en widget: - text: "Not Many People Know About The City 1200 Feet Below Detroit" - text: "Bob accepts the challenge, and the next week they're standing in Saint Peters square. 'This isnt gonna work, he's never going to see me here when theres this much people. You stay here, I'll go talk to him and you'll see me on the balcony, the guards know me too.' Half an hour later, Bob and the pope appear side by side on the balcony. Bobs boss gets a heart attack, and Bob goes to visit him in the hospital." - text: "I’m sorry if you made it this far, but I’m just genuinely idk, I feel like I shouldn’t give up, it’s just getting harder to come back from stuff like this." datasets: - akilesh96/autonlp-data-mrcooper_text_classification co2_eq_emissions: 5.999771405025692 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 529614927 - CO2 Emissions (in grams): 5.999771405025692 ## Validation Metrics - Loss: 0.7582379579544067 - Accuracy: 0.7636103151862464 - Macro F1: 0.770630619486531 - Micro F1: 0.7636103151862464 - Weighted F1: 0.765233270165301 - Macro Precision: 0.7746285216467107 - Micro Precision: 0.7636103151862464 - Weighted Precision: 0.7683270753840836 - Macro Recall: 0.7680576576961138 - Micro Recall: 0.7636103151862464 - Weighted Recall: 0.7636103151862464 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/akilesh96/autonlp-mrcooper_text_classification-529614927 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("akilesh96/autonlp-mrcooper_text_classification-529614927", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("akilesh96/autonlp-mrcooper_text_classification-529614927", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
alexander-karpov/bert-eatable-classification-en-ru
51d582fc67dd77f70eb583c4f1f7d13f9e2b2f3b
2021-07-31T21:01:38.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
alexander-karpov
null
alexander-karpov/bert-eatable-classification-en-ru
9
null
transformers
12,207
Entry not found
ali2066/distilbert-base-uncased-finetuned-sst-2-english-finetuned-argumentative
78c93fcc153addb562f8e0a648766aca9bc1c6ee
2022-02-08T07:12:16.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/distilbert-base-uncased-finetuned-sst-2-english-finetuned-argumentative
9
null
transformers
12,208
Entry not found
alireza7/TRANSFORMER-persian-base-tebyan
7065a4a4b3096b940fdefe79bd7f2af7ed97905a
2021-09-29T19:26:52.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/TRANSFORMER-persian-base-tebyan
9
null
transformers
12,209
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
allenai/dsp_roberta_base_dapt_news_tapt_hyperpartisan_news_5015
85c3c8115e92d410390e987346e55edebb84a247
2021-05-20T13:12:07.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_dapt_news_tapt_hyperpartisan_news_5015
9
null
transformers
12,210
Entry not found
allenai/dsp_roberta_base_tapt_hyperpartisan_news_515
b2a0ebf3616e07cba04450409675d9420dcf8dd3
2021-05-20T13:27:46.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_tapt_hyperpartisan_news_515
9
null
transformers
12,211
Entry not found
allenai/dsp_roberta_base_tapt_imdb_70000
295a3663d497a9e7c4041e8e0822cf1c28000b8f
2021-05-20T13:30:26.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_tapt_imdb_70000
9
null
transformers
12,212
Entry not found
allenai/dsp_roberta_base_tapt_rct_180K
d5e67e4542d1c5acba9041d49ac12abda3561e89
2021-05-20T13:31:37.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_tapt_rct_180K
9
null
transformers
12,213
Entry not found
aloxatel/3JQ
e6fc27d4ff611fba59bd4b4deffc0ae80c03f9eb
2021-05-20T13:38:29.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
aloxatel
null
aloxatel/3JQ
9
null
transformers
12,214
Entry not found
aloxatel/W1G
8627076551bd2e7ee39efd886519ff40d5218034
2021-05-20T14:00:07.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
aloxatel
null
aloxatel/W1G
9
null
transformers
12,215
Entry not found
amauboussin/twitter-toxicity-v0
7eb433811d3fa2a3873fa4d9f96631f5ff3dab49
2022-01-05T05:52:34.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
amauboussin
null
amauboussin/twitter-toxicity-v0
9
null
transformers
12,216
Entry not found
anirudh21/albert-base-v2-finetuned-wnli
af225845ad95ff6b151e0b128e0f832d48b17257
2022-01-25T16:57:16.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/albert-base-v2-finetuned-wnli
9
null
transformers
12,217
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: albert-base-v2-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-wnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6878 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6878 | 0.5634 | | No log | 2.0 | 80 | 0.6919 | 0.5634 | | No log | 3.0 | 120 | 0.6877 | 0.5634 | | No log | 4.0 | 160 | 0.6984 | 0.4085 | | No log | 5.0 | 200 | 0.6957 | 0.5211 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
anirudh21/albert-xlarge-v2-finetuned-wnli
872243a7d0fc6d0b4a8f9aab6083685a07253a53
2022-01-26T08:43:31.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/albert-xlarge-v2-finetuned-wnli
9
null
transformers
12,218
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: albert-xlarge-v2-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xlarge-v2-finetuned-wnli This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6869 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6906 | 0.5070 | | No log | 2.0 | 80 | 0.6869 | 0.5634 | | No log | 3.0 | 120 | 0.6905 | 0.5352 | | No log | 4.0 | 160 | 0.6960 | 0.4225 | | No log | 5.0 | 200 | 0.7011 | 0.3803 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
arogyaGurkha/kobert-finetuned-squad_kor_v1
be06b82eb9c4a2044d072d3f1b016e0f0e3dc60d
2021-09-13T03:59:34.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad_kor_v1", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
arogyaGurkha
null
arogyaGurkha/kobert-finetuned-squad_kor_v1
9
null
transformers
12,219
--- tags: - generated_from_trainer datasets: - squad_kor_v1 model-index: - name: kobert-finetuned-squad_kor_v1 results: - task: name: Question Answering type: question-answering dataset: name: squad_kor_v1 type: squad_kor_v1 args: squad_kor_v1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobert-finetuned-squad_kor_v1 This model is a fine-tuned version of [monologg/kobert](https://huggingface.co/monologg/kobert) on the squad_kor_v1 dataset. It achieves the following results on the evaluation set: - Loss: 4.0928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.0155 | 1.0 | 3808 | 4.0928 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
tner/xlm-roberta-base-uncased-mit-movie-trivia
e44d3c8032ed9b6d36f19082de7fb36f66ffe513
2021-02-13T00:08:10.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-uncased-mit-movie-trivia
9
null
transformers
12,220
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-mit-movie-trivia") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-mit-movie-trivia") ```
bakrianoo/t5-arabic-base
94aea39d7e38242e3efa2ad522789e6f61fe760b
2021-06-26T17:05:08.000Z
[ "pytorch", "t5", "text2text-generation", "Arabic", "dataset:mc4", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
bakrianoo
null
bakrianoo/t5-arabic-base
9
null
transformers
12,221
--- language: Arabic datasets: - mc4 license: apache-2.0 --- ## Arabic T5 Base Model A customized T5 Model for Arabic and English Task. It could be used as an alternative for `google/mt5-base` model, as it's much smaller and only targets Arabic and English based tasks. ### About T5 ``` T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. ``` [Read More](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
baykenney/bert-base-gpt2detector-topp92
5620750808eb7e050d67116467f2e15e4d99d243
2021-05-19T12:11:13.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
baykenney
null
baykenney/bert-base-gpt2detector-topp92
9
null
transformers
12,222
Entry not found
benmrtnz27/DialoGPT-small-misato
e8e699f526fff7afbd56351c31d8659a950a9332
2021-11-28T07:45:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
benmrtnz27
null
benmrtnz27/DialoGPT-small-misato
9
null
transformers
12,223
--- tags: - conversational --- # Misato Katsuragi DialoGPT Model ---
beomi/korean-lgbt-hatespeech-classifier
d42ae9eed42f2d48c3fecf22bf7c5516a1403793
2021-10-01T08:04:59.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
beomi
null
beomi/korean-lgbt-hatespeech-classifier
9
null
transformers
12,224
Entry not found
bewgle/bart-large-mnli-bewgle
83718c2198f023d85f8aaa161b9cf9340718a0f9
2020-12-09T18:30:05.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
bewgle
null
bewgle/bart-large-mnli-bewgle
9
null
transformers
12,225
--- widget : - text: "I like you. </s></s> I love you." --- ## bart-large-mnli Trained by Facebook, [original source](https://github.com/pytorch/fairseq/tree/master/examples/bart)
bhavikardeshna/multilingual-bert-base-cased-arabic
0f4e2c48b72c4d80b4847a8e90fb79c2090db985
2021-12-21T11:41:30.000Z
[ "pytorch", "bert", "question-answering", "arxiv:2112.09866", "transformers", "autotrain_compatible" ]
question-answering
false
bhavikardeshna
null
bhavikardeshna/multilingual-bert-base-cased-arabic
9
null
transformers
12,226
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bigjoedata/friendlychatbot
b34a3241491566f352bf3e02c6c49e949dad96e7
2021-05-21T14:13:11.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
bigjoedata
null
bigjoedata/friendlychatbot
9
null
transformers
12,227
Entry not found
bioformers/bioformer-cased-v1.0-mnli
3d1dc4d84038d18d9970435b8c2e863c0d5eda60
2021-10-19T07:07:27.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
bioformers
null
bioformers/bioformer-cased-v1.0-mnli
9
null
transformers
12,228
[bioformer-cased-v1.0](https://huggingface.co/bioformers/bioformer-cased-v1.0) fined-tuned on the [MNLI](https://cims.nyu.edu/~sbowman/multinli/) dataset for 2 epochs. The fine-tuning process was performed on two NVIDIA GeForce GTX 1080 Ti GPUs (11GB). The parameters are: ``` max_seq_length=512 per_device_train_batch_size=16 total train batch size (w. parallel, distributed & accumulation) = 32 learning_rate=3e-5 ``` ## Evaluation results eval_accuracy = 0.803973 ## Speed In our experiments, the inference speed of Bioformer is 3x as fast as BERT-base/BioBERT/PubMedBERT, and is 40% faster than DistilBERT. ## More information The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data. (source: https://huggingface.co/datasets/glue)
boychaboy/kobias_klue-roberta-base
6e43ed0732f10c5afef34b05b62af417000067dd
2021-07-07T05:27:55.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/kobias_klue-roberta-base
9
null
transformers
12,229
Entry not found
brad1141/bert-finetuned-ner
00e5fbc7d74135f3c8a20b2997a242605879a93a
2022-03-08T09:31:59.000Z
[ "pytorch", "tensorboard", "longformer", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
brad1141
null
brad1141/bert-finetuned-ner
9
1
transformers
12,230
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6434 - Precision: 0.8589 - Recall: 0.8686 - F1: 0.8637 - Accuracy: 0.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.615 | 1.0 | 1741 | 0.6111 | 0.8200 | 0.8652 | 0.8420 | 0.8046 | | 0.4795 | 2.0 | 3482 | 0.5366 | 0.8456 | 0.8803 | 0.8626 | 0.8301 | | 0.3705 | 3.0 | 5223 | 0.5412 | 0.8527 | 0.8786 | 0.8655 | 0.8339 | | 0.2749 | 4.0 | 6964 | 0.5906 | 0.8559 | 0.8711 | 0.8634 | 0.8316 | | 0.2049 | 5.0 | 8705 | 0.6434 | 0.8589 | 0.8686 | 0.8637 | 0.8324 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
cahya/xls-r-ab-test
68ad17dc1b1207cf647f8e239f77d154c84ea185
2022-03-23T18:29:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/xls-r-ab-test
9
null
transformers
12,231
--- language: - ab tags: - ab - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 135.4675 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.10.3
castorini/tct_colbert-v2-hn-msmarco
5ebac3ffc3def6cbb6625aab9dbeee8e4cc20e4d
2021-08-12T01:06:21.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
castorini
null
castorini/tct_colbert-v2-hn-msmarco
9
null
transformers
12,232
This model is to reproduce a variant of TCT-ColBERT-V2 dense retrieval models described in the following paper: > Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. [In-Batch Negatives for Knowledge Distillation with Tightly-CoupledTeachers for Dense Retrieval.](https://cs.uwaterloo.ca/~jimmylin/publications/Lin_etal_2021_RepL4NLP.pdf) _RepL4NLP 2021_. You can find our reproduction report in Pyserini [here](https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md).
chitra/finetuned-adversial-paraphrase-model
450da4af2fe501c8ac53b3d62144aaf82ae2cae5
2022-01-19T05:06:50.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
chitra
null
chitra/finetuned-adversial-paraphrase-model
9
null
transformers
12,233
Entry not found
chrommium/xlm-roberta-large-finetuned-sent_in_news
23bc7bfcb33a63467d2f9cb281e5f2fe6a710d6a
2021-10-01T12:02:53.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
chrommium
null
chrommium/xlm-roberta-large-finetuned-sent_in_news
9
null
transformers
12,234
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-large-finetuned-sent_in_news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-sent_in_news This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8872 - Accuracy: 0.7273 - F1: 0.5125 ## Model description Модель ассиметрична, реагирует на метку X в тексте новости. Попробуйте следующие примеры: a) Агентство X понизило рейтинг банка Fitch. b) Агентство Fitch понизило рейтинг банка X. a) Компания Финам показала рекордную прибыль, говорят аналитики компании X. b) Компания X показала рекордную прибыль, говорят аналитики компании Финам. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 106 | 1.2526 | 0.6108 | 0.1508 | | No log | 2.0 | 212 | 1.1553 | 0.6648 | 0.1141 | | No log | 3.0 | 318 | 1.1150 | 0.6591 | 0.1247 | | No log | 4.0 | 424 | 1.0007 | 0.6705 | 0.1383 | | 1.1323 | 5.0 | 530 | 0.9267 | 0.6733 | 0.2027 | | 1.1323 | 6.0 | 636 | 1.0869 | 0.6335 | 0.4084 | | 1.1323 | 7.0 | 742 | 1.1224 | 0.6932 | 0.4586 | | 1.1323 | 8.0 | 848 | 1.2535 | 0.6307 | 0.3424 | | 1.1323 | 9.0 | 954 | 1.4288 | 0.6932 | 0.4881 | | 0.5252 | 10.0 | 1060 | 1.5856 | 0.6932 | 0.4739 | | 0.5252 | 11.0 | 1166 | 1.7101 | 0.6733 | 0.4530 | | 0.5252 | 12.0 | 1272 | 1.7330 | 0.6903 | 0.4750 | | 0.5252 | 13.0 | 1378 | 1.8872 | 0.7273 | 0.5125 | | 0.5252 | 14.0 | 1484 | 1.8797 | 0.7301 | 0.5033 | | 0.1252 | 15.0 | 1590 | 1.9339 | 0.7330 | 0.5024 | | 0.1252 | 16.0 | 1696 | 1.9632 | 0.7301 | 0.4967 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
congcongwang/t5-large-fine-tuned-wnut-2020-task3
6334b7d12041bcd5650c1dce3cf1a842f50c735e
2021-06-23T12:13:01.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
congcongwang
null
congcongwang/t5-large-fine-tuned-wnut-2020-task3
9
null
transformers
12,235
Entry not found
copenlu/citebert-cite-only
9140f5bb5c36155d929b2ffd750695207a1d865d
2022-04-06T08:27:51.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
copenlu
null
copenlu/citebert-cite-only
9
null
transformers
12,236
Entry not found
daekeun-ml/koelectra-small-v3-korsts
ce2a986e65d726120ae472a8bd62910f60707076
2022-02-13T06:22:23.000Z
[ "pytorch", "electra", "text-classification", "ko", "dataset:korsts", "transformers", "classification", "sentence similarity", "license:cc-by-4.0" ]
text-classification
false
daekeun-ml
null
daekeun-ml/koelectra-small-v3-korsts
9
null
transformers
12,237
--- language: - ko tags: - classification - sentence similarity license: cc-by-4.0 datasets: - korsts metrics: - accuracy - f1 - precision - recall --- # Similarity between two sentences (fine-tuning with KoELECTRA-Small-v3 model and KorSTS dataset) ## Usage (Amazon SageMaker inference applicable) It uses the interface of the SageMaker Inference Toolkit as is, so it can be easily deployed to SageMaker Endpoint. ### inference_korsts.py ```python import json import sys import logging import torch from torch import nn from transformers import ElectraConfig from transformers import ElectraModel, AutoTokenizer, ElectraTokenizer, ElectraForSequenceClassification logging.basicConfig( level=logging.INFO, format='[{%(filename)s:%(lineno)d} %(levelname)s - %(message)s', handlers=[ logging.FileHandler(filename='tmp.log'), logging.StreamHandler(sys.stdout) ] ) logger = logging.getLogger(__name__) max_seq_length = 128 tokenizer = AutoTokenizer.from_pretrained("daekeun-ml/koelectra-small-v3-korsts") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Huggingface pre-trained model: 'monologg/koelectra-small-v3-discriminator' def model_fn(model_path): #### # If you have your own trained model # Huggingface pre-trained model: 'monologg/koelectra-small-v3-discriminator' #### #config = ElectraConfig.from_json_file(f'{model_path}/config.json') #model = ElectraForSequenceClassification.from_pretrained(f'{model_path}/model.pth', config=config) model = ElectraForSequenceClassification.from_pretrained('daekeun-ml/koelectra-small-v3-korsts') model.to(device) return model def input_fn(input_data, content_type="application/jsonlines"): data_str = input_data.decode("utf-8") jsonlines = data_str.split("\n") transformed_inputs = [] for jsonline in jsonlines: text = json.loads(jsonline)["text"] logger.info("input text: {}".format(text)) encode_plus_token = tokenizer.encode_plus( text, max_length=max_seq_length, add_special_tokens=True, return_token_type_ids=False, padding="max_length", return_attention_mask=True, return_tensors="pt", truncation=True, ) transformed_inputs.append(encode_plus_token) return transformed_inputs def predict_fn(transformed_inputs, model): predicted_classes = [] for data in transformed_inputs: data = data.to(device) output = model(**data) prediction_dict = {} prediction_dict['score'] = output[0].squeeze().cpu().detach().numpy().tolist() jsonline = json.dumps(prediction_dict) logger.info("jsonline: {}".format(jsonline)) predicted_classes.append(jsonline) predicted_classes_jsonlines = "\n".join(predicted_classes) return predicted_classes_jsonlines def output_fn(outputs, accept="application/jsonlines"): return outputs, accept ``` ### test.py ```python >>> from inference_korsts import model_fn, input_fn, predict_fn, output_fn >>> with open('./samples/korsts.txt', mode='rb') as file: >>> model_input_data = file.read() >>> model = model_fn() >>> transformed_inputs = input_fn(model_input_data) >>> predicted_classes_jsonlines = predict_fn(transformed_inputs, model) >>> model_outputs = output_fn(predicted_classes_jsonlines) >>> print(model_outputs[0]) [{inference_korsts.py:44} INFO - input text: ['맛있는 라면을 먹고 싶어요', '후루룩 쩝쩝 후루룩 쩝쩝 맛좋은 라면'] [{inference_korsts.py:44} INFO - input text: ['뽀로로는 내친구', '머신러닝은 러닝머신이 아닙니다.'] [{inference_korsts.py:71} INFO - jsonline: {"score": 4.786738872528076} [{inference_korsts.py:71} INFO - jsonline: {"score": 0.2319069355726242} {"score": 4.786738872528076} {"score": 0.2319069355726242} ``` ### Sample data (samples/korsts.txt) ``` {"text": ["맛있는 라면을 먹고 싶어요", "후루룩 쩝쩝 후루룩 쩝쩝 맛좋은 라면"]} {"text": ["뽀로로는 내친구", "머신러닝은 러닝머신이 아닙니다."]} ``` ## References - KoELECTRA: https://github.com/monologg/KoELECTRA - KorNLI and KorSTS Dataset: https://github.com/kakaobrain/KorNLUDatasets
danurahul/alex_gpt3_Doctextfull
ad255c1a834f232ad1bd24567498221337bf1cd0
2021-05-21T15:18:16.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
danurahul
null
danurahul/alex_gpt3_Doctextfull
9
null
transformers
12,238
Entry not found
dbmdz/electra-base-ukrainian-cased-discriminator
1c4d59174274c0aeeb550f64c820495b0b789938
2020-11-10T12:26:52.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
dbmdz
null
dbmdz/electra-base-ukrainian-cased-discriminator
9
null
transformers
12,239
Entry not found
delpart/distilbert-base-uncased-finetuned-ner
588b9e61ba7a6ffb968951eae40378042964e0c5
2021-10-06T03:58:21.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
delpart
null
delpart/distilbert-base-uncased-finetuned-ner
9
null
transformers
12,240
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.925115970841617 - name: Recall type: recall value: 0.9370175634858485 - name: F1 type: f1 value: 0.9310287333963209 - name: Accuracy type: accuracy value: 0.9839388692074285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0602 - Precision: 0.9251 - Recall: 0.9370 - F1: 0.9310 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2435 | 1.0 | 878 | 0.0685 | 0.9182 | 0.9221 | 0.9202 | 0.9816 | | 0.0515 | 2.0 | 1756 | 0.0602 | 0.9212 | 0.9368 | 0.9289 | 0.9834 | | 0.0301 | 3.0 | 2634 | 0.0602 | 0.9251 | 0.9370 | 0.9310 | 0.9839 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
diegozs97/finetuned-chemprot-seed-0-2000k
ac6b73bad1aa48624f9998970dee982b0dd82347
2021-12-07T05:16:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-0-2000k
9
null
transformers
12,241
Entry not found
diwank/silicone-deberta-pair
405127a73ef60674b1780e053cd52e538bf7ba7d
2022-03-07T08:43:13.000Z
[ "pytorch", "tf", "deberta", "text-classification", "transformers", "license:mit" ]
text-classification
false
diwank
null
diwank/silicone-deberta-pair
9
null
transformers
12,242
--- license: mit --- # diwank/silicone-deberta-pair `deberta-base`-based dialog acts classifier. Trained on the `balanced` variant of the [silicone-merged](https://huggingface.co/datasets/diwank/silicone-merged) dataset: a simplified merged dialog act data from datasets in the [silicone](https://huggingface.co/datasets/silicone) collection. Takes two sentences as inputs (one previous and one current utterance of a dialog). The previous sentence can be an empty string if this is the first utterance of a speaker in a dialog. **Outputs one of 11 labels**: ```python (0, 'acknowledge') (1, 'answer') (2, 'backchannel') (3, 'reply_yes') (4, 'exclaim') (5, 'say') (6, 'reply_no') (7, 'hold') (8, 'ask') (9, 'intent') (10, 'ask_yes_no') ``` ## Example: ```python from simpletransformers.classification import ( ClassificationModel, ClassificationArgs ) model = ClassificationModel("deberta", "diwank/silicone-deberta-pair") convert_to_label = lambda n: [ ['acknowledge', 'answer', 'backchannel', 'reply_yes', 'exclaim', 'say', 'reply_no', 'hold', 'ask', 'intent', 'ask_yes_no' ][i] for i in n ] predictions, raw_outputs = model.predict([["Say what is the meaning of life?", "I dont know"]]) convert_to_label(predictions) # answer ``` ## Report from W&B https://wandb.ai/diwank/da-silicone-combined/reports/silicone-deberta-pair--VmlldzoxNTczNjE5?accessToken=yj1jz4c365z0y5b3olgzye7qgsl7qv9lxvqhmfhtb6300hql6veqa5xiq1skn8ys
dkleczek/Polish-Hate-Speech-Detection-Herbert-Large
b1fca3e0d8f7730d5a14c347389b8d45321a8cf1
2021-07-16T05:46:07.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
dkleczek
null
dkleczek/Polish-Hate-Speech-Detection-Herbert-Large
9
null
transformers
12,243
Entry not found
dkleczek/Polish_RoBERTa_v2_base_OPI
83be73044078a76486d982c7c5e54fbf11603002
2021-08-26T22:10:12.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
dkleczek
null
dkleczek/Polish_RoBERTa_v2_base_OPI
9
null
transformers
12,244
Entry not found
domdomreloaded/bert-base-uncased-finetuned-swag
41422646b7fc1b772dce661d6f63832986631b10
2022-01-18T22:33:47.000Z
[ "pytorch", "tensorboard", "bert", "multiple-choice", "dataset:swag", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
domdomreloaded
null
domdomreloaded/bert-base-uncased-finetuned-swag
9
null
transformers
12,245
--- license: apache-2.0 tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-swag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.6045 - Accuracy: 0.7960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7494 | 1.0 | 4597 | 0.5942 | 0.7716 | | 0.3499 | 2.0 | 9194 | 0.6045 | 0.7960 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
dram-conflict/horror-scripts
492f0c551a02b6d4719de028a3cbb74d2b8a46a8
2022-02-18T01:02:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
dram-conflict
null
dram-conflict/horror-scripts
9
null
transformers
12,246
Entry not found
ehdwns1516/gpt3-kor-based_gpt2_review_SR5
c8ec3a1243332465d64d51fa0ea2e28842a97e86
2021-07-23T01:19:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ehdwns1516
null
ehdwns1516/gpt3-kor-based_gpt2_review_SR5
9
null
transformers
12,247
# ehdwns1516/gpt3-kor-based_gpt2_review_SR5 * This model has been trained Korean dataset as a star of 5 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt3-kor-based_gpt2_review_SR1](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR1) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR2](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR2) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR3](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR3) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR4](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR4) * [ehdwns1516/gpt3-kor-based_gpt2_review_SR5](https://huggingface.co/ehdwns1516/gpt3-kor-based_gpt2_review_SR5) ## Overview Language model: [gpt3-kor-small_based_on_gpt2](https://huggingface.co/kykim/gpt3-kor-small_based_on_gpt2) Language: Korean Training data: review_body dataset with a star of 5 in the [naver shopping reivew dataset](https://github.com/bab2min/corpus/tree/master/sentiment). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR5") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt3-kor-based_gpt2_review_SR5") generator = pipeline( "text-generation", model="ehdwns1516/gpt3-kor-based_gpt2_review_SR5", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
eliza-dukim/bert-base-finetuned-sts-deprecated
928fa592869042bf88fc8233b0933b042cd41d14
2021-08-11T02:04:53.000Z
[ "pytorch", "bert", "text-classification", "dataset:klue", "transformers", "generated_from_trainer" ]
text-classification
false
eliza-dukim
null
eliza-dukim/bert-base-finetuned-sts-deprecated
9
null
transformers
12,248
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model_index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metric: name: Pearsonr type: pearsonr value: 0.837527365741951 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.5657 - Pearsonr: 0.8375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 92 | 0.8280 | 0.7680 | | No log | 2.0 | 184 | 0.6602 | 0.8185 | | No log | 3.0 | 276 | 0.5939 | 0.8291 | | No log | 4.0 | 368 | 0.5765 | 0.8367 | | No log | 5.0 | 460 | 0.5657 | 0.8375 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
emrecan/distilbert-base-turkish-cased-snli_tr
8f884f912e85a0eb4ae79bf86a0331305b73b44e
2021-12-01T19:42:34.000Z
[ "pytorch", "distilbert", "text-classification", "tr", "dataset:nli_tr", "transformers", "zero-shot-classification", "nli", "license:apache-2.0" ]
zero-shot-classification
false
emrecan
null
emrecan/distilbert-base-turkish-cased-snli_tr
9
null
transformers
12,249
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: apache-2.0 datasets: - nli_tr widget: - text: "Dolar yükselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo çok saçmaydı, beğendim diyemem." candidate_labels: "olumlu, olumsuz" ---
enod/esg-bert
9e022f71e4bfaac6774077ed4f4f42058b44dcf8
2021-12-01T00:41:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
enod
null
enod/esg-bert
9
null
transformers
12,250
Entry not found
ensamblador/gpt2-es-8heads
455748b17ce17739daa855a69998cdceb581d512
2021-05-21T15:53:28.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ensamblador
null
ensamblador/gpt2-es-8heads
9
null
transformers
12,251
Entry not found
ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
aba70a6c4b11e0b01b45c664f91752552a38b73c
2021-12-03T21:51:30.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16_en_ro_pre_processed", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ffsouza
null
ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
9
null
transformers
12,252
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed model-index: - name: t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
flax-community/roberta-pretraining-hindi
91428432765ef16c941482f0c180488a8e807766
2021-07-15T15:44:11.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
flax-community
null
flax-community/roberta-pretraining-hindi
9
null
transformers
12,253
--- widget: - text: "शुभ प्रभात। आशा करता हूं कि आपका <mask> शुभ हो" --- roberta-pretraining-hindi
flexudy/cheapity3
e6f2540cb8b5ce31684af3f42e3fa70204bbf7d2
2021-12-27T13:06:27.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
flexudy
null
flexudy/cheapity3
9
null
transformers
12,254
# Cheapity3 🐷 GPT-like T5 model trained to generate text in multiple languages. ## Motivation - GPT models are expensive to run. - GPT models are monolingual. ## Solution - Maybe, Small Models aren't Terrible (*SMarT*) - Plus, they are cheaper to run. I fine-tuned T5 on multiple languages (🇬🇧 English, 🇩🇪 German, 🇫🇷 French) and multiple academic text snippets from various domains like tech, law, finance and science etc. to generate text, just like GPT models do. ## Usage - [NLPlayStore](https://github.com/flexudy/NLPlayStore) 👈 ```python from store.service_management import ServiceManager service_manager = ServiceManager().get_service("cheapity3") service.install() service = service.launch() input_text = "The mechanical engineering field requires ... " generated_texts = service.play(input_text, 15) # A list a generated text ``` ## Usage - Hugging Face Transformers 🤗 - Provide some text e.g `"Italy, officially the Italian Republic is a country consisting of"` - Tell Cheapity3 how many words you want to generate e.g `15` -- 😃 Yes, you can control the length. - Cheapity3 reads your text and generates a continuation containing approximately 15 words. ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("flexudy/cheapity3") model = AutoModelWithLMHead.from_pretrained("flexudy/cheapity3") input_text = """The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity. { _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ }""" # 15 words inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512) input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_length=128, do_sample=True, early_stopping=True, num_return_sequences=4, repetition_penalty=2.5 ) for i in range(4): print(tokenizer.decode(outputs[i], skip_special_tokens=True, clean_up_tokenization_spaces=True)) ``` **INPUT: The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity.** ``` > Cheapity3 continues with beam search: ... The field of mechanical engineering is a broad field that includes many core areas of engineering. > Cheapity3 continues with sampling and top_k=50: ... Developing the knowledge base for these core areas will enable engineers to build their capabilities rapidly and efficiently. ... ... The field of mechanics offers a variety and broad range for applications throughout the engineering/technological fields. ... ... Mechanics generally is not understood by students. While they can be employed in the field, mechanical engineering ... ... Introduction to mechanical engineering and core fields including chemical products, materials science, structural analysis, and geomatics ... ``` ## Pretty decent right? Hence, whenever you feel like GPT3 is too expensive, Cheapity3 comes to the rescue 🤗. ## Model Training FYI - T5-base model - Trained on ONLY 1M sentences from English, French and German text - Mostly text from Wikipedia, arxiv and QA datasets - Learning rate: 0.00003 - 2 epochs - Max input: 512 tokens - Max output: 128 tokens
aware-ai/t5-skills
69bf6bb62eb73a132d4a0a96fe16ba529409a39e
2021-11-25T16:56:51.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "input", "output", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
aware-ai
null
aware-ai/t5-skills
9
null
transformers
12,255
--- language: - input - output tags: - generated_from_trainer model-index: - name: t5-skills results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-skills This model is a fine-tuned version of [flozi00/t5-skills](https://huggingface.co/flozi00/t5-skills) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.8.1 - Datasets 1.14.0 - Tokenizers 0.10.2
gchhablani/fnet-large-finetuned-stsb
5ec8f5c51fd54066b52f4330884ca63f753b5e72
2021-10-07T17:02:23.000Z
[ "pytorch", "tensorboard", "fnet", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
gchhablani
null
gchhablani/fnet-large-finetuned-stsb
9
null
transformers
12,256
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: fnet-large-finetuned-stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8532669137129205 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-stsb This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.6250 - Pearson: 0.8554 - Spearmanr: 0.8533 - Combined Score: 0.8543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 1.0727 | 1.0 | 1438 | 0.7718 | 0.8187 | 0.8240 | 0.8214 | | 0.4619 | 2.0 | 2876 | 0.7704 | 0.8472 | 0.8500 | 0.8486 | | 0.2401 | 3.0 | 4314 | 0.6250 | 0.8554 | 0.8533 | 0.8543 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
ghadeermobasher/BC5CDR-Chem-Modified_biobert-v1.1_latest
2016416bc3c43cf145bc951ad123ecb69cabdf12
2022-02-21T22:06:17.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Modified_biobert-v1.1_latest
9
null
transformers
12,257
Entry not found
ghadeermobasher/BC5CDR-Chem-Modified_pubmed_abstract_3
d6a51e6b518aca6be4e40f3606b2c3dd1a6de723
2022-02-16T19:57:27.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Modified_pubmed_abstract_3
9
null
transformers
12,258
Entry not found
ghadeermobasher/BC5CDR-Chem-Modified_pubmed_abstract_latest
603c408bb6a89bf7b8bb1e7cd4626a43ecf319ec
2022-02-21T22:04:54.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Modified_pubmed_abstract_latest
9
null
transformers
12,259
Entry not found
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
7d0b2a183dae2e92b809b5eecade85b605009213
2022-01-23T01:03:07.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
9
null
transformers
12,260
Entry not found
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-from-PubMedBERT-fulltext
7bf86432a9b8bd55531b865bdfe2c1074f8917a4
2022-01-24T18:42:18.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-SapBERT-from-PubMedBERT-fulltext
9
null
transformers
12,261
Entry not found
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-pubmedbert
ed9ecde574662e1c2c5a22cb1e3531acbd929896
2022-02-07T12:40:46.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-pubmedbert
9
null
transformers
12,262
Entry not found
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-scibert_scivocab_cased
aaf1c8eeb5ddcfae8a5c3a2d1286ff0b8a423eaa
2022-01-23T19:01:49.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical-Disease-balanced-scibert_scivocab_cased
9
null
transformers
12,263
Entry not found
ghadeermobasher/BC5CDR-Chemical-imbalanced-PubMedBERT-base-uncased-abstract_latest
de3987fb6f95a1f21d8707cfcff1cdea1b41969d
2022-02-21T22:58:59.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical-imbalanced-PubMedBERT-base-uncased-abstract_latest
9
null
transformers
12,264
Entry not found
ghadeermobasher/BC5CDR-Chemical-imbalanced-biobert
5c3d6cdf4b37fc31bfdd9e65814417ef30a20395
2022-02-10T13:26:22.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical-imbalanced-biobert
9
null
transformers
12,265
Entry not found
ghadeermobasher/BC5CDR-Chemical-imbalanced-pubmedbert
14353f357e0d49a5e30c3078a5a79e6534b1bd54
2022-02-10T15:07:22.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical-imbalanced-pubmedbert
9
null
transformers
12,266
Entry not found
ghadeermobasher/BC5CDR-Chemical-imbalanced-scibert_scivocab_uncased_latest
3709fe8be767587c4bdffcf8924a611ebe8890a3
2022-02-21T23:04:51.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical-imbalanced-scibert_scivocab_uncased_latest
9
null
transformers
12,267
Entry not found
ghadeermobasher/BC5CDR-Chemical_Modified_PubMedBERT
d8f4c0d38cd50c98bf7c036a8a920595f99c098e
2022-01-21T22:46:09.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical_Modified_PubMedBERT
9
null
transformers
12,268
Entry not found
ghadeermobasher/BC5CDR-Chemical_Modified_scibert_scivocab_cased
283714094976904d9d96ce68088cc5857d39c15c
2022-01-23T16:41:46.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical_Modified_scibert_scivocab_cased
9
null
transformers
12,269
Entry not found
ghadeermobasher/CRAFT-Chem-Modified_PubMedBERT
59365e10a3aec99be8da1071815827528e652085
2022-01-22T02:07:22.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Chem-Modified_PubMedBERT
9
null
transformers
12,270
Entry not found
google/t5-11b-ssm-nqo
4807e5896d668a43e92df3da1e66a84c14aed261
2020-12-07T08:43:03.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:natural_questions", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-11b-ssm-nqo
9
null
transformers
12,271
--- language: en datasets: - c4 - wikipedia - natural_questions license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Natural Questions (NQ)](https://huggingface.co/datasets/natural_questions). **Note**: The model was fine-tuned on 90% of the train splits of [Natural Questions (NQ)](https://huggingface.co/datasets/natural_questions) for 20k steps and validated on the held-out 10% of the train split. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Natural Questions - Test Set |Id | link | Exact Match | |---|---|---| |T5-large|https://huggingface.co/google/t5-large-ssm-nqo|29.0| |T5-xxl|https://huggingface.co/google/t5-xxl-ssm-nqo|35.2| |T5-3b|https://huggingface.co/google/t5-3b-ssm-nqo|31.7| |**T5-11b**|**https://huggingface.co/google/t5-11b-ssm-nqo**|**34.8**| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-11b-ssm-nqo") t5_tok = AutoTokenizer.from_pretrained("google/t5-11b-ssm-nqo") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
google/t5-11b-ssm
be64585e27c466549dcb886988bd9265f984b1c4
2020-12-07T19:49:11.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-11b-ssm
9
null
transformers
12,272
--- language: en datasets: - c4 - wikipedia license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4) and subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia). **Note**: This model should be fine-tuned on a question answering downstream task before it is useable for closed book question answering. Other Community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
google/t5-efficient-base-nl16
102f0df0fb277e62d1123552a3ead479e3cb8571
2022-02-15T10:53:21.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-base-nl16
9
null
transformers
12,273
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-BASE-NL16 (Deep-Narrow version) T5-Efficient-BASE-NL16 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-base-nl16** - is of model type **Base** with the following variations: - **nl** is **16** It has **289.02** million parameters and thus requires *ca.* **1156.07 MB** of memory in full precision (*fp32*) or **578.03 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-el32
0e52acdf0f692e0550f21e7c924b5083196da5a9
2022-02-15T10:54:02.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-el32
9
null
transformers
12,274
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-EL32 (Deep-Narrow version) T5-Efficient-SMALL-EL32 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-el32** - is of model type **Small** with the following variations: - **el** is **32** It has **142.36** million parameters and thus requires *ca.* **569.44 MB** of memory in full precision (*fp32*) or **284.72 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-nl22
4a2a1d294c3ce9567b278a19284939baa96372de
2022-02-15T10:50:49.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-nl22
9
null
transformers
12,275
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-NL22 (Deep-Narrow version) T5-Efficient-SMALL-NL22 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-nl22** - is of model type **Small** with the following variations: - **nl** is **22** It has **178.04** million parameters and thus requires *ca.* **712.16 MB** of memory in full precision (*fp32*) or **356.08 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-nl36
fe587de76b4a6cf711b3bdf6d1f0d3bb4d099056
2022-02-15T10:57:12.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-nl36
9
2
transformers
12,276
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-NL36 (Deep-Narrow version) T5-Efficient-SMALL-NL36 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-nl36** - is of model type **Small** with the following variations: - **nl** is **36** It has **280.87** million parameters and thus requires *ca.* **1123.47 MB** of memory in full precision (*fp32*) or **561.74 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-nl48
23bed4ecbe0a1a568f887c82ee5350ce264f515a
2022-02-15T10:50:59.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-nl48
9
null
transformers
12,277
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-NL48 (Deep-Narrow version) T5-Efficient-SMALL-NL48 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-nl48** - is of model type **Small** with the following variations: - **nl** is **48** It has **369.01** million parameters and thus requires *ca.* **1476.03 MB** of memory in full precision (*fp32*) or **738.02 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-tiny-ff3000
b2f2c4021032495fca6dffcdd164b49838256484
2022-02-15T10:54:30.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-tiny-ff3000
9
null
transformers
12,278
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-TINY-FF3000 (Deep-Narrow version) T5-Efficient-TINY-FF3000 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-tiny-ff3000** - is of model type **Tiny** with the following variations: - **ff** is **3000** It has **23.97** million parameters and thus requires *ca.* **95.88 MB** of memory in full precision (*fp32*) or **47.94 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-xl-nl28
1acfe721972953fe6104d319d659e0ff06c053f4
2022-02-15T10:54:36.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-xl-nl28
9
null
transformers
12,279
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-XL-NL28 (Deep-Narrow version) T5-Efficient-XL-NL28 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-xl-nl28** - is of model type **Xl** with the following variations: - **nl** is **28** It has **3321.45** million parameters and thus requires *ca.* **13285.79 MB** of memory in full precision (*fp32*) or **6642.9 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-xxl-nl4
8b983973ed25dba3d0153055c5f7206e890782ac
2022-02-15T10:54:39.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-xxl-nl4
9
null
transformers
12,280
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-XXL-NL4 (Deep-Narrow version) T5-Efficient-XXL-NL4 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-xxl-nl4** - is of model type **Xxl** with the following variations: - **nl** is **4** It has **1207.34** million parameters and thus requires *ca.* **4829.35 MB** of memory in full precision (*fp32*) or **2414.68 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-xl-ssm-nq
dac789cc92a7bcf4a501ac0f9ff7af73f04cd6ff
2020-12-07T08:41:47.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:natural_questions", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-xl-ssm-nq
9
null
transformers
12,281
--- language: en datasets: - c4 - wikipedia - natural_questions pipeline_tag: text2text-generation license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Natural Questions (NQ)](https://huggingface.co/datasets/natural_questions). **Note**: The model was fine-tuned on 100% of the train splits of [Natural Questions (NQ)](https://huggingface.co/datasets/natural_questions) for 10k steps. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Natural Questions - Test Set |Id | link | Exact Match | |---|---|---| |T5-small|https://huggingface.co/google/t5-small-ssm-nq|25.5| |T5-large|https://huggingface.co/google/t5-large-ssm-nq|30.4| |**T5-xl**|**https://huggingface.co/google/t5-xl-ssm-nq**|**35.6**| |T5-xxl|https://huggingface.co/google/t5-xxl-ssm-nq|37.9| |T5-3b|https://huggingface.co/google/t5-3b-ssm-nq|33.2| |T5-11b|https://huggingface.co/google/t5-11b-ssm-nq|36.6| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-xl-ssm-nq") t5_tok = AutoTokenizer.from_pretrained("google/t5-xl-ssm-nq") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
google/tapas-tiny-finetuned-tabfact
65033a6c84cd15d222a718c0398b0a7aefe3e655
2021-11-29T13:06:24.000Z
[ "pytorch", "tf", "tapas", "text-classification", "en", "dataset:tab_fact", "arxiv:2010.00571", "arxiv:2004.02349", "transformers", "sequence-classification", "license:apache-2.0" ]
text-classification
false
google
null
google/tapas-tiny-finetuned-tabfact
9
null
transformers
12,282
--- language: en tags: - tapas - sequence-classification license: apache-2.0 datasets: - tab_fact --- # TAPAS tiny model fine-tuned on Tabular Fact Checking (TabFact) This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_tabfact_inter_masklm_tiny_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned on [TabFact](https://github.com/wenhuchen/Table-Fact-Checking). It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is the one with absolute position embeddings: - `no_reset`, which corresponds to `tapas_tabfact_inter_masklm_tiny` Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a classification head on top of the pre-trained model, and then jointly train this randomly initialized classification head with the base model on TabFact. ## Intended uses & limitations You can use this model for classifying whether a sentence is supported or refuted by the contents of a table. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence [SEP] Flattened table [SEP] ``` ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 80,000 steps with maximum sequence length 512 and batch size of 512. In this setup, fine-tuning takes around 14 hours. The optimizer used is Adam with a learning rate of 2e-5, and a warmup ratio of 0.05. See the [paper](https://arxiv.org/abs/2010.00571) for more details (appendix A2). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @inproceedings{2019TabFactA, title={TabFact : A Large-scale Dataset for Table-based Fact Verification}, author={Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou and William Yang Wang}, booktitle = {International Conference on Learning Representations (ICLR)}, address = {Addis Ababa, Ethiopia}, month = {April}, year = {2020} } ```
gurkan08/turkish-ner
740598b9aa512f9bbd78f7bc43afa67682ea42d7
2021-05-19T17:52:22.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
gurkan08
null
gurkan08/turkish-ner
9
null
transformers
12,283
Entry not found
haotieu/vietnamese-summarization
ffc08e83a2a42c8595b6bfb857c12f69589b2a41
2022-01-24T15:31:00.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
haotieu
null
haotieu/vietnamese-summarization
9
null
transformers
12,284
Entry not found
harish/EN-AStitchTask1A-XLNet-TrueFalse-0-FewShot-0-BEST
e9d991619f6a338c5aa4a404b3965119a517808f
2021-09-05T00:37:35.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
harish
null
harish/EN-AStitchTask1A-XLNet-TrueFalse-0-FewShot-0-BEST
9
null
transformers
12,285
Entry not found
heliart/PhishingEmailGeneration
39c4be0817e86b6d88c6de2ea3b06751f9941960
2021-11-16T05:59:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
heliart
null
heliart/PhishingEmailGeneration
9
null
transformers
12,286
Entry not found
hireddivas/dialoGPT-small-sonic
abaafb8c757f5958b2944c579357d76503039f67
2022-05-20T03:19:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
hireddivas
null
hireddivas/dialoGPT-small-sonic
9
null
transformers
12,287
--- tags: - conversational --- GPT-2 chatbot - talk to Sonic
huggingartists/death-grips
bfe45a9a2a6c381f9bcd577c2a3279bba76c6a92
2022-02-12T08:56:17.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/death-grips", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/death-grips
9
null
transformers
12,288
--- language: en datasets: - huggingartists/death-grips tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/de4ca387303c4b46007ca1072c2e57d0.600x600x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Death Grips</div> <a href="https://genius.com/artists/death-grips"> <div style="text-align: center; font-size: 14px;">@death-grips</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Death Grips. Dataset is available [here](https://huggingface.co/datasets/huggingartists/death-grips). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/death-grips") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2hmeenl7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Death Grips's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/226ak5bw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/226ak5bw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/death-grips') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/death-grips") model = AutoModelWithLMHead.from_pretrained("huggingartists/death-grips") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/epic-rap-battles-of-history
6ed5305ab67f4eacc9c4a2af78243f4c51562f34
2021-08-31T07:38:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/epic-rap-battles-of-history", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/epic-rap-battles-of-history
9
null
transformers
12,289
--- language: en datasets: - huggingartists/epic-rap-battles-of-history tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/86da58e97d308e9127100e7954dc1d74.900x900x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Epic Rap Battles of History</div> <a href="https://genius.com/artists/epic-rap-battles-of-history"> <div style="text-align: center; font-size: 14px;">@epic-rap-battles-of-history</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Epic Rap Battles of History. Dataset is available [here](https://huggingface.co/datasets/huggingartists/epic-rap-battles-of-history). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/epic-rap-battles-of-history") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/ujomrrjb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Epic Rap Battles of History's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1s03lfls) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1s03lfls/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/epic-rap-battles-of-history') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/epic-rap-battles-of-history") model = AutoModelWithLMHead.from_pretrained("huggingartists/epic-rap-battles-of-history") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/ghostemane
2922f4d75a31a520480ff0ef1928844a93532f13
2021-08-10T10:49:23.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/ghostemane", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/ghostemane
9
null
transformers
12,290
--- language: en datasets: - huggingartists/ghostemane tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c4407bb331c50916c1dfdc7f875f73a9.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ghostemane</div> <a href="https://genius.com/artists/ghostemane"> <div style="text-align: center; font-size: 14px;">@ghostemane</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Ghostemane. Dataset is available [here](https://huggingface.co/datasets/huggingartists/ghostemane). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ghostemane") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1ou29taa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ghostemane's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/futdflju) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/futdflju/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/ghostemane') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/ghostemane") model = AutoModelWithLMHead.from_pretrained("huggingartists/ghostemane") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/linkin-park
adabd3c3ea6f23c9ddc114975eeb245be2214b36
2021-10-30T14:56:26.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/linkin-park", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/linkin-park
9
null
transformers
12,291
--- language: en datasets: - huggingartists/linkin-park tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a865aac7693c39977b9b402dc364908e.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Linkin Park</div> <a href="https://genius.com/artists/linkin-park"> <div style="text-align: center; font-size: 14px;">@linkin-park</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Linkin Park. Dataset is available [here](https://huggingface.co/datasets/huggingartists/linkin-park). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/linkin-park") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3mtr0u4z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Linkin Park's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/fxn4brd6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/fxn4brd6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/linkin-park') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/linkin-park") model = AutoModelWithLMHead.from_pretrained("huggingartists/linkin-park") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/anotheredenrpg
b8cd04701b7d9431a3021d1734d69df51f04bcab
2021-05-21T19:10:05.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/anotheredenrpg
9
null
transformers
12,292
--- language: en thumbnail: https://www.huggingtweets.com/anotheredenrpg/1615596205043/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1354989664906563587/F91Gg-Qj_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Another Eden: The Cat Beyond Time and Space 🤖 AI Bot </div> <div style="font-size: 15px">@anotheredenrpg bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@anotheredenrpg's tweets](https://twitter.com/anotheredenrpg). | Data | Quantity | | --- | --- | | Tweets downloaded | 1651 | | Retweets | 82 | | Short tweets | 75 | | Tweets kept | 1494 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gpo3g75/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @anotheredenrpg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rb3206ol) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rb3206ol/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/anotheredenrpg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/arsondoer
cfb9994c0f121140818b973106114ed4618d078b
2021-05-21T19:28:10.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/arsondoer
9
null
transformers
12,293
--- language: en thumbnail: https://www.huggingtweets.com/arsondoer/1616645630695/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1342836590998134786/tDwNDfFs_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">frostington ambassady the third (5’2”) 🤖 AI Bot </div> <div style="font-size: 15px">@arsondoer bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@arsondoer's tweets](https://twitter.com/arsondoer). | Data | Quantity | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 270 | | Short tweets | 799 | | Tweets kept | 2131 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mhuavj6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @arsondoer's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fz88vjc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fz88vjc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/arsondoer') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/benrcongdon
3f768578ec763070709e371eec69dfb3793268a9
2021-05-21T20:23:27.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/benrcongdon
9
null
transformers
12,294
--- language: en thumbnail: https://www.huggingtweets.com/benrcongdon/1616637140236/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1108382380723597313/hDIUPnFe_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ben Congdon 🤖 AI Bot </div> <div style="font-size: 15px">@benrcongdon bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@benrcongdon's tweets](https://twitter.com/benrcongdon). | Data | Quantity | | --- | --- | | Tweets downloaded | 3219 | | Retweets | 394 | | Short tweets | 515 | | Tweets kept | 2310 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3aazmqd6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @benrcongdon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7zvkav4e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7zvkav4e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/benrcongdon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/bleaksigilkeep
2eb468ee644ecaa82c6fab2156e51595e4162c2b
2021-05-21T20:47:22.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/bleaksigilkeep
9
null
transformers
12,295
--- language: en thumbnail: https://www.huggingtweets.com/bleaksigilkeep/1614100737277/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357543393757433856/lBrNiipb_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ghislaine Maxwell's Fat Tiddies Apologist 🤖 AI Bot </div> <div style="font-size: 15px">@bleaksigilkeep bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bleaksigilkeep's tweets](https://twitter.com/bleaksigilkeep). | Data | Quantity | | --- | --- | | Tweets downloaded | 3206 | | Retweets | 1132 | | Short tweets | 387 | | Tweets kept | 1687 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/200hepvo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bleaksigilkeep's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ugdbbm9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ugdbbm9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bleaksigilkeep') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/butfurniture
121054cdddcf4a1540ac39159c0b983d5894d325
2021-05-21T21:27:36.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/butfurniture
9
null
transformers
12,296
--- language: en thumbnail: https://www.huggingtweets.com/butfurniture/1616690321353/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/727827522436521984/ABgwelzi_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matthew 🤖 AI Bot </div> <div style="font-size: 15px">@butfurniture bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@butfurniture's tweets](https://twitter.com/butfurniture). | Data | Quantity | | --- | --- | | Tweets downloaded | 1787 | | Retweets | 524 | | Short tweets | 121 | | Tweets kept | 1142 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18eo7tos/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @butfurniture's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jx81czr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jx81czr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/butfurniture') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/chafickle
4129337b9e77c19a7c608e2871c796f289c8832f
2021-05-21T22:02:33.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/chafickle
9
null
transformers
12,297
--- language: en thumbnail: https://www.huggingtweets.com/chafickle/1617818342784/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1376951341709418502/GGg8ox0R_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">chafenti 🌸 🤖 AI Bot </div> <div style="font-size: 15px">@chafickle bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@chafickle's tweets](https://twitter.com/chafickle). | Data | Quantity | | --- | --- | | Tweets downloaded | 3199 | | Retweets | 530 | | Short tweets | 845 | | Tweets kept | 1824 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/npilc6ji/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chafickle's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3b1pr6zw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3b1pr6zw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chafickle') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/confusionm8trix
8aa8589bdf79e34a6cebb43672ce561c494c0e44
2021-05-21T23:21:57.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/confusionm8trix
9
null
transformers
12,298
--- language: en thumbnail: https://www.huggingtweets.com/confusionm8trix/1616684874152/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1293318707469410304/OfdJ5rPz_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">henry 🤖 AI Bot </div> <div style="font-size: 15px">@confusionm8trix bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@confusionm8trix's tweets](https://twitter.com/confusionm8trix). | Data | Quantity | | --- | --- | | Tweets downloaded | 766 | | Retweets | 52 | | Short tweets | 108 | | Tweets kept | 606 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2otdqnlb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @confusionm8trix's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tgtfwi1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tgtfwi1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/confusionm8trix') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cubytes
3148c5a0fe80cac1114706f68cb3f3c0e293d59c
2022-07-03T02:42:24.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/cubytes
9
1
transformers
12,299
--- language: en thumbnail: http://www.huggingtweets.com/cubytes/1656815845890/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1540509467934162944/lgbdvsqz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">|i!i|</div> <div style="text-align: center; font-size: 14px;">@cubytes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from |i!i|. | Data | |i!i| | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 1 | | Short tweets | 112 | | Tweets kept | 3136 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xojbovmo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cubytes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1x1wffyb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1x1wffyb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cubytes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)