content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def deprecated() -> None: """Run the command and print a deprecated notice.""" LOG.warning("c2cwsgiutils_coverage_report.py is deprecated; use c2cwsgiutils-coverage-report instead") return main()
ea3309fc308dd969872f7a4630c137e76a3659b0
7,400
def build_syscall_Linux(syscall, arg_list, arch_bits, constraint=None, assertion = None, clmax=SYSCALL_LMAX, optimizeLen=False): """ arch_bits = 32 or 64 :) """ # Check args if( syscall.nb_args() != len(arg_list)): error("Error. Expected {} arguments, got {}".format(len(syscall.arg_types), len(arg_list))) return None # Check args length for i in range(0,len(arg_list)): if( not verifyArgType(arg_list[i], syscall.arg_types[i])): error("Argument error for '{}': expected '{}', got '{}'".format(arg_list[i], syscall.arg_types[i], type(arg_list[i]))) return None # Check constraint and assertion if( constraint is None ): constraint = Constraint() if( assertion is None ): assertion = getBaseAssertion() # Check if we have the function ! verbose("Trying to call {}() function directly".format(syscall.def_name)) func_call = build_call(syscall.function(), arg_list, constraint, assertion, clmax=clmax, optimizeLen=optimizeLen) if( not isinstance(func_call, str) ): verbose("Success") return func_call else: if( not constraint.chainable.ret ): verbose("Coudn't call {}(), try direct syscall".format(syscall.def_name)) else: verbose("Couldn't call {}() and return to ROPChain".format(syscall.def_name)) return None # Otherwise do syscall directly # Set the registers args = [(Arch.n2r(x[0]), x[1]) for x in zip(syscall.arg_regs, arg_list) + syscall.syscall_arg_regs] chain = popMultiple(args, constraint, assertion, clmax-1, optimizeLen=optimizeLen) if( not chain ): verbose("Failed to set registers for the mprotect syscall") return None # Int 0x80 if( arch_bits == 32 ): syscall_gadgets = search(QueryType.INT80, None, None, constraint, assertion) # syscall elif( arch_bits == 64): syscall_gadgets = search(QueryType.SYSCALL, None, None, constraint, assertion) if( not syscall_gadgets ): verbose("Failed to find an 'int 0x80' OR 'syscall' gadget") return None else: chain.addChain(syscall_gadgets[0]) verbose("Success") return chain
1fc9e5eadb688e58f2e6ac3de4d678e3040a1086
7,401
def gamma(x): """Diffusion error (normalized)""" CFL = x[0] kh = x[1] return ( 1. / (-2) * ( 4. * CFL ** 2 / 3 - 7. * CFL / 3 + (-23. * CFL ** 2 / 12 + 35 * CFL / 12) * np.cos(kh) + (2. * CFL ** 2 / 3 - 2 * CFL / 3) * np.cos(2 * kh) + (-CFL ** 2 / 12 + CFL / 12) * np.cos(3 * kh) ) )
c8689e1388338cc4d6b1b135f09db90f0e866346
7,402
import re def copylabel(original_name): """create names/labels with the sequence (Copy), (Copy 2), (Copy 3), etc.""" copylabel = pgettext_lazy("this is a copy", "Copy") copy_re = f"\\({copylabel}( [0-9]*)?\\)" match = re.search(copy_re, original_name) if match is None: label = f"{original_name} ({copylabel})" elif match.groups()[0] is None: label = re.sub(copy_re, f"({copylabel} 2)", original_name) else: n = int(match.groups()[0].strip()) + 1 label = re.sub(copy_re, f"({copylabel} {n})", original_name) return label
1f838c33faf347b4219ca23083b664bda01cb9ef
7,403
def load_opts_from_mrjob_confs(runner_alias, conf_paths=None): """Load a list of dictionaries representing the options in a given list of mrjob config files for a specific runner. Returns ``[(path, values), ...]``. If a path is not found, use ``(None, {})`` as its value. If *conf_paths* is ``None``, look for a config file in the default locations (see :py:func:`find_mrjob_conf`). :type runner_alias: str :param runner_alias: String identifier of the runner type, e.g. ``emr``, ``local``, etc. :type conf_paths: list or ``None`` :param conf_path: locations of the files to load This will only load each config file once, even if it's referenced from multiple paths due to symlinks. """ if conf_paths is None: results = load_opts_from_mrjob_conf(runner_alias) else: # don't include conf files that were loaded earlier in conf_paths already_loaded = [] # load configs in reversed order so that order of conf paths takes # precedence over inheritance results = [] for path in reversed(conf_paths): results = load_opts_from_mrjob_conf( runner_alias, path, already_loaded=already_loaded) + results if runner_alias and not any(conf for path, conf in results): log.warning('No configs specified for %s runner' % runner_alias) return results
6ef2acc7dce0de5e467456d376a52c8078336c55
7,404
def clut8_rgb888(i): """Reference CLUT for wasp-os. Technically speaking this is not a CLUT because the we lookup the colours algorithmically to avoid the cost of a genuine CLUT. The palette is designed to be fairly easy to generate algorithmically. The palette includes all 216 web-safe colours together 4 grays and 36 additional colours that target "gaps" at the brighter end of the web safe set. There are 11 greys (plus black and white) although two are fairly close together. :param int i: Index (from 0..255 inclusive) into the CLUT :return: 24-bit colour in RGB888 format """ if i < 216: rgb888 = ( i % 6) * 0x33 rg = i // 6 rgb888 += (rg % 6) * 0x3300 rgb888 += (rg // 6) * 0x330000 elif i < 252: i -= 216 rgb888 = 0x7f + (( i % 3) * 0x33) rg = i // 3 rgb888 += 0x4c00 + ((rg % 4) * 0x3300) rgb888 += 0x7f0000 + ((rg // 4) * 0x330000) else: i -= 252 rgb888 = 0x2c2c2c + (0x101010 * i) return rgb888
ca95c95306f7f4762add01f2ffc113f348e29d3b
7,405
def get_file_from_rcsb(pdb_id,data_type='pdb'): """ (file_name) -> file_path fetch pdb or structure factor file for pdb_id from the RCSB website Args: file_name: a pdb file name data_type (str): 'pdb' -> pdb 'xray' -> structure factor Returns: a file path for the pdb file_name """ try: file_name = fetch.get_pdb(pdb_id,data_type,mirror='rcsb',log=null_out()) except Sorry: file_name = '' return file_name
19a557a0bf4f69ba132d6d4520a124aef931f816
7,406
def parse_events(fobj): """Parse a trace-events file into {event_num: (name, arg1, ...)}.""" def get_argnames(args): """Extract argument names from a parameter list.""" return tuple(arg.split()[-1].lstrip('*') for arg in args.split(',')) events = {dropped_event_id: ('dropped', 'count')} event_num = 0 for line in fobj: m = event_re.match(line.strip()) if m is None: continue disable, name, args = m.groups() events[event_num] = (name,) + get_argnames(args) event_num += 1 return events
af35deff9c5b76d4d46700a738186822032d4190
7,407
def enu2ECEF(phi, lam, x, y, z, t=0.0): """ Convert ENU local coordinates (East, North, Up) to Earth centered - Earth fixed (ECEF) Cartesian, correcting for Earth rotation if needed. ENU coordinates can be transformed to ECEF by two rotations: 1. A clockwise rotation over east-axis by an angle (90 - phi) to align the up-axis with the z-axis. 2. A clockwise rotation over the z-axis by and angle (90 + lam) to align the east-axis with the x-axis. Source: http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates Arguments: phi: [float] east-axis rotation angle lam: [float] z-axis rotation angle x: [float] ENU x coordinate y: [float] ENU y coordinate z: [float] ENU z coordinate Keyword arguments: t: [float] time in seconds, 0 by default Return: (x_ecef, y_ecef, z_ecef): [tuple of floats] ECEF coordinates """ # Calculate ECEF coordinate from given local coordinates x_ecef = -np.sin(lam)*x - np.sin(phi)*np.cos(lam)*y + np.cos(phi)*np.cos(lam)*z y_ecef = np.cos(lam)*x - np.sin(phi)*np.sin(lam)*y + np.cos(phi)*np.sin(lam)*z z_ecef = np.cos(phi) *y + np.sin(phi) *z # Calculate time correction (in radians) tau = 2*np.pi/(23.0*3600.0 + 56.0*60.0 + 4.09054) # Earth rotation in rad/s yaw = -tau*t x_temp = x_ecef y_temp = y_ecef # Apply time correction x_ecef = np.cos(yaw)*x_temp + np.sin(yaw)*y_temp y_ecef = -np.sin(yaw)*x_temp + np.cos(yaw)*y_temp return x_ecef, y_ecef, z_ecef
494078d7c3bf9933fcc5a1b8ac62e105233722b8
7,408
def _load_container_by_name(container_name, version=None): """ Try and find a container in a variety of methods. Returns the container or raises a KeyError if it could not be found """ for meth in (database.load_container, # From the labware database _load_weird_container): # honestly don't know log.debug( f"Trying to load container {container_name} via {meth.__name__}") try: container = meth(container_name) if meth == _load_weird_container: container.properties['type'] = container_name log.info(f"Loaded {container_name} from {meth.__name__}") break except (ValueError, KeyError) as e: log.debug(f"{container_name} not in {meth.__name__} ({repr(e)})") else: log.debug( f"Trying to load container {container_name} version {version}" f"from v2 labware store") container = load_new_labware(container_name, version=version) return container
924675bc174fb8664bb2dbeb7cf21af223c73545
7,409
def get_login(discord_id): """Get login info for a specific user.""" discord_id_str = str(discord_id) logins = get_all_logins() if discord_id_str in logins: return logins[discord_id_str] return None
16b7690dd4f95df1647c7060200f3938b80993c0
7,410
import json from typing import OrderedDict def to_json_dict(json_data): """Given a dictionary or JSON string; return a dictionary. :param json_data: json_data(dict, str): Input JSON object. :return: A Python dictionary/OrderedDict with the contents of the JSON object. :raises TypeError: If the input object is not a dictionary or string. """ if isinstance(json_data, dict): return json_data elif isinstance(json_data, str): return json.loads(json_data, object_hook=OrderedDict) else: raise TypeError(f"'json_data' must be a dict or valid JSON string; received: {json_data!r}")
e1264d88a4424630f7348cbe7794ca072c057bdf
7,411
def get_keypoints(): """Get the COCO keypoints and their left/right flip coorespondence map.""" # Keypoints are not available in the COCO json for the test split, so we # provide them here. keypoints = [ 'nose', 'neck', 'right_shoulder', 'right_elbow', 'right_wrist', 'left_shoulder', 'left_elbow', 'left_wrist', 'right_hip', 'right_knee', 'right_ankle', 'left_hip', 'left_knee', 'left_ankle', 'right_eye', 'left_eye', 'right_ear', 'left_ear'] return keypoints
1bedcee8c5f38bdefcd00251dd95530966a41353
7,412
def has_mtu_mismatch(iface: CoreInterface) -> bool: """ Helper to detect MTU mismatch and add the appropriate OSPF mtu-ignore command. This is needed when e.g. a node is linked via a GreTap device. """ if iface.mtu != DEFAULT_MTU: return True if not iface.net: return False for iface in iface.net.get_ifaces(): if iface.mtu != iface.mtu: return True return False
a9415ed9fbcb276a53df8dac159f48aaac831744
7,413
def phrase_boxes_alignment(flatten_boxes, ori_phrases_boxes): """ align the bounding boxes with corresponding phrases. """ phrases_boxes = list() ori_pb_boxes_count = list() for ph_boxes in ori_phrases_boxes: ori_pb_boxes_count.append(len(ph_boxes)) strat_point = 0 for pb_boxes_num in ori_pb_boxes_count: sub_boxes = list() for i in range(strat_point, strat_point + pb_boxes_num): sub_boxes.append(flatten_boxes[i]) strat_point += pb_boxes_num phrases_boxes.append(sub_boxes) pb_boxes_count = list() for ph_boxes in phrases_boxes: pb_boxes_count.append(len(ph_boxes)) assert pb_boxes_count == ori_pb_boxes_count return phrases_boxes
e961a90f61917f217ac6908263f5b6c74bc42b26
7,414
import tempfile import subprocess from pathlib import Path def editor(initial_contents=None, filename=None, editor=None): """ Open a text editor, user edits, return results ARGUMENTS initial_contents If not None, this string is written to the file before the editor is opened. filename If not None, the name of the file to edit. If None, a temporary file is used. editor The path to an editor to call. If None, use editor.default_editor() """ editor = editor or default_editor() if not filename: with tempfile.NamedTemporaryFile(mode='r+', suffix='.txt') as fp: if initial_contents is not None: fp.write(initial_contents) fp.flush() subprocess.call([editor, fp.name]) fp.seek(0) return fp.read() path = Path(filename) if initial_contents is not None: path.write_text(initial_contents) subprocess.call([editor, filename]) return path.read_text()
a488d20901a512e582c4e52d771bd092467d61c9
7,415
def dismiss_notification(request): """ Dismisses a notification ### Response * Status code 200 (When the notification is successsfully dismissed) { "success": <boolean: true> } * `success` - Whether the dismissal request succeeded or not * Status code 400 (When the notification ID cannot be found) { "success": <boolean: false>, "message": <string: "notification_not_found"> } * `message` - Error message, when success is false """ response = {'success': False} data = request.data try: notif = Notification.objects.get(id=data['notificationId']) notif.dismissed_by.add(request.user) response['success'] = True resp_status = status.HTTP_200_OK except Notification.DoesNotExist: resp_status = status.HTTP_400_BAD_REQUEST response['message'] = 'notification_not_found' return Response(response, status=resp_status)
97cbd560fd16da8ba0d081616e3e2504a2dbf8a0
7,416
def log_at_level(logger, message_level, verbose_level, msg): """ writes to log if message_level > verbose level Returns anything written in case we might want to drop down and output at a lower log level """ if message_level <= verbose_level: logger.info(msg) return True return False
4b88ee137f7c2cb638b8a058b2dceb534329c0d9
7,417
def datafile(tmp_path_factory): """Make a temp HDF5 Ocat details file within 60 arcmin of 3c273 for obsids before 2021-Nov that persists for the testing session.""" datafile = str(tmp_path_factory.mktemp('ocat') / 'target_table.h5') update_ocat_local(datafile, target_name='3c273', resolve_name=True, radius=60, startDate=DATE_RANGE) return datafile
16448a80385ab29ebbaef8e593f96ff0167c1fdb
7,418
def _collect_scalars(values): """Given a list containing scalars (float or int) collect scalars into a single prefactor. Input list is modified.""" prefactor = 1.0 for i in range(len(values)-1, -1, -1): if isinstance(values[i], (int, float)): prefactor *= values.pop(i) return prefactor
bea7e54eec16a9b29552439cd12ce29b9e82d40b
7,419
from pathlib import Path def create_output_directory(validated_cfg: ValidatedConfig) -> Path: """ Creates a top level download directory if it does not already exist, and returns the Path to the download directory. """ download_path = validated_cfg.output_directory / f"{validated_cfg.version}" download_path.mkdir(parents=True, exist_ok=True) return download_path
720f45885e177b55ddbdf492655b17275c4097f8
7,420
def presentation_logistique(regression,sig=False): """ Mise en forme des résultats de régression logistique Paramètres ---------- regression: modèle de régression de statsmodel sig: optionnel, booléen Retours ------- DataFrame : tableau de la régression logistique """ # Passage des coefficients aux Odds Ratio df = np.exp(regression.conf_int()) df['odd ratio'] = round(np.exp(regression.params), 2) df["p-value"] = round(regression.pvalues, 3) df["IC"] = df.apply(lambda x : "%.2f [%.2f-%.2f]" \ % (x["odd ratio"],x[0],x[1]),axis=1) # Ajout de la significativité if sig: df["p-value"] = df["p-value"].apply(significativite) df = df.drop([0,1], axis=1) return df
bef9e08f463c9bc0fbb1d737a412472ab792051e
7,421
def handle_colname_collisions(df: pd.DataFrame, mapper: dict, protected_cols: list) -> (pd.DataFrame, dict, dict): """ Description ----------- Identify mapper columns that match protected column names. When found, update the mapper and dataframe, and keep a dict of these changes to return to the caller e.g. SpaceTag. Parameters ---------- df: pd.DataFrame submitted data mapper: dict a dictionary for the schema mapping (JSON) for the dataframe. protected_cols: list protected column names i.e. timestamp, country, admin1, feature, etc. Output ------ pd.DataFame: The modified dataframe. dict: The modified mapper. dict: key: new column name e.g. "day1month1year1" or "country_non_primary" value: list of old column names e.g. ['day1','month1','year1'] or ['country'] """ # Get names of geo fields that collide and are not primary_geo = True non_primary_geo_cols = [d["name"] for d in mapper["geo"] if d["name"] in protected_cols and ("primary_geo" not in d or d["primary_geo"] == False)] # Get names of date fields that collide and are not primary_date = True non_primary_time_cols = [d['name'] for d in mapper['date'] if d["name"] in protected_cols and ('primary_date' not in d or d['primary_date'] == False)] # Only need to change a feature column name if it qualifies another field, # and therefore will be appended as a column to the output. feature_cols = [d["name"] for d in mapper['feature'] if d["name"] in protected_cols and "qualifies" in d and d["qualifies"]] # Verbose build of the collision_list, could have combined above. collision_list = non_primary_geo_cols + non_primary_time_cols + feature_cols # Bail if no column name collisions. if not collision_list: return df, mapper, {} # Append any collision columns with the following suffix. suffix = "_non_primary" # Build output dictionary and update df. renamed_col_dict = {} for col in collision_list: df.rename(columns={col: col + suffix}, inplace=True) renamed_col_dict[col + suffix] = [col] # Update mapper for k, vlist in mapper.items(): for dct in vlist: if dct["name"] in collision_list: dct["name"] = dct["name"] + suffix elif "qualifies" in dct and dct["qualifies"]: # change any instances of this column name qualified by another field dct["qualifies"] = [w.replace(w, w + suffix) if w in collision_list else w for w in dct["qualifies"] ] elif "associated_columns" in dct and dct["associated_columns"]: # change any instances of this column name in an associated_columns dict dct["associated_columns"] = {k: v.replace(v, v + suffix) if v in collision_list else v for k, v in dct["associated_columns"].items() } return df, mapper, renamed_col_dict
56819ff256cc3c1bcd2062fab0cac29bce7a0c15
7,422
import codecs import json def process_file(filename): """Read a file from disk and parse it into a structured dict.""" try: with codecs.open(filename, encoding='utf-8', mode='r') as f: file_contents = f.read() except IOError as e: log.info('Unable to index file: %s, error :%s', filename, e) return data = json.loads(file_contents) sections = [] title = '' body_content = '' if 'current_page_name' in data: path = data['current_page_name'] else: log.info('Unable to index file due to no name %s', filename) return None if 'body' in data and data['body']: body = PyQuery(data['body']) body_content = body.text().replace(u'¶', '') sections.extend(generate_sections_from_pyquery(body)) else: log.info('Unable to index content for: %s', filename) if 'title' in data: title = data['title'] if title.startswith('<'): title = PyQuery(data['title']).text() else: log.info('Unable to index title for: %s', filename) return {'headers': process_headers(data, filename), 'content': body_content, 'path': path, 'title': title, 'sections': sections}
864c04449cbd998394c07790858ccbdc2d4eea6d
7,423
def revive(grid: Grid, coord: Point) -> Grid: """Generates a set of all cells which can be revived near coord""" revives = set() for offset in NEIGHBOR_OFFSETS: possible_revive = addpos(coord, offset) if possible_revive in grid: continue active_count = live_around(grid, possible_revive) if active_count == 3: revives.add(possible_revive) return revives
94e928ce9dff7015f2785e5a0186f06c4f754cda
7,424
def process_table_creation_surplus(region, exchanges_list): """Add docstring.""" ar = dict() ar["@type"] = "Process" ar["allocationFactors"] = "" ar["defaultAllocationMethod"] = "" ar["exchanges"] = exchanges_list ar["location"] = location(region) ar["parameters"] = "" ar["processDocumentation"] = process_doc_creation() ar["processType"] = "UNIT_PROCESS" ar["name"] = surplus_pool_name + " - " + region ar[ "category" ] = "22: Utilities/2211: Electric Power Generation, Transmission and Distribution" ar["description"] = "Electricity surplus in the " + str(region) + " region." ar["description"]=(ar["description"] + " This process was created with ElectricityLCI " + "(https://github.com/USEPA/ElectricityLCI) version " + elci_version + " using the " + model_specs.model_name + " configuration." ) ar["version"] = make_valid_version_num(elci_version) return ar
0669fce0363d807ee018b59125a13c95417294a7
7,425
import requests import json import os def upload_event(): """ Expect a well formatted event data packet (list of events) Verify the access token in the request Verify the packet if verified then send to event hub else return a failure message """ # authenticate the access token with okta api call # get user id from okta and make sure the ids match auth_token = request.headers['Authorization'] auth_headers = {"Authorization": "{}".format(auth_token)} print(auth_headers) print("sending request to: {}".format(IDENTITY_SERVER_SETTINGS['PERSONICLE_AUTH_API_ENDPOINT'])) auth_response = requests.get(IDENTITY_SERVER_SETTINGS['PERSONICLE_AUTH_API_ENDPOINT'], headers=auth_headers) print(auth_response.text, auth_response.status_code) if auth_response.status_code != requests.codes.ok or json.loads(auth_response.text).get("message", False)== False: return Response("Unauthorised access token", 401) try: user_id = json.loads(auth_response.text)['user_id'] except KeyError as e: return Response("Incorrect response from auth server", 401) content_type = request.headers.get('Content-Type') if (content_type == 'application/json'): event_data_packet = request.json else: return Response('Content-Type not supported!', 415) if type(event_data_packet) != type([]): return Response("Array of events expected", 422) # verify the event packet by making the data dictionary api call send_records = [] send_summary = {} for event in event_data_packet: data_dict_params = {"data_type": "event"} data_dict_response = requests.post(DATA_DICTIONARY_SERVER_SETTINGS['HOST_URL']+"/validate-data-packet", json=event, params=data_dict_params) print(data_dict_response.text) if data_dict_response.status_code == requests.codes.ok and json.loads(data_dict_response.text).get("schema_check", False): if user_id == event.get("individual_id", ""): send_summary[event['event_name']] = send_summary.get(event['event_name'], 0) + 1 send_records.append(event) else: send_summary['incorrect_user_id'] = send_summary.get('incorrect_user_id', 0) + 1 else: send_summary['incorrectly_formatted_events'] = send_summary.get('incorrectly_formatted_events', 0) + 1 # send the data to azure event hub schema_file = os.path.join(AVRO_SCHEMA_LOC, "event_schema.avsc") if len(send_records)> 0: send_records_azure.send_records_to_eventhub(schema_file, send_records, EVENTHUB_CONFIG['EVENTHUB_NAME']) return jsonify({"message": "Sent {} records to database".format(len(send_records)), "summary": send_summary })
9cb77e0319df209659877970f5b395910ad285e8
7,426
import copy def makepath_coupled(model_hybrid,T,h,ode_method,sample_rate): """ Compute paths of coupled exact-hybrid model using CHV ode_method. """ voxel = 0 # make copy of model with exact dynamics model_exact = copy.deepcopy(model_hybrid) for e in model_exact.events: e.hybridType = SLOW # setup integrator path = np.zeros((Nt,2*model_hybrid.dimension)) path[0][0:model_hybrid.dimension] = model_hybrid.getstate(0) path[0][model_hybrid.dimension:2*model_hybrid.dimension] = model_exact.getstate(0) clock = np.zeros(Nt) k = 0 tj = ode(chvrhs_coupled).set_integrator(ode_method,atol = h,rtol = h) tj.set_f_params(model_hybrid,model_exact,sample_rate) y0 = np.zeros(2*model_hybrid.dimension+1) while (k+1<Nt) and (clock[k]<T): k = k+1 s1 = tryexponential(1) # solve y0[0:model_hybrid.dimension] = model_hybrid.getstate(0) y0[model_hybrid.dimension:2*model_hybrid.dimension] = model_exact.getstate(0) y0[2*model_hybrid.dimension] = 0. tj.set_initial_value(y0,0) tj.integrate(s1) ys1 = tj.y for i in range(model_hybrid.dimension): model_hybrid.systemState[i].value[0] = ys1[i] for i in range(model_hybrid.dimension): model_exact.systemState[i].value[0] = ys1[i+model_hybrid.dimension] t_next = tj.y[2*model_hybrid.dimension] for e in model_hybrid.events: e.updaterate() for e in model_exact.events: e.updaterate() # update slow species r = np.random.rand() agg_rate = 0. for i in range(len(model_hybrid.events)): if model_hybrid.events[i].hybridType == SLOW: hybrid_rate = model_hybrid.events[i].rate exact_rate = model_exact.events[i].rate agg_rate = agg_rate + res(hybrid_rate,exact_rate ) agg_rate = agg_rate + res(exact_rate,hybrid_rate ) agg_rate = agg_rate + min(hybrid_rate,exact_rate ) else: agg_rate = agg_rate + model_exact.events[i].rate #agg_rate = agg_rate + model_hybrid.events[i].rate #else: # print("PROBLEM") # find reaction if r>sample_rate/(agg_rate+sample_rate): firing_event_hybrid,firing_event_exact = findreaction_coupled(model_hybrid.events,model_exact.events,agg_rate,r) if isinstance(firing_event_hybrid,Reaction): firing_event_hybrid.react() if isinstance(firing_event_exact,Reaction): firing_event_exact.react() clock[k] = clock[k-1] + t_next path[k][0:model_hybrid.dimension] = model_hybrid.getstate(0) path[k][model_hybrid.dimension:2*model_hybrid.dimension] = model_exact.getstate(0) return path[0:k+1],clock[0:k+1]
95e26ec633b5c10797a040583cbc6ad6d6ad9127
7,427
import torch def process_image_keypoints(img, keypoints, input_res=224): """Read image, do preprocessing and possibly crop it according to the bounding box. If there are bounding box annotations, use them to crop the image. If no bounding box is specified but openpose detections are available, use them to get the bounding box. """ normalize_img = Normalize(mean=constants.IMG_NORM_MEAN, std=constants.IMG_NORM_STD) img = img[:,:,::-1].copy() # PyTorch does not support negative stride at the moment center, scale, bbox = bbox_from_keypoints(keypoints, imageHeight = img.shape[0]) if center is None: return None, None, None, None, None img, boxScale_o2n, bboxTopLeft = crop_bboxInfo(img, center, scale, (input_res, input_res)) # viewer2D.ImShow(img, name='cropped', waitTime=1) #224,224,3 if img is None: return None, None, None, None, None # unCropped = uncrop(img, center, scale, (input_res, input_res)) # if True: # viewer2D.ImShow(img) img = img.astype(np.float32) / 255. img = torch.from_numpy(img).permute(2,0,1) norm_img = normalize_img(img.clone())[None] # return img, norm_img, img_original, boxScale_o2n, bboxTopLeft, bbox bboxInfo ={"center": center, "scale": scale, "bboxXYWH":bbox} return img, norm_img, boxScale_o2n, bboxTopLeft, bboxInfo
e30e9c9b5de106c968d538a56062fefab7c1b3ee
7,428
import html import logging import os import shutil def update_output( list_of_contents, list_of_names, list_of_dates, initiate_pipeline_n_clicks, clear_pipeline_n_clicks, append_uploads_n_clicks, refresh_uploads_n_clicks, clear_uploads_n_clicks, memory, user_login_n_clicks, session_data, workflow, initiate_pipeline_timestamp, clear_pipeline_timestamp, user_login_timestamp, refresh_uploads_timestamp, clear_uploads_timestamp, ): """Primary APP Pipeline function, as triggered by 'Initiate [APP] Pipeline' UI button (located in the "Step 2 (2/2)" section). Parameters ---------- list_of_contents <list of str> Array containing user-uploaded ABI raw contents as binary strings (thus requiring decoding) list_of_names <list of str> Array containing user-uploaded ABI filenames (does not include the full path for security reasons) list_of_dates <list of int> Array containing user-uploaded ABI last modified timestamps (integers as seconds since 1970) initiate_pipeline_n_clicks <int> Total count of UI button clicks clear_pipeline_n_clicks <int> Total count of UI button clicks append_uploads_n_clicks <int> Total count of UI button clicks refresh_uploads_n_clicks <int> Total count of UI button clicks clear_uploads_n_clicks <int> Total count of UI button clicks memory Dash.dcc.Store(type='session') user_login_n_clicks <int> Total count of UI button clicks session_data Dash.dcc.Store(type='session') workflow <type> initiate_pipeline_timestamp <type> clear_pipeline_timestamp <type> user_login_timestamp <type> refresh_uploads_timestamp <type> clear_uploads_timestamp <type> """ def show_list_of_names(USER, list_of_names): """Display the filenames for all successfully received USER-uploaded ABI files. Args: USER: <str> Active user list_of_names: <list> List of user-uploaded ABI filenames Returns: <html.Div([...])> Reactive response to display after processing upload """ if not all([fn.endswith(tuple([".csv",".xlsx"])) for fn in list_of_names]): return html.Div( [ html.Br(), html.Code( f"⚠ UPLOAD ERROR: Not all of the {len(list_of_names)} files are CSV or Excel files !", style={"color": "red"}, ), html.Br(), html.Code( f"⛔ | Please reset this upload & then perform a fresh upload of either .csv or .xlsx files." ), ] ) return html.Div( [ html.Br(), html.Code( f"✔ UPLOAD SUCCESSFUL (N={len(list_of_names)})", style={"color": "green"} ), html.Br(), html.Br(), html.Details( [ html.Summary( html.H3( f"File(s) received (click to expand)", style={"textAlign": "left", "fontSize": "120%"}, ) ), html.Div( [ html.Li(f"{'{:02d}'.format(i+1)})\t{abi}") for (i, abi) in enumerate(sorted(list_of_names)) ], id="files-received", style={ "textAlign": "left", "fontSize": "60%", "columnCount": "3", "paddingBottom": "2%", "fontFamily": "'Roboto Mono', monospace", }, ), html.Hr( style={ "borderTop": "1px solid", "animation": "pact-gradient-text-flow 3s infinite linear", "borderRadius": "5px", "opacity": "0.67", "width": "50%", "marginLeft": "25%", } ), ] ), html.Br(), html.Span(className="fader-line-short", style={"marginBottom": "20px"}), ], style={"width": "80%", "marginLeft": "10%"}, ) not_signed_in_msg = html.Div( [html.H6("Please log in to release the pipeline as ready for activation.")] ) try: if session_data: # ["user_logged_in"] == "True": RUN_ID = session_data["RUN_ID"] SESSION_OUTPUT_DIR = session_data["PATH_TO_SESSION_OUTPUT"] LOG_FILE = session_data["session_log_file"] USER = session_data["user_proper"] UUID = session_data["UUID"] if len(app.logger.handlers) < 1: app.logger.info( f"Number logger handlers = {len(app.logger.handlers)}->{logger.handlers}" ) app.logger.info("Adding log FileHandler...") fh = logging.FileHandler(LOG_FILE) fh.setLevel(logging.INFO) app.logger.addHandler(fh) app.logger.info( f"Number logger handlers = {len(app.logger.handlers)}->{logger.handlers}" ) else: return not_signed_in_msg except KeyError as e: app.logger.error(f"No user appears to be logged in (KeyError: {e})") return not_signed_in_msg ### UPON USER FILE UPLOAD(S): if list_of_contents is not None: if initiate_pipeline_n_clicks >= 1: init_t_elapse = tns() / 1e9 - initiate_pipeline_timestamp / 1e3 app.logger.info(f"init_t_elapse = {init_t_elapse}; ") if init_t_elapse < 30: if ( clear_pipeline_n_clicks > 0 and refresh_uploads_n_clicks <= clear_pipeline_n_clicks ): if all( clear_pipeline_timestamp > ts for ts in [initiate_pipeline_timestamp, user_login_timestamp] ): return [ html.H3( f"Thanks, {USER}; the previous pipeline results have been cleared." ), html.H4(f"Current analysis output folder: {RUN_ID}"), html.H5( html.Div( [ html.Span(f"Launch a new analysis."), html.Br(), ] ) ), ] elif clear_pipeline_n_clicks > 0: if clear_pipeline_timestamp > initiate_pipeline_timestamp: if refresh_uploads_n_clicks > 0: if refresh_uploads_timestamp > clear_pipeline_timestamp: return show_list_of_names(USER, list_of_names) return html.Div( html.H5( f"(Pipeline results [{RUN_ID}] CLEARED)", style={"color": "red"} ) ) app.logger.info( f"📟📶⌁⌁⌁📠Using the following as pipeline data input. \n{len(list_of_names)} USER UPLOADED FILE(S) : \n" + "\n 📊⇢🧬 ".join( [ "{:>03d})\t{:>50s}".format(i + 1, abi) for i, abi in enumerate(sorted(list_of_names)) ] ) ) app.logger.info( f"INITIALIZING NEW PIPELINE LAUNCH:\n\n\t\t{SESSION_OUTPUT_DIR}" ) start_time = tns() children = [] parsed_upload_children = [ html.Details( [ parse_contents(c, n, d, SESSION_OUTPUT_DIR, session_log_file=LOG_FILE) for c, n, d in zip(list_of_contents, list_of_names, list_of_dates) ] ) ] # Generate (single!) TCR alpha/beta chain pair combinations # base pipeline reference files (e.g., agg'd fq, designated master # reference 'genome', DataFrames, log, etc.) try: pipeline_output = ljoin( [ r for r in pipeline.run_pipeline( RUN_ID, SESSION_OUTPUT_DIR, workflow=workflow, session_log_file=LOG_FILE, ) ] ) args = [(*(x), i + 1) for i, x in enumerate(pipeline_output)] except Exception as e: logs = [] report = None with open(LOG_FILE, "r+") as log_file: for line in log_file.readlines(): logs.append(line) stderr = [ dcc.Textarea( placeholder="(Main Sequence -- logger placeholder)", value="\n".join(logs), style={ "height": "400px", "width": "50%", "fontSize": "0.7rem", "lineHeight": "0.9rem", "fontFamily": "'Roboto Mono', monospace", }, className="logger-text", name="organization", readOnly=True, ) ] fatal_crash = "⚠ ALERT: ERROR IN MAIN PIPELINE SEQUENCE" app.logger.error(f"{fatal_crash}: \n\n{e}") log_exc(app.logger) return html.Div( [ html.H2(fatal_crash, style={"color": "red"}), html.P(f"App runtime was: {gtt(start_time)}"), html.Code(f"Primary error message for crash:\n{e}"), html.H4("See [end of] AUDIT LOG (below) for failure reason."), html.H5(f"WEB SERVER SYSTEM LOG:", style={"color": "red"}), html.Div(stderr), ] ) ### # # # # # # # # # #### # # # # # # # # # ### children.append( html.Div( [ html.Hr(), html.Br(), html.H4("All files analyzed in most recent upload:"), ] ) ) """ ~ ◮ ~ S U M M A R Y a n a l y s i s ~ ~ ~ ~ ◮ ~ """ if report: summary_report = [ html.Div( [ html.Br(), html.H2( "Pipeline Output Summary", style={ "fontSize": "80%", "letterSpacing": "1.33rem", "fontFamily": "Cinzel", "animation": "anim-text-flow-keys 120s infinite linear", }, ), html.Hr(), ], style={"width": "90%", "marginLeft": "5%"}, ) ] else: summary_report = [html.Div([html.H4(f"No final output found.")])] html_out = f"{SESSION_OUTPUT_DIR}{RUN_ID}_HTMLprops.tsv" pd.DataFrame( [str(c.to_plotly_json()) for c in children], columns=["DashHTMLDivComponents"] ).to_csv(html_out, encoding="utf-8", sep="\t") app.logger.info("Processed & analzyed input files were:") app.logger.debug(parsed_upload_children) app.logger.info(",".join([str(type(x)) for x in parsed_upload_children])) total_exec_time = gtt(start_time) app.logger.info( f"———COMPLETE——-\n\n \t ☆☆☆ Total EXECUTION TIME Required ☆☆☆\n\n \t\t = {total_exec_time} s \n\n" ) show_exec_time = [ html.Div( [ html.Hr(), html.H3( f"* ゚(>͂ ͡͡︒ ͜ ʖ ͡︒)>-。゚☆* :・゚.☆ * ・ " ), html.H4(f"Total Execution Time Required = {total_exec_time} s"), html.Hr(), html.Br(), ] ) ] if len(children) > 50: full_report = [ html.Div( [ html.H2( f"NOTICE: Due to an unusually large number of results in this analysis (N={len(children)}), full report display has been automatically disabled." ) ] ) ] else: full_report = children children = ( show_exec_time + TOC + summary_report + full_report + parsed_upload_children + [html.Div(html.Hr())] ) app.logger.debug(",".join([str(type(x)) for x in children])) app.logger.debug(f"Number of html.Div elements in final layout: {len(children)}") return children elif initiate_pipeline_n_clicks > 15: return html.Div( [ html.H4( "⚠ | ALERT ! : Un𝒇ortunately, you have over-activated the pipeline submissions check system. Please re𝒇resh the page, re-log in, and re-upload the set o𝒇 ABI 𝒇iles you would like analyzed. 🛠⎆ " ), html.H6("↺ Please Re𝒇resh the page. ↺"), ] ) if clear_uploads_n_clicks > 0: t_elapsed = tns() / 1e9 - clear_uploads_timestamp / 1e3 if t_elapsed < 2: for tcr_dir in os.listdir(SESSION_OUTPUT_DIR): grouped_clone_fqs = f"{SESSION_OUTPUT_DIR}{tcr_dir}" if os.path.isdir(grouped_clone_fqs): shutil.rmtree(grouped_clone_fqs) return html.Div( [ html.Code(f"UPLOADS CLEARED", style={"color": "red"}), html.H5( f'To continue, submit at least one new upload & click "✥ Append".' ), ] ) if append_uploads_n_clicks > 0 or clear_uploads_n_clicks > 0: if len(list_of_names) > 0 and len(memory.items()) > 0: all_uploads = ( memory[f"{RUN_ID}-list_of_names"] if len(memory[f"{RUN_ID}-list_of_names"]) > 0 else list_of_names ) return show_list_of_names(USER, all_uploads) elif len(memory.items()) == 0: return html.Div(html.Code("NONE")) else: app.logger.info( f"{USER} uploaded the following {len(list_of_names)} file(s):" + "\n\t ◇ 📄 " + "\n\t ◇ 📄 ".join(sorted(list_of_names)) + ".\n" ) return show_list_of_names(USER, list_of_names) else: return html.Div( [html.Br(), html.H5(f"Logged in as: {USER}", style={"color": "rgb(32,92,188)"})] )
db5f61c4850368c3f939cc35034cad9c6b9255a5
7,429
from typing import Dict from typing import Iterable from typing import Union def _load_outputs(dict_: Dict) -> Iterable[Union[HtmlOutput, EbookConvertOutput]]: """Translates a dictionary into a list of output objects. The dictionary is assumed to have the following structure:: { 'outputs': [{ 'path': 'some', 'new': 'text' }, { 'path: '...', 'replace_with': '...' }] } If the key 'outputs' is not present in the dictionary or if there are no output sub-dictionaries, an empty list is returned instead. The type of the output is inferred from the file name provided as a value of the 'path' key of the output sub-dictionary. A file name ending in the file type '.html' will produce an HtmlOutput. '.epub', '.mobi' or any other file type excluding '.html' will produce an EbookConvertOutput. Note that a local stylesheet *replaces* the global stylesheet, but local ebookconvert_params are *added* to the global ebookconvert_params if present. Args: dict_: The dictionary. Returns: The list of output objects or an empty list either if not output sub-dictionaries are present in the encapsulating dictionary or if the 'outputs' key itself is missing. """ outputs = [] global_stylesheet = None global_ec_params = [] if 'stylesheet' in dict_: global_stylesheet = dict_['stylesheet'] if 'ebookconvert_params' in dict_: global_ec_params = _load_ebookconvert_params(dict_) for output in dict_['outputs']: path = output['path'] file_type = path.split('.')[-1] if 'stylesheet' not in output and global_stylesheet: output['stylesheet'] = global_stylesheet if file_type == 'html': outputs.append(HtmlOutput(**output)) else: if 'ebookconvert_params' in output: local_ec_params = _load_ebookconvert_params(output) output['ebookconvert_params'] = global_ec_params + local_ec_params else: output['ebookconvert_params'] = global_ec_params outputs.append(EbookConvertOutput(**output)) return outputs
229eeb33ca34266a397dca56b13f004a8647e8e5
7,430
def _async_friendly_contextmanager(func): """ Equivalent to @contextmanager, except the resulting (non-async) context manager works correctly as a decorator on async functions. """ @wraps(func) def helper(*args, **kwargs): return _AsyncFriendlyGeneratorContextManager(func, args, kwargs) return helper
453fb89ca52101e178e0bd2c5895804ca2cc54e6
7,431
import itertools def all_inputs(n): """ returns an iterator for all {-1,1}-vectors of length `n`. """ return itertools.product((-1, +1), repeat=n)
526dff9332cf606f56dcb0c31b5c16a0124478ed
7,432
import logging def brightness(df: pd.DataFrame, gain: float = 1.5) -> pd.DataFrame: """ Enhance image brightness. Parameters ---------- df The dataset as a dataframe. Returns ------- df A new dataframe with follwing changes: * 'filename', overwrited with new brightened image filenames. """ logging.info('Brightening images ...') df_out = df.copy() new_filename_list = [] for index, row in df.iterrows(): filename = row['filename'] logging.debug(f'Brightening image {filename}') img = Image.open(filename) img = ImageEnhance.Brightness(img) img = img.enhance(gain) new_filename = make_filename(row, step='brightness') new_filename_list.append(new_filename) save_image(new_filename, img, dpi=(300, 300), engine='pil') df_out['filename'] = new_filename_list return df_out
1bc7778a6843f31448ebd218a1a5d2b42582ef79
7,433
def generate_winner_list(winners): """ Takes a list of winners, and combines them into a string. """ return ", ".join(winner.name for winner in winners)
2586292d4a96f63bf40c0d043111f5087c46f7a9
7,434
def stampify_url(): """The stampified version of the URL passed in args.""" url = request.args.get('url') max_pages = request.args.get('max_pages') enable_animations = bool(request.args.get('animations') == 'on') if not max_pages: max_pages = DEFAULT_MAX_PAGES _stampifier = Stampifier(url, int(max_pages), enable_animations) try: return _stampifier.stampify().stamp_html except StampifierError as err: return render_template('error_screen.html', message=err.message)
136d95adedeeddcdc4166a9bce20414e909fa21f
7,435
import os def pleasant_lgr_stand_alone_parent(pleasant_lgr_test_cfg_path, tmpdir): """Stand-alone version of lgr parent model for comparing with LGR results. """ # Edit the configuration file before the file paths within it are converted to absolute # (model.load_cfg converts the file paths) cfg = load(pleasant_lgr_test_cfg_path) del cfg['setup_grid']['lgr'] cfg['simulation']['sim_ws'] = os.path.join(tmpdir, 'pleasant_lgr_just_parent') # save out the edited configuration file path, fname = os.path.split(pleasant_lgr_test_cfg_path) new_file = os.path.join(path, 'pleasant_lgr_just_parent.yml') dump(new_file, cfg) # load in the edited configuration file, converting the paths to absolute cfg = MF6model.load_cfg(new_file) # add some stuff just for the tests cfg['gisdir'] = os.path.join(cfg['simulation']['sim_ws'], 'gis') m = MF6model.setup_from_cfg(cfg) m.write_input() return m
a097f3e4a884bcc4c350955e8b24f886fdf9e009
7,436
from re import T def twitter_channel(): """ RESTful CRUD controller for Twitter channels - appears in the administration menu Only 1 of these normally in existence @ToDo: Don't enforce """ #try: # import tweepy #except: # session.error = T("tweepy module not available within the running Python - this needs installing for non-Tropo Twitter support!") # redirect(URL(c="admin", f="index")) tablename = "%s_%s" % (c, f) table = s3db[tablename] # CRUD Strings s3.crud_strings[tablename] = Storage( title_display = T("Twitter account Details"), title_list = T("Twitter accounts"), label_create = T("Add Twitter account"), title_update = T("Edit Twitter account"), label_list_button = T("View Twitter accounts"), msg_record_created = T("Twitter account added"), msg_record_deleted = T("Twitter account deleted"), msg_record_modified = T("Twitter account updated"), msg_list_empty = T("No Twitter accounts currently defined"), ) def prep(r): oauth_consumer_key = settings.msg.twitter_oauth_consumer_key oauth_consumer_secret = settings.msg.twitter_oauth_consumer_secret if not (oauth_consumer_key and oauth_consumer_secret): session.error = T("You should edit Twitter settings in models/000_config.py") return True oauth = tweepy.OAuthHandler(oauth_consumer_key, oauth_consumer_secret) if r.http == "GET" and r.method in ("create", "update"): # We're showing the form _s3 = session.s3 try: _s3.twitter_oauth_url = oauth.get_authorization_url() _s3.twitter_request_key = oauth.request_token.key _s3.twitter_request_secret = oauth.request_token.secret except tweepy.TweepError: session.error = T("Problem connecting to twitter.com - please refresh") return True #table.pin.readable = True #table.pin.label = T("PIN number from Twitter (leave empty to detach account)") #table.pin.value = "" table.twitter_account.label = T("Current Twitter account") return True else: # Not showing form, no need for pin #table.pin.readable = False #table.pin.label = T("PIN") # won't be seen #table.pin.value = "" # but let's be on the safe side pass return True #s3.prep = prep # Post-process def postp(r, output): if r.interactive: # Normal Action Buttons s3_action_buttons(r) # Custom Action Buttons for Enable/Disable table = r.table query = (table.deleted == False) rows = db(query).select(table.id, table.enabled, ) restrict_e = [str(row.id) for row in rows if not row.enabled] restrict_d = [str(row.id) for row in rows if row.enabled] s3.actions += [{"label": s3_str(T("Enable")), "restrict": restrict_e, "url": URL(args=["[id]", "enable"]), "_class": "action-btn", }, {"label": s3_str(T("Disable")), "restrict": restrict_d, "url": URL(args = ["[id]", "disable"]), "_class": "action-btn", }, ] if not s3task._is_alive(): # No Scheduler Running s3.actions += [{"label": s3_str(T("Poll")), "restrict": restrict_d, "url": URL(args = ["[id]", "poll"]), "_class": "action-btn", }, ] #if isinstance(output, dict): # if r.http == "GET" and r.method in ("create", "update"): # rheader = A(T("Collect PIN from Twitter"), # _href = session.s3.twitter_oauth_url, # _target = "_blank") # output["rheader"] = rheader return output s3.postp = postp return s3_rest_controller()
05627d4445a7c99d05c61bfef923b9d52d774512
7,437
def init_time(p, **kwargs): """Initialize time data.""" time_data = { 'times': [p['parse']], 'slots': p['slots'], } time_data.update(**kwargs) return time_data
2aff3819d561f0dc9e0c9b49702b8f3fbb6e9252
7,438
import os def welcome(): """ The code that executes at launch. It guides the user through menus and starts other functions from the other folders based on the users choices. """ clear() print(msg) print(Style.RESET_ALL) print("\n") print("Welcome!") input("Press ENTER key to begin!") clear() print(feesNotice) input() clear() # Checks to see if the account information was stored on the local machine previously if not os.path.isfile(os.path.join(CURRENT_DIR, "sav", "credentials.pickle")): # If the user hasn't successfullly logged in before, it takes them to a menu sequence to log in, and saves the info locally # for the next time the script is run. login.login_interface() user = login.Credentials() print(f"You are logged in as: {user.username}") instructions = """ Instructions: This program takes in a csv file full of docket numbers and will automatically populate 2 folders with the raw JSON data and all of the PDF documents associated with that docket. You will now select the path where your input csv is located. Press ENTER to open the file browser. """ print(instructions) input() clear() # Opens a graphical file browser and returns the path to the csv file that the user selected. csvChoice = file_browser.browseCSVFiles() # Assigns the choice to a global variable, so other modules can find the path that the user specified. global_variables.CSV_INPUT_PATH = csvChoice options = """ Type in one of the following numbers and press ENTER to specify your choice: [1] Get all JSON files and PDF files. [2] Get JSON files only. [3] Get PDF files only. ( Only select 3 if you already have a directory full of JSON files. ) ( The JSON files are needed to extract the download links from. ) [4] More options. Enter your response below.[1/2/3/4] """ print(options) def handle_input(): """ Prompts the user for a choice and calls the function from the 'modules' folder that corresponds with that choice. """ userChoice = input() # Choice 1 is downloading all json and pdf files. if userChoice == "1": clear() menus.select_paths_menu() clear() menus.specify_client_matter_menu() print(msg) get_json_and_pdfs() # Choice 2 is donwloading only JSON files. elif userChoice == "2": clear() menus.select_paths_menu(pdfOption=False) menus.specify_client_matter_menu() print(msg) get_json.thread_download_json() # Choice 3 is downloading only PDF files. elif userChoice == "3": clear() menus.select_paths_menu() menus.specify_client_matter_menu() print(msg) link_list = get_pdfs.get_urls("json-output") # get_pdfs.multiprocess_download_pdfs(link_list) get_pdfs.thread_download_pdfs(link_list) elif userChoice == "4": clear() menus.other_options_menu() # If the user enters anything other than a valid choice, then it tells them their choice is invalid and # restarts this function, prompting them to make a choice again. else: print("Please Enter Valid input (1, 2 or 3)") return handle_input() handle_input() try: os.startfile(os.path.join(CURRENT_DIR, "log")) except: pass print("\nDone.") input()
c9821f4133e7d52f3a59a0d4f810d9120429772a
7,439
def bsplslib_D0(*args): """ :param U: :type U: float :param V: :type V: float :param UIndex: :type UIndex: int :param VIndex: :type VIndex: int :param Poles: :type Poles: TColgp_Array2OfPnt :param Weights: :type Weights: TColStd_Array2OfReal & :param UKnots: :type UKnots: TColStd_Array1OfReal & :param VKnots: :type VKnots: TColStd_Array1OfReal & :param UMults: :type UMults: TColStd_Array1OfInteger & :param VMults: :type VMults: TColStd_Array1OfInteger & :param UDegree: :type UDegree: int :param VDegree: :type VDegree: int :param URat: :type URat: bool :param VRat: :type VRat: bool :param UPer: :type UPer: bool :param VPer: :type VPer: bool :param P: :type P: gp_Pnt :rtype: void """ return _BSplSLib.bsplslib_D0(*args)
4c7a95448c116ef04fac36168c05a22597bc0684
7,440
def b_cross(self) -> tuple: """ Solve cross one piece at a time. Returns ------- tuple of (list of str, dict of {'CROSS': int}) Moves to solve cross, statistics (move count in ETM). Notes ----- The cube is rotated so that the white centre is facing down. The four white cross pieces are moved to the yellow side (on top), starting with the edge which is the fewest moves away from solved. The edges are then moved down to the white centre in the fewest number of moves. """ cube = self.cube solve = [] edges = (1,0), (-1,1), (1,-1), (0,1) cross = { 'L': (4,1,-1), "L'": (2,1,0), 'F': (1,1,-1), "F'": (3,1,0), 'R': (2,1,-1), "R'": (4,1,0), 'B': (3,1,-1), "B'": (1,1,0), 'L2': (5,1,0), 'F2': (5,0,1), 'R2': (5,1,-1), 'B2': (5,-1,1), "L U' F": (1,0,1), "L' U' F": (1,-1,1), "F U' R": (2,0,1), "F' U' R": (2,-1,1), "R' U F'": (3,0,1), "R U F'": (3,-1,1), "B' U R'": (4,0,1), "B U R'": (4,-1,1) } for s, side in enumerate(cube): if side[1][1] == 'U': break if s != 5: move = ('z2', "z'", "x'", 'z', 'x')[s] self.move(move) solve.append(move) while not(all(cube[0][y][x] == 'U' for y, x in edges) or all(cube[5][y][x] == 'U' for y, x in edges) and all(side[-1][1] == side[1][1] for side in cube[1:5])): for edge in cross: if cube[cross[edge][0]][cross[edge][1]][cross[edge][-1]] == 'U': break slot = 'LFRB'.index(edge[0]) if cube[0][edges[slot][0]][edges[slot][1]] != 'U': moves = edge.split() elif cube[0][edges[slot-3][0]][edges[slot-3][1]] != 'U': moves = ['U'] + edge.split() elif cube[0][edges[slot-1][0]][edges[slot-1][1]] != 'U': moves = ["U'"] + edge.split() else: moves = ['U2'] + edge.split() self.move(moves) solve.extend(moves) while any(cube[5][y][x] != 'U' for y, x in edges): if cube[1][0][1] == cube[1][1][1] and cube[0][1][0] == 'U': self.move('L2') solve.append('L2') if cube[2][0][1] == cube[2][1][1] and cube[0][-1][1] == 'U': self.move('F2') solve.append('F2') if cube[3][0][1] == cube[3][1][1] and cube[0][1][-1] == 'U': self.move('R2') solve.append('R2') if cube[4][0][1] == cube[4][1][1] and cube[0][0][1] == 'U': self.move('B2') solve.append('B2') if any(cube[s][0][1] == cube[(s + 2) % 4 + 1][1][1] and cube[0][edges[s-1][0]][edges[s-1][1]] == 'U' for s in range(1, 5)): self.move('U') solve.append('U') elif any(cube[s][0][1] == cube[s % 4 + 1][1][1] and cube[0][edges[s-1][0]][edges[s-1][1]] == 'U' for s in range(1, 5)): self.move("U'") solve.append("U'") elif any(cube[s][0][1] == cube[(s + 1) % 4 + 1][1][1] and cube[0][edges[s-1][0]][edges[s-1][1]] == 'U' for s in range(1, 5)): self.move('U2') solve.append('U2') return solve, {'CROSS': len(solve)}
f0a82ea6b6634b78e4252ac264a537af87be0fc1
7,441
def get_db(): """Creates a 'SQLAlchemy' instance. Creates a 'SQLAlchemy' instance and store it to 'flask.g.db'. Before this function is called, Flask's application context must be exist. Returns: a 'SQLAlchemy' instance. """ if 'db' not in g: current_app.logger.debug('construct SQLAlchemy instance.') db = SQLAlchemy(current_app) g.db = db return g.db
903e2e94a81112603d159f5d1186ecbc2e954afa
7,442
def retain_groundtruth(tensor_dict, valid_indices): """Retains groundtruth by valid indices. Args: tensor_dict: a dictionary of following groundtruth tensors - fields.InputDataFields.groundtruth_boxes fields.InputDataFields.groundtruth_classes fields.InputDataFields.groundtruth_confidences fields.InputDataFields.groundtruth_keypoints fields.InputDataFields.groundtruth_instance_masks fields.InputDataFields.groundtruth_is_crowd fields.InputDataFields.groundtruth_area fields.InputDataFields.groundtruth_label_types fields.InputDataFields.groundtruth_difficult valid_indices: a tensor with valid indices for the box-level groundtruth. Returns: a dictionary of tensors containing only the groundtruth for valid_indices. Raises: ValueError: If the shape of valid_indices is invalid. ValueError: field fields.InputDataFields.groundtruth_boxes is not present in tensor_dict. """ input_shape = valid_indices.get_shape().as_list() if not (len(input_shape) == 1 or (len(input_shape) == 2 and input_shape[1] == 1)): raise ValueError('The shape of valid_indices is invalid.') valid_indices = tf.reshape(valid_indices, [-1]) valid_dict = {} if fields.InputDataFields.groundtruth_boxes in tensor_dict: # Prevents reshape failure when num_boxes is 0. num_boxes = tf.maximum(tf.shape( tensor_dict[fields.InputDataFields.groundtruth_boxes])[0], 1) for key in tensor_dict: if key in [fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_confidences, fields.InputDataFields.groundtruth_keypoints, fields.InputDataFields.groundtruth_keypoint_visibilities, fields.InputDataFields.groundtruth_instance_masks]: valid_dict[key] = tf.gather(tensor_dict[key], valid_indices) # Input decoder returns empty tensor when these fields are not provided. # Needs to reshape into [num_boxes, -1] for tf.gather() to work. elif key in [fields.InputDataFields.groundtruth_is_crowd, fields.InputDataFields.groundtruth_area, fields.InputDataFields.groundtruth_difficult, fields.InputDataFields.groundtruth_label_types]: valid_dict[key] = tf.reshape( tf.gather(tf.reshape(tensor_dict[key], [num_boxes, -1]), valid_indices), [-1]) # Fields that are not associated with boxes. else: valid_dict[key] = tensor_dict[key] else: raise ValueError('%s not present in input tensor dict.' % ( fields.InputDataFields.groundtruth_boxes)) return valid_dict
a6681d8e6b3c8c44fa4fee9143ab57538eac2661
7,443
import json def cluster_list_node(realm, id): """ this function add a cluster node """ cluster = Cluster(ES) account = Account(ES) account_email = json.loads(request.cookies.get('account'))["email"] if account.is_active_realm_member(account_email, realm): return Response(json.dumps(cluster.list_nodes(realm, id))) else: return Response({"failure": "account identifier and realm is not an active match"})
eebccc3c7c3c710fc2c26ee0dfba5481e2e2043a
7,444
import logging import os def compute_features_for_audio_file(audio_file): """ Parameters ---------- audio_file: str Path to the audio file. Returns ------- features: dict Dictionary of audio features. """ # Load Audio logging.info("Loading audio file %s" % os.path.basename(audio_file)) audio, sr = librosa.load(audio_file, sr=msaf.Anal.sample_rate) # Compute harmonic-percussive source separation logging.info("Computing Harmonic Percussive source separation...") y_harmonic, y_percussive = librosa.effects.hpss(audio) # Output features dict features = {} # Compute framesync features features["mfcc"], features["hpcp"], features["tonnetz"], \ features["cqt"], features["gmt"] = compute_features(audio, y_harmonic) # Estimate Beats features["beats_idx"], features["beats"] = compute_beats( y_percussive, sr=msaf.Anal.sample_rate) # Compute Beat-sync features features["bs_mfcc"], features["bs_hpcp"], features["bs_tonnetz"], \ features["bs_cqt"], features["bs_gmt"] = compute_beat_sync_features(features, features["beats_idx"]) # Analysis parameters features["anal"] = {} features["anal"]["frame_rate"] = msaf.Anal.frame_size features["anal"]["hop_size"] = msaf.Anal.hop_size features["anal"]["mfcc_coeff"] = msaf.Anal.mfcc_coeff features["anal"]["sample_rate"] = msaf.Anal.sample_rate features["anal"]["window_type"] = msaf.Anal.window_type features["anal"]["n_mels"] = msaf.Anal.n_mels features["anal"]["dur"] = audio.shape[0] / float(msaf.Anal.sample_rate) return features
49f9a42b505d5847d5f9dae09a893b9faebc0396
7,445
def complete_json(input_data, ref_keys='minimal', input_root=None, output_fname=None, output_root=None): """ Parameters ---------- input_data : str or os.PathLike or list-of-dict Filepath to JSON with data or list of dictionaries with information about annotations ref_keys : {'minimal', 'info'}, optional Which reference keys to check in `input_data`. Default: 'minimal' input_root : str, optional If `input_data` is a filename the key in the file containing data about annotations. If not specified will be based on provided `ref_keys`. Default: None output_fname : str or os.PathLike, optional Filepath where complete JSON should be saved. If not specified the data are not saved to disk. Default: None output_root : str, optional If `output_fname` is not None, the key in the saved JSON where completed information should be stored. If not specified will be based on `input_root`. Default: None Returns ------- output : list-of-dict Information about annotations from `input_data` """ valid_keys = ['minimal', 'info'] if ref_keys not in valid_keys: raise ValueError(f'Invalid ref_keys: {ref_keys}. Must be one of ' f'{valid_keys}') # this is to add missing fields to existing data # could accept data dict list or filename as input # set minimal vs info if ref_keys == 'minimal': ref_keys = MINIMAL_KEYS if input_root is None: input_root = 'annotations' elif ref_keys == 'info': ref_keys = INFO_KEYS if input_root is None: input_root = 'info' # check input if not isinstance(input_data, list): input_data = parse_json(input_data, root=input_root) # make output output = [] for item in input_data: output.append({ key: (item[key] if key in item else None) for key in ref_keys }) # write output if output_fname is not None: if output_root is None: output_root = input_root write_json(output, output_fname, root=output_root) return output
1a732c87670c890b406e935494ca2c51a0f0dc83
7,446
def BuildSystem(input_dir, info_dict, block_list=None): """Build the (sparse) system image and return the name of a temp file containing it.""" return CreateImage(input_dir, info_dict, "system", block_list=block_list)
4537da68b322e7d7714faa2c365ece1c67b255f2
7,447
def add_upgrades(ws, cols, lnth): """ """ for col in cols: cell = "{}1".format(col) ws[cell] = "='New_4G_Sites'!{}".format(cell) for col in cols[:2]: for i in range(2, lnth): cell = "{}{}".format(col, i) ws[cell] = "='New_4G_Sites'!{}".format(cell) for col in cols[2:]: for i in range(2, lnth): cell = "{}{}".format(col, i) part1 = "=IFERROR(IF(Towers_non_4G_MNO!{}>0,IF(Towers_non_4G_MNO!{}>".format(cell,cell) part2 = "New_4G_Sites!{},New_4G_Sites!{},New_4G_Sites!{}-Towers_non_4G_MNO!{}),0),0)".format(cell,cell,cell,cell) ws[cell] = part1 + part2 #+ part3 + part4 columns = ['C','D','E','F','G','H','I','J','K','L'] ws = format_numbers(ws, columns, (1, 200), 'Comma [0]', 0) set_border(ws, 'A1:L{}'.format(lnth-1), "thin", "000000") return ws
a5c33a59992976dfbdd775ce55c6017cef7d7f1d
7,448
import torch def vae_loss(recon_x, x, mu, logvar, reduction="mean"): """ Effects ------- Reconstruction + KL divergence losses summed over all elements and batch See Appendix B from VAE paper: Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 https://arxiv.org/abs/1312.6114 """ BCE = F.binary_cross_entropy(recon_x, x, reduction=reduction) # 0.5 * mean(1 + log(sigma^2) - mu^2 - sigma^2) KLD = -0.5 * torch.mean(1 + logvar - mu.pow(2) - logvar.exp()) return BCE, KLD
ecdabfd62d7e7c7aa858b36669a73e6081891f83
7,449
from functools import reduce def Or(*args): """Defines the three valued ``Or`` behaviour for a 2-tuple of three valued logic values""" def reduce_or(cmp_intervala, cmp_intervalb): if cmp_intervala[0] is True or cmp_intervalb[0] is True: first = True elif cmp_intervala[0] is None or cmp_intervalb[0] is None: first = None else: first = False if cmp_intervala[1] is True or cmp_intervalb[1] is True: second = True elif cmp_intervala[1] is None or cmp_intervalb[1] is None: second = None else: second = False return (first, second) return reduce(reduce_or, args)
fc252c0129904d7ad58c18adad0b08c638b2bd11
7,450
def create_task(): """Create a new task""" data = request.get_json() # In advanced solution, a generic validation should be done if (TaskValidator._validate_title(data)): TaskPersistence.create(title=data['title']) return {'success': True, 'message': 'Task has been saved'} # Simple error response return {'error': 'bad request', 'message': 'not valid data', 'status': 400}
e42b06ed297b589cacedae522b81c898a01d6b72
7,451
import socket def get_socket_with_reuseaddr() -> socket.socket: """Returns a new socket with `SO_REUSEADDR` option on, so an address can be reused immediately, without waiting for TIME_WAIT socket state to finish. On Windows, `SO_EXCLUSIVEADDRUSE` is used instead. This is because `SO_REUSEADDR` on this platform allows the socket to be bound to an address that is already bound by another socket, without requiring the other socket to have this option on as well. """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if 'SO_EXCLUSIVEADDRUSE' in dir(socket): sock.setsockopt(socket.SOL_SOCKET, getattr(socket, 'SO_EXCLUSIVEADDRUSE'), 1) else: sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return sock
6edbc0f0aaaeaebd9c6d0f31257de0b4dfe7df1c
7,452
def get_systemd_services(service_names): """ :param service_names: {'service_unit_id': 'service_display_name'} e.g., {'cloudify-rabbitmq.service': 'RabbitMQ'} """ systemd_services = get_services(service_names) statuses = [] services = {} for service in systemd_services: is_service_running = service['instances'] and ( service['instances'][0]['state'] == 'running') status = NodeServiceStatus.ACTIVE if is_service_running \ else NodeServiceStatus.INACTIVE services[service['display_name']] = { 'status': status, 'extra_info': { 'systemd': service } } statuses.append(status) return services, statuses
523efae5fb536c9326978d84ea9055aecf47da05
7,453
import datetime from werkzeug.local import LocalProxy def json_handler(obj): """serialize non-serializable data for json""" # serialize date if isinstance(obj, (datetime.date, datetime.timedelta, datetime.datetime)): return unicode(obj) elif isinstance(obj, LocalProxy): return unicode(obj) else: raise TypeError, """Object of type %s with value of %s is not JSON serializable""" % \ (type(obj), repr(obj))
ea44a5d77e608f16458a1c3405665011f2d9c70c
7,454
def _random_prefix(sentences): """ prefix random generator input: list of input sentences output: random word """ words = _word_dict(sentences) return choice(words)
7a81b5825bc0dc2ac4b75bff40a9b76af77486a3
7,455
def user_logout(*args, **kwargs): # pylint: disable=unused-argument """ This endpoint is the landing page for the logged-in user """ # Delete the Oauth2 token for this session log.info('Logging out User: %r' % (current_user,)) delete_session_oauth2_token() logout_user() flash('You were successfully logged out.', 'warning') return flask.redirect(_url_for('backend.home'))
baaeb1f1b353eaa75bc1d81cb72a9bb931398047
7,456
def redraw_frame(image, names, aligned): """ Adds names and bounding boxes to the frame """ i = 0 unicode_font = ImageFont.truetype("DejaVuSansMono.ttf", size=17) img_pil = Image.fromarray(image) draw = ImageDraw.Draw(img_pil) for face in aligned: draw.rectangle((face[0], face[1], face[2], face[3]), outline=(0, 255, 0), width=2) if names is not None and len(names) > i: if names[i] == 'unknown': draw.text((face[0], face[1] - 30), "unknown", fill=(0, 0, 255), font=unicode_font) draw.rectangle((face[0], face[1], face[2], face[3]), outline=(0, 0, 255), width=2) else: draw.text((face[0], face[1] - 30), names[i], fill=(0, 255, 0), font=unicode_font) if names is None or len(names) <= i: draw.text((face[0], face[1] - 30), 'refreshing...', fill=(255, 0, 0), font=unicode_font) i += 1 return np.array(img_pil)
66adbbc42c4108855e1eea6494391957c3e91b4f
7,457
import sys import typing def _tp_relfq_name(tp, tp_name=None, assumed_globals=None, update_assumed_globals=None, implicit_globals=None): # _type: (type, Optional[Union[Set[Union[type, types.ModuleType]], Mapping[Union[type, types.ModuleType], str]]], Optional[bool]) -> str """Provides the fully qualified name of a type relative to a set of modules and types that is assumed as globally available. If assumed_globals is None this always returns the fully qualified name. If update_assumed_globals is True, this will return the plain type name, but will add the type to assumed_globals (expected to be a set). This way a caller can query how to generate an appropriate import section. If update_assumed_globals is False, assumed_globals can alternatively be a mapping rather than a set. In that case the mapping is expected to be an alias table, mapping modules or types to their alias names desired for displaying. update_assumed_globals can be None (default). In that case this will return the plain type name if assumed_globals is None as well (default). This mode is there to have a less involved default behavior. """ if tp_name is None: tp_name = util.get_class_qualname(tp) if implicit_globals is None: implicit_globals = _implicit_globals else: implicit_globals = implicit_globals.copy() implicit_globals.update(_implicit_globals) if assumed_globals is None: if update_assumed_globals is None: return tp_name md = sys.modules[tp.__module__] if md in implicit_globals: return tp_name name = tp.__module__+'.'+tp_name pck = None if not (md.__package__ is None or md.__package__ == '' or name.startswith(md.__package__)): pck = md.__package__ return name if pck is None else pck+'.'+name if tp in assumed_globals: try: return assumed_globals[tp] except: return tp_name elif hasattr(tp, '__origin__') and tp.__origin__ in assumed_globals: try: return assumed_globals[tp.__origin__] except: return tp_name # For some reason Callable does not have __origin__, so we special-case # it here. Todo: Find a cleaner solution. elif is_Callable(tp) and typing.Callable in assumed_globals: try: return assumed_globals[typing.Callable] except: return tp_name elif update_assumed_globals == True: if not assumed_globals is None: if hasattr(tp, '__origin__') and not tp.__origin__ is None: toadd = tp.__origin__ elif is_Callable(tp): toadd = typing.Callable else: toadd = tp if not sys.modules[toadd.__module__] in implicit_globals: assumed_globals.add(toadd) return tp_name else: md = sys.modules[tp.__module__] if md in implicit_globals: return tp_name md_name = tp.__module__ if md in assumed_globals: try: md_name = assumed_globals[md] except: pass else: if not (md.__package__ is None or md.__package__ == '' or md_name.startswith(md.__package__)): md_name = md.__package__+'.'+tp.__module__ return md_name+'.'+tp_name
b50b8a38e4e776d4a0a0da149ef45cfb90bcdf2f
7,458
from typing import Type def is_dapr_actor(cls: Type[Actor]) -> bool: """Checks if class inherits :class:`Actor`. Args: cls (type): The Actor implementation. Returns: bool: True if cls inherits :class:`Actor`. Otherwise, False """ return issubclass(cls, Actor)
1c3f5b4744cf9db91c869247ab297ffc10dcfc68
7,459
def unpickle(file): """ unpickle the data """ fo = open(file, 'rb') dict = cPickle.load(fo) fo.close() return dict
dbab180e31e7bff6ba965f48ee7a3018e2665763
7,460
def _calc_norm_gen_prob(sent_1, sent_2, mle_lambda, topic): """ Calculates and returns the length-normalized generative probability of sent_1 given sent_2. """ sent_1_len = sum([count for count in sent_1.raw_counts.values()]) return _calc_gen_prob(sent_1, sent_2, mle_lambda, topic) ** (1.0 / sent_1_len)
7f84f1b0de67f9d6f631ad29aa1c614d6d3f13d6
7,461
def isomorphic(l_op, r_op): """ Subject of definition, here it is equal operation. See limintations (vectorization.rst). """ if l_op.getopnum() == r_op.getopnum(): l_vecinfo = forwarded_vecinfo(l_op) r_vecinfo = forwarded_vecinfo(r_op) return l_vecinfo.bytesize == r_vecinfo.bytesize return False
e34c6928c4fdf10fed55bb20588cf3183172cab1
7,462
import numpy import math def partition5(l, left, right): """ Insertion Sort of list of at most 5 elements and return the position of the median. """ j = left for i in xrange(left, right + 1): t = numpy.copy(l[i]) for j in xrange(i, left - 1, -1): if l[j - 1][0] < t[0]: break l[j] = l[j - 1] l[j] = t return int(math.floor((left + right) / 2))
75c5c893c978e81a2b19b79c6000a2151ff6b088
7,463
def max_validator(max_value): """Return validator function that ensures upper bound of a number. Result validation function will validate the internal value of resource instance field with the ``value >= min_value`` check. Args: max_value: maximum value for new validator """ def validator(value): if value > max_value: raise ValidationError("{} is not <= {}".format(value, max_value)) return validator
6957f507f7140aa58a9c969a04b9bde65da54319
7,464
def standalone_job_op(name, image, command, gpus=0, cpu_limit=0, memory_limit=0, env=[], tensorboard=False, tensorboard_image=None, data=[], sync_source=None, annotations=[], metrics=['Train-accuracy:PERCENTAGE'], arena_image='cheyang/arena_launcher:v0.5', timeout_hours=240): """This function submits a standalone training Job Args: name: the name of standalone_job_op image: the docker image name of training job mount: specify the datasource to mount to the job, like <name_of_datasource>:<mount_point_on_job> command: the command to run """ if not name: raise ValueError("name must be specified") if not image: raise ValueError("image must be specified") if not command: raise ValueError("command must be specified") options = [] if sync_source: if not sync_source.startswith("http"): raise ValueError("sync_source must be an http git url") options.append('--sync-source') options.append(str(sync_source)) for e in env: options.append('--env') options.append(str(e)) for d in data: options.append('--data') options.append(str(d)) for m in metrics: options.append('--metric') options.append(str(m)) if tensorboard_image: options.append('--tensorboard-image') options.append(str(tensorboard_image)) op = dsl.ContainerOp( name=name, image=arena_image, command=['python','arena_launcher.py'], arguments=[ "--name", name, "--tensorboard", str(tensorboard), "--image", str(image), "--gpus", str(gpus), "--cpu", str(cpu_limit), "--step-name", '{{pod.name}}', "--workflow-name", '{{workflow.name}}', "--memory", str(memory_limit), "--timeout-hours", str(timeout_hours), ] + options + [ "job", "--", str(command)], file_outputs={'train': '/output.txt', 'workflow':'/workflow-name.txt', 'step':'/step-name.txt', 'name':'/name.txt'} ) op.set_image_pull_policy('Always') return op
2c2c6c014fe841b6929153cd5590fa43210964ed
7,465
def load_randompdata(dataset_str, iter): """Load data.""" names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph'] objects = [] for i in range(len(names)): with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f: if sys.version_info > (3, 0): objects.append(pkl.load(f, encoding='latin1')) else: objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects) test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str)) test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range-min(test_idx_range), :] = tx tx = tx_extended ty_extended = np.zeros((len(test_idx_range_full), y.shape[1])) ty_extended[test_idx_range-min(test_idx_range), :] = ty ty = ty_extended NL = 2312 NC = 6 elif dataset_str == 'cora': NL = 1708 NC = 7 else: NL = 18717 NC = 3 features = sp.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty)) labels[test_idx_reorder, :] = labels[test_idx_range, :] #fixed 500 for validation read from file, choose random 20 per class from the others for train ''' idx_test = test_idx_range.tolist() idx_train = range(len(y)) idx_val = range(len(y), len(y)+500) ''' idx_val=[int(item) for item in open("source/"+dataset_str+"/val_idx"+str(iter)+".txt").readlines()] idx_test = test_idx_range.tolist() idx_traincand = list(set(range(0,NL))-set(idx_val)) #train candiate, not test not valid nontestlabels = labels[idx_traincand] gtlabels = np.argmax(nontestlabels,axis=1) idx_train = [] for i in range(NC): nodeidx = np.where(gtlabels==i) ridx = random.sample(range(0,nodeidx[0].shape[0]),20) idx_train+=list(np.asarray(idx_traincand)[list(nodeidx[0][ridx])]) train_mask = sample_mask(idx_train, labels.shape[0]) val_mask = sample_mask(idx_val, labels.shape[0]) test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test = np.zeros(labels.shape) y_train[train_mask, :] = labels[train_mask, :] y_val[val_mask, :] = labels[val_mask, :] y_test[test_mask, :] = labels[test_mask, :] return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask
353160ffd8b0474fc4c58532d1bcae80f4d6cbad
7,466
def page_to_reload(): """ Returns page that is refreshed every argument of content attribute in meta http-equiv="refresh". """ val = knob_thread.val year = int(val * 138./256 + 1880) return ( """<!DOCTYPE html> <html> <head><meta http-equiv="refresh" content=".2"> <style> h1 {{color:white; font-family: Arial; font-size: 9em}} </style> </head> <body bgcolor="{color}0000"> <h1>YEAR {year}</h1><br /> <h1>ANOMALY {anomaly}&#176; </h1> </body> </html> """ ).format(color=('%x' % val), year=year, anomaly=year_to_anomaly[year])
75c9a409a6dd936f23c9a54dae058fb7e8fd9e97
7,467
def svn_log_changed_path2_create(*args): """svn_log_changed_path2_create(apr_pool_t pool) -> svn_log_changed_path2_t""" return _core.svn_log_changed_path2_create(*args)
f40cf409bfb458d35cb38ba76fa93c319803a992
7,468
import os def plot_timeseries(model, radius, lon, save=False, tag=''): """ Plot the solar wind model timeseries at model radius and longitude closest to those specified. :param model: An instance of the HUXt class with a completed solution. :param radius: Radius to find the closest model radius to. :param lon: Longitude to find the closest model longitude to. :param save: Boolean to determine if the figure is saved. :param tag: String to append to the filename if saving the figure. :return: fig: Figure handle :return: ax: Axes handle """ if (radius < model.r.min()) | (radius > (model.r.max())): print("Error, specified radius outside of model radial grid") if model.lon.size != 1: if (lon < model.lon.min()) | (lon > (model.lon.max())): print("Error, input lon outside range of model longitudes. Defaulting to closest longitude") id_lon = np.argmin(np.abs(model.lon - lon)) lon = model.lon[id_lon] fig, ax = plt.subplots(figsize=(14, 7)) # Get plotting data id_r = np.argmin(np.abs(model.r - radius)) r_out = model.r[id_r].value if model.lon.size == 1: id_lon = 0 lon_out = model.lon.value else: id_lon = np.argmin(np.abs(model.lon - lon)) lon_out = model.lon[id_lon].value t_day = model.time_out.to(u.day) ax.plot(t_day, model.v_grid[:, id_r, id_lon], 'k-') ylab = 'Solar Wind Speed (km/s)' ymin = 200 ymax = 1000 ax.set_ylim(ymin, ymax) ax.set_ylabel(ylab) ax.set_xlim(t_day.value.min(), t_day.value.max()) ax.set_xlabel('Time (days)') fig.subplots_adjust(left=0.1, bottom=0.1, right=0.95, top=0.95) # Add label radius_label = " Radius: {:3.2f}".format(r_out) + "$R_{sun}$ " lon_label = " Longitude: {:3.2f}".format(lon_out) + "$^\circ$" label = "HUXt" + radius_label + lon_label ax.set_title(label, fontsize=20) #ax.legend(loc=1) if save: cr_num = np.int32(model.cr_num.value) r_tag = np.int32(r_out) lon_tag = np.int32(lon_out) template_string = "HUXt1D_CR{:03d}_{}_time_series_radius_{:03d}_lon_{:03d}.png" filename = template_string.format(cr_num, tag, r_tag, lon_tag) filepath = os.path.join(model._figure_dir_, filename) fig.savefig(filepath) return fig, ax
5538da1ee1cb62c60ba146a9709922b894a3cfca
7,469
import os import logging import csv def convert_csv_to_excel(csv_path): """ This function converts a csv file, given by its file path, to an excel file in the same directory with the same name. :param csv_path:string file path of CSV file to convert :return: string file path of converted Excel file. """ (file_path, file_extension) = os.path.splitext(csv_path) # split the csv pathname to remove the extension wb = xl.Workbook() # create the excel workbook ws = wb.active # use the active sheet by default logging.info("converting file to xlsx: '{}'".format(csv_path)) with open(csv_path, newline='') as csv_file: # append each row of the csv to the excel worksheet rd = csv.reader(csv_file, delimiter=",", quotechar='"') for row in rd: ws.append(row) output_path = os.path.join(file_path + '.xlsx') # output file path should be the same as the csv file logging.info("saving to file: '{}'".format(output_path)) wb.save(output_path) # save the converted file return output_path
590505cdd3c53f0e860bb131d575956bae5c4031
7,470
def check_from_dict(method): """A wrapper that wrap a parameter checker to the original function(crop operation).""" @wraps(method) def new_method(self, *args, **kwargs): word_dict, = (list(args) + [None])[:1] if "word_dict" in kwargs: word_dict = kwargs.get("word_dict") assert isinstance(word_dict, dict), "word_dict needs to be a list of word,id pairs" for word, word_id in word_dict.items(): assert isinstance(word, str), "each word in word_dict needs to be type str" assert isinstance(word_id, int) and word_id >= 0, "each word id needs to be positive integer" kwargs["word_dict"] = word_dict return method(self, **kwargs) return new_method
d45b68ccccbd4f97e585c7386f7da6547fdd86d6
7,471
def env_observation_space_info(instance_id): """ Get information (name and dimensions/bounds) of the env's observation_space Parameters: - instance_id: a short identifier (such as '3c657dbc') for the environment instance Returns: - info: a dict containing 'name' (such as 'Discrete'), and additional dimensional info (such as 'n') which varies from space to space """ info = envs.get_observation_space_info(instance_id) return jsonify(info = info)
2ee4b17a73ad49c6c63dc07f2822b0f2d1ece770
7,472
from typing import Set from typing import Dict def build_target_from_transitions( dynamics_function: TargetDynamics, initial_state: State, final_states: Set[State], ) -> Target: """ Initialize a service from transitions, initial state and final states. The set of states and the set of actions are parsed from the transition function. This will guarantee that all the states are reachable. :param dynamics_function: the transition function :param initial_state: the initial state :param final_states: the final states :return: the service """ states = set() actions = set() transition_function: TransitionFunction = {} policy: Dict[State, Dict[Action, Prob]] = {} reward: Dict[State, Dict[Action, Reward]] = {} for start_state, transitions_by_action in dynamics_function.items(): states.add(start_state) transition_function[start_state] = {} policy[start_state] = {} reward[start_state] = {} for action, (next_state, prob, reward_value) in transitions_by_action.items(): actions.add(action) states.add(next_state) transition_function[start_state][action] = next_state policy[start_state][action] = prob reward[start_state][action] = reward_value unreachable_final_states = final_states.difference(states) assert ( len(unreachable_final_states) == 0 ), f"the following final states are not in the transition function: {unreachable_final_states}" assert initial_state in states, "initial state not in the set of states" return Target( states, actions, final_states, initial_state, transition_function, policy, reward, )
d1014560c05e6f3169c65725d94af20494d97f0a
7,473
from typing import Optional from datetime import datetime def citation(dll_version: Optional[str] = None) -> dict: """ Return a citation for the software. """ executed = datetime.now().strftime("%B %d, %Y") bmds_version = __version__ url = "https://pypi.org/project/bmds/" if not dll_version: # assume we're using the latest version dll_version = get_latest_dll_version() return dict( paper=( "Pham LL, Watford S, Friedman KP, Wignall J, Shapiro AJ. Python BMDS: A Python " "interface library and web application for the canonical EPA dose-response modeling " "software. Reprod Toxicol. 2019;90:102-108. doi:10.1016/j.reprotox.2019.07.013." ), software=( f"Python BMDS. (Version {bmds_version}; Model Library Version {dll_version}) " f"[Python package]. Available from {url}. Executed on {executed}." ), )
1196e1de2c2431120467eac83701022f1b4d9840
7,474
def comment_pr_(ci_data, github_token): """Write either a staticman comment or non-staticman comment to github. """ return sequence( (comment_staticman(github_token) if is_staticman(ci_data) else comment_general), post(github_token, ci_data), lambda x: dict(status_code=x.status_code, json=x.json()), )(ci_data)
548f854a37fe95b83660bc2ec4012cda72317976
7,475
from re import L def response_loss_model(h, p, d_z, d_x, d_y, samples=1, use_upper_bound=False, gradient_samples=0): """ Create a Keras model that computes the loss of a response model on data. Parameters ---------- h : (tensor, tensor) -> Layer Method for building a model of y given p and x p : (tensor, tensor) -> Layer Method for building a model of p given z and x d_z : int The number of dimensions in z d_x : int Tbe number of dimensions in x d_y : int The number of dimensions in y samples: int The number of samples to use use_upper_bound : bool Whether to use an upper bound to the true loss (equivalent to adding a regularization penalty on the variance of h) gradient_samples : int The number of separate additional samples to use when calculating the gradient. This can only be nonzero if user_upper_bound is False, in which case the gradient of the returned loss will be an unbiased estimate of the gradient of the true loss. Returns ------- A Keras model that takes as inputs z, x, and y and generates a single output containing the loss. """ assert not(use_upper_bound and gradient_samples) # sample: (() -> Layer, int) -> Layer def sample(f, n): assert n > 0 if n == 1: return f() else: return L.average([f() for _ in range(n)]) z, x, y = [L.Input((d,)) for d in [d_z, d_x, d_y]] if gradient_samples: # we want to separately sample the gradient; we use stop_gradient to treat the sampled model as constant # the overall computation ensures that we have an interpretable loss (y-h̅(p,x))², # but also that the gradient is -2(y-h̅(p,x))∇h̅(p,x) with *different* samples used for each average diff = L.subtract([y, sample(lambda: h(p(z, x), x), samples)]) grad = sample(lambda: h(p(z, x), x), gradient_samples) def make_expr(grad, diff): return K.stop_gradient(diff) * (K.stop_gradient(diff + 2 * grad) - 2 * grad) expr = L.Lambda(lambda args: make_expr(*args))([grad, diff]) elif use_upper_bound: expr = sample(lambda: L.Lambda(K.square)(L.subtract([y, h(p(z, x), x)])), samples) else: expr = L.Lambda(K.square)(L.subtract([y, sample(lambda: h(p(z, x), x), samples)])) return Model([z, x, y], [expr])
898e72f29a9c531206d0243b8503761844468665
7,476
import numpy from datetime import datetime def get_hourly_load(session, endpoint_id, start_date, end_date): """ :param session: session for the database :param endpoint_id: id for the endpoint :param start_date: datetime object :param end_date: datetime object and: end_date >= start_date :return: """ numdays = (end_date - start_date).days + 1 # list of hours: 0:00 - 23:00 hours = ['0{}:00'.format(h) for h in range(0, 10)] + ['{}:00'.format(h) for h in range(10, 24)] heatmap_data = numpy.zeros((len(hours), numdays)) start_datetime = to_utc_datetime( datetime.datetime.combine(start_date, datetime.time(0, 0, 0, 0)) ) end_datetime = to_utc_datetime(datetime.datetime.combine(end_date, datetime.time(23, 59, 59))) for time, count in get_num_requests(session, endpoint_id, start_datetime, end_datetime): parsed_time = datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S') day_index = (parsed_time - start_datetime).days hour_index = int(to_local_datetime(parsed_time).strftime('%H')) heatmap_data[hour_index][day_index] = count return { 'days': [ (start_date + datetime.timedelta(days=i)).strftime('%Y-%m-%d') for i in range(numdays) ], "data": heatmap_data.tolist(), }
cf619b12778edfaf27d89c43226079aafc650ac4
7,477
def startend(start=None, end=None): """Return TMIN, TAVG, TMAX.""" # Select statement sel = [func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)] if not end: # Calculate TMIN, TAVG, TMAX for dates greater than start results = session.query(*sel).\ filter(Measurement.date >= start).all() print(results) # This is a list of tuples # Convert list of tuples into normal list temps = list(np.ravel(results)) return jsonify(temps) # Calculate TMIN, TAVG, TMAX with start and stop results = session.query(*sel).\ filter(Measurement.date >= start).\ filter(Measurement.date <= end).all() print(results) # This is a list of tuples # Convert list of tuples into normal list temps = list(np.ravel(results)) print(temps) # This is a normal list return jsonify(temps)
7b8f395fd177d5352b14c12902acea1a641c5df8
7,478
def configure_camera(config): """ Configures the camera. :param config: dictionary containing BARD configuration parameters optional parameters in camera. source (default 0), window size (default delegates to cv2.CAP_PROP_FRAME_WIDTH), calibration directory and roi (region of interest) """ # Specify some reasonable defaults. Webcams are typically 640x480. video_source = 0 dims = None mtx33d = np.array([[1000.0, 0.0, 320.0], [0.0, 1000.0, 240.0], [0.0, 0.0, 1.0]]) dist5d = np.array([0.0, 0.0, 0.0, 0.0, 0.0]) roi = None if config is None: return video_source, mtx33d, dist5d, dims, roi camera_config = config.get('camera', None) if camera_config is not None: video_source = camera_config.get('source', 0) calib_dir = camera_config.get('calibration directory', None) calib_prefix = camera_config.get('calibration prefix', 'calib') if calib_dir is not None: calib_param = MonoCalibrationParams() calib_param.load_data(calib_dir, calib_prefix, halt_on_ioerror = False) mtx33d = calib_param.camera_matrix dist5d = calib_param.dist_coeffs dims = camera_config.get('window size', None) if dims is None: print("WARNING: window size was not specified! " "This probably breaks the calibrated overlay!") else: # JSON file contains list, OpenCV requires tuple. if len(dims) != 2: raise ValueError("Invalid window size given, window size", " should be list of length 2") dims = (dims[0], dims[1]) roi = camera_config.get('roi', None) if roi is not None: if len(roi) != 4: raise ValueError("Invalid roi set. Region of interest should", " be a list of length 4. [x_start, y_start, x_end, y_end]") return video_source, mtx33d, dist5d, dims, roi
8accdaf9d710ff2ccff6d4ad5216611593e06ff0
7,479
def munsell_value_Moon1943(Y: FloatingOrArrayLike) -> FloatingOrNDArray: """ Return the *Munsell* value :math:`V` of given *luminance* :math:`Y` using *Moon and Spencer (1943)* method. Parameters ---------- Y *luminance* :math:`Y`. Returns ------- :class:`np.floating` or :class:`numpy.ndarray` *Munsell* value :math:`V`. Notes ----- +------------+-----------------------+---------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``Y`` | [0, 100] | [0, 1] | +------------+-----------------------+---------------+ +------------+-----------------------+---------------+ | **Range** | **Scale - Reference** | **Scale - 1** | +============+=======================+===============+ | ``V`` | [0, 10] | [0, 1] | +------------+-----------------------+---------------+ References ---------- :cite:`Wikipedia2007c` Examples -------- >>> munsell_value_Moon1943(12.23634268) # doctest: +ELLIPSIS 4.0688120... """ Y = to_domain_100(Y) V = 1.4 * spow(Y, 0.426) return as_float(from_range_10(V))
7e419c8936fa49f35a5838aa7d3a5d99c93808f2
7,480
import functools import traceback def log_errors(func): """ A wrapper to print exceptions raised from functions that are called by callers that silently swallow exceptions, like render callbacks. """ @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: # Exceptions from calls like this aren't well-defined, so just log the # error and don't reraise it. traceback.print_exc() return wrapper
a15c26de36a8c784da0333382f27fc06b0ed78a0
7,481
def count_total_words(sentence_list): """ 문장 리스트에 있는 단어를 셉니다. :param sentence_list: 단어의 리스트로 구성된 문장 리스트 :return: 문장에 있는 단어의 개수 """ return sum( [count_words_per_sentence(sentence) for sentence in sentence_list] )
0abc550c26b40fd36d0b9540fc1cd001e40a7552
7,482
def translate_dbpedia_url(url): """ Convert an object that's defined by a DBPedia URL to a ConceptNet URI. We do this by finding the part of the URL that names the object, and using that as surface text for ConceptNet. This is, in some ways, abusing a naming convention in the Semantic Web. The URL of an object doesn't have to mean anything at all. The human-readable name is supposed to be a string, specified by the "name" relation. The problem here is that the "name" relation is not unique in either direction. A URL can have many names, and the same name can refer to many URLs, and some of these names are rarely used or are the result of parsing glitches. The URL itself is a stable thing that we can build a ConceptNet URI from, on the other hand. """ if '__' in url or 'dbpedia.org' not in url: return None parsed = parse_url(url) domain = parsed.netloc if '.' not in domain: return None if domain == 'dbpedia.org': # Handle old DBPedia URLs that had no language code domain = 'en.dbpedia.org' domain_parts = domain.split('.', 1) if domain_parts[1] == 'dbpedia.org': lang = domain_parts[0] if lang in LCODE_ALIASES: lang = LCODE_ALIASES[lang] if lang not in ALL_LANGUAGES: return None text = resource_name(url).replace('_', ' ') uri = topic_to_concept(lang, text) if uri in CONCEPT_BLACKLIST: return None else: return uri else: return None
2a6b99ca59216c97dc1cfd90f1d8f4c01ad5f9f2
7,483
def setSecurityPolicy(aSecurityPolicy): """Set the system default security policy. This method should only be caused by system startup code. It should never, for example, be called during a web request. """ last = _ImplPython._defaultPolicy _ImplPython._defaultPolicy = aSecurityPolicy return last
7063b83f1c2492b8684a43f64c9d2a49ae2ca61b
7,484
import re def map_sentence2ints(sentence): """Map a sentence to a list of words.""" word_list = re.findall(r"[\w']+|[.,!?;]", sentence) int_list = [const.INPUTVOCABULARY.index(word) for word in word_list] return np.array(int_list).astype(np.int32)
6dcb2917c817aa2e394c313fb273d466b6fb1ea9
7,485
def get_api_key( api_key_header: str = Security( APIKeyHeader(name=settings.API_KEY_HEADER, auto_error=False) ) ) -> str: """ This function checks the header and his value for correct authentication if not a 403 error is returned: - api_key_header = Security api header https://github.com/tiangolo/fastapi/issues/142 """ if api_key_header == settings.API_KEY: return api_key_header
50121c0d16455862552c58e7478ef383b68e71c7
7,486
def add_pred_to_test(test_df, pred_np, demo_col_list, days): """ derived from Tensorflow INPUT: - df (pandas DataFrame) - group (string) OUTPUT: - show_group_stats_viz """ test_df = test_df.copy() for c in demo_col_list: test_df[c] = test_df[c].astype(str) test_df['score'] = pred_np test_df['label_value'] = test_df['time_in_hospital'].apply(lambda x: 1 if x >=days else 0) return test_df
aec48bd6201e1a9a1ebd6f96c4c8b7cfd9304607
7,487
def getCriticality(cvss): """ color convention fot the cells of the PDF """ if cvss == 0.0: return ("none", "#00ff00", (0, 255, 0)) if cvss < 3.1: return ("low", "#ffff00", (255, 255, 0)) if cvss < 6.1: return ("medium", "#ffc800", (255, 200, 0)) if cvss < 9.1: return ("high", "#ff6400", (255, 100, 0)) return ("critical", "#cc0000", (200, 0, 0))
a4167b2f576dcb361641f7fe0280c212673f0157
7,488
from typing import List def combine_groups(groups: List[np.ndarray], num_features: int) -> np.ndarray: """ Combines the given groups back into a 2d measurement matrix. Args: groups: A list of 1d, flattened groups num_features: The number of features in each measurement (D) Returns: A [K, D] array containing the recovered measurements. """ flattened = np.concatenate(groups) # [K * D] return flattened.reshape(num_features, -1).T
906c69fabcb62a60f12fd3c4bafc711aa971ad19
7,489
import functools def skippable(*prompts, argument=None): """ Decorator to allow a method on the :obj:`CustomCommand` to be skipped. Parameters: ---------- prompts: :obj:iter A series of prompts to display to the user when the method is being skipped. argument: :obj:`str` By default, the management command argument to indicate that the method should be skipped will be `skip_<func_name>`. If the argument should be different, it can be explicitly provided here. """ def decorator(func): @functools.wraps(func) def inner(instance, *args, **kwargs): parameter = argument or "skip_%s" % func.__name__ if parameter in kwargs and kwargs[parameter] is True: instance.prompt(*prompts, style_func=instance.style.HTTP_NOT_MODIFIED) return False else: return func(instance, *args, **kwargs) return inner return decorator
879106f4cc0524660fb6639e56d688d40b115ac4
7,490
import torch def collate( samples, pad_idx, eos_idx, left_pad_source=True, left_pad_target=False, input_feeding=True, ): """ 相对 fairseq.data.language_pair_dataset.collate 的区别是: 1. prev_output_tokens的key不再是target,而是 prev_output_tokens(因为自定义了prev_output_tokens,) 2. 增加了positions(默认position从1开始,mass保留了原句中的位置) TODO: 1. 新key的order问题: 策略0,全部重写:https://coding.jd.com/alphaw/fairseq_ext/blob/a336c4529822271417fff86a06dcd9f2b0945592/src/data/mask_language_pair_dataset.py 策略1,继承时也sort一次。前提保证sort结果的不变性。(目前采用该策略,看上去仍然代码冗余) 策略2:collate增加more_keys参数,或者net_input下的所有都order一遍 (TODO: 先采用策略一) """ if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad, move_eos_to_beginning, pad_to_length=pad_to_length, ) batch = _collate(samples, pad_idx, eos_idx, left_pad_source=left_pad_source, left_pad_target=left_pad_target, input_feeding=input_feeding) # patch src_lengths = torch.LongTensor([ s['source'].ne(pad_idx).long().sum() for s in samples ]) src_lengths, sort_order = src_lengths.sort(descending=True) prev_output_positions = merge('prev_output_positions', left_pad=left_pad_target).index_select(0, sort_order) # 更改 batch['net_input']['prev_output_positions'] = prev_output_positions # 更改 return batch
0343a5adb70c163599b91e9742b5302c1482cca8
7,491
import hashlib def _cache_name(address): """Generates the key name of an object's cache entry""" addr_hash = hashlib.md5(address).hexdigest() return "unsub-{hash}".format(hash=addr_hash)
6933b1170933df5e3e57af03c81322d68a46d91f
7,492
def format_currency( value: Decimal, currency: str | None = None, show_if_zero: bool = False, invert: bool = False, ) -> str: """Format a value using the derived precision for a specified currency.""" if not value and not show_if_zero: return "" if value == ZERO: return g.ledger.format_decimal(ZERO, currency) if invert: value = -value return g.ledger.format_decimal(value, currency)
197dc15c799e1866526a944e0f1f8217e97cf785
7,493
import os from pathlib import Path from typing import Union from sys import version def guess_ghostscript() -> str: """Guess the path to ghostscript. Only guesses well on Windows. Should prevent people from needing to add ghostscript to PATH. """ if os.name != 'nt': return 'gs' # I'm not sure where to look on non-Windows OSes so just guess 'gs'. def sort_by_version(v: Path) -> Union[version.Version, version.LegacyVersion]: return version.parse(v.name[2:]) # When this is an inline lambda mypy and pylint fuss. locations = 'C:\\Program Files\\gs', 'C:\\Program Files (x86)\\gs' files = 'gswin64c.exe', 'gswin32c.exe', 'gs.exe' for location in locations: path = Path(location) if path.exists(): versions = [v for v in path.iterdir() if v.is_dir() and v.name.startswith('gs')] versions.sort(key=sort_by_version, reverse=True) for v in versions: for file in files: exe = v / 'bin' / file if exe.exists(): return str(exe) return 'gswin64c'
09e8761185f6029025d8d6cc6861672870e781b2
7,494
def supplemental_div(content): """ Standardize supplemental content listings Might not be possible if genus and tree content diverge """ return {'c': content}
b42e868ef32f387347cd4a97328794e6628fe634
7,495
def viewTypes(): """View types of item when sent through slash command""" user_id, user_name, channel_id = getUserData(request.form) checkUser(user_id) itemType = request.form.get('text') try: text = viewTypesItems(itemType) except ItemNotInPantry: reply = "Sorry! But either the spelling is wrong or the item is currently unavailable.\nPlease view items in the pantry to check." client.chat_postMessage(channel=channel_id, blocks=itemExceptionBlock(reply)) return Response(), 200 client.chat_postMessage(channel=channel_id, blocks=viewTypesItemBlock(text)) return Response(), 200
aea7633a1092c68a5ccf3a5619eee9d74dafdca2
7,496
def load_and_preprocess(): """ Load the data (either train.csv or test.csv) and pre-process it with some simple transformations. Return in the correct form for usage in scikit-learn. Arguments --------- filestr: string string pointing to csv file to load into pandas Returns ------- X_train: numpy.array array containing features of training set X_test: numpy.array array containing features of test set y: numpy.array array containing labels for training set test_ID: numpy.array IDs for test set, for submission """ train = pd.read_csv("data/train.csv") test = pd.read_csv("data/test.csv") data = pd.concat((train.loc[:,'MSSubClass':'SaleCondition'],\ test.loc[:,'MSSubClass':'SaleCondition'])) #first extract the target variable, and log-transform because the prices are very skewed y_train = np.log1p(train['SalePrice'].values) #one hot encoding for categorical variables data = pd.get_dummies(data) #first find which numerical features are significantly skewed and transform them to log(1 + x) numerical = data.dtypes[data.dtypes!='object'].index skewed = data[numerical].apply(lambda u: skew(u.dropna())) skewed = skewed[skewed > 0.75].index data[skewed] = np.log1p(data[skewed]) #if numerical values are missing, replace with median from that column data = data.fillna(data.mean()) X_train = data[:train.shape[0]].as_matrix() X_test = data[train.shape[0]:].as_matrix() return X_train,X_test,y_train,test.Id
3202c4aaf76af0695594c39641dd4892b1215d97
7,497
from datetime import datetime def _dates2absolute(dates, units): """ Absolute dates from datetime object Parameters ---------- dates : datetime instance or array_like of datetime instances Instances of pyjams.datetime class units : str 'day as %Y%m%d.%f', 'month as %Y%m.%f', or 'year as %Y.%f' Returns ------- longdouble or array_like of longdouble absolute dates Examples -------- >>> dt = [datetime(1990, 1, 1), datetime(1991, 1, 1)] >>> dec = _dates2absolute(dt, 'day as %Y%m%d.%f') >>> print(np.around(dec, 1)) [19900101.0, 19910101.0] """ mdates = input2array(dates, default=datetime(1990, 1, 1)) # wrapper might be slow out = [ _date2absolute(dd, units) for dd in mdates ] out = array2input(out, dates) return out
ef823887ec410d7f7d0c5c54d12005ab35744c0c
7,498
def Mix_GetNumMusicDecoders(): """Retrieves the number of available music decoders. The returned value can differ between runs of a program due to changes in the availability of the shared libraries required for supporting different formats. Returns: int: The number of available music decoders. """ return _funcs["Mix_GetNumMusicDecoders"]()
a91b84c42701cdaeb7f400a3091bb869e477ff06
7,499