content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import sys def check_ft_grid(fv, diff): """Grid check for fft optimisation""" if np.log2(np.shape(fv)[0]) == int(np.log2(np.shape(fv)[0])): nt = np.shape(fv)[0] else: print("fix the grid for optimization \ of the fft's, grid:" + str(np.shape(fv)[0])) sys.exit(1) lvio = [] for i in range(len(fv)-1): lvio.append(fv[i+1] - fv[i]) grid_error = np.abs(np.asanyarray(lvio)[:]) - np.abs(diff) if not(np.allclose(grid_error, 0, rtol=0, atol=1e-12)): print(np.max(grid_error)) sys.exit("your grid is not uniform") assert len(np.unique(fv)) == len(fv) return 0
ee3746125be40ef374ef1008b1db5ecaf31c719b
7,500
from typing import Callable def _concat_applicative( current: KindN[ _ApplicativeKind, _FirstType, _SecondType, _ThirdType, ], acc: KindN[ _ApplicativeKind, _UpdatedType, _SecondType, _ThirdType, ], function: KindN[ _ApplicativeKind, Callable[[_FirstType], Callable[[_UpdatedType], _UpdatedType]], _SecondType, _ThirdType, ], ) -> KindN[_ApplicativeKind, _UpdatedType, _SecondType, _ThirdType]: """Concats two applicatives using a curried-like function.""" return acc.apply(current.apply(function))
fb720d87f643592f3ebed01bd55364fec83e1b22
7,501
def goto_x(new_x): """ Move tool to the new_x position at speed_mm_s at high speed. Update curpos.x with new position. If a failure is detected, sleep so the operator can examine the situation. Since the loss of expected responses to commands indicates that the program does not know the exact position of the device, the caller should immediately abort on a failure. Call this function like this: assert goto_x(new_x_value), "Useful message indicating where failure occurred" :param new_x: new X position of tool :return: True -> success, False -> failure """ assert isinstance(new_x, float) if VERIFY_NEGATIVE_VALUES: assert is_x_valid(new_x) global curpos output_and_log("G00 X{0:3.3f}".format(new_x)) responded = read_port_await_str("ok") if not responded: print "goto_x() RESPONSE STRING({0}) NOT RECEIVED".format("ok") time.sleep(SLEEP_BEFORE_ESTOP) else: curpos.x = new_x return responded
fe49dde9349e18cea91d8f7ee1aae1f3545b5a04
7,502
def server_rename(adapter_id, server_id): """Renames a server using a certain adapter, if that adapter supports renaming.""" adapter = get_adapter(adapter_id) if not adapter: return output.failure("That adapter doesn't (yet) exist. Please check the adapter name and try again.", 501) if not adapter.can_rename(): return output.failure("This adapter doesn't support renaming servers.", 501) if not adapter.do_verify(request.headers): return output.failure("Credential verification failed. Please check your credentials and try again.", 401) result = adapter.do_server_rename(request.headers, server_id, request.json) if isinstance(result, dict) and 'error' in result: return output.failure(result['error'], result['status']) return ""
55a25178a3ff9ec1e2e1d4a2f7cdd228bf0914cb
7,503
import pathlib import os def _to_absolute_uri(uri): """ Converts the input URI into an absolute URI, relative to the current working directory. :param uri: A URI, absolute or relative. :return: An absolute URI. """ if ":" in uri: #Already absolute. Is either a drive letter ("C:/") or already fully specified URI ("http://"). return pathlib.Path(uri).as_uri() #Pathlib can take care of both these cases. return pathlib.Path(os.path.abspath(uri)).as_uri()
b80c56d298e16ed1abd958950cc45b5e45e26111
7,504
def index(): """ Root URL response, load UI """ return app.send_static_file("index.html")
fd793fadf7ecaf8e2c435b377c264aaf6e4da1d2
7,505
def restore_capitalization(word, example): """ Make the capitalization of the ``word`` be the same as in ``example``: >>> restore_capitalization('bye', 'Hello') 'Bye' >>> restore_capitalization('half-an-hour', 'Minute') 'Half-An-Hour' >>> restore_capitalization('usa', 'IEEE') 'USA' >>> restore_capitalization('pre-world', 'anti-World') 'pre-World' >>> restore_capitalization('123-do', 'anti-IEEE') '123-DO' >>> restore_capitalization('123--do', 'anti--IEEE') '123--DO' In the alignment fails, the reminder is lower-cased: >>> restore_capitalization('foo-BAR-BAZ', 'Baz-Baz') 'Foo-Bar-baz' >>> restore_capitalization('foo', 'foo-bar') 'foo' .. note: Currently this function doesn't handle uppercase letters in the middle of the token (e.g. McDonald). """ if '-' in example: results = [] word_parts = word.split('-') example_parts = example.split('-') for i, part in enumerate(word_parts): if len(example_parts) > i: results.append(_make_the_same_case(part, example_parts[i])) else: results.append(part.lower()) return '-'.join(results) return _make_the_same_case(word, example)
77b074acb4d95de5d88f37495786f6679fa5f54d
7,506
def test_loss_at_machine_precision_interval_is_zero(): """The loss of an interval smaller than _dx_eps should be set to zero.""" def f(x): return 1 if x == 0 else 0 def goal(l): return learner.loss() < 0.01 or learner.npoints >= 1000 learner = Learner1D(f, bounds=(-1, 1)) simple(learner, goal=goal) # this means loss < 0.01 was reached assert learner.npoints != 1000
61d2efd80054729aafbe11d67873860f96f2198b
7,507
def params_document_to_uuid(params_document): """Generate a UUID5 based on a pipeline components document""" return identifiers.typeduuid.catalog_uuid(params_document)
32366dd5fa2ff4acfe848a7a4633baba23a1e993
7,508
import typing def modify_account() -> typing.RouteReturn: """IntraRez account modification page.""" form = forms.AccountModificationForm() if form.validate_on_submit(): rezident = flask.g.rezident rezident.nom = form.nom.data.title() rezident.prenom = form.prenom.data.title() rezident.promo = form.promo.data rezident.email = form.email.data db.session.commit() utils.log_action( f"Modified account {rezident} ({rezident.prenom} {rezident.nom} " f"{rezident.promo}, {rezident.email})" ) flask.flash(_("Compte modifié avec succès !"), "success") return utils.redirect_to_next() return flask.render_template("profile/modify_account.html", title=_("Mettre à jour mon compte"), form=form)
e67b553f0c7051d5be4b257824f495f0a0ad9838
7,509
def fizzbuzz(end=100): """Generate a FizzBuzz game sequence. FizzBuzz is a childrens game where players take turns counting. The rules are as follows:: 1. Whenever the count is divisible by 3, the number is replaced with "Fizz" 2. Whenever the count is divisible by 5, the number is replaced with "Buzz" 3. Whenever the count is divisible by both 3 and 5, the number is replaced with "FizzBuzz" Parameters ---------- end : int The FizzBuzz sequence is generated up and including this number. Returns ------- sequence : list of str The FizzBuzz sequence. Examples -------- >>> fizzbuzz(3) ['1', '2', 'Fizz'] >>> fizzbuzz(5) ['1', '2', 'Fizz', '4', 'Buzz'] References ---------- https://blog.codinghorror.com/why-cant-programmers-program/ """ sequence = [] for i in range(1, end + 1): if i % (3 * 5) == 0: sequence.append('FizzBuzz') elif i % 3 == 0: sequence.append('Fizz') elif i % 5 == 0: sequence.append('Buzz') else: sequence.append(str(i)) return sequence
b68b1c39674fb47d0bd12d387f347af0ef0d26ca
7,510
def generate_lane_struct(): """ Generate the datatype for the lanes dataset :return: The datatype for the lanes dataset and the fill values for the lanes dataset """ lane_top_list = [] for item in [list1 for list1 in lane_struct if list1.__class__.__name__ == "LaneTop"]: lane_top_list.append((item.name, item.type)) lane_list = [] for item in [list1 for list1 in lane_struct if list1.__class__.__name__ == "LaneSObject"]: lane_list.append((item.name, item.type)) lane_top_list.append((str_lan_obj, lane_list, 4)) d_lane = np.dtype(lane_top_list) lane_fill = np.zeros((len(lane_top_list), ), dtype=d_lane) for item in [list1 for list1 in lane_struct if list1.__class__.__name__ == "LaneTop"]: lane_fill[item.name] = item.fill_value for item in [list1 for list1 in lane_struct if list1.__class__.__name__ == "LaneSObject"]: lane_fill[str_lan_obj][item.name] = item.fill_value return d_lane, lane_fill
698fadc8472233ae0046c9bbf1e4c21721c7de48
7,511
def notification_list(next_id=None): # noqa: E501 """notification_list Get all your certificate update notifications # noqa: E501 :param next_id: :type next_id: int :rtype: NotificationList """ return 'do some magic!'
4fe4467f89ad4bf1ba31bd37eace411a78929a26
7,512
import os def _delete_dest_path_if_stale(master_path, dest_path): """Delete dest_path if it does not point to cached image. :param master_path: path to an image in master cache :param dest_path: hard link to an image :returns: True if dest_path points to master_path, False if dest_path was stale and was deleted or it didn't exist """ dest_path_exists = os.path.exists(dest_path) if not dest_path_exists: # Image not cached, re-download return False master_path_exists = os.path.exists(master_path) if (not master_path_exists or os.stat(master_path).st_ino != os.stat(dest_path).st_ino): # Image exists in cache, but dest_path out of date os.unlink(dest_path) return False return True
cbe2387e5a0b9a27afcfc9a0bd34cfeb6f164ae4
7,513
import requests def SendPost(user, password, xdvbf, cookie, session, url=URL.form): """ 根据之前获得的信息,发送请求 :param user: 学号 :param password: 密码 :param xdvbf: 验证码内容 :param cookie: 之前访问获得的cookie :param session: 全局唯一的session :param url: 向哪个资源发送请求 :return: response """ form_data = { "timestamp": helper.time_stamp, "jwb": helper.jwb, "id": user, "pwd": password, "xdvfb": xdvbf } response = session.post(url, form_data, headers=helper.header, cookies=requests.utils.dict_from_cookiejar(cookie)) response.encoding = response.apparent_encoding return response
932d869f048e8f06d7dbfe6032950c66a72224fa
7,514
def css_flat(name, values=None): """Все значения у свойства (по порядку) left -> [u'auto', u'<dimension>', u'<number>', u'<length>', u'.em', u'.ex', u'.vw', u'.vh', u'.vmin', u'.vmax', u'.ch', u'.rem', u'.px', u'.cm', u'.mm', u'.in', u'.pt', u'.pc', u'<percentage>', u'.%'] """ cur = CSS_DICT.get(name) or CSS_DICT.get(name[1:-1]) if values is None: values = [] if cur is None: return values for value in cur['values']: values.append(value) if value.startswith('<') and value.endswith('>'): values = css_flat(value, values) return values
a992d261d234f9c4712b00986cb6ba5ba4347b8f
7,515
def prepare_mqtt(MQTT_SERVER, MQTT_PORT=1883): """ Initializes MQTT client and connects to a server """ client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect(MQTT_SERVER, MQTT_PORT, 60) return client
a5015d80c5c0222ac5eb40cbb1ba490826fcebae
7,516
def record_iterator_class(record_type): """ Gets the record iterator for a given type A way to abstract the construction of a record iterator class. :param record_type: the type of file as string :return: the appropriate record iterator class """ if record_type == 'bib': return BibtexRecordIterator elif record_type == 'froac' or record_type == 'xml': return FroacRecordIterator elif record_type == 'isi': return IsiRecordIterator else: raise ValueError("This type {} has not been implemented yet".format( record_type ))
b1fbd393819055b9468a96b5ec7e44d3773dcf52
7,517
from typing import Sequence from typing import Dict def sort_servers_closest(servers: Sequence[str]) -> Dict[str, float]: """Sorts a list of servers by http round-trip time Params: servers: sequence of http server urls Returns: sequence of pairs of url,rtt in seconds, sorted by rtt, excluding failed servers (possibly empty) """ if not {urlparse(url).scheme for url in servers}.issubset({"http", "https"}): raise TransportError("Invalid server urls") get_rtt_jobs = set( gevent.spawn(lambda url: (url, get_http_rtt(url)), server_url) for server_url in servers ) # these tasks should never raise, returns None on errors gevent.joinall(get_rtt_jobs, raise_error=False) # block and wait tasks sorted_servers: Dict[str, float] = dict( sorted((job.value for job in get_rtt_jobs if job.value[1] is not None), key=itemgetter(1)) ) log.debug("Matrix homeserver RTTs", rtts=sorted_servers) return sorted_servers
efa225e13f989d0b350138e111b7945b2bb04fb0
7,518
from typing import Any def palgo( dumbalgo: type[DumbAlgo], space: Space, fixed_suggestion_value: Any ) -> SpaceTransformAlgoWrapper[DumbAlgo]: """Set up a SpaceTransformAlgoWrapper with dumb configuration.""" return create_algo(algo_type=dumbalgo, space=space, value=fixed_suggestion_value)
373f74ca675250b5a422ff965396a122c4b967fd
7,519
def english_to_french(english_text): """ Input language translate function """ translation = language_translator.translate(text=english_text, model_id = "en-fr").get_result() french_text = translation['translations'][0]['translation'] return french_text
ac9951d0362ccf511361dfc676b03f61f4fe8453
7,520
from typing import Sequence def noise_get_turbulence( n: tcod.noise.Noise, f: Sequence[float], oc: float, typ: int = NOISE_DEFAULT, ) -> float: """Return the turbulence noise sampled from the ``f`` coordinate. Args: n (Noise): A Noise instance. f (Sequence[float]): The point to sample the noise from. typ (int): The noise algorithm to use. octaves (float): The level of level. Should be more than 1. Returns: float: The sampled noise value. """ return float( lib.TCOD_noise_get_turbulence_ex( n.noise_c, ffi.new("float[4]", f), oc, typ ) )
f4af83726dd6f3badf2c2eaa86f647dd4ad71cb3
7,521
from typing import Union import os def read_data_file(file_path: str, filename: str) -> Union[pd.DataFrame, str]: """Check read data file.""" logger.info(f"Reading {file_path}") try: if file_path.endswith(CSV): return pd.read_csv(file_path, sep=",") elif file_path.endswith(TSV): return pd.read_csv(file_path, sep="\t") else: return pd.read_csv(file_path, sep=None, engine='python') except IOError: logger.error(f"Failed to read {filename} {file_path}. File exists: {os.path.isfile(file_path)}") return f'There is a problem with your file {filename}. please check that it meets the criteria.'
1e737c421db3c9d1609b0bf16fecb1e15d506824
7,522
def mnist_loader(path="../../corruptmnist", n_files=8, image_scale=255): """ Loads .npz corruptedmnist, assumes loaded image values to be between 0 and 1 """ # load and stack the corrupted mnist dataset train_images = np.vstack( [np.load(path + "/train_{}.npz".format(str(i)))["images"] for i in range(n_files)] ) train_labels = np.hstack( [np.load(path + "/train_{}.npz".format(str(i)))["labels"] for i in range(n_files)] ) test_images = np.load(path + "/test.npz")["images"] test_labels = np.load(path + "/test.npz")["labels"] return train_images * image_scale, train_labels, test_images * image_scale, test_labels
a7e7328621819e0cbf163e1ef006df5183b6d25d
7,523
def reduce_min(values, index, name='segmented_reduce_min'): """Computes the minimum over segments.""" return _segment_reduce(values, index, tf.math.unsorted_segment_min, name)
473698ffd1295344dd8019b01b69d464f2db93b8
7,524
import glob def _data_type(data_string: str): """ convert the data type string (i.e., FLOAT, INT16, etc.) to the appropriate int. See: https://deeplearning4j.org/api/latest/onnx/Onnx.TensorProto.DataType.html """ for key, val in glob.DATA_TYPES.items(): if key == data_string: return val _print("Data string not found. Use `list_data_types()` to list all supported data strings.") return False
a0fce62a304ce8b61ad2ecf173b8723cf66f10c0
7,525
def bin_power(dataset, fsamp:int, band=range(0, 45)): """Power spec Args: dataset: n_epoch x n_channel x n_sample fsamp: band: Returns: n_epoch x n_channel x len(band) """ res = [] for i, data in enumerate(dataset): res.append(power(data, fsamp=fsamp, band=band)) return res
e85815837d2cab8bd1b89132df29a439ec54bd34
7,526
import six import base64 import zlib def deflate_and_base64_encode(string_val): """ Deflates and the base64 encodes a string :param string_val: The string to deflate and encode :return: The deflated and encoded string """ if not isinstance(string_val, six.binary_type): string_val = string_val.encode('utf-8') return base64.b64encode(zlib.compress(string_val)[2:-4])
31fc19cf134bc22b3fc45b4158c65aef666716cc
7,527
def smooth_reward_curve(x, y): """Smooths a reward curve--- how?""" k = min(31, int(np.ceil(len(x) / 30))) # Halfwidth of our smoothing convolution xsmoo = x[k:-k] ysmoo = np.convolve(y, np.ones(2 * k + 1), mode='valid') / np.convolve(np.ones_like(y), np.ones(2 * k + 1), mode='valid') downsample = max(int(np.floor(len(xsmoo) / 1e3)), 1) return xsmoo[::downsample], ysmoo[::downsample]
3106cc75a8ceb58f29cded4353133eff7a737f8b
7,528
def sdot(s): """Returns the time derivative of a given state. Args: s(1x6 numpy array): the state vector [rx,ry,rz,vx,vy,vz] Returns: 1x6 numpy array: the time derivative of s [vx,vy,vz,ax,ay,az] """ mu_Earth = 398600.4405 r = np.linalg.norm(s[0:3]) a = -mu_Earth/(r**3)*s[0:3] p_j2 = j2_pert(s) p_drag = drag(s) a = a+p_j2+p_drag return np.array([*s[3:6],*a])
4e79054e194b5395953fbda30794e819c6700feb
7,529
def get_values(abf,key="freq",continuous=False): """returns Xs, Ys (the key), and sweep #s for every AP found.""" Xs,Ys,Ss=[],[],[] for sweep in range(abf.sweeps): for AP in cm.matrixToDicts(abf.APs): if not AP["sweep"]==sweep: continue Ys.append(AP[key]) Ss.append(AP["sweep"]) if continuous: Xs.append(AP["expT"]) else: Xs.append(AP["sweepT"]) return np.array(Xs),np.array(Ys),np.array(Ss)
8671d795410b8064fd70172da396ccbd4323c9a3
7,530
def geodetic2cd( gglat_deg_array, gglon_deg_array, ggalt_km_array, decimals=2, year=2021.0 ): """Transformation from Geodetic (lat, lon, alt) to Centered Dipole (CD) (lat, lon, alt). Author: Giorgio Savastano ([email protected]) Parameters ---------- gglon_deg_array : np.ndarray array containing geodetic longitude values in degrees gglat_deg_array : np.ndarray array containing geodetic latitude values in degrees ggalt_km_array : np.ndarray array containing geodetic altitude values in km decimals : int, default=2 Number of decimal places to round to. If decimals is negative, it specifies the number of positions to the left of the decimal point. year : float, default=2021.0 year for computing the IGRF Gauss coefficients Returns ------- tuple[np.ndarray, np.ndarray, np.ndarray] CD lat, lon, alt arrays """ if type(gglon_deg_array) == list: logger.info(" Converting list to np.ndarrays.") gglon_deg_array = np.asarray(gglon_deg_array) gglat_deg_array = np.asarray(gglat_deg_array) ggalt_km_array = np.asarray(ggalt_km_array) elif type(gglon_deg_array) != np.ndarray: logger.info(f" Converting {type(gglon_deg_array)} to np.ndarrays.") gglon_deg_array = np.asarray([gglon_deg_array]) gglat_deg_array = np.asarray([gglat_deg_array]) ggalt_km_array = np.asarray([ggalt_km_array]) x_geoc, y_geoc, z_geoc = pymap3d.geodetic2ecef( gglat_deg_array, gglon_deg_array, ggalt_km_array * 1000.0 ) x_cd, y_cd, z_cd = ecef2eccdf(x_geoc, y_geoc, z_geoc, year=year) colat_cd, long_cd, r_cd = ecef2spherical(x_cd, y_cd, z_cd) lat_cd = np.round(90 - colat_cd, decimals) alt_cd = np.round(r_cd - CONSTS.RE_M, decimals) return lat_cd, long_cd, alt_cd
b5a3a8622051e05f31e3f087869b8bebfd213fd9
7,531
import pickle def load_pickle(file_path): """ load the pickle object from the given path :param file_path: path of the pickle file :return: obj => loaded obj """ with open(file_path, "rb") as obj_des: obj = pickle.load(obj_des) # return the loaded object return obj
4770a152dad9c7d123f95a53642aff990f3590f7
7,532
def _expand_global_features(B, T, g, bct=True): """Expand global conditioning features to all time steps Args: B (int): Batch size. T (int): Time length. g (Tensor): Global features, (B x C) or (B x C x 1). bct (bool) : returns (B x C x T) if True, otherwise (B x T x C) Returns: Tensor: B x C x T or B x T x C or None """ if g is None: return None g = g.unsqueeze(-1) if g.dim() == 2 else g if bct: g_bct = g.expand(B, -1, T) return g_bct.contiguous() else: g_btc = g.expand(B, -1, T).transpose(1, 2) return g_btc.contiguous()
9d0ab550147d8658f0ff8fb5cfef8fc565c5f3d3
7,533
import argparse def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Find common kmers', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('file1', help='Input file 1', metavar='FILE1', type=argparse.FileType('rt')) parser.add_argument('file2', help='Input file 2', metavar='FILE2', type=argparse.FileType('rt')) parser.add_argument('-k', '--kmer', help='K-mer size', metavar='int', type=int, default=3) args = parser.parse_args() if args.kmer < 1: parser.error(f'--kmer "{args.kmer}" must be > 0') return args
fe999b12b65902ce51f8c3ea165012b17a0724ba
7,534
def plot_CDF(data, ax=None, reverse=False, plot=True, **plotargs): """ plot Cumulative Ratio. """ n_samples = len(data) X = sorted(data, reverse=reverse) Y = np.arange(1,n_samples+1)/n_samples if plot or ax: if ax is None: fig, ax = plt.subplots() ax.plot(X, Y, **plotargs) ax.set_ylabel("Cumulative Ratio") return ax return (X, Y)
25d9a83a9b560a89137c0e4eb6cd63761f39901f
7,535
def is_zsettable(s): """quick check that all values in a dict are reals""" return all(map(lambda x: isinstance(x, (int, float, long)), s.values()))
ad51e7419a37bec071be6aa2c1a4e9d62bce913c
7,536
from typing import Sequence def initialize_simulator(task_ids: Sequence[str], action_tier: str) -> ActionSimulator: """Initialize ActionSimulator for given tasks and tier.""" tasks = phyre.loader.load_compiled_task_list(task_ids) return ActionSimulator(tasks, action_tier)
8b54ae1c98d44839a33a8774de48e53f1ce9ca96
7,537
import asyncio async def async_unload_entry(hass: core.HomeAssistant, config_entry: config_entries.ConfigEntry) -> bool: """Unload a config entry.""" _LOGGER.debug("%s: async_unload_entry", DOMAIN) try: all_ok = True for platform in SUPPORTED_PLATFORMS: _LOGGER.debug("%s - async_setup_entry: unload platform: %s", DOMAIN, platform) platform_ok = await asyncio.gather(*[hass.config_entries.async_forward_entry_unload(config_entry, platform)]) if not platform_ok: _LOGGER.error("%s - async_setup_entry: failed to unload: %s (%s)", DOMAIN, platform, platform_ok) all_ok = platform_ok if DATA_SERVER in hass.data[DOMAIN] and hass.data[DOMAIN][DATA_SERVER] is not None: BuiltInServer = hass.data[DOMAIN][DATA_SERVER] if await BuiltInServer.async_dSServerStop("integration_unload") is False: _LOGGER.error("%s - async_setup_entry: failed to unload server: %s", DOMAIN, BuiltInServer) all_ok = False else: hass.data[DOMAIN][DATA_SERVER] = None hass.data[DOMAIN][config_entry.entry_id]["unsub_options_update_listener"]() if all_ok: hass.data[DOMAIN].pop(config_entry.entry_id) return all_ok except Exception as e: _LOGGER.error("%s - async_unload_entry: setup devices failed: %s (%s.%s)", DOMAIN, str(e), e.__class__.__module__, type(e).__name__) return False
50e2011c35527608ba98c4cdb1729d7f909d295a
7,538
def import_sensitivities(input, file_location): """ Ratio is the C/O starting gas ratio file_location is the LSR C and O binding energy, false to load the base case """ tol, ratio = input try: data = pd.read_csv(file_location + '/all-sensitivities/' + tol + '{:.1f}RxnSensitivity.csv'.format(ratio)) data = data.values data = data.tolist() return data except: print('Cannot find ' + file_location + '/all-sensitivities/' + tol + '{:.1f}RxnSensitivity.csv'.format(ratio))
c0b0c9d740335032b4d196232c3166818aa77a1a
7,539
import re import ntpath def extract_files_to_process(options, company_file): """Extract the files from the ENER zip file and the ITR/DFP inside of it, and collect all the XML files """ force_download = options.get("force_download", False) local_base_path = _doc_local_base_path(options, company_file) # Make sure the file is in the local cache local_file = "{0}/{1}". \ format(local_base_path, company_file.file_name) if not exists(options, local_file): copy_file(options, company_file.file_url, local_file) working_local_base_path = \ _doc_local_working_base_path(options, company_file) file_to_export = "{0}/{1}".format(local_base_path, company_file.file_name) if exists(options, working_local_base_path): if force_download: # Clean the folder of the company file (working folder) delete_all(options, working_local_base_path) files_ref = extract_zip( options, file_to_export, working_local_base_path) else: files_ref = listdir(options, working_local_base_path) # If the folder is empty if not files_ref: mkdirs(options, working_local_base_path) files_ref = extract_zip( options, file_to_export, working_local_base_path) else: mkdirs(options, working_local_base_path) files_ref = extract_zip( options, file_to_export, working_local_base_path) available_files = {} if company_file.doc_type in ["ITR", "DFP"]: for the_file in files_ref: if re.match(RE_FILE_BY_XML, the_file, re.IGNORECASE): filename = ntpath.basename(the_file) available_files[filename] = the_file elif re.match(RE_FILE_BY_ITR, the_file, re.IGNORECASE): itr_dest_folder = "{0}/itr_content/".\ format(working_local_base_path) itr_files = extract_zip(options, the_file, itr_dest_folder) for itr_file in itr_files: filename = ntpath.basename(itr_file) available_files["itr/{}".format(filename)] = itr_file # Once unzipped, we can delete the original file from the elif re.match(RE_FILE_BY_DFP, the_file, re.IGNORECASE): dfp_dest_folder = "{0}/dfp_content/".\ format(working_local_base_path) dfp_files = extract_zip(options, the_file, dfp_dest_folder) for dfp_file in dfp_files: filename = ntpath.basename(dfp_file) available_files["dfp/{}".format(filename)] = dfp_file return available_files
963dd738224c36311791c54d964ae5b95d345a7f
7,540
import os def pg_dump(dsn, output): """ Сохраняет схему БД в файл :param dsn: Строка подключения. Например: username@localhost:5432/dname :param output: Имя файла для сохранения DDL :type dsn: str :type output: str """ host, port, user, pwd, dbname, socket = parse_dsn(dsn) args = [ autodetect_pg_dump_path(), "-h", socket or host, "-p", str(port), "-U", user, "-d", dbname, "--schema-only", "--no-owner", "--no-privileges", "--no-tablespaces", "--no-unlogged-table-data", "-F", "p", "-f", output, ] env = os.environ.copy() if pwd: env["PGPASSWORD"] = pwd else: args.append("--no-password") return shell(args, env)
cf131054daacd97f7673456c277e8ca6d3f9f066
7,541
def merge(source, dest): """ Copy all properties and relations from one entity onto another, then mark the source entity as an ID alias for the destionation entity. """ if source.id == dest.id: return source if dest.same_as == source.id: return source if source.same_as == dest.id: return dest if dest.same_as is not None: # potential infinite recursion here. canonical = Entity.by_id(dest.same_as) if canonical is not None: return merge(source, canonical) if dest.schema.is_parent(source.schema): dest.schema = source.schema dest_valid = [a.name for a in dest.schema.attributes] dest_active = [p.name for p in dest.active_properties] for prop in source.properties: prop.entity = dest if prop.name in dest_active: prop.active = False if prop.name not in dest_valid: properties_logic.delete(prop) for rel in source.inbound: rel.target = dest db.session.add(rel) for rel in source.outbound: rel.source = dest db.session.add(rel) source.same_as = dest.id db.session.flush() _entity_changed.delay(dest.id, 'update') _entity_changed.delay(source.id, 'delete') return dest
9cb6963ba0e15e639915e27d7c369394d7088231
7,542
import json import re def create_summary_text(summary): """ format a dictionary so it can be printed to screen or written to a plain text file Args: summary(dict): the data to format Returns: textsummary(str): the summary dict formatted as a string """ summaryjson = json.dumps(summary, indent=3) textsummary = re.sub('[{},"]', '', summaryjson) return textsummary
3a8dd508b760a0b9bfe925fa2dc07d53dee432af
7,543
from datetime import datetime import random def random_datetime(start, end): """Generate a random datetime between `start` and `end`""" return start + datetime.timedelta( # Get a random amount of seconds between `start` and `end` seconds=random.randint(0, int((end - start).total_seconds())), )
c3cf7a0fb616b9f157d5eb86b3d76f1cd811308f
7,544
def maximo_basico(a: float, b: float) -> float: """Toma dos números y devuelve el mayor. Restricción: No utilizar la función max""" if a > b: return a return b
f98db565243587015c3b174cf4130cbc32a00e22
7,545
def listas_mesmo_tamanho(lista_de_listas): """ Recebe uma lista de listas e retorna 'True' caso todas as listas sejam de mesmo tamanho e 'False', caso contrário """ tamanho_padrao = len(lista_de_listas[0]) for lista in lista_de_listas: if(len(lista) != tamanho_padrao): return False return True
3a405f36bf8cd906fc603e9774cc23e07738e123
7,546
def compute_all_mordred_descrs(mols, max_cpus=None, quiet=True): """ Compute all Mordred descriptors, including 3D ones Args: mols: List of RDKit mol objects for molecules to compute descriptors for. max_cpus: Max number of cores to use for computing descriptors. None means use all available cores. quiet: If True, avoid displaying progress indicators for computations. Returns: res_df: DataFrame containing Mordred descriptors for molecules. """ calc = get_mordred_calculator(ignore_3D=False) log.debug("Computing Mordred descriptors") res_df = calc.pandas(mols, quiet=quiet, nproc=max_cpus) log.debug("Done computing Mordred descriptors") res_df = res_df.fill_missing().applymap(float) return res_df
cc5002096e82fb0c53ca6aa5523d2f81e43ca760
7,547
def self_quarantine_policy_40(): """ Real Name: b'self quarantine policy 40' Original Eqn: b'1-PULSE(self quarantine start 40, self quarantine end 40-self quarantine start 40)*self quarantine effectiveness 40' Units: b'dmnl' Limits: (None, None) Type: component b'' """ return 1 - functions.pulse(__data['time'], self_quarantine_start_40(), self_quarantine_end_40() - self_quarantine_start_40()) * self_quarantine_effectiveness_40()
87ae16bd53bdd08a71231297949c3b995c7f9ba0
7,548
def fetch_mate_variant_record(vcfhandle, chr_mate, pos_mate, mateid, count=0, slop=50): """ We fetch the MateID variant Record for the breakend being process :param vcfhandle: :param chr_mate: :param pos_mate: :param mateid: must be a string and not a tuple :param count: Normally the mate_record is found really quickly after first try because the mate_record is at expected pos_mate position; in some case not so we have to expand the search (hence the slop value defined below); we limit the expansion to three tries, after that we search the whole contig; It is defined here to be used recurrently with the method :param slop: this slop differs in purpose from the user given slop; the point here is to find the mate_record as fast as possible within the vcf record so this slop here is just a region size to lookup for the vcf record :return: a Unique VariantRecord (it must be one and one only) otherwise None or raise Error """ res_fetch = vcfhandle.fetch(contig=str(chr_mate), start=(int(pos_mate) - slop) - 1, end=int(pos_mate) + slop) total_items_found = sum(1 for v in res_fetch) logger.debug("search region: {}:{}-{}".format(str(chr_mate), str((int(pos_mate) - slop) - 1), str(int(pos_mate) + slop))) logger.debug("res_fetch ==> " + str(res_fetch)) logger.debug("total_items_found ==> " + str(total_items_found)) if count < 3: res_fetch = vcfhandle.fetch(contig=str(chr_mate), start=(int(pos_mate) - slop) - 1, end=int(pos_mate) + slop) else: res_fetch = vcfhandle.fetch(contig=str(chr_mate)) try: if total_items_found >= 1: rec_found = None ## we check that the mate id is present in the search result for rec in res_fetch: logger.debug("mate rec captured by res_fetch ==> " + str(rec)) logger.debug(str(rec.chrom) + ":" + str(rec.pos)) if 'MATEID' not in rec.info.keys(): # if we increase the slop, we might found records that are not BND breakends and therefore no MATEID is present in the INFO field continue logger.debug("mateid we want ot find in captured/fetched records: " + str(mateid)) # NOTE: rec.info['MATEID'] returns a tuple such as: ('MantaBND:2:254200:254201:0:0:0:1',) if str(rec.id) == str(mateid): logger.debug("yeah mate id found ... returning rec --> " + str(rec)) rec_found = rec break if rec_found is None: count += 1 logger.debug("rec is still none") logger.info("broadening the search by increasing the slop around pos_mate b/c the value in pos_mate might not be equivalent to the value in pos_alt: loop_" + str(count)) return fetch_mate_variant_record(vcfhandle, chr_mate, pos_mate, mateid, count=count, slop=1000 + slop) else: return rec_found else: count += 1 logger.info("broadening the search by increasing the slop around pos_mate b/c the value in pos_mate might not be equivalent to the value in pos_alt: loop_" + str(count)) return fetch_mate_variant_record(vcfhandle, chr_mate, pos_mate, mateid, count=count, slop=1000 + slop) except Exception as e: logger.error(e) logger.error("ERROR: MATE NOT FOUND; Check your VCF input to see if the id << " + str(mateid) + " >> exists.") exit(2)
b09f37f8b2bf9fc3b9513c33c2857be7034629b4
7,549
def knapsack_bqm(cities, values, weights, total_capacity, value_r=0, weight_r=0): """ build the knapsack binary quadratic model From DWave Knapsack examples Originally from Andrew Lucas, NP-hard combinatorial problems as Ising spin glasses Workshop on Classical and Quantum Optimization; ETH Zuerich - August 20, 2014 based on Lucas, Frontiers in Physics _2, 5 (2014) See # Q-Alpha version for original introduction of value_r and weight_r value_r: the proportion of value contributed from the objects outside of the knapsack. For the standard knapsack problem this is 0, but in the case of GDP a closed city retains some % of GDP value; or for health problems it may contribute negative value (-1). weight_r: the proportion of weight contributed from the objects outside of the knapsack. For the standard knapsack problem this is 0, but in the case of sick people we might consider that a closed city retains some % of its sick people over time; or for health problems it may contribute negative value (-1) """ # Initialize BQM - use large-capacity BQM so that the problem can be # scaled by the user. bqm = dimod.AdjVectorBQM(dimod.Vartype.BINARY) # Lagrangian multiplier # First guess as suggested in Lucas's paper lagrange = max(values) # Number of objects x_size = len(values) # Lucas's algorithm introduces additional slack variables to handle # the inequality. max_y_index indicates the maximum index in the y # sum; hence the number of slack variables. max_y_index = ceil(log(total_capacity)) # Slack variable list for Lucas's algorithm. The last variable has # a special value because it terminates the sequence. y = [2**n for n in range(max_y_index - 1)] y.append(total_capacity + 1 - 2**(max_y_index - 1)) # Q-Alpha - calculate the extra constant in second part of problem hamiltonian C = sum([weight * weight_r for weight in weights]) # Q-Alpha - change weights to weight*(1-weight_r) weights = [weight*(1-weight_r) for weight in weights] # Q-Alpha - change values to value*(1-value_r) values = [value*(1-value_r) for value in values] # Hamiltonian xi-xi terms for k in range(x_size): # Q-Alpha add final term lagrange * C * weights[k] bqm.set_linear( cities[k], lagrange * (weights[k] ** 2) - values[k] + lagrange * C * weights[k]) # Hamiltonian xi-xj terms for i in range(x_size): for j in range(i + 1, x_size): key = (cities[i], cities[j]) bqm.quadratic[key] = 2 * lagrange * weights[i] * weights[j] # Hamiltonian y-y terms for k in range(max_y_index): # Q-Alpha add final term -lagrange * C * y[k] bqm.set_linear('y' + str(k), lagrange * (y[k]**2) - lagrange * C * y[k]) # Hamiltonian yi-yj terms for i in range(max_y_index): for j in range(i + 1, max_y_index): key = ('y' + str(i), 'y' + str(j)) bqm.quadratic[key] = 2 * lagrange * y[i] * y[j] # Hamiltonian x-y terms for i in range(x_size): for j in range(max_y_index): key = (cities[i], 'y' + str(j)) bqm.quadratic[key] = -2 * lagrange * weights[i] * y[j] return bqm
0a00c5fbcf30e36b7d6a03b9edc4029582b001fd
7,550
from typing import List def nltk_punkt_de(data: List[str], model=None) -> List[str]: """Sentence Segmentation (SBD) with NLTK's Punct Tokenizer Parameters: ----------- data : List[str] list of N documents as strings. Each document is then segmented into sentences. model (Default: None) Preloaded instance of the NLP model. See nlptasks.sbd.get_model Returns: -------- List[str] list of M sentences as strings. Pls note that the information about the relationship to the document is lost. Example: -------- import nlptasks as nt import nlptasks.sbd docs = ["Die Kuh ist bunt. Die Bäuerin mäht die Wiese."] sents = nt.sbd.nltk_punkt_de(docs) Help: ----- - https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.punkt """ # SBD sentences = [] for rawstr in data: sents = nltk.tokenize.sent_tokenize(rawstr, language="german") sentences.extend(sents) # done return sentences
10b924070ebcb3062c9b40f4f6ca0a3a006f8d2e
7,551
def is_pattern_error(exception: TypeError) -> bool: """Detect whether the input exception was caused by invalid type passed to `re.search`.""" # This is intentionally simplistic and do not involve any traceback analysis return str(exception) == "expected string or bytes-like object"
623246404bbd54bc82ff5759bc73be815d613731
7,552
import pdb def iwave_modes_banded(N2, dz, k=None): """ !!! DOES NOT WORK!!! Calculates the eigenvalues and eigenfunctions to the internal wave eigenvalue problem: $$ \left[ \frac{d^2}{dz^2} - \frac{1}{c_0} \bar{\rho}_z \right] \phi = 0 $$ with boundary conditions """ nz = N2.shape[0] # Remove the surface values if k is None: k = nz-2 dz2 = 1/dz**2 # Construct the LHS matrix, A A = np.vstack([-1*dz2*np.ones((nz,)),\ 2*dz2*np.ones((nz,)),\ -1*dz2*np.ones((nz,)),\ ]) # BC's #A[0,0] = -1. #A[0,1] = 0. #A[-1,-1] = -1. #A[-1,-2] = 0. A[1,0] = -1. A[2,0] = 0. A[1,-1] = -1. A[0,-1] = 0. # Now convert from a generalized eigenvalue problem to # A.v = lambda.B.v # a standard problem # A.v = lambda.v # By multiply the LHS by inverse of B # (B^-1.A).v = lambda.v # B^-1 = 1/N2 since B is diagonal A[0,:] /= N2 A[1,:] /= N2 A[2,:] /= N2 w, phi = linalg.eig_banded(A) pdb.set_trace() ## Main diagonal #dd = 2*dz2*np.ones((nz,)) #dd /= N2 #dd[0] = -1 #dd[-1] = -1 ## Off diagonal #ee = -1*dz2*np.ones((nz-1,)) #ee /= N2[0:-1] #ee[0] = 0 #ee[-1] = 0 ## Solve... (use scipy not numpy) #w, phi = linalg.eigh_tridiagonal(dd, ee ) ##### c = 1. / np.power(w, 0.5) # since term is ... + N^2/c^2 \phi # Sort by the eigenvalues idx = np.argsort(c)[::-1] # descending order ## Calculate the actual phase speed cn = np.real( c[idx] ) idxgood = ~np.isnan(cn) phisort = phi[:,idx] return np.real(phisort[:,idxgood]), np.real(cn[idxgood])
f4016fb4acd1c5aa024d8ac1e69262dec9057713
7,553
def parse_fastq_pf_flag(records): """Take a fastq filename split on _ and look for the pass-filter flag """ if len(records) < 8: pf = None else: fastq_type = records[-1].lower() if fastq_type.startswith('pass'): pf = True elif fastq_type.startswith('nopass'): pf = False elif fastq_type.startswith('all'): pf = None else: raise ValueError("Unrecognized fastq name: %s" % ( "_".join(records),)) return pf
9a46022aa6e07ed3ca7a7d80933ee23e26d1ca9a
7,554
def rule_manager(): """ Pytest fixture for generating rule manager instance """ ignore_filter = IgnoreFilter(None, verbose=False) return RuleManager(None, ignore_filter, verbose=False)
ce5e9ecf482b5dfd0e3b99b2367605d6e488f7e7
7,555
def zeros(fn, arr, *args): """ Find where a function crosses 0. Returns the zeroes of the function. Parameters ---------- fn : function arr : array of arguments for function *args : any other arguments the function may have """ # the reduced function, with only the argument to be solved for (all other arguments fixed): def fn_reduced(array): return fn(array, *args) # the array of values of the function: fn_arr = fn_reduced(arr) # looking where the function changes sign... sign_change_arr = np.where(np.logical_or((fn_arr[:-1] < 0.) * (fn_arr[1:] > 0.), (fn_arr[:-1] > 0.) * (fn_arr[1:] < 0.)) )[0] # or, just in case, where it is exactly 0! exact_zeros_arr = np.where(fn_arr == 0.)[0] # defining the array of 0-crossings: cross_arr = [] # first, interpolating between the sign changes if len(sign_change_arr) > 0: for i in range(len(sign_change_arr)): cross_arr.append( brentq(fn_reduced, arr[sign_change_arr[i]], arr[sign_change_arr[i] + 1]) ) # and then adding those places where it is exactly 0 if len(exact_zeros_arr) > 0: for i in range(len(exact_zeros_arr)): cross_arr.append(arr[exact_zeros_arr[i]]) # sorting the crossings in increasing order: cross_arr = np.sort(np.array(cross_arr)) return cross_arr
129a162912f86ee52fc57b1a3a46acaf402598f5
7,556
import math def create_low_latency_conv_model(fingerprint_input, model_settings, is_training): """Builds a convolutional model with low compute requirements. This is roughly the network labeled as 'cnn-one-fstride4' in the 'Convolutional Neural Networks for Small-footprint Keyword Spotting' paper: http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1478.pdf Here's the layout of the graph: (fingerprint_input) v [Conv2D]<-(weights) v [BiasAdd]<-(bias) v [Relu] v [MatMul]<-(weights) v [BiasAdd]<-(bias) v [MatMul]<-(weights) v [BiasAdd]<-(bias) v [MatMul]<-(weights) v [BiasAdd]<-(bias) v This produces slightly lower quality results than the 'conv' model, but needs fewer weight parameters and computations. During training, dropout nodes are introduced after the relu, controlled by a placeholder. Args: fingerprint_input: TensorFlow node that will output audio feature vectors. model_settings: Dictionary of information about the model. is_training: Whether the model is going to be used for training. Returns: TensorFlow node outputting logits results, and optionally a dropout placeholder. """ if is_training: dropout_prob = tf.placeholder(tf.float32, name='dropout_prob') input_frequency_size = model_settings['dct_coefficient_count'] input_time_size = model_settings['spectrogram_length'] fingerprint_4d = tf.reshape(fingerprint_input, [-1, input_time_size, input_frequency_size, 1]) first_filter_width = 8 first_filter_height = input_time_size first_filter_count = 186 first_filter_stride_x = 1 first_filter_stride_y = 4 first_weights = tf.Variable( tf.truncated_normal( [first_filter_height, first_filter_width, 1, first_filter_count], stddev=0.01)) first_bias = tf.Variable(tf.zeros([first_filter_count])) first_conv = tf.nn.conv2d(fingerprint_4d, first_weights, [ 1, first_filter_stride_y, first_filter_stride_x, 1 ], 'VALID') + first_bias first_relu = tf.nn.relu(first_conv) if is_training: first_dropout = tf.nn.dropout(first_relu, dropout_prob) else: first_dropout = first_relu first_conv_output_width = math.floor( (input_frequency_size - first_filter_width + first_filter_stride_x) / first_filter_stride_x) first_conv_output_height = math.floor( (input_time_size - first_filter_height + first_filter_stride_y) / first_filter_stride_y) first_conv_element_count = int( first_conv_output_width * first_conv_output_height * first_filter_count) flattened_first_conv = tf.reshape(first_dropout, [-1, first_conv_element_count]) first_fc_output_channels = 128 first_fc_weights = tf.Variable( tf.truncated_normal( [first_conv_element_count, first_fc_output_channels], stddev=0.01)) first_fc_bias = tf.Variable(tf.zeros([first_fc_output_channels])) first_fc = tf.matmul(flattened_first_conv, first_fc_weights) + first_fc_bias if is_training: second_fc_input = tf.nn.dropout(first_fc, dropout_prob) else: second_fc_input = first_fc second_fc_output_channels = 128 second_fc_weights = tf.Variable( tf.truncated_normal( [first_fc_output_channels, second_fc_output_channels], stddev=0.01)) second_fc_bias = tf.Variable(tf.zeros([second_fc_output_channels])) second_fc = tf.matmul(second_fc_input, second_fc_weights) + second_fc_bias if is_training: final_fc_input = tf.nn.dropout(second_fc, dropout_prob) else: final_fc_input = second_fc label_count = model_settings['label_count'] final_fc_weights = tf.Variable( tf.truncated_normal( [second_fc_output_channels, label_count], stddev=0.01)) final_fc_bias = tf.Variable(tf.zeros([label_count])) final_fc = tf.matmul(final_fc_input, final_fc_weights) + final_fc_bias if is_training: return final_fc, dropout_prob else: return final_fc
3b03e84c9af5a6d1134736d8757e15039bb196b8
7,557
import argparse def get_args(description: str = "YouTube") -> argparse.Namespace: """ Retrieve parsed arguments as a Namespace. Parameters ---------- description : str Description given to ArgumentParser. Returns ------- args : argparse.Namespace Namespace with arguments specified. """ parser = argparse.ArgumentParser(description) # Hyperparameters for pretraining embedding # TODO Find correct lambda value from paper parser.add_argument( "--cmc-lambda", action="store", dest="CMC_LAMBDA", default=1, type=float, help="Weight for combining TDC and CMC loss. Defaults to 1.", ) parser.add_argument( "--lr", action="store", dest="LR", default=1e-4, type=float, help="Learning rate for Adam optimizer. Defaults to 1e-4.", ) parser.add_argument( "--batch-size", action="store", dest="BATCH_SIZE", default=32, type=int, help="Batch size for pretraining embedding. Defaults to 32.", ) parser.add_argument( "--nb-steps", action="store", dest="NB_STEPS", default=200000, type=int, help="Number of training steps for embedding. Defaults to 200000.", ) # Misc. arguments for pretraining embedding parser.add_argument( "--save-interval", action="store", dest="SAVE_INTERVAL", default=10000, type=int, help="Interval for saving models during pretraining. Defaults to 10000.", ) parser.add_argument( "--tsne-interval", action="store", dest="TSNE_INTERVAL", default=1000, type=int, help="Interval for plotting t-SNE during pretraining. Defaults to 1000.", ) # Hyperparameters for training DQN agent parser.add_argument( "--ckpt-freq", action="store", dest="CKPT_FREQ", default=16, type=int, help="Frequency of checkpoints (N) selected from embedding. Defaults to 16.", ) parser.add_argument( "--ckpt-horizon", action="store", dest="CKPT_HORIZON", default=1, type=int, help=" Horizon(Δt) for checkpoints. Defaults to 1.", ) parser.add_argument( "--imitation-cutoff", action="store", dest="IMITATION_CUTOFF", default=0.5, type=float, help="Cutoff (α) for giving imitation reward. Defaults to 0.5.", ) args = parser.parse_args() return args
ca2013c476cf7df1dbdb458e4c4db0a5c4124195
7,558
import os def _DropEmptyPathSegments(path): """Removes empty segments from the end of path. Args: path: A filesystem path. Returns: path with trailing empty segments removed. Eg /duck/// => /duck. """ while True: (head, tail) = os.path.split(path) if tail: break path = head return path
23060efc37343bf7ccec483847264c5f6a7c811b
7,559
def _format_author(url, full_name): """ Helper function to make author link """ return u"<a class='more-info' href='%s'>%s</a>" % (url, full_name)
50f001c2358b44bb95da628cc630a2ed3ea8ddfd
7,560
def all_series(request: HttpRequest) -> JsonResponse: """ View that serves all the series in a JSON array. :param request: The original request. :return: A JSON-formatted response with the series. """ return JsonResponse([ _series_response(request, s) for s in get_response(request) ], safe=False)
01657615b53a4316a9ec0ad581e009928cfefed2
7,561
def stlx_powerset(s): """If s is a set, the expression pow(s) computes the power set of s. The power set of s is defined as the set of all subsets of s.""" def powerset_generator(i): for subset in it.chain.from_iterable(it.combinations(i, r) for r in range(len(i)+1)): yield set(subset) return SetlxSet(SetlxSet(z) for z in powerset_generator(s))
9297efa03636ff19da7aae4e60593bcc9933d6bb
7,562
import copy def get_entries_configuration(data): """Given the dictionary of resources, returns the generated factory xml file Args: data (dict): A dictionary similar to the one returned by ``get_information`` Returns: str: The factory xml file as a string """ entries_configuration = "" for _, site_information in sorted(data.items()): for celem, ce_information in sorted(site_information.items()): for _, q_information in sorted(ce_information.items()): for entry, entry_information in sorted(q_information.items()): entry_configuration = copy.deepcopy(entry_information) entry_configuration["entry_name"] = entry # Can we get these information (next key)? entry_configuration["attrs"]["GLIDEIN_REQUIRED_OS"] = { "comment": "This value has been hardcoded", "value": "any", } # Probably we can use port from attribute AddressV1 or CollectorHost entry_configuration["gatekeeper"] = celem + " " + celem + ":9619" entry_configuration["rsl"] = "" entry_configuration["attrs"] = get_attr_str(entry_configuration["attrs"]) if "submit_attrs" in entry_configuration: entry_configuration["submit_attrs"] = get_submit_attr_str(entry_configuration["submit_attrs"]) else: entry_configuration["submit_attrs"] = "" entry_configuration["limits"] = get_limits_str(entry_configuration["limits"]) entry_configuration["submission_speed"] = get_submission_speed( entry_configuration["submission_speed"] ) entries_configuration += ENTRY_STUB % entry_configuration return entries_configuration
db228df9062b8801f7edde5d1e2977ef1e451b5f
7,563
def validinput(x0, xf, n): """Checks that the user input is valid. Args: x0 (float): Start value xf (float): End values n (int): Number of sample points Returns: False if x0 > xf or if True otherwise """ valid = True if x0 > xf: valid = False if int(n) != n: valid = False if not valid: print("Please recheck your input") return valid
096e0702eb8fe47486d4f03e5b3c55c0835807cd
7,564
def multi_class_bss(predictions: np.ndarray, targets: np.ndarray) -> float: """ Brier Skill Score: bss = 1 - bs / bs_{ref} bs_{ref} will be computed for a model that makes a predictions according to the prevalance of each class in dataset :param predictions: probability score. Expected Shape [N, C] :param targets: target class (int) per sample. Expected Shape [N] """ # BS bs = multi_class_bs(predictions, targets) # no skill BS no_skill_prediction = [(targets == target_cls).sum() / targets.shape[0] for target_cls in range(predictions.shape[-1])] no_skill_predictions = np.tile(np.array(no_skill_prediction), (predictions.shape[0], 1)) bs_ref = multi_class_bs(no_skill_predictions, targets) return 1.0 - bs / bs_ref
d932649e2eb1a1b91aa2cf3882b0f4b74531dea7
7,565
def get_arxiv_id_or_ascl_id(result_record): """ :param result_record: :return: """ identifiers = result_record.get("identifier", []) for identifier in identifiers: if "arXiv:" in identifier: return identifier.replace("arXiv:", "") if "ascl:" in identifier: return identifier.replace("ascl:", "") return ""
4270fe7ad8f2136ad5d53272acb02aaf60970ea3
7,566
from typing import Mapping from typing import Tuple import torch def get_query_claim_similarities( sim: Mapping[Tuple[str, int], float], softmax: bool, ) -> Mapping[Tuple[str, int], float]: """ Preprocess query claim similarities. :param sim: A mapping from (premise_id, claim_id) to the logits of the similarity model, shape: (2,). :param softmax: Whether to apply softmax or use raw logits. :return: A mapping from (premise_id, claim_id) to scalar similarity value. """ # ensure consistent order pairs = sorted(sim.keys()) # create tensor,shape: (num_pairs, 2) sim = torch.stack( tensors=[ torch.as_tensor(data=sim[pair], dtype=torch.float32) for pair in pairs ], dim=0, ) # apply softmax is requested if softmax: sim = sim.softmax(dim=-1) # take probability of "similar" class sim = sim[:, 1] # one row corresponds to one pair similarity return dict(zip(pairs, sim))
6f1eb9495c7b7243f544564315ca3ae09f31da92
7,567
import re def regexp(options: dict): """ Apply a regexp method to the dataset :param options: contains two values: - find: which string should be find - replace: string that will replace the find string """ def apply_regexp(dataset, tag): """ Apply a regexp to the dataset """ element = dataset.get(tag) if element is not None: element.value = re.sub( options["find"], options["replace"], str(element.value) ) return apply_regexp
20cfaf4f9286ad582dc9f4fea4184cf1c7d0de34
7,568
def do_one_subject(sub_curr, params, verbose=False): """ launch sessions processing for sub_curr parameters: ----------- sub_curr: dict contains subject base directory contains subject index params: dict parameters for layout, data and analysis """ sub_idx, sub_dir = sub_curr['sub_idx'], sub_curr['sub_dir'] nb_sess = params['data']['nb_sess'] dlayo = params['layout'] sess_idx = range(1, nb_sess+1) sess_dirs = [osp.join(sub_dir, (dlayo['dir']['sess+']).format(idx)) for idx in sess_idx] sesss_info = {} sess_curr = {} for sess_idx, sess_dir in enumerate(sess_dirs, 1): # start idx at 1 sess_curr['sess_idx'] = sess_idx sess_curr['sess_dir'] = sess_dir sess_str = (dlayo['dir']['sess+']).format(sess_idx) if verbose: print('\n' + '---'*11 + "\n" + sess_str) sesss_info[sess_str] = do_one_sess(sess_curr, sub_curr, params, verbose=verbose) return sesss_info
68ba212eeccde0197c587a0b929198b2a042328d
7,569
def comp_skin_effect(self, freq, T_op=20, T_ref=20, type_skin_effect=1): """Compute the skin effect factor for the conductor Parameters ---------- self : Conductor an Conductor object freq: float electrical frequency [Hz] T_op: float Conductor operational temperature [degC] T_ref: float Conductor reference temperature [degC] type_skin_effect: int Model type for skin effect calculation: - 1: analytical model (default) Returns ---------- Xkr_skinS : float skin effect coeff for resistance at freq Xke_skinS : float skin effect coeff for inductance at freq """ # initialization Xkr_skinS = 1 Xke_skinS = 1 if type_skin_effect == 1: # analytical calculations based on Pyrhonen sigmar = self.cond_mat.elec.get_conductivity(T_op=T_op, T_ref=T_ref) mu0 = 4 * pi * 1e-7 ws = 2 * pi * freq Slot = self.parent.parent.slot # nsw = len(ws) # case of preformed rectangular wire CondType11 if hasattr(self, "Wwire") and hasattr(self, "Hwire"): Hwire = self.Hwire Wwire = self.Wwire Nwppc_rad = self.Nwppc_rad Nwppc_tan = self.Nwppc_tan # case of round wire CondType12 - approximation based on rectangular wire formula elif hasattr(self, "Wwire") and not hasattr(self, "Hwire"): Hwire = self.Wwire Wwire = self.Wwire Nwppc_tan = self.Nwppc Nwppc_rad = self.Nwppc # case of bar conductor elif hasattr(self, "Hbar") and hasattr(self, "Wbar"): Hwire = self.Hbar Wwire = self.Wbar Nwppc_tan = 1 Nwppc_rad = 1 Alpha_wind = Slot.comp_angle_active_eq() R_wind = Slot.comp_radius_mid_active() W2s = 2 * R_wind * sin(Alpha_wind) # average resistance factor over the slot ksi = Hwire * sqrt((1 / 2) * ws * mu0 * sigmar * Nwppc_tan * Wwire / W2s) phi_skin = self.comp_phi_skin(ksi) psi_skin = self.comp_psi_skin(ksi) phip_skin = self.comp_phip_skin(ksi) psip_skin = self.comp_psip_skin(ksi) Xkr_skinS = phi_skin + ((Nwppc_rad ** 2 - 1) / 3) * psi_skin Xke_skinS = (1 / Nwppc_rad ** 2) * phip_skin + ( 1 - 1 / Nwppc_rad ** 2 ) * psip_skin return Xkr_skinS, Xke_skinS
b71f4385d600713f3fff559e0836d9c532b79b73
7,570
import copy import scipy def insert_point_into_G(G_, point, node_id=100000, max_distance_meters=5, nearby_nodes_set=set([]), allow_renaming=True, verbose=False, super_verbose=False): """ Insert a new node in the graph closest to the given point. Notes ----- If the point is too far from the graph, don't insert a node. Assume all edges have a linestring geometry http://toblerity.org/shapely/manual.html#object.simplify Sometimes the point to insert will have the same coordinates as an existing point. If allow_renaming == True, relabel the existing node. convert linestring to multipoint? https://github.com/Toblerity/Shapely/issues/190 TODO : Implement a version without renaming that tracks which node is closest to the desired point. Arguments --------- G_ : networkx graph Input networkx graph, with edges assumed to have a dictioary of properties that includes the 'geometry' key. point : shapely Point Shapely point containing (x, y) coordinates node_id : int Unique identifier of node to insert. Defaults to ``100000``. max_distance_meters : float Maximum distance in meters between point and graph. Defaults to ``5``. nearby_nodes_set : set Set of possible edge endpoints to search. If nearby_nodes_set is not empty, only edges with a node in this set will be checked (this can greatly speed compuation on large graphs). If nearby_nodes_set is empty, check all possible edges in the graph. Defaults to ``set([])``. allow_renameing : boolean Switch to allow renaming of an existing node with node_id if the existing node is closest to the point. Defaults to ``False``. verbose : boolean Switch to print relevant values to screen. Defaults to ``False``. super_verbose : boolean Switch to print mucho values to screen. Defaults to ``False``. Returns ------- G_, node_props, min_dist : tuple G_ is the updated graph node_props gives the properties of the inserted node min_dist is the distance from the point to the graph """ # check if node_id already exists in G # if node_id in set(G_.nodes()): # print ("node_id:", node_id, "already in G, cannot insert node!") # return best_edge, min_dist, best_geom = get_closest_edge_from_G( G_, point, nearby_nodes_set=nearby_nodes_set, verbose=super_verbose) [u, v, key] = best_edge G_node_set = set(G_.nodes()) if verbose: print("Inserting point:", node_id) print("best edge:", best_edge) print(" best edge dist:", min_dist) u_loc = [G_.nodes[u]['x'], G_.nodes[u]['y']] v_loc = [G_.nodes[v]['x'], G_.nodes[v]['y']] print("ploc:", (point.x, point.y)) print("uloc:", u_loc) print("vloc:", v_loc) if min_dist > max_distance_meters: if verbose: print("min_dist > max_distance_meters, skipping...") return G_, {}, -1, -1 else: # updated graph # skip if node exists already if node_id in G_node_set: if verbose: print("Node ID:", node_id, "already exists, skipping...") return G_, {}, -1, -1 # G_.edges[best_edge[0]][best_edge[1]][0]['geometry'] line_geom = best_geom # Length along line that is closest to the point line_proj = line_geom.project(point) # Now combine with interpolated point on line new_point = line_geom.interpolate(line_geom.project(point)) x, y = new_point.x, new_point.y ################# # create new node try: # first get zone, then convert to latlon _, _, zone_num, zone_letter = utm.from_latlon(G_.nodes[u]['lat'], G_.nodes[u]['lon']) # convert utm to latlon lat, lon = utm.to_latlon(x, y, zone_num, zone_letter) except: lat, lon = y, x # set properties # props = G_.nodes[u] node_props = {'highway': 'insertQ', 'lat': lat, 'lon': lon, 'osmid': node_id, 'x': x, 'y': y} # add node G_.add_node(node_id, **node_props) # assign, then update edge props for new edge _, _, edge_props_new = copy.deepcopy( list(G_.edges([u, v], data=True))[0]) # remove extraneous 0 key # print ("edge_props_new.keys():", edge_props_new) # if list(edge_props_new.keys()) == [0]: # edge_props_new = edge_props_new[0] # cut line split_line = cut_linestring(line_geom, line_proj) # line1, line2, cp = cut_linestring(line_geom, line_proj) if split_line is None: print("Failure in cut_linestring()...") print("type(split_line):", type(split_line)) print("split_line:", split_line) print("line_geom:", line_geom) print("line_geom.length:", line_geom.length) print("line_proj:", line_proj) print("min_dist:", min_dist) return G_, {}, 0, 0 if verbose: print("split_line:", split_line) # if cp.is_empty: if len(split_line) == 1: if verbose: print("split line empty, min_dist:", min_dist) # get coincident node outnode = '' outnode_x, outnode_y = -1, -1 x_p, y_p = new_point.x, new_point.y x_u, y_u = G_.nodes[u]['x'], G_.nodes[u]['y'] x_v, y_v = G_.nodes[v]['x'], G_.nodes[v]['y'] # if verbose: # print "x_p, y_p:", x_p, y_p # print "x_u, y_u:", x_u, y_u # print "x_v, y_v:", x_v, y_v # sometimes it seems that the nodes aren't perfectly coincident, # so see if it's within a buffer buff = 0.05 # meters if (abs(x_p - x_u) <= buff) and (abs(y_p - y_u) <= buff): outnode = u outnode_x, outnode_y = x_u, y_u elif (abs(x_p - x_v) <= buff) and (abs(y_p - y_v) <= buff): outnode = v outnode_x, outnode_y = x_v, y_v # original method with exact matching # if (x_p == x_u) and (y_p == y_u): # outnode = u # outnode_x, outnode_y = x_u, y_u # elif (x_p == x_v) and (y_p == y_v): # outnode = v # outnode_x, outnode_y = x_v, y_v else: print("Error in determining node coincident with node: " + str(node_id) + " along edge: " + str(best_edge)) print("x_p, y_p:", x_p, y_p) print("x_u, y_u:", x_u, y_u) print("x_v, y_v:", x_v, y_v) # return return G_, {}, 0, 0 # if the line cannot be split, that means that the new node # is coincident with an existing node. Relabel, if desired if allow_renaming: node_props = G_.nodes[outnode] # A dictionary with the old labels as keys and new labels # as values. A partial mapping is allowed. mapping = {outnode: node_id} Gout = nx.relabel_nodes(G_, mapping) if verbose: print("Swapping out node ids:", mapping) return Gout, node_props, x_p, y_p else: # new node is already added, presumably at the exact location # of an existing node. So just remove the best edge and make # an edge from new node to existing node, length should be 0.0 line1 = LineString([new_point, Point(outnode_x, outnode_y)]) edge_props_line1 = edge_props_new.copy() edge_props_line1['length'] = line1.length edge_props_line1['geometry'] = line1 # make sure length is zero if line1.length > buff: print("Nodes should be coincident and length 0!") print(" line1.length:", line1.length) print(" x_u, y_u :", x_u, y_u) print(" x_v, y_v :", x_v, y_v) print(" x_p, y_p :", x_p, y_p) print(" new_point:", new_point) print(" Point(outnode_x, outnode_y):", Point(outnode_x, outnode_y)) return # add edge of length 0 from new node to neareest existing node G_.add_edge(node_id, outnode, **edge_props_line1) return G_, node_props, x, y # originally, if not renaming nodes, # just ignore this complication and return the orignal # return G_, node_props, 0, 0 else: # else, create new edges line1, line2 = split_line # get distances # print ("insert_point(), G_.nodes[v]:", G_.nodes[v]) u_loc = [G_.nodes[u]['x'], G_.nodes[u]['y']] v_loc = [G_.nodes[v]['x'], G_.nodes[v]['y']] # compare to first point in linestring geom_p0 = list(line_geom.coords)[0] # or compare to inserted point? [this might fail if line is very # curved!] # geom_p0 = (x,y) dist_to_u = scipy.spatial.distance.euclidean(u_loc, geom_p0) dist_to_v = scipy.spatial.distance.euclidean(v_loc, geom_p0) # reverse edge order if v closer than u if dist_to_v < dist_to_u: line2, line1 = split_line if verbose: print("Creating two edges from split...") print(" original_length:", line_geom.length) print(" line1_length:", line1.length) print(" line2_length:", line2.length) print(" u, dist_u_to_point:", u, dist_to_u) print(" v, dist_v_to_point:", v, dist_to_v) print(" min_dist:", min_dist) # add new edges edge_props_line1 = edge_props_new.copy() edge_props_line1['length'] = line1.length edge_props_line1['geometry'] = line1 # remove geometry? # edge_props_line1.pop('geometry', None) # line2 edge_props_line2 = edge_props_new.copy() edge_props_line2['length'] = line2.length edge_props_line2['geometry'] = line2 # remove geometry? # edge_props_line1.pop('geometry', None) # insert edge regardless of direction # G_.add_edge(u, node_id, **edge_props_line1) # G_.add_edge(node_id, v, **edge_props_line2) # check which direction linestring is travelling (it may be going # from v -> u, which means we need to reverse the linestring) # otherwise new edge is tangled geom_p0 = list(line_geom.coords)[0] dist_to_u = scipy.spatial.distance.euclidean(u_loc, geom_p0) dist_to_v = scipy.spatial.distance.euclidean(v_loc, geom_p0) # if verbose: # print "dist_to_u, dist_to_v:", dist_to_u, dist_to_v if dist_to_u < dist_to_v: G_.add_edge(u, node_id, **edge_props_line1) G_.add_edge(node_id, v, **edge_props_line2) else: G_.add_edge(node_id, u, **edge_props_line1) G_.add_edge(v, node_id, **edge_props_line2) if verbose: print("insert edges:", u, '-', node_id, 'and', node_id, '-', v) # remove initial edge G_.remove_edge(u, v, key) return G_, node_props, x, y
b816ac5a050b5914c33dfe4e598d6997a8da5d0c
7,571
import glob def find_paths(initial_path, extension): """ From a path, return all the files of a given extension inside. :param initial_path: the initial directory of search :param extension: the extension of the files to be searched :return: list of paths inside the initial path """ paths = glob.glob(initial_path+r'/**/*.' + extension, recursive=True) return paths
0220127050b765feaf423c195d020d65ece8d22e
7,572
def ridge_line(df_act, t_range='day', n=1000): """ https://plotly.com/python/violin/ for one day plot the activity distribution over the day - sample uniform from each interval """ df = activities_dist(df_act.copy(), t_range, n) colors = n_colors('rgb(5, 200, 200)', 'rgb(200, 10, 10)', len(df.columns), colortype='rgb') data = df.values.T fig = go.Figure() i = 0 for data_line, color in zip(data, colors): fig.add_trace(go.Violin(x=data_line, line_color=color, name=df.columns[i])) i += 1 fig.update_traces(orientation='h', side='positive', width=3, points=False) fig.update_layout(xaxis_showgrid=False, xaxis_zeroline=False) return fig
7fa2e4946a8de5df6e5c7697236c939703133409
7,573
def op(name, value, display_name=None, description=None, collections=None): """Create a TensorFlow summary op to record data associated with a particular the given guest. Arguments: name: A name for this summary operation. guest: A rank-0 string `Tensor`. display_name: If set, will be used as the display name in TensorBoard. Defaults to `name`. description: A longform readable description of the summary data. Markdown is supported. collections: Which TensorFlow graph collections to add the summary op to. Defaults to `['summaries']`. Can usually be ignored. """ # The `name` argument is used to generate the summary op node name. # That node name will also involve the TensorFlow name scope. # By having the display_name default to the name argument, we make # the TensorBoard display clearer. if display_name is None: display_name = name # We could pass additional metadata other than the PLUGIN_NAME within the # plugin data by using the content parameter, but we don't need any metadata # for this simple example. summary_metadata = tf.SummaryMetadata( display_name=display_name, summary_description=description, plugin_data=tf.SummaryMetadata.PluginData( plugin_name=PLUGIN_NAME)) # Return a summary op that is properly configured. return tf.summary.tensor_summary( name, value, summary_metadata=summary_metadata, collections=collections)
f2a6b65299c417e460f6ca2e41fc82e061b29f30
7,574
def select_only_top_n_common_types(dataset: pd.DataFrame, n: int = 10) -> pd.DataFrame: """ First find the most popular 'n' types. Remove any uncommon types from the dataset :param dataset: The complete dataset :param n: The number of top types to select :return: Return the dataframe once the top 'n' types has been removed """ len_before_filtering = len(dataset) print(f'*** Selecting only the most common "{n}" types from the dataset. Current length is {len_before_filtering}') top_types = dataset['type'].value_counts()[:n].to_dict() dataset = dataset[dataset['type'].apply(lambda x: x in top_types)] len_after_filtering = len(dataset) print( f'Removed {len_before_filtering - len_after_filtering} elements, the current length of the dataset is {len_after_filtering}\n') return dataset
b4d95682d1abbf062b4730213cefc6da71a5c605
7,575
import os import torch def load_checkpoint(filename='checkpoint.pth.tar'): """Load for general purpose (e.g., resume training)""" filename = os.path.join(CHECKPOINTS_PATH, filename) print(filename) if not os.path.isfile(filename): return None state = torch.load(filename) return state
c64d5a0ab76bb08b5fc982b1f06c61fec216cee7
7,576
def __one_both_closed(x, y, c = None, l = None): """convert coordinates to zero-based, both strand, open/closed coordinates. Parameters are from, to, is_positive_strand, length of contig. """ return x - 1, y
ce4dfca3cc347de925f4c26460e486fb38a2d5e5
7,577
def get_corners(img, sigma=1, alpha=0.05, thresh=1000): """ Returns the detected corners as a list of tuples """ ret = [] i_x = diff_x(img) i_y = diff_y(img) i_xx = ndimage.gaussian_filter(i_x ** 2, sigma=sigma) i_yy = ndimage.gaussian_filter(i_y ** 2, sigma=sigma) i_xy = ndimage.gaussian_filter(i_x * i_y, sigma=sigma) height, width = img.shape[:2] det = i_xx * i_yy - i_xy ** 2 trace = i_xx + i_yy r_val = det - alpha * trace ** 2 for i in range(2, height - 3): for j in range(2, width - 3): if r_val[i, j] > thresh and r_val[i, j] == np.amax(r_val[i - 1:i + 2, j - 1:j + 2]): ret.append((i, j)) return ret
d581df8daff7f20e2f15b5eb5af9ea686c0520e4
7,578
import numpy def add_param_starts(this_starts, params_req, global_conf, run_period_len, start_values_min, start_values_max): """Process the param starts information taken from the generator, and add it to the array being constructed. Inputs: this_starts: a tuple with (starts_min, starts_max), the output from a generator's get_param_starts() function. params_req: integer, the number of parameters this generator requires global_conf: a dict including 'min_param_val' and 'max_param_val' run_period_len: the number of periods to run for start_values_min: the array to append the min start values to start_values_max: the array to append the max start values to Outputs: start_values_min, start_values_max, updated versions (not necessarily in-place) """ (starts_min, starts_max) = this_starts starts_min = numpy.array(starts_min) starts_max = numpy.array(starts_max) if starts_min.size == 0: start_values_min = numpy.hstack((start_values_min, ( (numpy.ones((run_period_len, params_req)) * global_conf['min_param_val']).tolist()))) else: start_values_min = numpy.hstack((start_values_min, starts_min)) if starts_max.size == 0: start_values_max = numpy.hstack((start_values_max, ( (numpy.ones((run_period_len, params_req)) * global_conf['max_param_val']).tolist()))) else: start_values_max = numpy.hstack((start_values_max, starts_max)) return start_values_min, start_values_max
b50f538b9d5096fe6061b4b990ccb9ad6ba05ef6
7,579
def pareto(data, name=None, exp=None, minval=None, maxval=None, **kwargs): """the pareto distribution: val ~ val**exp | minval <= val < maxval """ assert (exp is not None) and (minval is not None) and (maxval is not None), \ 'must supply exp, minval, and maxval!' ### done to make command-line arguments easier in add-prior-weights if name is not None: data = data[name] ans = exp*np.log(data) ans[np.logical_not((minval<=val)*(val<maxval))] = -np.infty return ans
8607bf6783ba5e8be95d2b4319a42e8723b71da0
7,580
def codegen_reload_data(): """Parameters to codegen used to generate the fn_ansible_tower package""" reload_params = {"package": u"fn_ansible_tower", "incident_fields": [], "action_fields": [u"ansible_tower_arguments", u"ansible_tower_credential", u"ansible_tower_hosts", u"ansible_tower_inventory", u"ansible_tower_job_name", u"ansible_tower_module", u"ansible_tower_module_arguments", u"ansible_tower_run_tags", u"ansible_tower_skip_tags", u"job_status", u"last_updated", u"tower_project", u"tower_save_as", u"tower_template_pattern"], "function_params": [u"incident_id", u"tower_arguments", u"tower_credential", u"tower_hosts", u"tower_inventory", u"tower_job_id", u"tower_job_status", u"tower_last_updated", u"tower_module", u"tower_project", u"tower_run_tags", u"tower_save_as", u"tower_skip_tags", u"tower_template_id", u"tower_template_name", u"tower_template_pattern"], "datatables": [u"ansible_tower_job_templates", u"ansible_tower_launched_jobs"], "message_destinations": [u"fn_ansible_tower"], "functions": [u"ansible_tower_get_ad_hoc_command_results", u"ansible_tower_get_job_results", u"ansible_tower_launch_job_template", u"ansible_tower_list_job_templates", u"ansible_tower_list_jobs", u"ansible_tower_run_an_ad_hoc_command"], "phases": [], "automatic_tasks": [], "scripts": [], "workflows": [u"ansible_tower_get_ad_hoc_command_results", u"ansible_tower_get_job_results", u"ansible_tower_launch_job_template", u"ansible_tower_list_job_templates", u"ansible_tower_list_jobs", u"ansible_tower_run_an_ad_hoc_command", u"ansible_tower_run_job__artifact", u"ansible_tower_run_job__incident"], "actions": [u"Ansible Tower Get Ad Hoc Command Results", u"Ansible Tower Get Job Results", u"Ansible Tower List Job Templates", u"Ansible Tower List Jobs", u"Ansible Tower Run an Ad Hoc Command", u"Ansible Tower Run Job", u"Ansible Tower Run Job - Artifact", u"Ansible Tower Run Job - Incident"], "incident_artifact_types": [] } return reload_params
49dee7d9a1dc297ff31f51e4583740c353831cd9
7,581
from core.models.group import GroupMembership def get_default_identity(username, provider=None): """ Return the default identity given to the user-group for provider. """ try: filter_query = {} if provider: filter_query['provider'] = provider memberships = GroupMembership.objects.filter(user__username=username).prefetch_related('group') for membership in memberships: group = membership.group identities = group.current_identities.filter( **filter_query) if group and identities.count() > 0: default_identity = identities.first() logger.debug( "default_identity set to %s " % default_identity) return default_identity # No identities found for any group if settings.AUTO_CREATE_NEW_ACCOUNTS: new_identities = create_new_accounts(username, selected_provider=provider) if new_identities: return new_identities[0] logger.error("%s has no identities. Functionality will be severely limited." % username) return None except Exception as e: logger.exception(e) return None
54fc7d546d41564ea025ca3d2e947a5e5f77004a
7,582
def get_text_item(text): """Converts a text into a tokenized text item :param text: :return: """ if config['data']['lowercased']: text = text.lower() question_tokens = [Token(t) for t in word_tokenize(text)] question_sentence = Sentence(' '.join([t.text for t in question_tokens]), question_tokens) return TextItem(question_sentence.text, [question_sentence])
79fdec4cdcb419751d49a564eff7c3b624c80a22
7,583
def Ltotal(scatter: bool): """ Graph for computing 'Ltotal'. """ graph = beamline(scatter=scatter) if not scatter: return graph del graph['two_theta'] return graph
d38b7947b4c6397157e1bfec33b275a814dc1ec0
7,584
import os def gen_dir(download_dir, main_keyword): """Helper function | generates a directory where pics will be downloaded""" if not download_dir: download_dir = './data/' img_dir = download_dir + main_keyword + '/' if not os.path.exists(img_dir): os.makedirs(img_dir) return img_dir
2a8fe841ac4c2afdf64cd91f6dae1842e2c3c51d
7,585
def is_valid_page_to_edit(prev_pg_to_edit, pg_to_edit): """Check if the page is valid to edit or not Args: prev_pg_to_edit (obj): page to edit object of previous page pg_to_edit (obj): page to edit object of current page Returns: boolean: true if valid else false """ try: prev_pg_ref_end = int(prev_pg_to_edit.ref_end_page_no) cur_pg_ref_start = int(pg_to_edit.ref_start_page_no) cur_pg_ref_end = int(pg_to_edit.ref_end_page_no) except Exception: return False if prev_pg_to_edit == pg_to_edit: if cur_pg_ref_end >= cur_pg_ref_start: return True else: return False elif prev_pg_to_edit.vol != pg_to_edit.vol and cur_pg_ref_start <= cur_pg_ref_end: return True elif cur_pg_ref_start <= cur_pg_ref_end and prev_pg_ref_end <= cur_pg_ref_start: return True else: return False
ce594804f105b749062f79d63fc3021296631c1b
7,586
def get_diffs(backups, backup_id, partner_backups, bound=10): """ Given a list `backups`, a `backup_id`, and `bound` Compute the a dict containing diffs/stats of surronding the `backup_id`: diff_dict = { "stats": diff_stats_list, "files": files_list, "partners": partner_files_list, "prev_backup_id": prev_backup_id, "backup_id": backup_id, "next_backup_id": next_backup_id } return {} if `backup_id` not found """ backup_dict = _get_backup_range(backups, backup_id, bound) if not backup_dict: return {} backups = backup_dict["backups"] backup_id = backup_dict["backup_id"] # relevant backup_id might be different prev_backup_id = backup_dict["prev_backup_id"] next_backup_id = backup_dict["next_backup_id"] get_recent_backup = _recent_backup_finder(partner_backups) assign_files = backups[0].assignment.files files_list, diff_stats_list, partner_files_list = [], [], [] for i, backup in enumerate(backups): if not i: # first unique backup => no diff continue prev = backups[i - 1].files() curr = backup.files() files = highlight.diff_files(prev, curr, "short") files_list.append(files) backup_stats = { 'submitter': backup.submitter.email, 'backup_id' : backup.hashid, 'bid': backup.id, 'partner_backup_id': None, 'partner_bid': None, 'question': None, 'time': None, 'passed': None, 'failed': None } analytics = backup and backup.analytics() grading = backup and backup.grading() partner_backup_files = None if analytics: backup_stats['time'] = analytics.get('time') partner_backup = get_recent_backup(analytics) if partner_backup: backup_stats["partner_backup_id"] = partner_backup.hashid backup_stats["partner_bid"] = partner_backup.id partner_backup_files = highlight.diff_files(partner_backup.files(), curr, "short") if grading: questions = list(grading.keys()) question = None passed, failed = 0, 0 for question in questions: passed += grading.get(question).get('passed') passed += grading.get(question).get('failed') if len(questions) > 1: question = questions backup_stats['question'] = question backup_stats['passed'] = passed backup_stats['failed'] = failed else: unlock = backup.unlocking() backup_stats['question'] = "[Unlocking] " + unlock.split(">")[0] diff_stats_list.append(backup_stats) partner_files_list.append(partner_backup_files) diff_dict = { "stats": diff_stats_list, "files": files_list, "partners": partner_files_list, "prev_backup_id": prev_backup_id, "backup_id": backup_id, "next_backup_id": next_backup_id } return diff_dict
fd896dc22270090eb88b41b3ab3fae2872d2ad06
7,587
from typing import List def admits_voc_list(cid: CID) -> List[str]: """ Return list of nodes in cid with positive value of control. """ return [x for x in list(cid.nodes) if admits_voc(cid, x)]
a2db0dbb062a205ebb75f5db93ed14b11b25ccc1
7,588
def contour(data2d, levels, container=None, **kwargs): """HIDE""" if container is None: _checkContainer() container = current.container current.object = kaplot.objects.Contour(container, data2d, levels, **kwargs) return current.object
a9f56a8bcd54cbc38687682f78e684c03315f85b
7,589
def FilterSuboptimal(old_predictions, new_predictions, removed_predictions, min_relative_coverage=0.0, min_relative_score=0.0, min_relative_pide=0.0): """remove suboptimal alignments. """ best_predictions = {} for p in old_predictions: if not best_predictions.has_key(p.mQueryToken): best_predictions[p.mQueryToken] = MyBestEntry() x = best_predictions[p.mQueryToken] x.mQueryCoverage = max(x.mQueryCoverage, p.mQueryCoverage) x.score = max(x.score, p.score) x.mPercentIdentity = max(x.mPercentIdentity, p.mPercentIdentity) nnew = 0 for p in old_predictions: x = best_predictions[p.mQueryToken] if p.mQueryCoverage / x.mQueryCoverage < min_relative_coverage: if param_loglevel >= 2: print "# PRUNING: reason: coverage below best: removing %s" % str(p) if param_benchmarks: CheckBenchmark(p) removed_predictions.append(p) continue if p.score / x.score < min_relative_score: if param_loglevel >= 2: print "# PRUNING: reason: score below best: removing %s" % str(p) if param_benchmarks: CheckBenchmark(p) removed_predictions.append(p) continue if p.mPercentIdentity / x.mPercentIdentity < min_relative_pide: if param_loglevel >= 2: print "# PRUNING: reason: percent identity below best: removing %s" % str(p) if param_benchmarks: CheckBenchmark(p) removed_predictions.append(p) continue new_predictions.append(p) nnew += 1 return nnew
570399a0310f836261d5d65455cfee54e697a23c
7,590
def process_pair(librispeech_md_file, librispeech_dir, wham_md_file, wham_dir, n_src, pair): """Process a pair of sources to mix.""" utt_pair, noise = pair # Indices of the utterances and the noise # Read the utterance files and get some metadata source_info, source_list = read_utterances( librispeech_md_file, utt_pair, librispeech_dir) # Add the noise source_info, source_list = add_noise( wham_md_file, wham_dir, noise, source_list, source_info) # Compute initial loudness, randomize loudness and normalize sources loudness, _, source_list_norm = set_loudness(source_list) # Randomly place the speech clips in the mixture source_info, source_list_pad = randomly_pad(source_list_norm, source_info, n_src) # Do the mixture mixture = mix(source_list_pad) # Check the mixture for clipping and renormalize if necessary # (we pass source_list_norm here because we don't want the zero padding # to influence the loudness) renormalize_loudness, did_clip = check_for_clipping(mixture, source_list_norm) # Compute gain gain_list = compute_gain(loudness, renormalize_loudness) return source_info, gain_list, did_clip
3dea4b1dc93b0bc54ad199e09db7612e6dad18d5
7,591
def getMultiDriverSDKs(driven, sourceDriverFilter=None): """get the sdk nodes that are added through a blendweighted node Args: driven (string): name of the driven node sourceDriverFilter (list, pynode): Driver transforms to filter by, if the connected SDK is not driven by this node it will not be returned. Returns: list: of sdk nodes """ sdkDrivers = [] for sdkUtility in SDK_UTILITY_TYPE: blend_NodePair = pm.listConnections(driven, source=True, type=sdkUtility, exactType=True, plugs=True, connections=True, sourceFirst=True, scn=True) or [] if not blend_NodePair: continue for pairs in blend_NodePair: sdkPairs = getConnectedSDKs(pairs[0].nodeName(), sourceDriverFilter=sourceDriverFilter) for sPair in sdkPairs: sdkDrivers.append([sPair[0], pairs[1]]) return sdkDrivers
4f7fe2d959619d3eaca40ba6366a5d4d62e047ff
7,592
def resnet_model_fn(features, labels, mode, model_class, resnet_size, weight_decay, learning_rate_fn, momentum, data_format, version, loss_filter_fn=None, multi_gpu=False): """Shared functionality for different resnet model_fns. Initializes the ResnetModel representing the model layers and uses that model to build the necessary EstimatorSpecs for the `mode` in question. For training, this means building losses, the optimizer, and the train op that get passed into the EstimatorSpec. For evaluation and prediction, the EstimatorSpec is returned without a train op, but with the necessary parameters for the given mode. Args: features: tensor representing input images labels: tensor representing class labels for all input images mode: current estimator mode; should be one of `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT` model_class: a class representing a TensorFlow model that has a __call__ function. We assume here that this is a subclass of ResnetModel. resnet_size: A single integer for the size of the ResNet model. weight_decay: weight decay loss rate used to regularize learned variables. learning_rate_fn: function that returns the current learning rate given the current global_step momentum: momentum term used for optimization data_format: Input format ('channels_last', 'channels_first', or None). If set to None, the format is dependent on whether a GPU is available. version: Integer representing which version of the ResNet network to use. See README for details. Valid values: [1, 2] loss_filter_fn: function that takes a string variable name and returns True if the var should be included in loss calculation, and False otherwise. If None, batch_normalization variables will be excluded from the loss. multi_gpu: If True, wrap the optimizer in a TowerOptimizer suitable for data-parallel distribution across multiple GPUs. Returns: EstimatorSpec parameterized according to the input params and the current mode. """ # Generate a summary node for the images tf.summary.image('images', features, max_outputs=6) model = model_class(resnet_size, data_format, version=version) logits = model(features, mode == tf.estimator.ModeKeys.TRAIN) predictions = { 'classes': tf.argmax(logits, axis=1), 'probabilities': tf.nn.softmax(logits, name='softmax_tensor') } if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) # Calculate loss, which includes softmax cross entropy and L2 regularization. cross_entropy = tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) # Create a tensor named cross_entropy for logging purposes. tf.identity(cross_entropy, name='cross_entropy') tf.summary.scalar('cross_entropy', cross_entropy) # If no loss_filter_fn is passed, assume we want the default behavior, # which is that batch_normalization variables are excluded from loss. if not loss_filter_fn: def loss_filter_fn(name): return 'batch_normalization' not in name # Add weight decay to the loss. loss = cross_entropy + weight_decay * tf.add_n( [tf.nn.l2_loss(v) for v in tf.trainable_variables() if loss_filter_fn(v.name)]) # Create a tensor named cross_entropy for logging purposes. tf.identity(loss, name='train_loss') tf.summary.scalar('train_loss', loss) if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() learning_rate = learning_rate_fn(global_step) # Create a tensor named learning_rate for logging purposes tf.identity(learning_rate, name='learning_rate') tf.summary.scalar('learning_rate', learning_rate) optimizer = tf.train.MomentumOptimizer( learning_rate=learning_rate, momentum=momentum) # If we are running multi-GPU, we need to wrap the optimizer. if multi_gpu: optimizer = tf.contrib.estimator.TowerOptimizer(optimizer) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = tf.group(optimizer.minimize(loss, global_step), update_ops) else: train_op = None accuracy = tf.metrics.accuracy( tf.argmax(labels, axis=1), predictions['classes']) metrics = {'acc': accuracy} # Create a tensor named train_accuracy for logging purposes tf.identity(accuracy[1], name='train_accuracy') tf.summary.scalar('train_acc', accuracy[1]) return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=metrics)
4adc5fc3ca461d4eb4a051861e8c82d2c1aab5dd
7,593
def dataframe_from_stomate(filepattern,largefile=True,multifile=True, dgvmadj=False,spamask=None, veget_npindex=np.s_[:],areaind=np.s_[:], out_timestep='annual',version=1, replace_nan=False): """ Parameters: ----------- filepattern: could be a single filename, or a file pattern out_timestep: the timestep of output file, used to provide information to properly scale the variable values, could be 'annual' or 'daily'. when 'annual', flux_scale_factor = 365 will be used. dgvmadj: use DGVM adjustment, in this case tBIOMASS rathern than TOTAL_M is used. veget_npindex: passed to the function of get_pftsum: 1. could be used to restrict for example the PFT weighted average only among natural PFTs by setting veget_npindex=np.s_[:,0:11,:,:]. It will be used to slice VEGET_MAX variable. 2. could also be used to slice only for some subgrid of the whole grid, eg., veget_npindex=np.s_[...,140:300,140:290]. Notes: ------ 1. This function could handle automatically the case of a single-point file or a regional file. When a single-point file (pattern) is given, PFT-weighted carbon density will be used rather than the total C over the spatial area. """ gnc_sto = gnc.Ncdata(filepattern,largefile=largefile,multifile=multifile, replace_nan=replace_nan) if version == 1: # list all pools and fluxes list_flux_pft = ['GPP','NPP','HET_RESP','CO2_FIRE','CO2FLUX','CO2_TAKEN'] list_flux_pftsum = ['CONVFLUX','CFLUX_PROD10','CFLUX_PROD100','HARVEST_ABOVE'] list_flux = list_flux_pft+list_flux_pftsum list_pool = ['TOTAL_M','TOTAL_SOIL_CARB'] list_all = list_flux_pft+list_flux_pftsum+list_pool nlist_var = [list_flux_pft, list_flux_pftsum, list_pool] for varlist in nlist_var: gnc_sto.retrieve_variables(varlist) gnc_sto.get_pftsum(print_info=False,veget_npindex=veget_npindex) gnc_sto.remove_variables(varlist) #handle adjustment of different variables if dgvmadj: gnc_sto.retrieve_variables(['tGPP','tRESP_GROWTH','tRESP_MAINT','tRESP_HETERO','tCO2_FIRE']) gnc_sto.pftsum.__dict__['NPP'] = gnc_sto.d1.tGPP - gnc_sto.d1.tRESP_MAINT - gnc_sto.d1.tRESP_GROWTH gnc_sto.pftsum.__dict__['HET_RESP'] = gnc_sto.d1.tRESP_HETERO gnc_sto.pftsum.__dict__['CO2_FIRE'] = gnc_sto.d1.tCO2_FIRE gnc_sto.remove_variables(['tGPP','tRESP_GROWTH','tRESP_MAINT','tRESP_HETERO','tCO2_FIRE']) gnc_sto.retrieve_variables(['tBIOMASS','tLITTER','tSOILC']) gnc_sto.pftsum.__dict__['TOTAL_M'] = gnc_sto.d1.tBIOMASS gnc_sto.pftsum.__dict__['TOTAL_SOIL_CARB'] = gnc_sto.d1.tLITTER + gnc_sto.d1.tSOILC gnc_sto.remove_variables(['tBIOMASS','tLITTER','tSOILC']) # we have to treat product pool independently try: gnc_sto.retrieve_variables(['PROD10','PROD100']) gnc_sto.pftsum.PROD10 = gnc_sto.d1.PROD10.sum(axis=1) gnc_sto.pftsum.PROD100 = gnc_sto.d1.PROD100.sum(axis=1) gnc_sto.remove_variables(['PROD10','PROD100']) except KeyError: gnc_sto.pftsum.PROD10 = gnc_sto.pftsum.NPP * 0. gnc_sto.pftsum.PROD100 = gnc_sto.pftsum.NPP * 0. # get the spatial operation and pass them into dataframe if not gnc_sto._SinglePoint: gnc_sto.get_spa() dft = pa.DataFrame(gnc_sto.spasum.__dict__) else: dft = pa.DataFrame(gnc_sto.pftsum.__dict__) # treat the output time step if out_timestep == 'annual': flux_scale_factor = 365. dft['CO2FLUX'] = dft['CO2FLUX']/30. #CO2FLUX is monthly output elif out_timestep == 'daily': flux_scale_factor = 1 dft[list_flux] = dft[list_flux]*flux_scale_factor # get total carbon pool dft['PROD'] = dft['PROD10'] + dft['PROD100'] dft['CarbonPool'] = dft['TOTAL_M'] + dft['TOTAL_SOIL_CARB'] + dft['PROD'] # calcate NBP dft['NBP_npp'] = dft['NPP']+dft['CO2_TAKEN']-dft['CONVFLUX']-dft['CFLUX_PROD10']-dft['CFLUX_PROD100']-dft['CO2_FIRE']-dft['HARVEST_ABOVE']-dft['HET_RESP'] dft['NBP_co2flux'] = -1*(dft['CO2FLUX']+dft['HARVEST_ABOVE']+dft['CONVFLUX']+dft['CFLUX_PROD10']+dft['CFLUX_PROD100']) elif version == 2: # list all pools and fluxes list_flux_pft = ['GPP','NPP','HET_RESP','CO2_FIRE','CO2FLUX','CO2_TAKEN','METHANE','RANIMAL'] list_flux_pftsum = ['CONVFLUX_LCC','CONVFLUX_HAR','CFLUX_PROD10_LCC','CFLUX_PROD10_HAR','CFLUX_PROD100_LCC','CFLUX_PROD100_HAR','HARVEST_ABOVE'] list_flux = list_flux_pft+list_flux_pftsum list_pool = ['TOTAL_M','TOTAL_SOIL_CARB','LEAF_M','SAP_M_AB','SAP_M_BE', 'HEART_M_AB','HEART_M_BE','ROOT_M','FRUIT_M','RESERVE_M', 'LITTER_STR_AB','LITTER_STR_BE','LITTER_MET_AB','LITTER_MET_BE'] list_all = list_flux_pft+list_flux_pftsum+list_pool nlist_var = [list_flux_pft, list_flux_pftsum, list_pool] for varlist in nlist_var: gnc_sto.retrieve_variables(varlist,mask=spamask) gnc_sto.get_pftsum(print_info=False,veget_npindex=veget_npindex) gnc_sto.remove_variables(varlist) #handle adjustment of different variables if dgvmadj: if veget_npindex != np.s_[:]: raise ValueError("dgvmadj is not handled when veget_npindex does not include all") else: gnc_sto.retrieve_variables(['tGPP','tRESP_GROWTH','tRESP_MAINT','tRESP_HETERO','tCO2_FIRE'],mask=spamask) gnc_sto.pftsum.__dict__['NPP'] = gnc_sto.d1.tGPP - gnc_sto.d1.tRESP_MAINT - gnc_sto.d1.tRESP_GROWTH gnc_sto.pftsum.__dict__['HET_RESP'] = gnc_sto.d1.tRESP_HETERO gnc_sto.pftsum.__dict__['CO2_FIRE'] = gnc_sto.d1.tCO2_FIRE gnc_sto.remove_variables(['tGPP','tRESP_GROWTH','tRESP_MAINT','tRESP_HETERO','tCO2_FIRE']) gnc_sto.retrieve_variables(['tBIOMASS','tLITTER','tSOILC'],mask=spamask) gnc_sto.pftsum.__dict__['TOTAL_M'] = gnc_sto.d1.tBIOMASS gnc_sto.pftsum.__dict__['TOTAL_SOIL_CARB'] = gnc_sto.d1.tLITTER + gnc_sto.d1.tSOILC gnc_sto.remove_variables(['tBIOMASS','tLITTER','tSOILC']) # we have to treat product pool independently list_prod = ['PROD10_LCC','PROD10_HAR','PROD100_LCC','PROD100_HAR'] gnc_sto.retrieve_variables(list_prod,mask=spamask) for var in list_prod: gnc_sto.pftsum.__dict__[var] = gnc_sto.d1.__dict__[var][veget_npindex].sum(axis=1) print gnc_sto.d1.__dict__['PROD10_LCC'][veget_npindex].shape print gnc_sto.d1.__dict__['PROD10_LCC'].shape print gnc_sto.pftsum.__dict__['PROD10_LCC'].shape gnc_sto.remove_variables(list_prod) # get the spatial operation and pass them into dataframe if not gnc_sto._SinglePoint: gnc_sto.get_spa(areaind=areaind) dft = pa.DataFrame(gnc_sto.spasum.__dict__) else: dft = pa.DataFrame(gnc_sto.pftsum.__dict__) # 2016-03-30: the shape of gnc_sto.d1.ContAreas could be # (nlat,nlon) when there is no "CONTFRAC" or "NONBIOFRAC" in # the history file, but could be (ntime,nlat,nlon) when they're # present. # # [++temporary++] treat CO2_TAKEN # # In case of shifting cultivation is simulated, the CO2_TAKEN # # could be big at the last day. However the veget_max is kept # # the same as the old one over the year, so we have to use # # last-year CO2_TAKEN multiply with the next-year veget_max. # gnc_sto.retrieve_variables(['CO2_TAKEN']) # co2taken_pftsum = np.ma.sum(gnc_sto.d1.CO2_TAKEN[:-1] * gnc_sto.d1.VEGET_MAX[1:],axis=1) # if not gnc_sto._SinglePoint: # dt = np.sum(co2taken_pftsum*gnc_sto.d1.ContAreas,axis=(1,2)) # else: # dt = co2taken_pftsum # dft['CO2_TAKEN'].iloc[:-1] = dt # treat the output time step if out_timestep == 'annual': flux_scale_factor = 365. dft['CO2FLUX'] = dft['CO2FLUX']/30. #CO2FLUX is monthly output elif out_timestep == 'daily': flux_scale_factor = 1 dft[list_flux] = dft[list_flux]*flux_scale_factor # get total carbon pool dft['PROD'] = dft['PROD10_LCC'] + dft['PROD10_HAR'] + dft['PROD100_LCC'] + dft['PROD100_HAR'] dft['CarbonPool'] = dft['TOTAL_M'] + dft['TOTAL_SOIL_CARB'] + dft['PROD'] dft['LITTER_AB'] = dft['LITTER_STR_AB'] + dft['LITTER_MET_AB'] dft['LITTER_BE'] = dft['LITTER_MET_BE'] + dft['LITTER_STR_BE'] dft['LITTER'] = dft['LITTER_BE'] + dft['LITTER_AB'] dft['BIOMASS_AB'] = dft.SAP_M_AB + dft.HEART_M_AB + dft.LEAF_M + dft.FRUIT_M + dft.RESERVE_M dft['BIOMASS_BE'] = dft.SAP_M_BE + dft.HEART_M_BE + dft.ROOT_M # treat GM dft['RANIMAL'] = dft['RANIMAL']*1000 dft['METHANE'] = dft['METHANE']*1000 dft['GMsource'] = dft['RANIMAL'] + dft['METHANE'] # treat LUC dft['CONVFLUX'] = dft['CONVFLUX_LCC'] + dft['CONVFLUX_HAR'] dft['CFLUX_PROD10'] = dft['CFLUX_PROD10_LCC'] + dft['CFLUX_PROD10_HAR'] dft['CFLUX_PROD100'] = dft['CFLUX_PROD100_LCC'] + dft['CFLUX_PROD100_HAR'] dft['LUCsource'] = dft['CONVFLUX'] + dft['CFLUX_PROD10'] + dft['CFLUX_PROD100'] # calcate NBP dft['NBP_npp'] = dft['NPP']+dft['CO2_TAKEN']-dft['CONVFLUX']-dft['CFLUX_PROD10']-dft['CFLUX_PROD100']-dft['CO2_FIRE'] \ -dft['HARVEST_ABOVE']-dft['HET_RESP']-dft['RANIMAL']-dft['METHANE'] dft['NBP_co2flux'] = -1*(dft['CO2FLUX']+dft['HARVEST_ABOVE']+dft['CONVFLUX']+dft['CFLUX_PROD10']+dft['CFLUX_PROD100']) # litter dft['LITTER'] = dft[['LITTER_STR_AB','LITTER_STR_BE','LITTER_MET_AB','LITTER_MET_BE']].sum(axis=1) dft['LITTER_AB'] = dft[['LITTER_STR_AB','LITTER_MET_AB']].sum(axis=1) dft['LITTER_BE'] = dft[['LITTER_STR_BE','LITTER_MET_BE']].sum(axis=1) dft['SOILC'] = dft['TOTAL_SOIL_CARB'] - dft['LITTER'] else: raise ValueError("Unknown version!") gnc_sto.close() return dft
ba448d020ea8b41b75bd91d4b48ffca2d527b230
7,594
from applications.models import Application # circular import def random_application(request, event, prev_application): """ Get a new random application for a particular event, that hasn't been scored by the request user. """ return Application.objects.filter( form__event=event ).exclude( pk=prev_application.id ).exclude( scores__user=request.user ).order_by('?').first()
1d1b781b61328af67d7cc75c0fe9ec6f404b1b82
7,595
def flutter_velocity(pressures, speeds_of_sound, root_chord, tip_chord, semi_span, thickness, shear_modulus=2.62e9): """Calculate flutter velocities for a given fin design. Fin dimensions are given via the root_chord, tip_chord, semi_span and thickness arguments. All dimensions are in centimetres. Use shear_modulus to specify the shear modulus of the fin material in Pascals. >>> import numpy as np >>> zs = np.linspace(0, 30000, 100) >>> ps, _, ss = model_atmosphere(zs) >>> vels = flutter_velocity(ps, ss, 20, 10, 10, 0.2) >>> assert vels.shape == ps.shape Args: pressures (np.array): 1-d array of atmospheric pressures in Pascals speeds_of_sound (np.array): 1-d array of speeds of sound in m/s root_chord: fin root chord (cm) tip_chord: fin tip chord (cm) semi_span: fin semi-span (cm) thickness: fin thickness (cm) shear_modulus: fin material shear modulus (Pascals) Returns: A 1-d array containing corresponding flutter velocities in m/s. """ # Ensure input is 1d array of floating point values pressures = np.atleast_1d(pressures).astype(np.float) # Compute derived dimensions from fin specification. S = 0.5 * (root_chord + tip_chord) * semi_span # Area Ra = (semi_span * semi_span) / S # Aspect ratio k = tip_chord / root_chord # Taper ratio Vf = np.zeros_like(pressures) A = 1.337 * Ra**3 * pressures * (k+1) B = 2 * (Ra + 2) * (thickness / root_chord)**3 Vf = speeds_of_sound * np.sqrt(shear_modulus * B / A) return Vf
6a6fcbc2fffe541ef85f824f282924bb38199f46
7,596
import re def replace_within(begin_re, end_re, source, data): """Replace text in source between two delimeters with specified data.""" pattern = r'(?s)(' + begin_re + r')(?:.*?)(' + end_re + r')' source = re.sub(pattern, r'\1@@REPL@@\2' , source) if '@@REPL@@' in source: source = source.replace('@@REPL@@', data) else: log.log('') log.log('ERROR: Cannot match {!r} and {!r}'.format(begin_re, end_re)) log.log('') return source
23320d11a8bf0d6387f4687555d1fa472ad4c4d0
7,597
import shutil import os def if_binary_exists(binary_name, cc): """ Returns the path of the requested binary if it exists and clang is being used, None if not :param binary_name: Name of the binary :param cc: Path to CC binary :return: A path to binary if it exists and clang is being used, None if either condition is false """ binary = None if "clang" in cc: binary = shutil.which(binary_name, path=os.path.dirname(cc) + ":" + os.environ['PATH']) return binary
9f17748ba111a7ece33b8a0a7315c8832d15b014
7,598
import itertools def random_outputs_for_tier(rng, input_amount, scale, offset, max_count, allow_extra_change=False): """ Make up to `max_number` random output values, chosen using exponential distribution function. All parameters should be positive `int`s. None can be returned for expected types of failures, which will often occur when the input_amount is too small or too large, since it becomes uncommon to find a random assortment of values that satisfy the desired constraints. On success, this returns a list of length 1 to max_count, of non-negative integer values that sum up to exactly input_amount. The returned values will always exactly sum up to input_amount. This is done by renormalizing them, which means the actual effective `scale` will vary depending on random conditions. If `allow_extra_change` is passed (this is abnormal!) then this may return max_count+1 outputs; the last output will be the leftover change if all max_counts outputs were exhausted. """ if input_amount < offset: return None lambd = 1./scale remaining = input_amount values = [] # list of fractional random values without offset for _ in range(max_count+1): val = rng.expovariate(lambd) # A ceil here makes sure rounding errors won't sometimes put us over the top. # Provided that scale is much larger than 1, the impact is negligible. remaining -= ceil(val) + offset if remaining < 0: break values.append(val) else: if allow_extra_change: result = [(round(v) + offset) for v in values[:-1]] result.append(input_amount - sum(result)) return result # Fail because we would need too many outputs # (most likely, scale was too small) return None assert len(values) <= max_count if not values: # Our first try put us over the limit, so we have nothing to work with. # (most likely, scale was too large) return None desired_random_sum = input_amount - len(values) * offset assert desired_random_sum >= 0 # Now we need to rescale and round the values so they fill up the desired. # input amount exactly. We perform rounding in cumulative space so that the # sum is exact, and the rounding is distributed fairly. cumsum = list(itertools.accumulate(values)) rescale = desired_random_sum / cumsum[-1] normed_cumsum = [round(rescale * v) for v in cumsum] assert normed_cumsum[-1] == desired_random_sum differences = ((a - b) for a,b in zip(normed_cumsum, itertools.chain((0,),normed_cumsum))) result = [(offset + d) for d in differences] assert sum(result) == input_amount return result
eb3b7d813740e9aa9457fe62c4e0aaf86fad7bce
7,599