content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def uncapitalize(string: str): """De-capitalize first character of string E.g. 'How is Michael doing?' -> 'how is Michael doing?' """ if len(string): return string[0].lower() + string[1:] return ""
1a294f171d16d7a4c41fb0546feca3c03b7ae37a
7,300
import sqlite3 import os def connect_db(): """Connects to the specific database.""" rv = sqlite3.connect(os.path.join(config['database'])) rv.row_factory = sqlite3.Row return rv
1a3f3e6385500758b9b0cef8af2b15210697e3b5
7,301
def _sc_weights_trad(M, M_c, V, N, N0, custom_donor_pool, best_w_pen, verbose=0): """ Traditional matrix solving. Requires making NxN0 matrices. """ #Potentially could be decomposed to not build NxN0 matrix, but the RidgeSolution works fine for that. sc_weights = np.full((N,N0), 0.) weight_log_inc = max(int(N/100), 1) for i in range(N): if ((i % weight_log_inc) == 0 and verbose>0): print_progress(i+1, N) if verbose > 1: print_memory_snapshot(extra_str="Loop " + str(i)) allowed = custom_donor_pool[i,:] sc_weights[i,allowed] = _weights(V, M[i,:], M_c[allowed,:], best_w_pen) if ((N-1) % weight_log_inc) != 0 and verbose > 0: print_progress(N, N) return sc_weights
00b9ae93b52453281693660fa6de685cd784127e
7,302
import os import argparse def getargs(): """Parse command line arguments""" desc = ( "Analyze and query strace log given the strace log in CSV format " "(STRACE_CSV). See 'strace2csv.py' for converting strace " "log to the csv format expected by this tool." ) epil = "Example: ./%s strace.csv summary" % os.path.basename(__file__) parser = argparse.ArgumentParser( description=desc, epilog=epil, formatter_class=_SmartFormatter ) helpstr = "path to strace log in csv format (output from strace2csv.py)" parser.add_argument("STRACE_CSV", nargs=1, help=helpstr) helpstr = "R|specify output details, one of the following strings:" parser.add_argument("COMMAND", nargs=1, help=helpstr + _command_help()) helpstr = "set the verbose level between 0-3 (defaults to --verbose=1)" parser.add_argument("--verbose", help=helpstr, type=int, default=1) return parser.parse_args()
3d5b3132434ad0d74a633ee8bc5e231674571d7f
7,303
from typing import Callable from typing import Awaitable def generate_on_message( test_client: "DiscordTestClient", broker_id: int ) -> Callable[[discord.Message], Awaitable[None]]: """ Whenever a message comes in, we want our test client to: 1. Filter the message so we are only getting the ones we want. 2. Store received messages so we can inspect them during tests. 3. Wait to receive a certain number of messages, then set an event communicating that the expected number of messages has been received and we can continue. """ async def on_message(message: discord.Message) -> None: # Toss out any messages not on our expected channels, otherwise we may receive # messages from other devs running tests concurrently if message.channel.id not in test_client.channel_id_whitelist: return # Print the message for our test logs. We're only going to use the primary # client to print so we don't double-print each message. if test_client.is_primary: print( f"message received" f"\nfrom: {test_client.user.display_name}" f"\nby: {message.author.display_name}" f"\nchannel: {message.channel.name}" f"\n{message.content}\n\n" ) if message.author.id != broker_id: return test_client.messages_received.append(message) if test_client.test_expected_count_received == 0: raise IOError("Received an unexpected message") if ( len(test_client.messages_received) >= test_client.test_expected_count_received and not test_client.event_messages_received.is_set() ): test_client.event_messages_received.set() return on_message
2de510a3195f60056ad13c8fb1b9c71fe480b5ab
7,304
import unittest def test_suite(): """ Construct a TestSuite instance for all test cases. """ suite = unittest.TestSuite() for dt, format, expectation in TEST_CASES: suite.addTest(create_testcase(dt, format, expectation)) return suite
791e6942d213c53a44f433495e13a76abfc1f936
7,305
def calcScipionScore(modes): """Calculate the score from hybrid electron microscopy normal mode analysis (HEMNMA) [CS14]_ as implemented in the Scipion continuousflex plugin [MH20]_. This score prioritises modes as a function of mode number and collectivity order. .. [CS14] Sorzano COS, de la Rosa-Trevín JM, Tama F, Jonić S. Hybrid Electron Microscopy Normal Mode Analysis graphical interface and protocol. *J Struct Biol* **2014** 188:134-41. .. [MH20] Harastani M, Sorzano COS, Jonić S. Hybrid Electron Microscopy Normal Mode Analysis with Scipion. *Protein Sci* **2020** 29:223-236. :arg modes: mode(s) or vector(s) :type modes: :class:`.Mode`, :class:`.Vector`, :class:`.ModeSet`, :class:`.NMA` """ n_modes = modes.numModes() if n_modes > 1: collectivityList = list(calcCollectivity(modes)) else: collectivityList = [calcCollectivity(modes)] idxSorted = [i[0] for i in sorted(enumerate(collectivityList), key=lambda x: x[1], reverse=True)] score = np.zeros(n_modes) modeNum = list(range(n_modes)) for i in range(n_modes): score[idxSorted[i]] = idxSorted[i] + modeNum[i] + 2 score = score / (2.0 * n_modes) return score
e1c786bb90d6a7bc0367338f5e5bd6d10ec35366
7,306
def google_base(request): """ view for Google Base Product feed template; returns XML response """ products = Product.active.all() template = get_template("marketing/google_base.xml") xml = template.render(Context(locals())) return HttpResponse(xml, mimetype="text/xml")
a850e4c16f55486c872d0d581a25802d7de3c56e
7,307
def get_agivenn_df(run_list, run_list_sep, **kwargs): """DF of mean amplitudes conditiontioned on differnet n values.""" n_simulate = kwargs.pop('n_simulate') adfam_t = kwargs.pop('adfam_t', None) adaptive = kwargs.pop('adaptive') n_list = kwargs.pop('n_list', [1, 2, 3]) comb_vals, comb_val_resamps, sep_vals, sep_val_resamps = ( comb_sep_eval_resamp( run_list, run_list_sep, get_a_n_mean_given_n, n_simulate, adaptive=adaptive, n_list=n_list, adfam_t=adfam_t)) col_names = [r'$\mathrm{{E}}[a_{}|N={}]$'.format(n, n) for n in n_list] return get_sep_comb_df( comb_vals, comb_val_resamps, sep_vals, sep_val_resamps, col_names)
fe8fa42a3bc2e78ec1d5c5a7d47151d56789f5a5
7,308
def friendship_request_list_rejected(request, template_name='friendship/friend/requests_list.html'): """ View rejected friendship requests """ # friendship_requests = Friend.objects.rejected_requests(request.user) friendship_requests = FriendshipRequest.objects.filter(rejected__isnull=True) return render(request, template_name, {'requests': friendship_requests})
2457de6e01bd4fee96d499a481a3c5a2cd0d1782
7,309
def cycle_ctgo(object_type, related_type, related_ids): """ indirect relationships between Cycles and Objects mapped to CycleTask """ if object_type == "Cycle": join_by_source_id = db.session.query(CycleTask.cycle_id) \ .join(Relationship, CycleTask.id == Relationship.source_id) \ .filter( Relationship.source_type == "CycleTaskGroupObjectTask", Relationship.destination_type == related_type, Relationship.destination_id.in_(related_ids)) join_by_destination_id = db.session.query(CycleTask.cycle_id) \ .join(Relationship, CycleTask.id == Relationship.destination_id) \ .filter( Relationship.destination_type == "CycleTaskGroupObjectTask", Relationship.source_type == related_type, Relationship.source_id.in_(related_ids)) return join_by_source_id.union(join_by_destination_id) else: join_by_source_id = db.session.query(Relationship.destination_id) \ .join(CycleTask, CycleTask.id == Relationship.source_id) \ .filter( CycleTask.cycle_id.in_(related_ids), Relationship.source_type == "CycleTaskGroupObjectTask", Relationship.destination_type == object_type) join_by_destination_id = db.session.query(Relationship.source_id) \ .join(CycleTask, CycleTask.id == Relationship.destination_id) \ .filter( CycleTask.cycle_id.in_(related_ids), Relationship.destination_type == "CycleTaskGroupObjectTask", Relationship.source_type == object_type) return join_by_source_id.union(join_by_destination_id)
25de449672ef9ced358a53762156f3cbeaabd432
7,310
def Min(axis=-1, keepdims=False): """Returns a layer that applies min along one tensor axis. Args: axis: Axis along which values are grouped for computing minimum. keepdims: If `True`, keep the resulting size 1 axis as a separate tensor axis; else, remove that axis. """ return Fn('Min', lambda x: jnp.min(x, axis, keepdims=keepdims))
09c83217b48f16782530c1954f3e4f0127c06e69
7,311
def sampling(args): """Reparameterization trick by sampling fr an isotropic unit Gaussian. # Arguments args (tensor): mean and log of variance of Q(z|X) # Returns z (tensor): sampled latent vector """ z_mean, z_log_var = args batch = K.shape(z_mean)[0] dim = K.int_shape(z_mean)[1] # by default, random_normal has mean=0 and std=1.0 epsilon = K.random_normal(shape=(batch, dim)) return z_mean + K.exp(0.5 * z_log_var) * epsilon
06e8ca16f1139e12242ee043aa680d5ce7c43c10
7,312
def get_expression_arg_names(expression, strip_dots=True): """ Parse expression and return set of all argument names. For arguments with attribute-like syntax (e.g. materials), if `strip_dots` is True, only base argument names are returned. """ args = ','.join(aux.args for aux in parse_definition(expression)) args = [arg.strip() for arg in args.split(',')] if strip_dots: for ii, arg in enumerate(args[:]): aux = arg.split('.') if len(aux) == 2: args[ii] = aux[0] return set(args)
6f96395af45b008e5e8b0336c320813a760add49
7,313
from pathlib import Path def ORDER_CTIME(path: Path) -> int: """パスのソート用関数です。作成日時でソートを行います。 """ return path.stat().st_ctime_ns
435571222b26e0c83904305784d6c8868b5bf497
7,314
def format_location(data, year): """ Format any spatial data. Does nothing yet. Parameters ---------- data : pd.DataFrame Data before location formatting. Returns ------- data : pd.DataFrame Data with location formatting. """ # No spatial data yet so does nothing. # data["MSOA"] = "no_location" # data["location"] = "no_location" data["region"] = data["region"].astype(str).map(region_dict) return data
11d5d7b88f3143b38dc57248937b5e19e22e44c8
7,315
from typing import Union from typing import List def deploy_ingestion_service( featureset: Union[FeatureSet, str], source: DataSource = None, targets: List[DataTargetBase] = None, name: str = None, run_config: RunConfig = None, ): """Start real-time ingestion service using nuclio function Deploy a real-time function implementing feature ingestion pipeline the source maps to Nuclio event triggers (http, kafka, v3io stream, etc.) example:: source = HTTPSource() func = mlrun.code_to_function("ingest", kind="serving").apply(mount_v3io()) config = RunConfig(function=func) fs.deploy_ingestion_service(my_set, source, run_config=config) :param featureset: feature set object or uri :param source: data source object describing the online or offline source :param targets: list of data target objects :param name: name name for the job/function :param run_config: service runtime configuration (function object/uri, resources, etc..) """ if isinstance(featureset, str): featureset = get_feature_set_by_uri(featureset) run_config = run_config.copy() if run_config else RunConfig() source, run_config.parameters = set_task_params( featureset, source, targets, run_config.parameters ) name = name or f"{featureset.metadata.name}_ingest" if not run_config.function: function_ref = featureset.spec.function.copy() if function_ref.is_empty(): function_ref = FunctionReference(name=name, kind=RuntimeKinds.serving) function_ref.kind = function_ref.kind or RuntimeKinds.serving if not function_ref.url: function_ref.code = function_ref.code or "" run_config.function = function_ref function = run_config.to_function( RuntimeKinds.serving, mlrun.mlconf.feature_store.default_job_image ) function.metadata.project = featureset.metadata.project function.metadata.name = function.metadata.name or name # todo: add trigger (from source object) function.spec.graph = featureset.spec.graph function.spec.parameters = run_config.parameters function.spec.graph_initializer = ( "mlrun.feature_store.ingestion.featureset_initializer" ) function.verbose = True if run_config.local: return function.to_mock_server(namespace=get_caller_globals()) return function.deploy()
b1fb46c3900d70bf300a8acdf8045cf308be37ad
7,316
def create_app(service: Service): """Start a small webserver with the Service.""" app = FastAPI() @app.post("/query") def query(params: Params): """The main query endpoint.""" return service.query(**params.query, n_neighbors=params.n_neighbors) return app
3d2f01960d3def11f45bbbbf653511d6f5362881
7,317
def establecer_dominio(func_dist: Expr) -> dict: """Establece el dominio a partir de una FD. Parameters ---------- func_dist Distribución de probabilidad Returns ------- dict Dominio """ equations = func_dist.atoms(Eq) orders = func_dist.atoms(Rel) - equations dom = {var: EmptySet for var in func_dist.atoms(Symbol)} for order in orders: if len(order.atoms(Symbol)) > 1: continue var, = order.atoms(Symbol) val = solveset(order, var, Integers) dom[var] = dom[var] & val if dom[var] else val for equation in equations: var, = equation.atoms(Symbol) val = solveset(equation, var) dom[var] = dom[var] | val return dom
8ab1b4bc6518cb8baa300bd9f1d38ffff3dfbcf7
7,318
def random_init(n, max_norm): """Computes a random initial configuration of n 2D-vectors such that they all are inside of a circle of radius max_norm Parameters ---------- n : int Number of vectors max_norm : float or int Radius of the circle or maximum possible distance from the origin of coordinates that the vectors can have. Returns ------- numpy.ndarray (n, 2) matrix of vectors """ X = np.zeros((n, 2)) angles = np.random.rand(n) * 2 * np.pi norms = np.random.rand(n) * max_norm for i, angle, norm in zip(range(n), angles, norms): X[i] = np.array([np.cos(angle), np.sin(angle)]) * norm return X
5533e43572c47d8c8cd2d6765bb383382987015b
7,319
from typing import Dict from typing import Tuple def calc_cells(serial: int) -> Dict[Tuple[int, int], int]: """Calculate the power for all cells and store them in a dict to retrieve them faster later """ r = {} for i in range(300): for j in range(300): r.update({(i, j): calc_power((i, j), serial)}) return r
70684827b5c3ef1ec31d419f3012356a9bde1e6c
7,320
import os def check_img(img, input_dir): """ Checks whether the img complies with API`s restrictions. Parameters ---------- img : str Image name. input_dir : str Path to the dir with the image to check. Returns ------- Error message if image does not comply with API`s restrictions. Otherwise, returns "correct". """ img_format = img[img.find("."):].lower() if img_format not in ALLOWED_FORMATS: return f"{img},[Error] Unsupported format {img_format}\n" if os.path.getsize(os.path.join(input_dir, img)) >= IMG_SIZE_LIMIT: return f"{img},[Error] Size is larger than {IMG_SIZE_LIMIT}B\n" img_cv2 = cv2.imread(os.path.join(input_dir, img)) img_height, img_width, _ = img_cv2.shape if (not MAX_IMG_DIM > img_height > MIN_IMG_DIM or not MAX_IMG_DIM > img_width > MIN_IMG_DIM): return f"{img},[Error] Img dim must be in between " \ f"{MIN_IMG_DIM}-{MAX_IMG_DIM}\n" return "correct"
1052554ac784c52c88830f07ba738c2feb6a79c1
7,321
from typing import Union import pathlib from typing import List import glob from pathlib import Path def child_files_recursive(root: Union[str, pathlib.Path], ext: str) -> List[str]: """ Get all files with a specific extension nested under a root directory. Parameters ---------- root : pathlib.Path or str root directory ext : str file extension Returns ------- List[str] """ if not is_string_like(root) and not isinstance(root, pathlib.Path): raise TypeError(f'filetype is not string-like: {type(root)}') return list(glob.iglob(str(Path(root).joinpath('**/*' + ext)), recursive=True))
c16288b417d36d6d414c799c78fd59df976ca400
7,322
def ensure_dict(value): """Convert None to empty dict.""" if value is None: return {} return value
191b1a469e66750171648e715501690b2814b8b2
7,323
import random def mutSet(individual): """Mutation that pops or add an element.""" if random.random() < 0.5: if len(individual) > 0: # We cannot pop from an empty set individual.remove(random.choice(sorted(tuple(individual)))) else: individual.add(random.randrange(param.NBR_ITEMS)) return individual,
f9919da7f6612e3f317dbe854eda05a71d106632
7,324
def validate_tweet(tweet: str) -> bool: """It validates a tweet. Args: tweet (str): The text to tweet. Raises: ValueError: Raises if tweet length is more than 280 unicode characters. Returns: bool: True if validation holds. """ str_len = ((tweet).join(tweet)).count(tweet) + 1 if str_len > 280: raise ValueError(f"tweet is more than 280 unicode characters\n {tweet}") else: return True
41c7ef1967cba5bb75ea8bce7ffa9b7d636ef80e
7,325
def train_and_eval(model, model_dir, train_input_fn, eval_input_fn, steps_per_epoch, epochs, eval_steps): """Train and evaluate.""" train_dataset = train_input_fn() eval_dataset = eval_input_fn() callbacks = get_callbacks(model, model_dir) history = model.fit( x=train_dataset, validation_data=eval_dataset, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_steps=eval_steps, callbacks=callbacks) tf.get_logger().info(history) return model
54a30f82ab3da4b60534a2775c2217de057ba93c
7,326
import requests import html def open_website(url): """ Open website and return a class ready to work on """ headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36' } page = requests.get(url, headers=headers) source = html.fromstring(page.content) return source
081ed99692ff9763cb19208fdc7f3e7e08e03e8d
7,327
import sys def train(): """Trains the model""" if not request.is_json: return jsonify(error='Request must be json'), 400 try: frame = data_uri_to_cv2_img(request.json['frame']) except: # pylint: disable=bare-except e_type, value, _ = sys.exc_info() print(e_type) print(value) return jsonify(error='Could not decode frame'), 400 model_id = request.json['model_id'] coordinates = request.json['coord_x'], request.json['coord_y'] if model_id not in frames: frames[model_id] = list() frames[model_id].append((frame, coordinates)) if len(frames[model_id]) >= N_TRAINING_SAMPLES: models[model_id] = GazeTrackingModel(frames[model_id]) remaining_frames = N_TRAINING_SAMPLES - len(frames[model_id]) return jsonify(remaining=remaining_frames)
ce42f5751623dbf2da9544eab7ad98ea3cc67d51
7,328
def euclidean3d(v1, v2): """Faster implementation of euclidean distance for the 3D case.""" if not len(v1) == 3 and len(v2) == 3: print("Vectors are not in 3D space. Returning None.") return None return np.sqrt((v1[0] - v2[0]) ** 2 + (v1[1] - v2[1]) ** 2 + (v1[2] - v2[2]) ** 2)
89facc15567a7ed0138dee09ef1824ba40bb58a8
7,329
def blast_seqs(seqs, blast_constructor, blast_db=None, blast_mat_root=None, params={}, add_seq_names=True, out_filename=None, WorkingDir=None, SuppressStderr=None, SuppressStdout=None, input_handler=None, HALT_EXEC=False ): """Blast list of sequences. seqs: either file name or list of sequence objects or list of strings or single multiline string containing sequences. WARNING: DECISION RULES FOR INPUT HANDLING HAVE CHANGED. Decision rules for data are as follows. If it's s list, treat as lines, unless add_seq_names is true (in which case treat as list of seqs). If it's a string, test whether it has newlines. If it doesn't have newlines, assume it's a filename. If it does have newlines, it can't be a filename, so assume it's a multiline string containing sequences. If you want to skip the detection and force a specific type of input handler, use input_handler='your_favorite_handler'. add_seq_names: boolean. if True, sequence names are inserted in the list of sequences. if False, it assumes seqs is a list of lines of some proper format that the program can handle """ # set num keep if blast_db: params["-d"] = blast_db if out_filename: params["-o"] = out_filename ih = input_handler or guess_input_handler(seqs, add_seq_names) blast_app = blast_constructor( params=params, blast_mat_root=blast_mat_root, InputHandler=ih, WorkingDir=WorkingDir, SuppressStderr=SuppressStderr, SuppressStdout=SuppressStdout, HALT_EXEC=HALT_EXEC) return blast_app(seqs)
ce22f90fe3092a2c792478d7a4818d67fd13a753
7,330
def merge_dicts(dicts, handle_duplicate=None): """Merge a list of dictionaries. Invoke handle_duplicate(key, val1, val2) when two dicts maps the same key to different values val1 and val2, maybe logging the duplication. """ if not dicts: return {} if len(dicts) == 1: return dicts[0] if handle_duplicate is None: return {key: val for dict_ in dicts for key, val in dict_.items()} result = {} for dict_ in dicts: for key, val in dict_.items(): if key in result and val != result[key]: handle_duplicate(key, result[key], val) continue result[key] = val return result
44c06ab30bb76920ff08b5978a6aa271abd3e449
7,331
from datetime import datetime def _timestamp(line: str) -> Timestamp: """Returns the report timestamp from the first line""" start = line.find("GUIDANCE") + 11 text = line[start : start + 16].strip() timestamp = datetime.strptime(text, r"%m/%d/%Y %H%M") return Timestamp(text, timestamp.replace(tzinfo=timezone.utc))
7e3083c6dec766fe681e82555daa59ba7f5166b5
7,332
def start_qpsworkers(languages, worker_hosts): """Starts QPS workers as background jobs.""" if not worker_hosts: # run two workers locally (for each language) workers=[(None, 10000), (None, 10010)] elif len(worker_hosts) == 1: # run two workers on the remote host (for each language) workers=[(worker_hosts[0], 10000), (worker_hosts[0], 10010)] else: # run one worker per each remote host (for each language) workers=[(worker_host, 10000) for worker_host in worker_hosts] return [create_qpsworker_job(language, shortname= 'qps_worker_%s_%s' % (language, worker_idx), port=worker[1] + language.worker_port_offset(), remote_host=worker[0]) for language in languages for worker_idx, worker in enumerate(workers)]
3b53693a292027fd82d808b6d609fb3276f1bc2a
7,333
import os def is_source_ext(filename): """ Tells if filename (filepath) is a source file. For our purposes "sources" are any files that can #include and can be included. """ _, ext = os.path.splitext(filename) return ext in [".h", ".hh", ".hpp", ".inc", ".c", ".cc", ".cxx", ".cpp", ".f", ".F"]
b388768191e3efbfe2ddf3925a3ebf9f3a6693ac
7,334
def MCE(conf, pred, true, bin_size = 0.1): """ Maximal Calibration Error Args: conf (numpy.ndarray): list of confidences pred (numpy.ndarray): list of predictions true (numpy.ndarray): list of true labels bin_size: (float): size of one bin (0,1) # TODO should convert to number of bins? Returns: mce: maximum calibration error """ upper_bounds = np.arange(bin_size, 1+bin_size, bin_size) cal_errors = [] for conf_thresh in upper_bounds: acc, avg_conf, _ = compute_acc_bin(conf_thresh-bin_size, conf_thresh, conf, pred, true) cal_errors.append(np.abs(acc-avg_conf)) return max(cal_errors)
fb2390daeb8aed2f700994723884971198b613e8
7,335
def validate_frame_range(shots, start_time, end_time, sequence_time=False): """ Verify if the given frame range is overlapping existing shots timeline range. If it is overlapping any shot tail, it redefine the start frame at the end of it. If it is overlapping any shot head, it will push back all shots (and animation) behind the range to ensure the space is free to insert new shot. :param list[str] shots: Maya shot node names. :param int start_time: :param int end_time: :param bool sequence_time: Operate on Camera Sequencer's timeline instead of Maya timeline. :rtype: tuple[int, int] :return: Free range. """ start_attribute = "sequenceStartFrame" if sequence_time else "startFrame" end_attribute = "sequenceEndFrame" if sequence_time else "endFrame" length = end_time - start_time # Offset start_time to ensure it is not overlapping any shot tail. for shot in shots: shot_start = cmds.getAttr(shot + "." + start_attribute) shot_end = cmds.getAttr(shot + "." + end_attribute) # Ensure the time is not in the middle of a shot. if shot_start <= start_time <= shot_end: start_time = shot_end + 1 break # Detect overlapping shots from heads. end_time = start_time + length overlapping_shots = filter_shots_from_range( shots=shots, start_frame=start_time, end_frame=end_time, sequence_time=sequence_time) if not overlapping_shots: return start_time, end_time # Push back overlapping shots. offset = max( end_time - cmds.getAttr(shot + "." + start_attribute) + 1 for shot in overlapping_shots) if sequence_time: # Operating on the camera sequencer timeline don't need to adapt # animation. shift_shots_in_sequencer(shots, offset, after=end_time - offset) return start_time, end_time shift_shots(shots, offset, after=end_time - offset) curves = cmds.ls(type=ANIMATION_CURVES_TYPES) if curves: hold_animation_curves(curves, end_time - offset, offset) return start_time, end_time
d287ad393c80b899cfba3bac92ea9717918aed4a
7,336
def sparse_add(sv1, sv2): """dict, dict -> dict Returns a new dictionary that is the sum of the other two. >>>sparse_add(sv1, sv2) {0: 5, 1: 6, 2: 9} """ newdict = {} keys = set(sv1.keys()) | set(sv2.keys()) for key in keys: x = sv1.get(key, 0) + sv2.get(key, 0) newdict[key] = x return (newdict)
ced3420a585084a246ad25f7686fb388f2c05542
7,337
def return_flagger(video_ID): """ In GET request - Returns the username of the user that flagged the video with the corresponding video ID from the FLAGS table. """ if request.method == 'GET': return str(db.get_flagger(video_ID))
c8ca346b60ffa322847b5444c39dcbc43c66701a
7,338
def get_all_hits(): """Retrieves all hits. """ hits = [ i for i in get_connection().get_all_hits()] pn = 1 total_pages = 1 while pn < total_pages: pn = pn + 1 print "Request hits page %i" % pn temp_hits = get_connection().get_all_hits(page_number=pn) hits.extend(temp_hits) return hits
23f4da652d9e89dd0401ac4d8ccf2aa4f2660a5e
7,339
import socket def create_socket( host: str = "", port: int = 14443, anidb_server: str = "", anidb_port: int = 0 ) -> socket.socket: """Create a socket to be use to communicate with the server. This function is called internally, so you only have to call it if you want to change the default parameters. :param host: local host to bind the socket to, defaults to "" (which I think is any. Read the docs.) :type host: str, optional :param port: local port to bind the socket to, defaults to 14443 :type port: int, optional :param anidb_server: aniDB server name, defaults to environment ANIDB_SERVER :type anidb_server: str, optional :param anidb_port: anidb port, default to environment ANIDB_PORT :type anidb_port: int, optional :return: The created socket. :rtype: socket.socket """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((host, port)) anidb_server = value_or_error("ANIDB_SERVER", anidb_server) anidb_port = value_or_error("ANIDB_PORT", anidb_port) s.connect((anidb_server, anidb_port)) logger.info( f"Created socket on UDP %s:%d => %s:%d", host, port, anidb_server, anidb_port ) global _conn _conn = s return s
6b8cc3aa19af4582dbdf96d781d8ae64399165cf
7,340
def aten_eq(mapper, graph, node): """ 构造判断数值是否相等的PaddleLayer。 TorchScript示例: %125 : bool = aten::eq(%124, %123) 参数含义: %125 (bool): 对比后结果。 %124 (-): 需对比的输入1。 %123 (-): 需对比的输入2。 """ scope_name = mapper.normalize_scope_name(node) output_name = mapper._get_outputs_name(node)[0] layer_outputs = [output_name] layer_inputs = {} inputs_name, inputs_node = mapper._get_inputs_name(node) # 获取当前节点输出的list current_outputs = [output_name] # 处理输入0,即%124 mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name) layer_inputs["x"] = inputs_name[0] x_value = list(node.inputs())[0] x_type = x_value.type() # 处理输入1,即%123 mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name) layer_inputs["y"] = inputs_name[1] y_value = list(node.inputs())[1] y_type = y_value.type() # 获取当前节点输入的list current_inputs = list(layer_inputs.values()) graph.add_layer("prim.eq", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name) return current_inputs, current_outputs
c08fc3120130e949cbba4e147888fabca38c89e3
7,341
from typing import Tuple def _create_simple_tf1_conv_model( use_variable_for_filter=False) -> Tuple[core.Tensor, core.Tensor]: """Creates a basic convolution model. This is intended to be used for TF1 (graph mode) tests. Args: use_variable_for_filter: Setting this to `True` makes the filter for the conv operation a `tf.Variable`. Returns: in_placeholder: Input tensor placeholder. output_tensor: The resulting tensor of the convolution operation. """ in_placeholder = array_ops.placeholder(dtypes.float32, shape=[1, 3, 4, 3]) filters = random_ops.random_uniform(shape=(2, 3, 3, 2), minval=-1., maxval=1.) if use_variable_for_filter: filters = variables.Variable(filters) output_tensor = nn_ops.conv2d( in_placeholder, filters, strides=[1, 1, 2, 1], dilations=[1, 1, 1, 1], padding='SAME', data_format='NHWC') return in_placeholder, output_tensor
21deebe2de004554a5bdc6559ecf6319947f8109
7,342
def plot_diversity_bootstrapped(diversity_df): """Plots the result of bootstrapped diversity""" div_lines = ( alt.Chart() .mark_line() .encode( x="year:O", y=alt.Y("mean(score)", scale=alt.Scale(zero=False)), color="parametre_set", ) ) div_bands = ( alt.Chart() .mark_errorband(extent="ci") .encode( x="year:O", y=alt.Y("score", scale=alt.Scale(zero=False)), color="parametre_set", ) ) out = alt.layer( div_lines, div_bands, data=diversity_df, height=150, width=400 ).facet(row="diversity_metric", column="test") return out
8b91d1d6d1f7384dcbea6c398a9bde8dfb4aae39
7,343
def escape(s): """ Returns the given string with ampersands, quotes and carets encoded. >>> escape('<b>oh hai</b>') '&lt;b&gt;oh hai&lt;/b&gt;' >>> escape("Quote's Test") 'Quote&#39;s Test' """ mapping = ( ('&', '&amp;'), ('<', '&lt;'), ('>', '&gt;'), ('"', '&quot;'), ("'", '&#39;'), ) for tup in mapping: s = s.replace(tup[0], tup[1]) return s
2b4971c4e87e613cad457dde6d62806d299cdbcd
7,344
def _get_db_columns_for_model(model): """ Return list of columns names for passed model. """ return [field.column for field in model._meta._fields()]
181999f28ca659bf296bcb4dda7ac29ddfe61071
7,345
def get_UV(filename): """ Input: filename (including path) Output: (wave_leftedges, wav_rightedges, surface radiance) in units of (nm, nm, photons/cm2/sec/nm) """ wav_leftedges, wav_rightedges, wav, toa_intensity, surface_flux, SS,surface_intensity, surface_intensity_diffuse, surface_intensity_direct=np.genfromtxt(filename, skip_header=1, skip_footer=0, usecols=(0, 1, 2,3,4,5,6,7,8), unpack=True) surface_intensity_photons=surface_intensity*(wav/(hc)) return wav_leftedges, wav_rightedges, surface_intensity_photons
cd514ee29ba3ac17cdfcb95c53d4b5df4f4cad80
7,346
import json def load_chunks(chunk_file_location, chunk_ids): """Load patch paths from specified chunks in chunk file Parameters ---------- chunks : list of int The IDs of chunks to retrieve patch paths from Returns ------- list of str Patch paths from the chunks """ patch_paths = [] with open(chunk_file_location) as f: data = json.load(f) chunks = data['chunks'] for chunk in data['chunks']: if chunk['id'] in chunk_ids: patch_paths.extend([[x,chunk['id']] for x in chunk['imgs']]) if len(patch_paths) == 0: raise ValueError( f"chunks {tuple(chunk_ids)} not found in {chunk_file_location}") return patch_paths
c01ec6076141356ae6f3a1dc40add28638739359
7,347
import argparse def set_arguments() -> argparse.Namespace: """Setting the arguments to run from CMD :return: arguments """ # Adding main description parser = argparse.ArgumentParser( description=f'{m.__description__}', epilog=f'{m.__copyright__}\n | Versioon: {m.__version__}') # Postional arguments parser.add_argument('Excel', help='Exceli täielik asukoht, näiteks "./docs/examples/sisend_test.xlsx"') parser.add_argument('Kinnistu', help='kinnistu numbrite veeru nimi, näiteks "Kinnistu reg.osa"') parser.add_argument('Out', help='väljundi nimi, salvestatakse samasse kausta run.py-ga, näiteks kinnistu_tulemused') # Optional arguments parser.add_argument('-i', '--intermediate', help='Vahetulemused. (Default: %(default)s).', action='store_true') parser.add_argument('-l', '--logi', help='Logimiseks. (Default: %(default)s).', action='store_true') args = parser.parse_args() # collection return args
26d0d8efdb4bc13874c6ba8bb0cb7976ad000002
7,348
def get_model_input(batch, input_id=None): """ Get model input from batch batch: batch of model input samples """ if isinstance(batch, dict) or isinstance(batch, list): assert input_id is not None return batch[input_id] else: return batch
1b12ee86257bfbd5ab23404251bed39c0021f461
7,349
def issym(b3): """test if a list has equal number of positive and negative values; zeros belong to both. """ npos = 0; nneg = 0 for item in b3: if (item >= 0): npos +=1 if (item <= 0): nneg +=1 if (npos==nneg): return True else: return False
e8cc57eec5bc9ef7f552ad32bd6518daa2882a3e
7,350
def predictOneVsAll(all_theta, X): """will return a vector of predictions for each example in the matrix X. Note that X contains the examples in rows. all_theta is a matrix where the i-th row is a trained logistic regression theta vector for the i-th class. You should set p to a vector of values from 1..K (e.g., p = [1 3 1 2] predicts classes 1, 3, 1, 2 for 4 examples) """ m = X.shape[0] # You need to return the following variables correctly p = np.zeros((m, 1)) # probs = np.zeros((all_theta.shape[0], X.shape[0])) # ====================== YOUR CODE HERE ====================== # Instructions: Complete the following code to make predictions using # your learned logistic regression parameters (one-vs-all). # You should set p to a vector of predictions (from 1 to # num_labels). # # Hint: This code can be done all vectorized using the max function. # In particular, the np.argmax function can return the index of the max # element, for more information see 'numpy.argmax' on the numpy website. # If your examples are in rows, then, you can use # np.argmax(probs, axis=1) to obtain the max for each row. # p = np.argmax(sigmoid(np.dot(all_theta, X.T)), axis=0) + 1 # for i in range(all_theta.shape[0]): # probs[i,:] = sigmoid(X @ all_theta[i,:]) # p = (np.argmax(probs, axis=0) + 1) # ========================================================================= return p
32bf9d386ef84debe75781a52335588da360b269
7,351
from typing import Tuple from typing import List def lecture_produit(ligne : str) -> Tuple[str, int, float]: """Précondition : la ligne de texte décrit une commande de produit. Renvoie la commande produit (nom, quantité, prix unitaire). """ lmots : List[str] = decoupage_mots(ligne) nom_produit : str = lmots[0] quantite : int = int(lmots[1]) prix_unitaire : float = float(lmots[2]) return (nom_produit, quantite, prix_unitaire)
355721522b9711f9bc206f4ab63af6121ef9b3d0
7,352
def affinity_matrix(test_specs): """Generate a random user/item affinity matrix. By increasing the likehood of 0 elements we simulate a typical recommending situation where the input matrix is highly sparse. Args: users (int): number of users (rows). items (int): number of items (columns). ratings (int): rating scale, e.g. 5 meaning rates are from 1 to 5. spars: probability of obtaining zero. This roughly corresponds to the sparseness. of the generated matrix. If spars = 0 then the affinity matrix is dense. Returns: np.array: sparse user/affinity matrix of integers. """ np.random.seed(test_specs["seed"]) # uniform probability for the 5 ratings s = [(1 - test_specs["spars"]) / test_specs["ratings"]] * test_specs["ratings"] s.append(test_specs["spars"]) P = s[::-1] # generates the user/item affinity matrix. Ratings are from 1 to 5, with 0s denoting unrated items X = np.random.choice( test_specs["ratings"] + 1, (test_specs["users"], test_specs["items"]), p=P ) Xtr, Xtst = numpy_stratified_split( X, ratio=test_specs["ratio"], seed=test_specs["seed"] ) return (Xtr, Xtst)
8e033d230cbc8c21d6058bcada14aca9fb1d7e68
7,353
def get_wm_desktop(window): """ Get the desktop index of the window. :param window: A window identifier. :return: The window's virtual desktop index. :rtype: util.PropertyCookieSingle (CARDINAL/32) """ return util.PropertyCookieSingle(util.get_property(window, '_NET_WM_DESKTOP'))
050fe4a97a69317ba875aa59b3bf4144b9e2f83c
7,354
def get_parents(tech_id, model_config): """ Returns the full inheritance tree from which ``tech`` descends, ending with its base technology group. To get the base technology group, use ``get_parents(...)[-1]``. Parameters ---------- tech : str model_config : AttrDict """ tech = model_config.techs[tech_id].essentials.parent parents = [tech] while True: tech = model_config.tech_groups[tech].essentials.parent if tech is None: break # We have reached the top of the chain parents.append(tech) return parents
7220a57b770232e335001a0dab74ca2d8197ddfa
7,355
from chaoslib.activity import run_activity def load_dynamic_configuration( config: Configuration, secrets: Secrets = None ) -> Configuration: """ This is for loading a dynamic configuration if exists. The dynamic config is a regular activity (probe) in the configuration section. If there's a use-case for setting a configuration dynamically right before the experiment is starting. It executes the probe, and then the return value of this probe will be the config you wish to set. The dictionary needs to have a key named `type` and as a value `probe`, alongside the rest of the probe props. (No need for the `tolerance` key). For example: ```json "some_dynamic_config": { "name": "some config probe", "type": "probe", "provider": { "type": "python", "module": "src.probes", "func": "config_probe", "arguments": { "arg1":"arg1" } } } ``` `some_dynamic_config` will be set with the return value of the function config_probe. Side Note: the probe type can be the same as a regular probe can be, python, process or http. The config argument contains all the configurations of the experiment including the raw config_probe configuration that can be dynamically injected. The configurations contain as well all the env vars after they are set in `load_configuration`. The `secrets` argument contains all the secrets of the experiment. For `process` probes, the stdout value (stripped of endlines) is stored into the configuration. For `http` probes, the `body` value is stored. For `python` probes, the output of the function will be stored. We do not stop on errors but log a debug message and do not include the key into the result dictionary. """ # we delay this so that the configuration module can be imported leanly # from elsewhere conf = {} secrets = secrets or {} had_errors = False logger.debug("Loading dynamic configuration...") for (key, value) in config.items(): if not (isinstance(value, dict) and value.get("type") == "probe"): conf[key] = config.get(key, value) continue # we have a dynamic config name = value.get("name") provider_type = value["provider"]["type"] value["provider"]["secrets"] = deepcopy(secrets) try: output = run_activity(value, conf, secrets) except Exception: had_errors = True logger.debug(f"Failed to load configuration '{name}'", exc_info=True) continue if provider_type == "python": conf[key] = output elif provider_type == "process": if output["status"] != 0: had_errors = True logger.debug( f"Failed to load configuration dynamically " f"from probe '{name}': {output['stderr']}" ) else: conf[key] = output.get("stdout", "").strip() elif provider_type == "http": conf[key] = output.get("body") if had_errors: logger.warning( "Some of the dynamic configuration failed to be loaded." "Please review the log file for understanding what happened." ) return conf
aaeac23c0700c00c5b7946e010299fe5b2e74d82
7,356
import sys import copy import io def main(argv=None): """Main function: Parse, process, print""" if argv is None: argv = sys.argv args = parse_args(argv) if not args: exit(1) original_tags = copy.deepcopy(tags.load(args["config"])) with io.open(args["src"], "r", encoding="utf-8", errors="ignore") as fin: lines = fin.readlines() transacs_orig = qifile.parse_lines(lines, options=args) try: transacs = process_transactions(transacs_orig, options=args) except EOFError: # exit on Ctrl + D: restore original tags tags.save(args["config"], original_tags) return 1 res = qifile.dump_to_buffer(transacs + transacs_orig[len(transacs) :]) if not args.get("dry-run"): with io.open(args["dest"], "w", encoding="utf-8") as dest: dest.write(res) if args["batch"] or args["dry-run"]: print("\n" + res) return 0 if len(transacs) == len(transacs_orig) else 1
0aae5e3ab5d92de2b2fd2306645696733e81de38
7,357
import hashlib import urllib def profile_avatar(user, size=200): """Return a URL to the user's avatar.""" try: # This is mostly for tests. profile = user.profile except (Profile.DoesNotExist, AttributeError): avatar = settings.STATIC_URL + settings.DEFAULT_AVATAR profile = None else: if profile.is_fxa_migrated: avatar = profile.fxa_avatar elif profile.avatar: avatar = profile.avatar.url else: avatar = settings.STATIC_URL + settings.DEFAULT_AVATAR if avatar.startswith("//"): avatar = "https:%s" % avatar if user and hasattr(user, "email"): email_hash = hashlib.md5(force_bytes(user.email.lower())).hexdigest() else: email_hash = "00000000000000000000000000000000" url = "https://secure.gravatar.com/avatar/%s?s=%s" % (email_hash, size) # If the url doesn't start with http (local dev), don't pass it to # to gravatar because it can't use it. if avatar.startswith("https") and profile and profile.is_fxa_migrated: url = avatar elif avatar.startswith("http"): url = url + "&d=%s" % urllib.parse.quote(avatar) return url
a810af7f7abb4a5436a2deed8c4e1069aa5d504c
7,358
import sys def szz_reverse_blame(ss_path, sha_to_blame_on, buggy_line_num, buggy_file_path_in_ss, buggy_SHA): """Reverse-blames `buggy_line_num` (added in `buggy_SHA`) onto `sha_to_blame_on`.""" ss_repo = Repo(ss_path) ss_name = pathLeaf(ss_path) try: # If buggy_SHA equals sha_to_blame_on, then git-blame-reverse fails. # In our code buggy_SHA and sha_to_blame_on are never equal, but just to be safe... if sha_to_blame_on != buggy_SHA: curr_blame_info = ss_repo.git.blame('--reverse', '-w', '-n', '-f', '--abbrev=40', \ '-L' + buggy_line_num + ',+1', \ '--', buggy_file_path_in_ss, \ buggy_SHA + '..' + sha_to_blame_on, stdout_as_string = False) curr_buggy_line_num = curr_blame_info.split('(')[0].split()[-1] curr_buggy_file_path_in_ss = ' '.join(curr_blame_info.split('(')[0].split()[1:-1]) return [ss_name, curr_buggy_file_path_in_ss, sha_to_blame_on, curr_buggy_line_num] else: return [ss_name, buggy_file_path_in_ss, sha_to_blame_on, buggy_line_num] except Exception as e: sys.stderr.write("\nError in reverse-blame! Continuing with next line_num...\n" + str(e)) return None
abfefc8b3a02b4d3e63d151ab7213321b8b43d62
7,359
import tqdm def union(graphs, use_tqdm: bool = False): """Take the union over a collection of graphs into a new graph. Assumes iterator is longer than 2, but not infinite. :param iter[BELGraph] graphs: An iterator over BEL graphs. Can't be infinite. :param use_tqdm: Should a progress bar be displayed? :return: A merged graph :rtype: BELGraph Example usage: >>> import pybel >>> g = pybel.from_bel_script('...') >>> h = pybel.from_bel_script('...') >>> k = pybel.from_bel_script('...') >>> merged = union([g, h, k]) """ it = iter(graphs) if use_tqdm: it = tqdm(it, desc='taking union') try: target = next(it) except StopIteration as e: raise ValueError('no graphs given') from e try: graph = next(it) except StopIteration: return target else: target = target.copy() left_full_join(target, graph) for graph in it: left_full_join(target, graph) return target
8ea9bae0386c497a5fe31c8bd44099ee450b2b2a
7,360
def get_month_n_days_from_cumulative(monthly_cumulative_days): """ Transform consecutive number of days in monthly data to actual number of days. EnergyPlus monthly results report a total consecutive number of days for each day. Raw data reports table as 31, 59..., this function calculates and returns actual number of days for each month 31, 28... """ old_num = monthly_cumulative_days.pop(0) m_actual_days = [old_num] for num in monthly_cumulative_days: new_num = num - old_num m_actual_days.append(new_num) old_num += new_num return m_actual_days
5ede033023d357a60ba5eb7e9926325d24b986e8
7,361
def get_text(name): """Returns some text""" return "Hello " + name
bff30de2184c84f6ed1c4c1831ed9fd782f479c9
7,362
import re def apply_template(assets): """ Processes the template. Used for overwrite ``docutils.writers._html_base.Writer.apply_template`` method. ``apply_template(<assets>)`` ``assets`` (dictionary) Assets to add at the template, see ``ntdocutils.writer.Writer.assets``. returns function - Template processor. Example ======= .. code:: python apply_template({ "before_styles": '<link rel="stylesheet" href="styles.css" />', "scripts": '<script src="script.js"></script>' '<script src="other_script.js"></script>' }) """ def apply_template(self): template_file = open(self.document.settings.template, "rb") template = str(template_file.read(), "utf-8") template_file.close() # Escape ``%`` that don't are special fields pattern = r"%(?!\((" + "|".join(self.visitor_attributes) + r")\)s)" template = re.subn(pattern, "%%", template)[0] subs = self.interpolation_dict() return template.format(**assets) % subs return apply_template
51042e25f701935d668d91a923155813ce60b381
7,363
def harvest(post): """ Filter the post data for just the funding allocation formset data. """ data = {k: post[k] for k in post if k.startswith("fundingallocation")} return data
67f400caf87f2accab30cb3c519e7014792c84d7
7,364
import os from sys import flags def get_credentials(): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ home_dir = os.path.expanduser('~') credential_dir = os.path.join(home_dir, '.credentials') if not os.path.exists(credential_dir): os.makedirs(credential_dir) credential_path = os.path.join(credential_dir, 'calendar-python-quickstart.json') store = Storage(credential_path) credentials = store.get() if not credentials or credentials.invalid: flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE, SCOPES) flow.user_agent = APPLICATION_NAME if flags: credentials = tools.run_flow(flow, store, flags) else: # Needed only for compatibility with Python 2.6 credentials = tools.run(flow, store) #print('Storing credentials to ' + credential_path) return credentials
b786fef63c51380b543f04aa6c7fd91b3ede03d3
7,365
def model2(x, input_size, output_size): """! Fully connected model [InSize]x800x[OutSize] Implementation of a [InSize]x800x[OutSize] fully connected model. Parameters ---------- @param x : placeholder for input data @param input_size : size of input data @param output_size : size of output data Returns ------- @retval logits : output @retval logits_dup : a copy of output @retval w_list : trainable parameters @retval w_list_dup : a copy of trainable parameters """ #================================================================================================================== ## model definition mu = 0 sigma = 0.2 weights = { 'wfc': tf.Variable(tf.truncated_normal(shape=(input_size,800), mean = mu, stddev = sigma, seed = 1)), 'out': tf.Variable(tf.truncated_normal(shape=(800,output_size), mean = mu, stddev = sigma, seed = 1)) } biases = { 'bfc': tf.Variable(tf.zeros(800)), 'out': tf.Variable(tf.zeros(output_size)) } # Flatten input. c_flat = flatten(x) # Layer 1: Fully Connected. Input = input_size. Output = 800. # Activation. fc = fc_relu(c_flat, weights['wfc'], biases['bfc']) # Layer 2: Fully Connected. Input = 800. Output = output_size. logits = tf.add(tf.matmul(fc, weights['out']), biases['out']) w_list = [] for w,b in zip(weights, biases): w_list.append(weights[w]) w_list.append(biases[b]) #================================================================================================================== ## duplicate the model used in ProxSVRG weights_dup = { 'wfc': tf.Variable(tf.truncated_normal(shape=(input_size,800), mean = mu, stddev = sigma, seed = 1)), 'out': tf.Variable(tf.truncated_normal(shape=(800,output_size), mean = mu, stddev = sigma, seed = 1)) } biases_dup = { 'bfc': tf.Variable(tf.zeros(800)), 'out': tf.Variable(tf.zeros(output_size)) } # Flatten input. c_flat_dup = flatten(x) # Layer 1: Fully Connected. Input = input_size. Output = 800. # Activation. fc_dup = fc_relu(c_flat_dup, weights_dup['wfc'], biases_dup['bfc']) # Layer 2: Fully Connected. Input = 800. Output = output_size. logits_dup = tf.add(tf.matmul(fc_dup, weights_dup['out']), biases_dup['out']) w_list_dup = [] for w,b in zip(weights_dup, biases_dup): w_list_dup.append(weights_dup[w]) w_list_dup.append(biases_dup[b]) return logits, logits_dup, w_list, w_list_dup
74a7f9129865e1d2b6cbfe767c7f218d53ee50e1
7,366
def cut_bin_depths( dataset: xr.Dataset, depth_range: tp.Union[int, float, list] = None ) -> xr.Dataset: """ Return dataset with cut bin depths if the depth_range are not outside the depth span. Parameters ---------- dataset : depth_range : min or (min, max) to be included in the dataset. Bin depths outside this range will be cut. Returns ------- dataset with depths cut. """ if depth_range: if not isinstance(depth_range, (list, tuple)): if depth_range > dataset.depth.max(): l.log( "depth_range value is greater than the maximum bin depth. Depth slicing aborded." ) else: dataset = dataset.sel(depth=slice(depth_range, None)) l.log(f"Bin of depth inferior to {depth_range} m were cut.") elif len(depth_range) == 2: if dataset.depth[0] > dataset.depth[-1]: depth_range.reverse() if depth_range[0] > dataset.depth.max() or depth_range[1] < dataset.depth.min(): l.log( "depth_range values are outside the actual depth range. Depth slicing aborted." ) else: dataset = dataset.sel(depth=slice(*depth_range)) l.log( f"Bin of depth inferior to {depth_range[0]} m and superior to {depth_range[1]} m were cut." ) else: l.log( f"depth_range expects a maximum of 2 values but {len(depth_range)} were given. Depth slicing aborted." ) return dataset
ab4561711d118dc620100bec5e159dc4b7a29f92
7,367
def create_edgelist(file, df): """ creates an edgelist based on genre info """ # load edges from the (sub)genres themselves df1 = (pd .read_csv(file, dtype='str')) # get edges from the book descriptions df df2 = (df[['title', 'subclass']] .rename(columns={'title':'Edge_From', 'subclass':'Edge_To'}) .sort_values(by='Edge_To')) # combine the two dfs df3 = (df1 .append(df2, ignore_index=True)) # consistently assign categories df4 = (df3 .stack() .astype('category') .unstack()) # make the categorical values explicit for later convenience for name in df4.columns: df4['N' + name] = (df4[name] .cat .codes) return df4
9cfba48eca977e8b2e3217078bd6d112c465ea23
7,368
def CodeRange(code1, code2): """ CodeRange(code1, code2) is an RE which matches any character with a code |c| in the range |code1| <= |c| < |code2|. """ if code1 <= nl_code < code2: return Alt(RawCodeRange(code1, nl_code), RawNewline, RawCodeRange(nl_code + 1, code2)) else: return RawCodeRange(code1, code2)
c63213c63d96361451e441cf6923015238dae8f8
7,369
def sort_by_date(data): """ The sort_by_date function sorts the lists by their datetime object :param data: the list of lists containing parsed UA data :return: the sorted date list of lists """ # Supply the reverse option to sort by descending order return [x[0:6:4] for x in sorted(data, key=itemgetter(4), reverse=True)]
f8d18b80404edcf141a56f47938ea09531d30df7
7,370
def get_menu_option(): """ Function to display menu options and asking the user to choose one. """ print("1. View their next 5 fixtures...") print("2. View their last 5 fixtures...") print("3. View their entire current season...") print("4. View their position in the table...") print("5. View the club roster...") print("6. View season statistics...") print("7. View team information...") print("8. Sign up to your club's weekly newsletter...") print("9. Calculate odds on next game...") print() return input("CHOOSE AN OPTION BELOW BY ENTERING THE MENU NUMBER OR ENTER 'DONE' ONCE YOU ARE FINISHED: ")
69e71555d9896d0c462b2e7b542ec87aea9213eb
7,371
def pdf(mu_no): """ the probability distribution function which the number of fibers per MU should follow """ return pdf_unscaled(mu_no) / scaling_factor_pdf
2d6fd461d12da6b00bbf20de7a7be7d61112014c
7,372
import requests def get_weather_by_key(key): """ Returns weather information for a given database key Args: key (string) -- database key for weather information Returns: None or Dict """ url = "%s/weather/%s.json" % (settings.FIREBASE_URL, key) r = requests.get(url) if r.status_code != 200: return None return r.json()
8ab3bfa6b5924b726fef9a9c0b8bd9d47cf9dfc8
7,373
import warnings def source_receiver_midpoints(survey, **kwargs): """ Calculate source receiver midpoints. Input: :param SimPEG.electromagnetics.static.resistivity.Survey survey: DC survey object Output: :return numpy.ndarray midx: midpoints x location :return numpy.ndarray midz: midpoints z location """ if not isinstance(survey, dc.Survey): raise ValueError("Input must be of type {}".format(dc.Survey)) if len(kwargs) > 0: warnings.warn( "The keyword arguments of this function have been deprecated." " All of the necessary information is now in the DC survey class", DeprecationWarning, ) # Pre-allocate midxy = [] midz = [] for ii, source in enumerate(survey.source_list): tx_locs = source.location if isinstance(tx_locs, list): Cmid = (tx_locs[0][:-1] + tx_locs[1][:-1]) / 2 zsrc = (tx_locs[0][-1] + tx_locs[1][-1]) / 2 tx_sep = np.linalg.norm((tx_locs[0][:-1] - tx_locs[1][:-1])) else: Cmid = tx_locs[:-1] zsrc = tx_locs[-1] Pmids = [] for receiver in source.receiver_list: rx_locs = receiver.locations if isinstance(rx_locs, list): Pmid = (rx_locs[0][:, :-1] + rx_locs[1][:, :-1]) / 2 else: Pmid = rx_locs[:, :-1] Pmids.append(Pmid) Pmid = np.vstack(Pmids) midxy.append((Cmid + Pmid) / 2) diffs = np.linalg.norm((Cmid - Pmid), axis=1) if np.allclose(diffs, 0.0): # likely a wenner type survey. midz = zsrc - tx_sep / 2 * np.ones_like(diffs) else: midz.append(zsrc - diffs / 2) return np.vstack(midxy), np.hstack(midz)
adec937949a4293d35c7a57aad7125f2e1113794
7,374
import copy def fix_source_scale( transformer, output_std: float = 1, n_samples: int = 1000, use_copy: bool = True, ) -> float: """ Adjust the scale for a data source to fix the output variance of a transformer. The transformer's data source must have a `scale` parameter. Parameters ---------- transformer Transformer whose output variance is optimized. This should behave like `Arma`: it needs to have a `transform` method that can be called like `transformer.transform(U=source)`; and it needs an attribute called `default_source`. output_std Value to which to fix the transformer's output standard deviation. n_samples Number of samples to generate for each optimization iteration. use_copy If true, a deep copy of the data source is made for the optimization, so that the source's random generator is unaffected by this procedure. Returns the final value for the scale. """ output_var = output_std ** 2 source = transformer.default_source if use_copy: source_copy = copy.deepcopy(source) else: source_copy = source def objective(scale: float): source_copy.scale = np.abs(scale) samples = transformer.transform(n_samples, X=source_copy) return np.var(samples) / output_var - 1 soln = optimize.root_scalar( objective, x0=np.sqrt(output_var / 2), x1=np.sqrt(2 * output_var), maxiter=100, ) source.scale = np.abs(soln.root) return source.scale
bf2dc0690732ce7677a484afee75fa7701b3d0e8
7,375
def samplePinDuringCapture(f, pin, clock): """\ Configure Arduino to enable sampling of a particular light sensor or audio signal input pin. Only enabled pins are read when capture() is subsequently called. :param f: file handle for the serial connection to the Arduino Due :param pin: The pin to enable. :param clock: a :class:`dvbcss.clock` clock object Values for the pin parameter: * 0 enables reading of light sensor 0 (on Arduino analogue pin 0). * 1 enables reading of audio input 0 (on Arduino analogue pin 1). * 2 enables reading of light sensor 1 (on Arduino analogue pin 2). * 3 enables reading of audio input 1 (on Arduino analogue pin 3). :returns: (t1,t2,t3,t4) measuring the specified clock object and arduino clock, as per :func`writeCmdAndTimeRoundTrip` See :func:`writeAndTimeRoundTrip` for details of the meaning of the returned round-trip timing data """ CMD = CMDS_ENABLE_PIN[pin] return writeCmdAndTimeRoundTrip(f, clock, CMD)
246dc76eb07b9240439befdffdc3f31376647a64
7,376
def year_filter(year = None): """ Determine whether the input year is single value or not Parameters ---------- year : The input year Returns ------- boolean whether the inputed year is a single value - True """ if year[0] == year[1]: single_year = True else: single_year = False return single_year
35868a72196015c20517179dc89cd65b5601e969
7,377
def distance(p1, p2): """ Return the Euclidean distance between two QPointF objects. Euclidean distance function in 2D using Pythagoras Theorem and linear algebra objects. QPointF and QVector2D member functions. """ if not (isinstance(p1, QPointF) and isinstance(p2, QPointF)): raise ValueError('ValueError, computing distance p1 or p2 not of Type QPointF') return toVector(p2 - p1).length()
2e8b2d8fcbb05b24798c8507bef8a32b8b9468f3
7,378
import math import numpy def make_primarybeammap(gps, delays, frequency, model, extension='png', plottype='beamsky', figsize=14, directory=None, resolution=1000, zenithnorm=True, b_add_sources=False): """ """ print("Output beam file resolution = %d , output directory = %s" % (resolution, directory)) # (az_grid, za_grid) = beam_tools.makeAZZA(resolution,'ZEA') #Get grids in radians (az_grid, za_grid, n_total, dOMEGA) = beam_tools.makeAZZA_dOMEGA(resolution, 'ZEA') # TEST SIN vs. ZEA az_grid = az_grid * 180 / math.pi za_grid = za_grid * 180 / math.pi # az_grid+=180.0 alt_grid = 90 - (za_grid) obstime = su.time2tai(gps) # first go from altitude to zenith angle theta = (90 - alt_grid) * math.pi / 180 phi = az_grid * math.pi / 180 beams = {} # this is the response for XX and YY if model == 'analytic' or model == '2014': # Handles theta and phi as floats, 1D, or 2D arrays (and probably higher dimensions) beams['XX'], beams['YY'] = primary_beam.MWA_Tile_analytic(theta, phi, freq=frequency, delays=delays, zenithnorm=zenithnorm, power=True) elif model == 'avg_EE' or model == 'advanced' or model == '2015' or model == 'AEE': beams['XX'], beams['YY'] = primary_beam.MWA_Tile_advanced(theta, phi, freq=frequency, delays=delays, power=True) elif model == 'full_EE' or model == '2016' or model == 'FEE' or model == 'Full_EE': # model_ver = '02' # h5filepath = 'MWA_embedded_element_pattern_V' + model_ver + '.h5' beams['XX'], beams['YY'] = primary_beam.MWA_Tile_full_EE(theta, phi, freq=frequency, delays=delays, zenithnorm=zenithnorm, power=True) # elif model == 'full_EE_AAVS05': # # h5filepath='/Users/230255E/Temp/_1508_Aug/embedded_element/h5/AAVS05_embedded_element_02_rev0.h5' # # h5filepath = 'AAVS05_embedded_element_02_rev0.h5' # beams['XX'], beams['YY'] = primary_beam.MWA_Tile_full_EE(theta, phi, # freq=frequency, delays=delays, # zenithnorm=zenithnorm, power=True) pols = ['XX', 'YY'] # Get Haslam and interpolate onto grid my_map = get_Haslam(frequency) mask = numpy.isnan(za_grid) za_grid[numpy.isnan(za_grid)] = 90.0 # Replace nans as they break the interpolation sky_grid = map_sky(my_map['skymap'], my_map['RA'], my_map['dec'], gps, az_grid, za_grid) sky_grid[mask] = numpy.nan # Remask beyond the horizon # test: # delays1 = numpy.array([[6, 6, 6, 6, # 4, 4, 4, 4, # 2, 2, 2, 2, # 0, 0, 0, 0], # [6, 6, 6, 6, # 4, 4, 4, 4, # 2, 2, 2, 2, # 0, 0, 0, 0]], # dtype=numpy.float32) # za_delays = {'0': delays1 * 0, '14': delays1, '28': delays1 * 2} # tile = mwa_tile.get_AA_Cached() # za_delay = '0' # (ax0, ay0) = tile.getArrayFactor(az_grid, za_grid, frequency, za_delays[za_delay]) # val = numpy.abs(ax0) # val_max = numpy.nanmax(val) # print "VALUE : %.8f %.8f %.8f" % (frequency, val_max[0], val[resolution / 2, resolution / 2]) beamsky_sum_XX = 0 beam_sum_XX = 0 Tant_XX = 0 beam_dOMEGA_sum_XX = 0 beamsky_sum_YY = 0 beam_sum_YY = 0 Tant_YY = 0 beam_dOMEGA_sum_YY = 0 for pol in pols: # Get gridded sky print('frequency=%.2f , polarisation=%s' % (frequency, pol)) beam = beams[pol] beamsky = beam * sky_grid beam_dOMEGA = beam * dOMEGA print('sum(beam)', numpy.nansum(beam)) print('sum(beamsky)', numpy.nansum(beamsky)) beamsky_sum = numpy.nansum(beamsky) beam_sum = numpy.nansum(beam) beam_dOMEGA_sum = numpy.nansum(beam_dOMEGA) Tant = numpy.nansum(beamsky) / numpy.nansum(beam) print('Tant=sum(beamsky)/sum(beam)=', Tant) if pol == 'XX': beamsky_sum_XX = beamsky_sum beam_sum_XX = beam_sum Tant_XX = Tant beam_dOMEGA_sum_XX = beam_dOMEGA_sum if pol == 'YY': beamsky_sum_YY = beamsky_sum beam_sum_YY = beam_sum Tant_YY = Tant beam_dOMEGA_sum_YY = beam_dOMEGA_sum filename = '%s_%.2fMHz_%s_%s' % (gps, frequency / 1.0e6, pol, model) fstring = "%.2f" % (frequency / 1.0e6) if plottype == 'all': plottypes = ['beam', 'sky', 'beamsky', 'beamsky_scaled'] else: plottypes = [plottype] for pt in plottypes: if pt == 'beamsky': textlabel = 'Beam x sky %s (LST %.2f hr), %s MHz, %s-pol, Tant=%.1f K' % (gps, get_LST(gps), fstring, pol, Tant) plot_beamsky(beamsky, frequency, textlabel, filename, extension, obstime=obstime, figsize=figsize, directory=directory) elif pt == 'beamsky_scaled': textlabel = 'Beam x sky (scaled) %s (LST %.2f hr), %s MHz, %s-pol, Tant=%.1f K (max T=%.1f K)' % (gps, get_LST(gps), fstring, pol, Tant, float(numpy.nanmax(beamsky))) plot_beamsky(beamsky, frequency, textlabel, filename + '_scaled', extension, obstime=obstime, figsize=figsize, vmax=numpy.nanmax(beamsky) * 0.4, directory=directory) elif pt == 'beam': textlabel = 'Beam for %s, %s MHz, %s-pol' % (gps, fstring, pol) plot_beamsky(beam, frequency, textlabel, filename + '_beam', extension, obstime=obstime, figsize=figsize, cbar_label='', directory=directory, b_add_sources=b_add_sources, az_grid=az_grid, za_grid=za_grid) elif pt == 'sky': textlabel = 'Sky for %s (LST %.2f hr), %s MHz, %s-pol' % (gps, get_LST(gps), fstring, pol) plot_beamsky(sky_grid, frequency, textlabel, filename + '_sky', extension, obstime=obstime, figsize=figsize, directory=directory, b_add_sources=b_add_sources, az_grid=az_grid, za_grid=za_grid) return (beamsky_sum_XX, beam_sum_XX, Tant_XX, beam_dOMEGA_sum_XX, beamsky_sum_YY, beam_sum_YY, Tant_YY, beam_dOMEGA_sum_YY)
371a29412b52b27c69193bed1e945eeed6a988d7
7,379
import json def view_page(request, content_id=None): """Displays the content in a more detailed way""" if request.method == "GET": if content_id: if content_id.isdigit(): try: # Get the contents details content_data = Content.objects.get(pk=int(content_id)) content_data.fire = int(content_data.contents_history.all().aggregate(Avg("vote"))["vote__avg"] * 10) if content_data.contents_history.all().aggregate(Avg("vote"))["vote__avg"] else 0 try: # Get all the available comments of this particular content comment_data = content_data.content_comments.all() if comment_data: # Convert Data to JSON list comment_list = json.loads(comment_data[0].comment) content_comments = [] for a in comment_list: try: user = User.objects.get(pk=a["user_id"]) content_comments.append({ "id": a["id"], "content_id": a["content_id"], "profile_picture": (user.profile.profile_picture.url).replace("&export=download", "") if user.profile.profile_picture.url else "/static/teeker/assets/default_img/avatar/avataaars.png", "username": user.username, "user_id": user.pk, "comment": a["comment"], "date": a["date"] }) except User.DoesNotExist: print("Broken Comment...") else: content_comments = [] except json.JSONDecodeError: content_data['contents_comment']['comment'] = [] # Check if the content isn't suspended if content_data.suspended and not request.user.is_staff: content_data = { "title": "CONTENT UNAVAILABLE" } # Check if the user is logged in if request.user.is_authenticated: # Check if the content is in the logged in user's recommended list try: if int(content_id) in json.loads(request.user.profile.recommended): content_data.recommended = True else: content_data.recommended = False except json.JSONDecodeError: content_data.recommended = False else: content_data.recommended = False except Content.DoesNotExist: content_data = { "title": "CONTENT UNAVAILABLE" } else: content_data = { "title": "CONTENT UNAVAILABLE" } else: content_data = { "title": "CONTENT UNAVAILABLE" } html_content = { "content_data": content_data, "content_comments": content_comments } return render(request, "teeker/site_templates/view.html", html_content)
11908d7d0f75377485022ab87a93e7f27b2b626d
7,380
def run_feat_model(fsf_file): """ runs FSL's feat_model which uses the fsf file to generate files necessary to run film_gls to fit design matrix to timeseries""" clean_fsf = fsf_file.strip('.fsf') cmd = 'feat_model %s'%(clean_fsf) out = CommandLine(cmd).run() if not out.runtime.returncode == 0: return None, out.runtime.stderr mat = fsf_file.replace('.fsf', '.mat') return mat, cmd
4b033ff1aceb60cdf0c39ebfbefc0841dc4df507
7,381
def exportDSV(input, delimiter = ',', textQualifier = '"', quoteall = 0, newline = '\n'): """ PROTOTYPE: exportDSV(input, delimiter = ',', textQualifier = '\"', quoteall = 0) DESCRIPTION: Exports to DSV (delimiter-separated values) format. ARGUMENTS: - input is list of lists of data (as returned by importDSV) - delimiter is character used to delimit columns - textQualifier is character used to delimit ambiguous data - quoteall is boolean specifying whether to quote all data or only data that requires it RETURNS: data as string """ if not delimiter or type(delimiter) != type(''): raise InvalidDelimiter if not textQualifier or type(delimiter) != type(''): raise InvalidTextQualifier # double-up all text qualifiers in data (i.e. can't becomes can''t) data = map(lambda i, q = textQualifier: map(lambda j, q = q: str(j).replace(q, q * 2), i), input) if quoteall: # quote every data value data = map(lambda i, q = textQualifier: map(lambda j, q = q: q + j + q, i), data) else: # quote only the values that contain qualifiers, delimiters or newlines data = map(lambda i, q = textQualifier, d = delimiter: map(lambda j, q = q, d = d: ((j.find(q) != -1 or j.find(d) != -1 or j.find('\n') != -1) and (q + j + q)) or j, i), data) # assemble each line with delimiters data = [delimiter.join(line) for line in data] # assemble all lines together, separated by newlines data = newline.join(data) return data
28075667459e872ec0713efb834a9c3aa1dc620e
7,382
def DatasetSplit(X, y): #Creating the test set and validation set. # separating the target """ To create the validation set, we need to make sure that the distribution of each class is similar in both training and validation sets. stratify = y (which is the class or tags of each frame) keeps the similar distribution of classes in both the training as well as the validation set.""" # creating the training and validation set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.2, stratify = y) # creating dummies of target variable for train and validation set y_train = pd.get_dummies(y_train) y_test = pd.get_dummies(y_test) return X_train, X_test, y_train, y_test
15c9d6acf51f6535bbd4396be83752b98c6a1fa0
7,383
def parse_children(root): """ :param root: root tags of .xml file """ attrib_list = set() for child in root: text = child.text if text: text = text.strip(' \n\t\r') attrib_list = attrib_list | get_words_with_point(text) attrib_list = attrib_list | parse_children(child) for attribute_name, attribute_value in child.attrib.items(): if '.' in attribute_value: attrib_list.add(attribute_value) """ returns list of attribute_value """ return attrib_list
5062b39775bdb1b788fa7b324de108367421f743
7,384
def load_data(ETF): """ Function to load the ETF data from a file, remove NaN values and set the Date column as index. ... Attributes ---------- ETF : filepath """ data = pd.read_csv(ETF, usecols=[0,4], parse_dates=[0], header=0) data.dropna(subset = ['Close', 'Date'], inplace=True) data_close = pd.DataFrame(data['Close']) data_close.index = pd.to_datetime(data['Date']) return data_close
84b4c20c7d74c7e028e62b0147662e9a54311148
7,385
def preprocess_LLIL_GOTO(bv, llil_instruction): """ Replaces integer addresses of llil instructions with hex addresses of assembly """ func = get_function_at(bv, llil_instruction.address) # We have to use the lifted IL since the LLIL ignores comparisons and tests lifted_instruction = list( [k for k in find_lifted_il(func, llil_instruction.address) if k.operation == LowLevelILOperation.LLIL_GOTO] )[0] lifted_il = func.lifted_il llil_instruction.dest = hex(lifted_il[lifted_instruction.dest].address).replace("L", "") return llil_instruction
656b6088816779395a84d32fe77e28866618b9ff
7,386
import json async def get_limited_f_result(request, task_id): """ This endpoint accepts the task_id and returns the result if ready. """ task_result = AsyncResult(task_id) result = { "task_id": task_id, "task_status": task_result.status, "task_result": task_result.result } return json(result)
e459d1963e2de829802927e3265b41bbe4da6bfe
7,387
def process_addr(): """Process the bridge IP address/hostname.""" server_addr = request.form.get('server_addr') session['server_addr'] = server_addr try: leap_response = get_ca_cert(server_addr) session['leap_version'] = leap_response['Body'] \ ['PingResponse']['LEAPVersion'] except ConnectionRefusedError: flash("A connection to %s could not be established. Please check " "the IP address and try again." % server_addr, 'danger') return redirect(url_for('wizard'))
109d3e0652caa5e06fe00702f43640304c30323d
7,388
import requests import json from datetime import datetime import time def get_bkk_list(request): """板块课(通识选修课)""" myconfig = Config.objects.all().first() year = (myconfig.nChoose)[0:4] term = (myconfig.nChoose)[4:] if term == "1": term = "3" elif term == "2": term = "12" if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'bkk':request.POST.get("bkk") } res = requests.post(url=myconfig.otherapi+"/choose/bkk",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") bkk = request.POST.get("bkk") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录访问板块课' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) try: bkk = "1" if bkk=="2" else "2" startTime = time.time() print('【%s】查看了板块课' % stu.name) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = Xuanke(base_url=base_url, cookies=cookies, year=year, term=term) bkk_list = person.get_bkk_list(bkk) endTime = time.time() spendTime = endTime - startTime if spendTime > 30: ServerChan = config["ServerChan"] text = "板块课超时" if ServerChan == "none": return HttpResponse(json.dumps({'err':'板块课超时'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: requests.get(ServerChan + 'text=' + text) return HttpResponse(json.dumps({'err':'板块课超时'}, ensure_ascii=False), content_type="application/json,charset=utf-8") content = ('【%s】[%s]访问了板块课,耗时%.2fs' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name, spendTime)) writeLog(content) return HttpResponse(json.dumps(bkk_list, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: print(e) content = ('【%s】[%s]访问板块课出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = Xuanke(base_url=base_url, cookies=sta, year=year, term=term) bkk_list = person.get_bkk_list(bkk) return HttpResponse(json.dumps(bkk_list, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8")
03010646ce1e83f644f9bf44b8dcb4e5b8355e52
7,389
import calendar def mkmonth(year, month, dates, groups): """Make an array of data for the year and month given. """ cal = calendar.monthcalendar(int(year), month) for row in cal: for index in range(len(row)): day = row[index] if day == 0: row[index] = None else: date = '%04.d-%02.d-%02.d' % (year, month, day) items = dates.get(date, ()) grp = 0 len_items = len(items) if len_items > 0: while grp < len(groups): grp += 1 if len_items <= groups[grp - 1]: break row[index] = [day, grp, items, date] while len(cal) < 6: cal.append([None] * 7) return dict(name=calendar.month_name[month], weeks=cal, startdate='%04.d-%02.d' % (year, month))
71298d60e852e6045b4ab5c45c2f371ae7049808
7,390
def is_extension(step_str): """Return true if step_str is an extension or Any. Args: step_str: the string to evaluate Returns: True if step_str is an extension Raises: ValueError: if step_str is not a valid step. """ if not is_valid_step(step_str): raise ValueError('Not a valid step in a path: "' + step_str + '"') return step_str[0] == "("
a3b30e238b3b8c42b645d18ae370dea501d1f389
7,391
def diff_list(first, second): """ Get difference of lists. """ second = set(second) return [item for item in first if item not in second]
19975990b5a05433266b3258cd541cca54ab83ac
7,392
from typing import Optional def validate_dissolution_statement_type(filing_json, legal_type) -> Optional[list]: """Validate dissolution statement type of the filing.""" msg = [] dissolution_stmt_type_path = '/filing/dissolution/dissolutionStatementType' dissolution_stmt_type = get_str(filing_json, dissolution_stmt_type_path) if legal_type == Business.LegalTypes.COOP.value: if not dissolution_stmt_type: msg.append({'error': _('Dissolution statement type must be provided.'), 'path': dissolution_stmt_type_path}) return msg if not DissolutionStatementTypes.has_value(dissolution_stmt_type): msg.append({'error': _('Invalid Dissolution statement type.'), 'path': dissolution_stmt_type_path}) return msg return None
868c9f0d6b229c303462a4dee7df16f27cd58898
7,393
import argparse def parse_args(): """Parse command-line arguments.""" parser = argparse.ArgumentParser( usage='%(prog)s [options] <target path> <image> [image] ...') parser.add_argument( '-c', '--captions', dest='captions', action='store_true', default=False, help='read image captions from text files ("<IMAGE_NAME>.txt")') parser.add_argument( '--no-resize', dest='no_resize', action='store_true', default=False, help='do not resize images, just copy them') parser.add_argument( '-s', '--size', dest='max_image_size', type=parse_dimension_arg, default=ARGS_DEFAULT_MAX_IMAGE_SIZE, help='set maximum image size [default: {}]' .format(ARGS_DEFAULT_MAX_IMAGE_SIZE)) parser.add_argument( '-t', '--thumbnail-size', dest='max_thumbnail_size', type=parse_dimension_arg, default=ARGS_DEFAULT_MAX_THUMBNAIL_SIZE, help='set maximum thumbnail size [default: {}]' .format(ARGS_DEFAULT_MAX_THUMBNAIL_SIZE)) parser.add_argument( '--title', dest='title', help='set gallery title on the website') parser.add_argument( '--lightbox', dest='lightbox', action='store_true', default=False, help='Enable lightbox effect on the website. This disables sub-page creation per picture.') parser.add_argument( '--html-only', dest='html_only', action='store_true', default=False, help='Only generate HTML. Do not process images. This is useful if already processed once but need to re-create html pages.') parser.add_argument( '--no-optimize-image', dest='no_optimize_image', action='store_true', default=False, help='Optimize images to reduce size and remove meta data.') # First positional argument. parser.add_argument('destination_path') # Remaining positional arguments (at least one), as a list. parser.add_argument('full_image_filenames', nargs='+') return parser.parse_args()
87b2d65edb10647eb2b292819cc411f2d82cd2a0
7,394
from typing import List def weave(left: List[int], right: List[int]) -> List[List[int]]: """ Gives all possible combinations of left and right keeping the original order on left and right """ if not left or not right: return [left] if left else [right] left_result: List[List[int]] = weave_helper(left, right) right_result: List[List[int]] = weave_helper(right, left) return left_result + right_result
9a9717e43337802e6cef87a37b7d8d01493ebc8a
7,395
import torch def compute_rel_attn_value(p_attn, rel_mat, emb, ignore_zero=True): """ Compute a part of *attention weight application* and *query-value product* in generalized RPE. (See eq. (10) - (11) in the MuseBERT paper.) Specifically, - We use distributive law on eq. (11). The function computes the second term: $ sum_j (alpha_{ij} * sum_a Emb_a^K(r_{ij}^a)) $ Here, - b for batch size, h for n_head, vs for vocabulary size. - dtype is torch.float unless specified. :param p_attn: (b, d, L_q, L_k) :param rel_mat: (b, Lq, Lk) :param emb: (h, vs, d) :param ignore_zero: bool. Whether to exclude the first vocab. :return: (b, h, Lq, d) """ vs = emb.size(-2) # bool_relmat: (b, Lq, vs - 1, Lk), dtype: torch.float bool_relmat = compute_bool_rel_mat(rel_mat, vs, ignore_zero=ignore_zero) # p_attn: -> (b, d, Lq, 1, 1, Lk) # bool_relmat: -> (b, 1, L_q, vs - 1, L_k, 1) # acmlt_p_attn: (b, d, Lq, vs - 1, 1, 1) -> (b, d, Lq, vs - 1) acmlt_p_attn = \ torch.matmul(p_attn.unsqueeze(-2).unsqueeze(-2), bool_relmat.unsqueeze(1).unsqueeze(-1) ).squeeze(-1).squeeze(-1) # acc_p_attn: -> (b, h, Lq, 1, vs - 1) # emb: -> (1, h, 1, vs, d) # rel_scores: (b, h, Lq, 1, d) -> (b, h, Lq, d) start_ind = 1 if ignore_zero else 0 rel_values = \ torch.matmul(acmlt_p_attn.unsqueeze(-2), emb[:, start_ind:].unsqueeze(0).unsqueeze(-3) ).squeeze(-2) return rel_values
a39ca9d5933bc334648994fc5211355a496f8126
7,396
import sys import os def check_input(args): """Checks whether to read from stdin/file and validates user input/options. """ # Defaults option = None fh = sys.stdin # file handle if not len(args): # Reading from pipe with default option if sys.stdin.isatty(): sys.stderr.write(__doc__) sys.exit(1) elif len(args) == 1: # One of two options: option & Pipe OR file & default option if args[0].startswith('-'): option = args[0][1:] if sys.stdin.isatty(): # ensure the PDB data is streamed in emsg = 'ERROR!! No data to process!\n' sys.stderr.write(emsg) sys.stderr.write(__doc__) sys.exit(1) else: if not os.path.isfile(args[0]): emsg = 'ERROR!! File not found or not readable: \'{}\'\n' sys.stderr.write(emsg.format(args[0])) sys.stderr.write(__doc__) sys.exit(1) fh = open(args[0], 'r') elif len(args) == 2: # Two options: option & File if not args[0].startswith('-'): emsg = 'ERROR! First argument is not an option: \'{}\'\n' sys.stderr.write(emsg.format(args[0])) sys.stderr.write(__doc__) sys.exit(1) if not os.path.isfile(args[1]): emsg = 'ERROR!! File not found or not readable: \'{}\'\n' sys.stderr.write(emsg.format(args[1])) sys.stderr.write(__doc__) sys.exit(1) option = args[0][1:] fh = open(args[1], 'r') else: # Whatever ... sys.stderr.write(__doc__) sys.exit(1) # Validate option if option is not None and option != 'multi': emsg = 'ERROR!! You provided an invalid option: \'{}\'\n' sys.stderr.write(emsg.format(option)) sys.stderr.write(__doc__) sys.exit(1) return (option, fh)
23d2ca78c7bad056c686ac9d82c5800220a3f351
7,397
def mock_real_galaxy(): """Mock real galaxy.""" dm = np.loadtxt(TEST_DATA_REAL_PATH / "dark.dat") s = np.loadtxt(TEST_DATA_REAL_PATH / "star.dat") g = np.loadtxt(TEST_DATA_REAL_PATH / "gas_.dat") gal = core.Galaxy( m_s=s[:, 0] * 1e10 * u.M_sun, x_s=s[:, 1] * u.kpc, y_s=s[:, 2] * u.kpc, z_s=s[:, 3] * u.kpc, vx_s=s[:, 4] * (u.km / u.s), vy_s=s[:, 5] * (u.km / u.s), vz_s=s[:, 6] * (u.km / u.s), m_dm=dm[:, 0] * 1e10 * u.M_sun, x_dm=dm[:, 1] * u.kpc, y_dm=dm[:, 2] * u.kpc, z_dm=dm[:, 3] * u.kpc, vx_dm=dm[:, 4] * (u.km / u.s), vy_dm=dm[:, 5] * (u.km / u.s), vz_dm=dm[:, 6] * (u.km / u.s), m_g=g[:, 0] * 1e10 * u.M_sun, x_g=g[:, 1] * u.kpc, y_g=g[:, 2] * u.kpc, z_g=g[:, 3] * u.kpc, vx_g=g[:, 4] * (u.km / u.s), vy_g=g[:, 5] * (u.km / u.s), vz_g=g[:, 6] * (u.km / u.s), ) return gal
7dda66bccb5fcecbe55bd0f3ecb64171748947a6
7,398
def lend(request): """ Lend view. It receives the data from the lend form, process and validates it, and reloads the page if everything is OK Args: - request (HttpRequest): the request Returns: """ logged_user = get_logged_user(request) if logged_user is not None and logged_user.user_role == UserRole.LENDER: d = dict(request.POST) d['lender_input'] = logged_user.id errors = Loan.objects.basic_validator(d) if len(errors) > 0: for key, value in errors.items(): messages.error(request, value) else: borrower = request.POST.get('borrower_input', 0) amount = request.POST.get('amount_input', 0) new_loan = Loan.objects.create( borrower=User.objects.get(id=borrower), lender=logged_user, amount=int(amount) ) messages.info(request, 'Loan executed successfully') return redirect('lender', id=logged_user.id) else: request.session.clear() return redirect('/')
59fdf04eafc1772b8ef880a1340af57739a71d25
7,399