content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import io import torch def load_image_buffer_to_tensor(image_buf, device): """Maps image bytes buffer to tensor Args: image_buf (bytes buffer): The image bytes buffer device (object): The pytorch device object Returns: py_tensor tensor: Pytorch tensor """ image = Image.open(io.BytesIO(image_buf)) preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) input_tensor = preprocess(image) input_batch = input_tensor.unsqueeze(0) return input_batch.to(device, torch.float)
43740d2f9b7eec64f54111e85e0a54787afc8100
7,200
def alpha2tand(freq, a, b, n): """Convert Halpern's 'a' and 'b' from an absorption coefficient of the form `a*freq**b` to a (frequency-dependent) loss tangent. Parameters ---------- freq : numpy array or float The frequency (Hz) (or frequencies) at which to calculate the loss tangent. a : float Halpern's 'a' coefficient b : float Halpern's 'b' coefficient n : float The real part of the material's refractive index Returns ------- tand : numpy array The loss tangent of the material at the given frequency and Halpern coefficients. """ imagn = alpha2imagn(freq, a, b, n) # The complex index of refraction of a material is related to the # complex (relative) permittivity by the relation: # e_r = e' + i*e'' = n^2 = (n + i*k)^2 = n^2 - k^2 + i*2nk # By equating the real and imaginary parts we are left with: # e' = (n^2 - k^2); e'' = 2nk # With this information we can find the loss tangent, which is simply # the ratio of the real and imaginary parts of the relative # permittivity: # tand = (e''/e') ep = n**2 - imagn**2 epp = 2 * n * imagn tand = epp / ep return tand
2acf658e7d18a0e115ba557698cc4efd591ed26d
7,201
def convert_path_to_pixels(path): """ Purpose: --- This function should convert the obtained path (list of tuples) to pixels. Teams are free to choose the number of points and logic for this conversion. Input Arguments: --- `path` : [ list ] Path returned from task_4a.find_path() function. Returns: --- `pixel_path` : [ type can be decided by teams ] Example call: --- pixel_path = convert_path_to_pixels(path) """ ############## ADD YOUR CODE HERE ############## pixel_path = path tmp = 64 for i in range(len(pixel_path)): pixel_path[i][0] = path[i][0] * tmp * 2 + tmp pixel_path[i][1] = path[i][1] * tmp * 2 + tmp ################################################## print("Pixel path is : ", pixel_path) return pixel_path
a50557f252d43f9c3df1b3781c1203dd518d3797
7,202
def uniform_prob(*args, prob=None, inside=None, pscale=1.): """ Uniform probability function for discrete and continuous vtypes. """ # Detect ptype, default to prob if no values, otherwise detect vtype assert len(args) >= 1, "Minimum of a single positional argument" pscale = eval_pscale(pscale) use_logs = iscomplex(pscale) if prob is None: prob = 0. if use_logs else 1. vals = args[0] if vals is None: return prob vtype = eval_vtype(vals) if callable(inside) else eval_vtype(inside) # Set inside function by vtype if not specified if not callable(inside): if vtype in VTYPES[float]: inside = lambda x: np.logical_and(x >= min(inside), x <= max(inside)) else: inside = lambda x: np.isin(x, inside) # If scalar, check within variable set p_zero = NEARLY_NEGATIVE_INF if use_logs else 0. if isscalar(vals): prob = prob if inside(vals) else p_zero # Otherwise treat as uniform within range else: p_true = prob prob = np.tile(p_zero, vals.shape) prob[inside(vals)] = p_true # This section below is there just to play nicely with conditionals if len(args) > 1: for arg in args[1:]: if use_logs: prob = prob + uniform_prob(arg, inside=inside, pscale=0.j) else: prob = prob * uniform_prob(arg, inside=inside) return prob
75cd547fc2845cb94f5733310be0d7761ba379fb
7,203
import glob def obtenerListaArchivos(path: str): """ genera una lista de los archivos alojados en str """ lista = glob.glob(path, recursive=True) return lista
3b9582dbf086a2af673cc75277041f32d001e215
7,204
def is_equal_to(amount: float) -> Predicate: """Says that a field is exactly equal to some constant amount.""" return is_nearly_equal_to(amount, tolerance=0, taper=0)
c2c9b795d7bb089834e8e11e980b9d794e69d97a
7,205
from sys import version_info def get_version(): """Return the current version info. The first call to this function will call version_info.load() and cache the result for later calls. """ global _version if _version is None: _version = version_info.load() return _version
4ced584e4155bc5926c6d28e28a090d332a7387b
7,206
def load_yaml(fname): """Load a YAML file.""" yaml = YAML(typ="safe") # Compat with HASS yaml.allow_duplicate_keys = True # Stub HASS constructors HassSafeConstructor.name = fname yaml.Constructor = HassSafeConstructor with open(fname, encoding="utf-8") as conf_file: # If configuration file is empty YAML returns None # We convert that to an empty dict return yaml.load(conf_file) or {}
957a5d171568592da89cfa58a69c746ffcf67d33
7,207
def unmix_cvxopt(data, endmembers, gammaConst=0, P=None): """ ****************************************************************** unmix finds an accurate estimation of the proportions of each endmember Syntax: P2 = unmix(data, endmembers, gammaConst, P) This product is Copyright (c) 2013 University of Missouri and University of Florida All rights reserved. CVXOPT package is used here. Parameters H,F,L,K,Aeq,beq are corresbonding to P,q,G,h,A,B, respectively. lb and ub are element-wise bound constraints which are added to matrix G and h respectively. Inputs: data = DxN matrix of N data points of dimensionality D endmembers = DxM matrix of M endmembers with D spectral bands gammaConst = Gamma Constant for SPT term P = NxM matrix of abundances corresponding to N input pixels and M endmembers Returns: P2 = NxM matrix of new abundances corresponding to N input pixels and M endmembers ****************************************************************** """ solvers.options['show_progress'] = False X = data M = endmembers.shape[1] # number of endmembers # endmembers should be column vectors N = X.shape[1] # number of pixels # Equation constraint Aeq*x = beq # All values must sum to 1 (X1+X2+...+XM = 1) Aeq = np.ones((1, M)) beq = np.ones((1, 1)) # Boundary Constraints ub >= x >= lb # All values must be greater than 0 (0 ? X1,0 ? X2,...,0 ? XM) lb = 0 ub = 1 g_lb = np.eye(M) * -1 g_ub = np.eye(M) # import pdb; pdb.set_trace() G = np.concatenate((g_lb, g_ub), axis=0) h_lb = np.ones((M, 1)) * lb h_ub = np.ones((M, 1)) * ub h = np.concatenate((h_lb, h_ub), axis=0) if P is None: P = np.ones((M, 1)) / M gammaVecs = np.divide(gammaConst, sum(P)) H = 2 * (endmembers.T @ endmembers) cvxarr = np.zeros((N,M)) for i in range(N): F = ((np.transpose(-2 * X[:, i]) @ endmembers) + gammaVecs).T cvxopt_ans = solvers.qp(P=matrix(H.astype(np.double)), q=matrix(F.astype(np.double)), G=matrix(G.astype(np.double)), h=matrix(h.astype(np.double)), A=matrix(Aeq.astype(np.double)), b=matrix(beq.astype(np.double))) cvxarr[i, :] = np.array(cvxopt_ans['x']).T cvxarr[cvxarr < 0] = 0 return cvxarr
d529b412afde7a7eb35a02d5d039ec271285829f
7,208
import logging def _accumulate_reward( timestep: dm_env.TimeStep, episode_return: float) -> float: """Accumulates rewards collected over the course of an episode.""" if timestep.reward and timestep.reward != 0: logging.info('Reward: %s', timestep.reward) episode_return += timestep.reward if timestep.first(): episode_return = 0 elif timestep.last(): logging.info('Episode return: %s', episode_return) return episode_return
8f96e9a5bbeb4babfd43283b6da8a7984e53f02b
7,209
def unsafe_load(stream): """ Parse the first YAML document in a stream and produce the corresponding Python object. Resolve all tags, even those known to be unsafe on untrusted input. """ return load(stream, UnsafeLoader)
ff74beb13746504508832cc9b658a8faf672d2ca
7,210
import pickle def load_tl_gan_model(): """ Load the linear model (matrix) which maps the feature space to the GAN's latent space. """ with open(FEATURE_DIRECTION_FILE, 'rb') as f: feature_direction_name = pickle.load(f) # Pick apart the feature_direction_name data structure. feature_direction = feature_direction_name['direction'] feature_names = feature_direction_name['name'] num_feature = feature_direction.shape[1] feature_lock_status = np.zeros(num_feature).astype('bool') # Rearrange feature directions using Shaobo's library function. feature_direction_disentangled = \ feature_axis.disentangle_feature_axis_by_idx( feature_direction, idx_base=np.flatnonzero(feature_lock_status)) return feature_direction_disentangled, feature_names
aeb0bd329e4c9f8c91ded7c80385c30e1fb69773
7,211
from typing import Optional from pathlib import Path import os def _find_test_file_from_report_file(base_path: str, report: str) -> Optional[Path]: """ Find test file from cucumber report file path format e.g) Test-features-foo-hoge.xml -> features/foo/hoge.feature or features/foo-hoge.feature """ report_file = os.path.basename(report) report_file = report_file.lstrip(REPORT_FILE_PREFIX) report_file = os.path.splitext(report_file)[0] list = _create_file_candidate_list(report_file) for l in list: f = Path(base_path, l + ".feature") if f.exists(): return f return None
ebe53bc0fe5fefde6133d32a7ec6801810026626
7,212
def luminance(qcolor): """ Gives the pseudo-equivalent greyscale value of this color """ r,g,b = qcolor.red(), qcolor.green(), qcolor.blue() return int(0.2*r + 0.6*g + 0.2*b)
9e1821da2c0c6e8d76aefe56d6ed659a728737bb
7,213
def read_info(path, layer=None, encoding=None): """Read information about an OGR data source. `crs` and `geometry` will be `None` and `features` will be 0 for a nonspatial layer. Parameters ---------- path : str or pathlib.Path layer : [type], optional Name or index of layer in data source. Reads the first layer by default. encoding : [type], optional (default: None) If present, will be used as the encoding for reading string values from the data source, unless encoding can be inferred directly from the data source. Returns ------- dict { "crs": "<crs>", "fields": <ndarray of field names>, "encoding": "<encoding>", "geometry": "<geometry type>", "features": <feature count> } """ return ogr_read_info(str(path), layer=layer, encoding=encoding)
7479c63223288c94ed4756350756473866d7b2b3
7,214
import time import requests import json def _macro_cons_opec_month(): """ 欧佩克报告-月度, 数据区间从 20170118-至今 这里返回的具体索引日期的数据为上一个月的数据, 由于某些国家的数据有缺失, 只选择有数据的国家返回 :return: pandas.Series 阿尔及利亚 安哥拉 厄瓜多尔 加蓬 伊朗 伊拉克 科威特 利比亚 尼日利亚 \ 2017-01-18 108.0 172.4 54.5 21.3 372.0 463.2 281.2 60.8 154.2 2017-02-13 104.5 165.1 52.7 19.9 377.5 447.6 271.8 67.5 157.6 2017-03-14 105.3 164.1 52.6 19.4 381.4 441.4 270.9 66.9 160.8 2017-04-12 105.6 161.4 52.6 19.8 379.0 440.2 270.2 62.2 154.5 2017-05-11 104.7 169.2 52.4 20.6 375.9 437.3 270.2 55.0 150.8 2017-06-13 105.9 161.3 52.8 20.4 379.5 442.4 270.5 73.0 168.0 2017-07-12 106.0 166.8 52.7 19.7 379.0 450.2 270.9 85.2 173.3 2017-08-10 105.9 164.6 53.6 20.5 382.4 446.8 270.3 100.1 174.8 2017-09-12 106.5 164.6 53.7 17.3 382.8 444.8 270.2 89.0 186.1 2017-10-11 104.6 164.1 53.6 20.1 382.7 449.4 270.0 92.3 185.5 2017-11-13 101.2 171.1 54.1 20.3 382.3 438.3 270.8 96.2 173.8 2017-12-13 101.3 158.1 53.3 19.7 381.8 439.6 270.3 97.3 179.0 2018-01-18 103.7 163.3 52.6 19.7 382.9 440.5 270.0 96.2 186.1 2018-04-12 98.4 152.4 51.8 18.3 381.4 442.6 270.4 96.8 181.0 2018-05-14 99.7 151.5 52.0 18.3 382.3 442.9 270.5 98.2 179.1 2018-06-12 103.1 152.5 51.9 18.9 382.9 445.5 270.1 95.5 171.1 2018-07-11 103.9 143.1 51.9 19.0 379.9 453.3 273.1 70.8 166.0 2018-08-13 106.2 145.6 52.5 18.8 373.7 455.6 279.1 66.4 166.7 2018-09-12 104.5 144.8 52.9 18.7 358.4 464.9 280.2 92.6 172.5 2018-10-11 104.9 151.9 53.1 18.7 344.7 465.0 281.2 105.3 174.8 2018-11-13 105.4 153.3 52.5 18.6 329.6 465.4 276.4 111.4 175.1 2018-12-12 105.2 152.1 52.5 17.6 295.4 463.1 280.9 110.4 173.6 2019-03-14 102.6 145.7 52.2 20.3 274.3 463.3 270.9 90.6 174.1 2019-04-10 101.8 145.4 52.4 21.4 269.8 452.2 270.9 109.8 173.3 2019-06-13 102.9 147.1 52.9 21.1 237.0 472.4 271.0 117.4 173.3 沙特 阿联酋 委内瑞拉 欧佩克产量 2017-01-18 1047.4 307.1 202.1 3308.5 2017-02-13 994.6 293.1 200.4 3213.9 2017-03-14 979.7 292.5 198.7 3195.8 2017-04-12 999.4 289.5 197.2 3192.8 2017-05-11 995.4 284.2 195.6 3173.2 2017-06-13 994.0 288.5 196.3 3213.9 2017-07-12 995.0 289.8 193.8 3261.1 2017-08-10 1006.7 290.5 193.2 3286.9 2017-09-12 1002.2 290.1 191.8 3275.5 2017-10-11 997.5 290.5 189.0 3274.8 2017-11-13 1000.0 291.1 186.3 3258.9 2017-12-13 999.6 288.3 183.4 3244.8 2018-01-18 991.8 287.8 174.5 3241.6 2018-04-12 993.4 286.4 148.8 3195.8 2018-05-14 995.9 287.2 143.6 3193.0 2018-06-12 998.7 286.5 139.2 3186.9 2018-07-11 1042.0 289.7 134.0 3232.7 2018-08-13 1038.7 295.9 127.8 3232.3 2018-09-12 1040.1 297.2 123.5 3256.5 2018-10-11 1051.2 300.4 119.7 3276.1 2018-11-13 1063.0 316.0 117.1 3290.0 2018-12-12 1101.6 324.6 113.7 3296.5 2019-03-14 1008.7 307.2 100.8 3054.9 2019-04-10 979.4 305.9 73.2 3002.2 2019-06-13 969.0 306.1 74.1 2987.6 """ t = time.time() res = requests.get( JS_CONS_OPEC_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] big_df = pd.DataFrame() for country in [item["datas"] for item in json_data["list"]][0].keys(): try: value_list = [item["datas"][country] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["上个月"] temp_df.name = country big_df = big_df.append(temp_df) except: continue headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_opec_report", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } res = requests.get(f"https://datacenter-api.jin10.com/reports/dates?category=opec&_={str(int(round(t * 1000)))}", headers=headers) # 日期序列 all_date_list = res.json()["data"] need_date_list = [item for item in all_date_list if item.split("-")[0] + item.split("-")[1] + item.split("-")[2] not in date_list] for item in reversed(need_date_list): res = requests.get( f"https://datacenter-api.jin10.com/reports/list?category=opec&date={item}&_={str(int(round(t * 1000)))}", headers=headers) temp_df = pd.DataFrame(res.json()["data"]["values"], columns=pd.DataFrame(res.json()["data"]["keys"])["name"].tolist()).T temp_df.columns = temp_df.iloc[0, :] temp_df = temp_df[['阿尔及利亚', '安哥拉', '厄瓜多尔', '加蓬', '伊朗', '伊拉克', '科威特', '利比亚', '尼日利亚', '沙特', '阿联酋', '委内瑞拉', '欧佩克产量']].iloc[-2, :] big_df[item] = temp_df return big_df.T
5ae77b64b5d66e14027d757ea840385d0fc96033
7,215
import argparse def createparser(): """Create an :class:`argparse.ArgumentParser` instance :return: parser instance :rtype: :class:`argparse.ArgumentParser` """ parser = argparse.ArgumentParser(prog=__package__, description=__doc__) s = parser.add_subparsers() # create compare subcommand parser_compare = s.add_parser("compare", help="Compare two versions" ) parser_compare.set_defaults(which="compare") parser_compare.add_argument("version1", help="First version" ) parser_compare.add_argument("version2", help="Second version" ) # create bump subcommand parser_bump = s.add_parser("bump", help="Bumps a version" ) parser_bump.set_defaults(which="bump") sb = parser_bump.add_subparsers(title="Bump commands", dest="bump") # Create subparsers for the bump subparser: for p in (sb.add_parser("major", help="Bump the major part of the version"), sb.add_parser("minor", help="Bump the minor part of the version"), sb.add_parser("patch", help="Bump the patch part of the version"), sb.add_parser("prerelease", help="Bump the prerelease part of the version"), sb.add_parser("build", help="Bump the build part of the version")): p.add_argument("version", help="Version to raise" ) return parser
d5aa807be432d9e1aaa5d155b12fa1366c5fe050
7,216
def get_activation(preact_dict, param_name, hook_type): """ Hooks used for in sensitivity schedulers (LOBSTE, Neuron-LOBSTER, SERENE). :param preact_dict: Dictionary in which save the parameters information. :param param_name: Name of the layer, used a dictionary key. :param hook_type: Hook type. :return: Returns a forward_hook if $hook_type$ is forward, else a backward_hook. """ def forward_hook(model, inp, output): preact_dict[param_name] = output def backward_hook(module, grad_input, grad_output): preact_dict[param_name] = None preact_dict[param_name] = grad_output[0].detach().cpu() return forward_hook if hook_type == "forward" else backward_hook
8d5766178ef972e010b5be3a3826774f051dd3bd
7,217
def createAbsorption(cfgstr): """Construct Absorption object based on provided configuration (using available factories)""" return Absorption(cfgstr)
587b0e12f845171ffd61d5d04c37b4ff98865216
7,218
def get_optimizer_config(): """Gets configuration for optimizer.""" optimizer_config = configdict.ConfigDict() # Learning rate scheduling. One of: ["fixed", "exponential_decay"] optimizer_config.learning_rate_scheduling = "exponential_decay" # Optimization algorithm. One of: ["SGD", "Adam", "RMSprop"]. optimizer_config.optim_type = "Adam" # Adam beta1. optimizer_config.beta1 = 0.9 # Adam beta2. optimizer_config.beta2 = 0.999 # Norm clipping threshold applied for rnn cells (no clip if 0). optimizer_config.norm_clip = 0.0 # Learning rate. optimizer_config.initial_learning_rate = 0.001 # The learning rate decay 'epoch' length. optimizer_config.lr_decay_steps = 12000 # The learning rate decay base, applied per epoch. optimizer_config.lr_decay_base = 0.85 # RMSprop decay. optimizer_config.decay = 0.9 # RMSprop moment. optimizer_config.mom = 0.0 return optimizer_config
1918cd8aa9ff8446dec8cb90ff529de97f05d5aa
7,219
def flat2seq(x: Tensor, num_features: int) -> Tensor: """Reshapes tensor from flat format to sequence format. Flat format: (batch, sequence x features) Sequence format: (batch, sequence, features) Args: x (Tensor): a tensor in the flat format (batch, sequence x features). num_features (int): number of features (last dimension) of the output tensor. Returns: Tensor: the transformed tensor in sequence format (batch, seq, features). """ if not is_flat(x): raise ValueError( 'attempt to reshape tensor from flat format to sequence format failed. ', f'Excepted input tensor with 2 dimensions, got {x.ndim}.' ) return x.view(x.shape[0], -1, num_features)
d8bace4548d82352ebae28dc9be665b862b744d0
7,220
def run_results(results_data, time_column, pathway_column, table_letters, letters, dataframe_T1, dataframe_T2, dataframe_T3, dataframe_T4, original_transitions, simulation_transitions, intervention_codes, target, individuals, save_location, simulation_name, listed_times, last_arrival, period): """Fill the four results tables.""" Table1_results = T1_results(results_data, time_column, pathway_column, dataframe_T1, original_transitions, simulation_transitions, intervention_codes, target, individuals, save_location, simulation_name, last_arrival, period) Table2_results = T2_results(results_data, pathway_column, letters, dataframe_T2, simulation_name) Table3_results = T3_results(results_data, pathway_column, dataframe_T3, save_location, simulation_name) Table4_results = T4_results(results_data, table_letters, dataframe_T4, listed_times, simulation_name) return(Table1_results, Table2_results, Table3_results, Table4_results)
5292328a1f74d2ecb89daae465bace1a95eff538
7,221
from typing import Optional def get_spatial_anchors_account(name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSpatialAnchorsAccountResult: """ Get information about an Azure Spatial Anchors Account. ## Example Usage ```python import pulumi import pulumi_azure as azure example = azure.mixedreality.get_spatial_anchors_account(name="example", resource_group_name=azurerm_resource_group["example"]["name"]) pulumi.export("accountDomain", data["azurerm_spatial_anchors_account"]["account_domain"]) ``` :param str name: Specifies the name of the Spatial Anchors Account. Changing this forces a new resource to be created. Must be globally unique. :param str resource_group_name: The name of the resource group in which to create the Spatial Anchors Account. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure:mixedreality/getSpatialAnchorsAccount:getSpatialAnchorsAccount', __args__, opts=opts, typ=GetSpatialAnchorsAccountResult).value return AwaitableGetSpatialAnchorsAccountResult( account_domain=__ret__.account_domain, account_id=__ret__.account_id, id=__ret__.id, location=__ret__.location, name=__ret__.name, resource_group_name=__ret__.resource_group_name)
db94c210af0c46cea2e3a95573f339ec65f7e7fe
7,222
import re def format_query(str_sql): """Strips all newlines, excess whitespace, and spaces around commas""" stage1 = str_sql.replace("\n", " ") stage2 = re.sub(r"\s+", " ", stage1).strip() stage3 = re.sub(r"(\s*,\s*)", ",", stage2) return stage3
5adb0f9c3314ba04bbf92c88e3ef17802b2afeb0
7,223
def make_ytick_labels(current_ticks, n, numstring = ""): """ """ new_ticks = [] for item in current_ticks: if int(item) == item: new_ticks.append(f"{int(item)}{numstring}") else: new_ticks.append(f"{item:.1f}{numstring}") return new_ticks
2685126dc72305ccb7b4bf652fe645e9a39affd3
7,224
import re def check_token(token): """ Returns `True` if *token* is a valid XML token, as defined by XML Schema Part 2. """ return (token == '' or re.match( "[^\r\n\t ]?([^\r\n\t ]| [^\r\n\t ])*[^\r\n\t ]?$", token) is not None)
b4e1d313fb64aad4c1c244cb18d3629e13b1c3af
7,225
def generate_random_data(n=10): """Generate random data.""" return rand(10)
872591efc14d28282b24138f80e19c92487bde6d
7,226
import re import os def get_basenames(root, path, remove='.py'): """Get file basenames of a folder. Args: root (str): Root path path (str): Path to folder remove (str, optional): Defaults to '.py'. Part to remove from filename. Returns: list: list of names """ regex = re.compile(remove, re.IGNORECASE) files = find_files(root, path, remove=remove) return list(map( lambda file: re.sub(regex, '', os.path.basename(file)), files ))
cdce93c20b8938f2c6176e82d6fde2d061da0d2c
7,227
def get_phoible_feature_list(var_to_index): """ Function that takes a var_to_index object and return a list of Phoible segment features :param var_to_index: a dictionary mapping variable name to index(column) number in Phoible data :return : """ return list(var_to_index.keys())[11:]
a53995cd927d1cdc66fadb2a8e6af3f5e2effff0
7,228
def split_data(dataset): """Split pandas dataframe to data and labels.""" data_predictors = [ "Steps_taken", "Minutes_sitting", "Minutes_physical_activity", "HR", "BP", ] X = dataset[data_predictors] y = dataset.Health x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2) return X, y, x_train, x_test, y_train, y_test
b15db522ff45dee825d64d7daf6604fb400bc677
7,229
def add_header(response): """ Add headers to both force latest IE rendering engine or Chrome Frame. """ response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1' return response
6e755f47bd12095d80a941338c451e677f80bcc6
7,230
def recursive_isomorphism_counter(smp, matching, *, unspec_cover, verbose, init_changed_cands, tmplt_equivalence=False, world_equivalence=False): """ Recursive routine for solving subgraph isomorphism. Parameters ---------- smp : MatchingProblem A subgraph matching problem matching : list A list of tuples which designate what each template vertex is matched to unspec_cover : np.array Array of the indices of the nodes with more than 1 candidate verbose : bool Flag for verbose output init_changed_cands : np.array A binary array where element i is 1 if vertex i's candidates have changed since the function was last called. The first time it is called, this will be all zeros tmplt_equivalence : bool Flag indicating whether to use template equivalence world_equivalence : bool Flag indicating whether to use world equivalence Returns ------- int The number of isomorphisms """ iterate_to_convergence(smp) candidates = smp.candidates() # If the node cover is empty, the unspec nodes are disconnected. Thus, we # can skip straight to counting solutions to the alldiff constraint problem if len(unspec_cover) == 0: # Elimination filter is not needed here and would be a waste of time node_to_cands = {node: smp.world.nodes[candidates[idx]] for idx, node in enumerate(smp.tmplt.nodes)} return count_alldiffs(node_to_cands) # Since the node cover is not empty, we first choose some valid # assignment of the unspecified nodes one at a time until the remaining # unspecified nodes are disconnected. n_isomorphisms = 0 unspec_cover_cands = candidates[unspec_cover,:] node_idx = pick_minimum_domain_vertex(unspec_cover_cands) cand_idxs = np.argwhere(candidates[node_idx]).flat for i, cand_idx in enumerate(cand_idxs): smp_copy = smp.copy() # candidates_copy[node_idx] = one_hot(cand_idx, world.n_nodes) smp_copy.add_match(node_idx, cand_idx) matching.append((node_idx, cand_idx)) # Remove matched node from the unspecified list new_unspec_cover = unspec_cover[:node_idx] + unspec_cover[node_idx+1:] # recurse to make assignment for the next node in the unspecified cover n_isomorphisms += recursive_isomorphism_counter( smp_copy, matching, unspec_cover=new_unspec_cover, verbose=verbose, init_changed_cands=one_hot(node_idx, smp.tmplt.n_nodes)) # Unmatch template vertex matching.pop() # TODO: more useful progress summary if verbose: print("depth {}: {} of {}".format(len(unspec_cover), i, len(cand_idxs)), n_isomorphisms) # If we are using template equivalence, we can mark for all equivalent # template vertices that cand_idx cannot be a cannot be a candidate. if tmplt_equivalence: for eq_t_vert in smp.tmplt.eq_classes[node_idx]: smp.prevent_match(eq_t_vert, cand_idx) return n_isomorphisms
3bc46c76569b17e05484ba3e31ecb3e5207c86cc
7,231
def draw_lane_on_unwarped_frame(frame, left_line, right_line, trsf_mtx_inv): """ Drawing of the unwarped lane lines and lane area to the current frame. Args: left_line: left Line instance right_line: right Line instance trsf_mtx_inv: inverse of the perspective transformation matrix """ # Frame dimensions height, width = frame.shape[0:2] # Generate x and y values for plotting y = np.linspace(0, frame.shape[0] - 1, frame.shape[0]) left_x = left_line.evaluate_average_polynomial(y) right_x = right_line.evaluate_average_polynomial(y) # Create a green lane area between the left and right lane lines warped_lane_area = np.zeros_like(frame) # Warped at first left_points = np.column_stack((left_x, y)).reshape((1, -1, 2)).astype(int) right_points = np.flipud( np.column_stack((right_x, y))).reshape((1, -1, 2)).astype(int) vertices = np.hstack((left_points, right_points)) cv2.fillPoly(warped_lane_area, [vertices], (0, 255, 0)) # Unwarp the lane area unwarped_lane = cv2.warpPerspective( warped_lane_area, trsf_mtx_inv, (width, height)) # Overlay the unwarped lane area onto the frame green_lane_on_frame = cv2.addWeighted(frame, 1., unwarped_lane, 0.3, 0) # Draw the left and right lane polynomials into an empty and warped image warped_lanes = np.zeros_like(frame) left_points = np.column_stack((left_x, y)).reshape(-1, 1, 2) right_points = np.column_stack((right_x, y)).reshape(-1, 1, 2) warped_lanes = cv2.polylines(warped_lanes, [left_points.astype(np.int32)], isClosed=False, color=(255, 0, 0), thickness=30) warped_lanes = cv2.polylines(warped_lanes, [right_points.astype(np.int32)], isClosed=False, color=(0, 0, 255), thickness=30) # Unwarp the lane lines plot lane_lines = cv2.warpPerspective( warped_lanes, trsf_mtx_inv, (width, height)) # Create a mask of the unwarped lane lines to shadow the frame background # a bit gray = cv2.cvtColor(lane_lines, cv2.COLOR_BGR2GRAY) _, mask = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY_INV) # Black-out the area of the lane lines in the frame frame_bg = cv2.bitwise_and( green_lane_on_frame, green_lane_on_frame, mask=mask) # Combine with complete frame to shadow the area of the lane lines a bit shadowed_frame = cv2.addWeighted(frame_bg, 0.6, green_lane_on_frame, 0.4, 0) return cv2.addWeighted(shadowed_frame, 1.0, lane_lines, 1.0, 0)
b59b3d99a17ba241aff0a9ac7e6d33497f1db803
7,232
import os def _init_buffer_file() -> str: """Returns file path to the temporary buffer file. Creates the temp directory and temp buffer file. """ if not os.path.exists(".git"): raise NotAGitRepoException(f"No .git folder found. {os.getcwd()} is not a git repo!") file_path = os.path.join(".git", "MKCOMMIT_BUFFER") open(file_path, "w").close() return file_path
871346ec0f6960befa5365b9f63eca8d6adc6c62
7,233
def n_states_of_vec(l, nval): """ Returns the amount of different states a vector of length 'l' can be in, given that each index can be in 'nval' different configurations. """ if type(l) != int or type(nval) != int or l < 1 or nval < 1: raise ValueError("Both arguments must be positive integers.") return nval ** l
98770fa5a5e62501bf365a4a5a40a932b2ba2450
7,234
def remove_items_from_dict(a_dict, bad_keys): """ Remove every item from a_dict whose key is in bad_keys. :param a_dict: The dict to have keys removed from. :param bad_keys: The keys to remove from a_dict. :return: A copy of a_dict with the bad_keys items removed. """ new_dict = {} for k in a_dict.keys(): if k not in bad_keys: new_dict[k] = a_dict[k] return new_dict
7c665e372c2099441f8a661f1194a76a21edf01c
7,235
def writeObject(img_array, obj_array, bbox): """Writes depression objects to the original image. Args: img_array (np.array): The output image array. obj_array (np.array): The numpy array containing depression objects. bbox (list): The bounding box of the depression object. Returns: np.array: The numpy array containing the depression objects. """ min_row, min_col, max_row, max_col = bbox roi = img_array[min_row:max_row, min_col:max_col] roi[obj_array > 0] = obj_array[obj_array > 0] return img_array
141cf9c3f47766a4020d737e743215db04761f54
7,236
def process_model(current_val): """ :param current_val: model generated by sat solver, atom is satisfied if in modal. :return tuple of sets comprising true and false atoms. """ true_atoms, false_atoms = set(), set() for atom in current_val: if current_val[atom]: true_atoms.add(str(atom)) else: false_atoms.add(str(atom)) return true_atoms, false_atoms
9cf90aec097091841c0f0ac820317f373a92e4c1
7,237
import re def filter_strace_output(lines): """ a function to filter QEMU logs returning only the strace entries Parameters ---------- lines : list a list of strings representing the lines from a QEMU log/trace. Returns ------- list a list of strings representing only the strace log entries the entries will also be cleaned up if a page dump occurs in the middle of them """ #we only want the strace lines, so remove/ignore lines that start with the following: line_starts= ['^[\d,a-f]{16}-', # pylint: disable=anomalous-backslash-in-string '^page', '^start', '^host', '^Locating', '^guest_base', '^end_', '^brk', '^entry', '^argv_', '^env_', '^auxv_', '^Trace', '^--- SIGSEGV', '^qemu' ] filter_string = '|'.join(line_starts) filtered = [] prev_line = "" for line in lines: if re.match(filter_string,line): continue # workaround for https://gitlab.com/qemu-project/qemu/-/issues/654 if re.search("page layout changed following target_mmap",line): prev_line = line.replace("page layout changed following target_mmap","") continue if re.match('^ = |^= ', line): line = prev_line+line filtered.append(line) return filtered
01b6c048ebdf890e9124c387fc744e56cc6b7f4d
7,238
def export_gmf_xml(key, dest, sitecol, imts, ruptures, rlz, investigation_time): """ :param key: output_type and export_type :param dest: name of the exported file :param sitecol: the full site collection :param imts: the list of intensity measure types :param ruptures: an ordered list of ruptures :param rlz: a realization object :param investigation_time: investigation time (None for scenario) """ if hasattr(rlz, 'gsim_rlz'): # event based smltpath = '_'.join(rlz.sm_lt_path) gsimpath = rlz.gsim_rlz.uid else: # scenario smltpath = '' gsimpath = rlz.uid writer = hazard_writers.EventBasedGMFXMLWriter( dest, sm_lt_path=smltpath, gsim_lt_path=gsimpath) writer.serialize( GmfCollection(sitecol, imts, ruptures, investigation_time)) return {key: [dest]}
139e24feb476ab10c0f1192fd47f80b7bbe29ccb
7,239
import functools def track_state_change(entity_ids, from_state=None, to_state=None): """Decorator factory to track state changes for entity id.""" def track_state_change_decorator(action): """Decorator to track state changes.""" event.track_state_change(HASS, entity_ids, functools.partial(action, HASS), from_state, to_state) return action return track_state_change_decorator
08f6e7f8354f51dfa54d233156585c84d9b811b3
7,240
def phrase(): """Generate and return random phrase.""" return models.PhraseDescription(text=random_phrase.make_random_text())
458529df5d6dbd92b7a6545d92b836763a8411a6
7,241
def classify_tweets(text): """ classify tweets for tweets about car accidents and others :param text: tweet text :return: boolean, true if tweet is about car accident, false for others """ return text.startswith(u'בשעה') and ( (u'הולך רגל' in text or u'הולכת רגל' in text or u'נהג' in text or u'אדם' in text) and (u'רכב' in text or u'מכונית' in text or u'אופנוע' in text or u"ג'יפ" in text or u'טרקטור' in text or u'משאית' in text or u'אופניים' in text or u'קורקינט' in text))
b34991a36febf2648cd83f2782ba4a8631e65a1a
7,242
def _build_results(drift_type, raw_metrics): """Generate all results for queried time window or run id of some a datadriftdetector. :param raw_metrics: origin data diff calculation results. :return: a list of result dict. """ results = [] for metric in raw_metrics: ep = _properties(metric.get_extended_properties()) if metric.name == OUTPUT_METRIC_DRIFT_COEFFICIENT: # Overall drift coefficient; add to results return object create_new_component = True if create_new_component: res = {KEY_NAME_Drift_TYPE: drift_type} # attach result content result_list = [] result_list.append( _build_single_result_content(drift_type, metric.value, ep) ) res["result"] = result_list results.append(res) return results
2938257d54d0be0ac012c4ddc39952c6767b8a38
7,243
def no_test_server_credentials(): """ Helper function that returns true when TEST_INTEGRATION_* credentials are undefined or empty. """ client_id = getattr(settings, 'TEST_INTEGRATION_CLIENT_ID', None) username = getattr(settings, 'TEST_INTEGRATION_USERNAME', None) password = getattr(settings, 'TEST_INTEGRATION_PASSWORD', None) app_read = getattr(settings, 'TEST_INTEGRATION_READ_CLIENT_ID', None) app_write = getattr(settings, 'TEST_INTEGRATION_WRITE_CLIENT_ID', None) return not (client_id and username and password and app_read and app_write)
a98f249e15f9d1c42aacd62a22024af577332275
7,244
from typing import Tuple from typing import Any def skip_spaces(st: ST) -> Tuple[ST, Any]: """ Pula espaços. """ pos, src = st while pos < len(src) and src[pos].isspace(): pos += 1 return (pos, src), None
df0c549c8af18a66a6e2d1704991592516e62ffb
7,245
def mixed_phone_list(): """Return mixed phone number list.""" return _MIXED_PHONE_LIST_
e607eb5778d8f4999fcbeb85ea5a3bb0ca04ee40
7,246
def bootstrap(config): """ Configure the existing account for subsequent deployer runs. Create S3 buckets & folders, upload artifacts required by infrastructure to them. Args: config: dictionary containing all variable settings required to run terraform with Returns: config dict. """ config['project_config'] = config.get('project_config', s3.get_bucket_name(config, 'data')) config['tf_state_bucket'] = config.get('tf_state_bucket', s3.get_bucket_name(config,'tfstate')) logmsg = "{}: Creating S3 project bucket: {}" logger.debug(logmsg.format(__name__, config['project_config'])) s3.create_bucket(config['project_config']) logmsg = "{}: Creating S3 project bucket: {}" logger.debug(logmsg.format(__name__, config['tf_state_bucket'])) s3.create_bucket(config['tf_state_bucket']) upload_staged_artifacts(config) return config
c06101d64113a9e2cf647d29cad32fa923ffbcb2
7,247
def get_report_summary(report): """ Retrieve the docstring summary content for the given report module. :param report: The report module object :returns: the first line of the docstring for the given report module """ summary = None details = get_report_details(report) if not details: return details = details.split('\n') while details and not summary: summary = details.pop(0) return summary
ea350c527cfab62496110ae08eedd9841db10492
7,248
def load_dataset(dataset_identifier, train_portion='75%', test_portion='25%', partial=None): """ :param dataset_identifier: :param train_portion: :return: dataset with (image, label) """ # splits are not always supported # split = ['train[:{0}]'.format(train_portion), 'test[{0}:]'.format(test_portion)] ds = tfds.load(dataset_identifier, split='train', shuffle_files=True) if partial is not None: ds = ds.take(partial) return ds
f836236f56ba8359194c21c20ea6767d296a0ee4
7,249
from typing import List import functools def stop(ids: List[str]): """Stop one or more instances""" return functools.partial(ec2.stop_instances, InstanceIds=ids)
fdf6db088323e5874c01662cf931aa85143ac2aa
7,250
import os import re def search_names(word, archive=TAXDB_NAME, name="names.dmp", limit=None): """ Processes the names.dmp component of the taxdump. """ # Needs a taxdump to work. if not os.path.isfile(archive): utils.error("taxdump file not found (download and build it first)") # Open stream into the tarfile. stream = open_tarfile(archive=archive, filename=name, limit=limit) # The pattern may be regular expression. patt = re.compile(word, re.IGNORECASE) # Labels that will be searched. valid = {'scientific name', 'equivalent name', 'genbank common name'} def select(row): taxid, name, label = row[0], row[2], row[6] return label in valid and patt.search(name) # Apply the selector. stream = filter(select, stream) for elems in stream: taxid, name, label = elems[0], elems[2], elems[6] yield taxid, name
127f65d713df58a15bf01f498123dde8550727a3
7,251
def simple_parse(config_file): """ Do simple parsing and home-brewed type interference. """ config = ConfigObj(config_file, raise_errors=True) config.walk(string_to_python_type) # Now, parse input and output in the Step definition by hand. _step_io_fix(config) return(config)
85a406125a644fb75a5d8986778de6ea9b8af52a
7,252
import pickle def deserialize_columns(headers, frames): """ Construct a list of Columns from a list of headers and frames. """ columns = [] for meta in headers: col_frame_count = meta["frame_count"] col_typ = pickle.loads(meta["type-serialized"]) colobj = col_typ.deserialize(meta, frames[:col_frame_count]) columns.append(colobj) # Advance frames frames = frames[col_frame_count:] return columns
176d936a6019669f15049f11df00e14ad62238d7
7,253
import os import sys def get_site_config(sites_path=None, site_path=None): """Returns `site_config.json` combined with `sites/common_site_config.json`. `site_config` is a set of site wide settings like database name, password, email etc.""" config = {} sites_path = sites_path or getattr(local, "sites_path", None) site_path = site_path or getattr(local, "site_path", None) if sites_path: common_site_config = os.path.join(sites_path, "common_site_config.json") if os.path.exists(common_site_config): config.update(get_file_json(common_site_config)) if site_path: site_config = os.path.join(site_path, "site_config.json") if os.path.exists(site_config): config.update(get_file_json(site_config)) elif local.site and not local.flags.new_site: print("{0} does not exist".format(local.site)) sys.exit(1) #raise IncorrectSitePath, "{0} does not exist".format(site_config) return _dict(config)
84346f0307f3e4b278c5dfe7fb9662b9d59f8a87
7,254
def words_with_joiner(joiner): """Pass through words unchanged, but add a separator between them.""" def formatter_function(i, word, _): return word if i == 0 else joiner + word return (NOSEP, formatter_function)
9f24b2e7d202663902da0bfccd8e9b96faebc152
7,255
def magerr2Ivar(flux, magErr): """ Estimate the inverse variance given flux and magnitude error. The reason for this is that we need to correct the magnitude or flux for Galactic extinction. Parameters ---------- flux : scalar or array of float Flux of the obejct. magErr : scalar or array of float Error of magnitude measurements. """ fluxErr = flux * ((10.0 ** (magErr/2.5)) - 1.0) return 1.0 / (fluxErr ** 2.0)
37c48c26f1b876ca4d77dc141b1728daaea24944
7,256
def create_policy_work_item_linking(repository_id, branch, blocking, enabled, branch_match_type='exact', organization=None, project=None, detect=None): """Create work item linking policy. """ organization, project = resolve_instance_and_project( detect=detect, organization=organization, project=project) policy_client = get_policy_client(organization) configuration = create_configuration_object(repository_id, branch, blocking, enabled, '40e92b44-2fe1-4dd6-b3d8-74a9c21d0c6e', [], [], branch_match_type) return policy_client.create_policy_configuration(configuration=configuration, project=project)
230604606ba47c29386027503f45d30577cb5edf
7,257
import numbers def center_data(X, y, fit_intercept, normalize=False, copy=True, sample_weight=None): """ Centers data to have mean zero along axis 0. This is here because nearly all linear models will want their data to be centered. If sample_weight is not None, then the weighted mean of X and y is zero, and not the mean itself """ X = as_float_array(X, copy) if fit_intercept: if isinstance(sample_weight, numbers.Number): sample_weight = None if sp.issparse(X): X_offset = np.zeros(X.shape[1]) X_std = np.ones(X.shape[1]) else: X_offset = np.average(X, axis=0, weights=sample_weight) X -= X_offset # XXX: currently scaled to variance=n_samples if normalize: X_std = np.sqrt(np.sum(X ** 2, axis=0)) X_std[X_std == 0] = 1 X /= X_std else: X_std = np.ones(X.shape[1]) y_offset = np.average(y, axis=0, weights=sample_weight) y = y - y_offset else: X_offset = np.zeros(X.shape[1]) X_std = np.ones(X.shape[1]) y_offset = 0. if y.ndim == 1 else np.zeros(y.shape[1], dtype=X.dtype) return X, y, X_offset, y_offset, X_std
d31b27868a6f1ee21ef4019df9954fc1136d73eb
7,258
import socket async def get_ipv4_internet_reachability(host, port, timeout): """ Host: 8.8.8.8 (google-public-dns-a.google.com) OpenPort: 53/tcp Service: domain (DNS/TCP) """ try: socket.setdefaulttimeout(timeout) socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect((host, port)) socket.close() return True except socket.error as ex: socket.close() return False
ff1d335dec568810431c58b0bc1a72eb10e65372
7,259
def cov_pen(h_j, h_no_j): """ Personal implementation of covariance matrix with penalization. :param h_j: :param h_no_j: :return: """ final_dim = h_j.shape[1] cov_matrix = np.empty((final_dim, final_dim)) for row in range(final_dim): for column in range(final_dim): h_d = h_j[:, row] h_d_no_j = h_no_j[:, row] a = h_d - np.mean(h_d) if row == column: # Diag value = np.dot(a.T, a) + np.dot(h_d_no_j.T, h_d_no_j) else: h_i = h_j[:, column] h_i_no_j = h_no_j[:, column] b = h_i - np.mean(h_i) value = np.dot(a.T, b) + np.dot(h_d_no_j.T, h_i_no_j) cov_matrix[row, column] = value return cov_matrix
4a3ef366a072fd84d198597213ea544d88032ac5
7,260
def get_last_timestamp(): """ 获取当天23:59:59的时间戳 :return: """ # 获取明天0点的时间戳 future_timestamp = get_timestamp(-1) # 明天0点的时间戳-1 last_timestamp = future_timestamp - 1 return last_timestamp
7f4c07309f9be1437c1743f691402bae58a7ec34
7,261
from typing import List from typing import Dict import os import timeit def crawl(folder: str, search: str, maxnum: int, num_threads: int, crawlers: [List[str]] = ['GOOGLE', 'BING', 'BAIDU']) -> Dict[str, str]: """Crawl web sites for images""" print('(1) Crawling ...') # prepare folders os.makedirs(folder, exist_ok=True) sources = {} for c in crawlers: print(f' -> {c}', end='', flush=True) run_command = lambda : crawl_run(c, folder, search, maxnum, num_threads) runtime = timeit.timeit(run_command, 'gc.enable()', number=1)# / float((10**6)) print(f' ({runtime:.2f} sec)') return {k: v for k, v in CustomDownloader.registry.items() if k is not None}
409a338ad0cd49641c0a690434d5706664bc7c6e
7,262
def _get_all_subclasses(typ, # type: Type[T] recursive=True, # type: bool _memo=None # type: Set[Type[Any]] ): # type: (...) -> Iterable[Type[T]] """ Returns all subclasses of `typ` Warning this does not support generic types. See parsyfiles.get_all_subclasses() if one day generic types are needed (commented lines below) :param typ: :param recursive: a boolean indicating whether recursion is needed :param _memo: internal variable used in recursion to avoid exploring subclasses that were already explored :return: """ _memo = _memo or set() # if we have collected the subclasses for this already, return if typ in _memo: return [] # else remember that we have collected them, and collect them _memo.add(typ) # if is_generic_type(typ): # # We now use get_origin() to also find all the concrete subclasses in case the desired type is a generic # sub_list = get_origin(typ).__subclasses__() # else: sub_list = typ.__subclasses__() # recurse result = [] # type: List[Type[T]] for t in sub_list: # only keep the origins in the list # to = get_origin(t) or t to = t # noinspection PyBroadException try: if to is not typ and to not in result and issubclass(to, typ): # is_subtype(to, typ, bound_typevars={}): result.append(to) except Exception: # catching an error with is_subtype(Dict, Dict[str, int], bound_typevars={}) pass # recurse if recursive: for typpp in sub_list: for t in _get_all_subclasses(typpp, recursive=True, _memo=_memo): # unfortunately we have to check 't not in sub_list' because with generics strange things happen # also is_subtype returns false when the parent is a generic if t not in sub_list and issubclass(t, typ): # is_subtype(t, typ, bound_typevars={}): result.append(t) return result
a9a9c1186e195347f937961b928159c605b64ffe
7,263
import logging def conditions_summary(conditions): """ Return a dict of consumer-level observations, say, for display on a smart mirror or tablet. """ keys = ['timestamp', 'dewpoint', 'barometricPressure', 'windDirection', 'windSpeed', 'windGust', 'precipitationLastHour', 'temperature', 'relativeHumidity', 'heatIndex'] summary = dict() for key in keys: try: summary[key] = conditions['properties'][key] except Exception as exc: summary[key] = 'none' logging.error('Error trying to read summary for key {0}: {1}', key, exc) return summary
aa4c95fd892c63bd05abd24188b8931375973bc0
7,264
def InsertOrganisation(cur, con, entity_name: str = "Organisation") -> int: """ Inserts a new Organisation into the database """ # Get information about the video game print(f"Enter new {entity_name}'s details:") row = {} row["Name"] = input(f"Enter the name of the {entity_name}: ") or None row["Headquarters"] = input( f"Enter the headquarters of {entity_name} (Optional): ") or None row["Founded"] = input( f"Enter the date when the {entity_name} was founded in YYYY-MM-DD format: ") or None row["Earnings"] = input( f"Enter earnings of {entity_name} in USD (Optional): ") or 0 # Query to be executed query = """INSERT INTO Organisations (Name, Headquarters, Founded, Earnings) VALUES (%(Name)s, %(Headquarters)s, %(Founded)s, %(Earnings)s) """ print("\nExecuting") print(query) # Execute query cur.execute(query, row) # Get ID of last inserted organisation cur.execute("SELECT LAST_INSERT_ID() AS OrganisationID") return cur.fetchone()["OrganisationID"]
de22b6eeb446efab58a2124f1b26da1e9edb12ed
7,265
def _rgb_to_hsv(rgbs): """Convert Nx3 or Nx4 rgb to hsv""" rgbs, n_dim = _check_color_dim(rgbs) hsvs = list() for rgb in rgbs: rgb = rgb[:3] # don't use alpha here idx = np.argmax(rgb) val = rgb[idx] c = val - np.min(rgb) if c == 0: hue = 0 sat = 0 else: if idx == 0: # R == max hue = ((rgb[1] - rgb[2]) / c) % 6 elif idx == 1: # G == max hue = (rgb[2] - rgb[0]) / c + 2 else: # B == max hue = (rgb[0] - rgb[1]) / c + 4 hue *= 60 sat = c / val hsv = [hue, sat, val] hsvs.append(hsv) hsvs = np.array(hsvs, dtype=np.float32) if n_dim == 4: hsvs = np.concatenate((hsvs, rgbs[:, 3]), axis=1) return hsvs
ee4a2d9867351e61bf9b14de4ef2d05425285879
7,266
def find_correlation(convergence_data, lens_data, plot_correlation=False, plot_radii=False, impact=False, key=None): """Finds the value of the slope for plotting residuals against convergence. Magnitude of slope and error quantify correlation between the two. Inputs: conv -- convergence. mu_diff -- residuals. """ correlations = [] correlation_errs = [] for cone_radius in RADII[29::2]: SNe_data = find_mu_diff(lens_data, cone_radius=cone_radius, impact=impact, key=key) redshift_cut = np.logical_or(SNe_data['z'] > 0.2, SNe_data['z'] > 0.4) mu_diff = SNe_data["mu_diff"][redshift_cut] if impact: if key is None: conv = np.array(convergence_data[f"Radius{str(cone_radius)}"]["SNkappa"])[redshift_cut] else: conv = np.array(convergence_data[key][f"Radius{str(cone_radius)}"]["SNkappa"])[redshift_cut] else: conv = np.array(convergence_data[f"Radius{str(cone_radius)}"]["SNkappa"])[redshift_cut] conv_rank = rankdata(conv) mu_rank = rankdata(mu_diff) diff = np.abs(conv_rank - mu_rank) rho = 1 - 6 / (len(conv) * (len(conv) ** 2 - 1)) * np.sum(diff ** 2) rho_err = np.sqrt((1 - rho ** 2) / (len(conv) - 1)) correlations.append(rho) correlation_errs.append(rho_err) if plot_correlation: edges = np.linspace(-0.0065, 0.011, 6) bins = (edges[1:] + edges[:-1]) / 2 mean_dmu = [] standard_error = [] for bin in bins: dmus = [] for kappa, dmu in zip(conv, mu_diff): if bin - 0.007 / 4 < kappa <= bin + 0.0007 / 4: dmus.append(dmu) mean_dmu.append(np.mean(dmus)) standard_error.append(np.std(dmus) / np.sqrt(len(dmus))) plt.plot([min(conv), max(conv)], [0, 0], color=grey, linestyle='--') plt.plot(conv, mu_diff, linestyle='', marker='o', markersize=2, color=colours[0]) plt.errorbar(bins, mean_dmu, standard_error, marker='s', color='r', markersize=3, capsize=3, linestyle='') plt.xlabel('$\kappa$') plt.ylabel('$\Delta\mu$') # plt.xlim([-0.008, 0.011]) # plt.legend(frameon=0, loc='lower right') # plt.ylim([-0.3, 0.3]) plt.text(0.0038, -0.19, f'$\\rho$ = {round(rho, 3)} $\pm$ {round(rho_err, 3)}', fontsize=16) # print([convergence_cut[cuts2][i] for i in range(len(convergence_cut[cuts2]))]) # print([mu_diff_cut[cuts2][i] for i in range(len(convergence_cut[cuts2]))]) # print([SNmu_err_cut[cuts2][i] for i in range(len(convergence_cut[cuts2]))]) plt.show() u_err = [correlations[i] + correlation_errs[i] for i in range(len(correlations))] d_err = [correlations[i] - correlation_errs[i] for i in range(len(correlations))] smooth_corr = savgol_filter([correlations[i] for i in range(len(correlations))], 11, 4) smooth_u_err = savgol_filter(u_err, 11, 4) smooth_d_err = savgol_filter(d_err, 11, 4) if plot_radii: plt.plot([6, 30], [0, 0], color=grey, linestyle='--') plt.plot(RADII[29::2], smooth_corr, color=colours[0]) plt.plot(RADII[29::2], [correlations[i] for i in range(len(correlations))], marker='x', color=colours[1], linestyle='') plt.fill_between(RADII[29::2], smooth_u_err, smooth_d_err, color=colours[0], alpha=0.4) plt.xlabel('Cone Radius (arcmin)') plt.ylabel("Spearman's Rank Coefficient") # plt.xlim([5, 30.1]) # plt.ylim([-0.18, 0.02]) plt.gca().invert_yaxis() plt.show() return [correlations, smooth_corr, smooth_u_err, smooth_d_err, np.array(u_err) - np.array(correlations)]
d507cd256a555b442fff1cd2a00862a5afdf0661
7,267
def ELCE2_null_estimator(p_err, K, rng): """ Compute the ELCE^2_u for one bootstrap realization. Parameters ---------- p_err: numpy-array one-dimensional probability error vector. K: numpy-array evaluated kernel function. rng: type(np.random.RandomState()) a numpy random function return ------ float: an unbiased estimate of ELCE^2_u """ idx = rng.permutation(len(p_err)) return ELCE2_estimator(K, p_err[idx])
5b42e36ade4aba416bb8cbf6790d22fd8e4913b1
7,268
import curses def select_from(stdscr, x, y, value, slist, redraw): """ Allows user to select from a list of valid options :param stdscr: The current screen :param x: The start x position to begin printing :param y: The start y position to begin pritning :param value: The current value chosen :param slist: A list of values to choose from :return: A value within :param list """ k = 0 padwidth = 100 pad = curses.newpad(1, padwidth) height, width = stdscr.getmaxyx() try: idx = slist.index(value) except ValueError: stdscr.clear() stdscr.refresh() curses_safe_addstr(stdscr, 0, 0, str(value)) curses_safe_addstr(stdscr, 1, 0, str(type(value))) curses_safe_addstr(stdscr, 2, 0, ','.join(map(str, slist))) curses_safe_addstr(stdscr, 3, 0, ','.join( list(map(str, map(type, slist))))) stdscr.getch() stdscr.clear() stdscr.refresh() draw_status_bar(stdscr, "Press 'q' to exit and 'UP' or 'DOWN' to select a value") while k != KEY_ENTER and k != ord('q'): pad.clear() value = str(slist[idx]) if len(value) + x >= width: value = value[:width - x - 1] if len(value) > padwidth: padwidth = len(value) * 2 pad = curses.newpad(1, padwidth) pad.addstr(0, 0, str(value)) stdscr.move(y, x + len(str(value))) pad.refresh(0, 0, y, x, y, width - x) k = stdscr.getch() if k == curses.KEY_UP and idx > 0: idx -= 1 elif k == curses.KEY_DOWN and idx < len(slist) - 1: idx += 1 elif k == curses.KEY_RESIZE: stdscr.erase() height, width = stdscr.getmaxyx() redraw(stdscr) draw_status_bar( stdscr, "Press 'q' to exit and 'UP' or 'DOWN' to select a value") return slist[idx]
208283731317418bbe5ae1d16386584eaebcd626
7,269
def describe(r): """Return a dictionary with various statistics computed on r: mean, variance, skew, kurtosis, entropy, median. """ stats = {} stats['mean'] = r.mean() stats['variance'] = r.var() stats['skew'] = skew(r) stats['kurtosis'] = kurtosis(r) stats['median'] = np.median(r) stats['entropy'] = entropy(r) stats['mode'] = mode(r) return stats
7ed070110ac327ef69cf1c05eefdda16c21f7f0d
7,270
def value_iteration(env,maxiter): """ Just like policy_iteration, this employs a similar approach. Steps (to iterate over): 1) Find your optimum state_value_function, V(s). 2) Keep iterating until convergence 3) Calculate your optimized policy Outputs: - Your final state_value_function, V(s) - Optimal policy 'pi' - Average reward vector (see note below) - List of all value functions for all iterations NOTE: In order to produce the graph showing average reward over each iteration, the policy was calculated at each iteration. This is not normally done for Value Iteration. This will slow down the computation time for Value iteration. To return to traditional value iteration, comment out the respective lines and remove the appropriate output """ # intialize the state-Value function V = np.zeros(nS) V_hm = np.copy(V) V_hm.resize((1,V_hm.size)) V_hm = V_hm.tolist() # intialize a random policy. Comment out for traditional Value_Iteration policy = np.random.randint(0, 4, nS) avg_r_VI_mat = [] n_episode = 100 # Iterate over your optimized function, breaking if not changing or difference < tolerance. for i in range(maxiter): prev_V = np.copy(V) # evaluate given policy difference, V = Optimum_V(env, prev_V, maxiter, gamma) # improve policy. Comment out to return to traditional Value Iteration policy = policy_update(env, policy, V, gamma) #Play episodes based on the current policy. Comment out to return to traditional Value Iteration wins_VI, total_reward_VI, avg_reward_VI = play_episodes(env, n_episode, policy, random = False) avg_r_VI_mat.append(avg_reward_VI) # save value function to list for animation V_tmp = np.copy(V) V_tmp = V_tmp.tolist() V_hm.append(V_tmp) # if State Value function has not changed over 10 iterations, it has converged. if i % 10 == 0: # if values of 'V' not changing after one iteration if (np.all(np.isclose(V, prev_V))): print("") print('No Changes for 10 iterations. Value converged at iteration %d' %(i+1)) break elif difference < tol: print('Tolerance reached. Value converged at iteration %d' %(i+1)) break # Initialize Optimal Policy optimal_policy = np.zeros(nS, dtype = 'int8') # Update your optimal policy based on optimal value function 'V' optimal_policy = policy_update(env, optimal_policy, V, gamma) return V, optimal_policy, avg_r_VI_mat, V_hm
c116d0408d6edfa82763febb030633b815d69812
7,271
def is_excluded(branch_name): """ We may want to explicitly exclude some BRANCHES from the list of BRANCHES to be merged, check if the branch name supplied is excluded if yes then do not perform merging into it. Args: branch_name: The branch to check if to be incorporated in branching or not. Retruns: True if branch should be excluded, in this case no merges will be performed into this branch, otherwise False. """ return branch_name in BRANCHES_TO_EXCLUDE
d38923a84e7a3f9a40ebd101de5c542156fff7aa
7,272
def schedule_contrib_conv2d_winograd_without_weight_transform(attrs, outs, target): """Schedule definition of conv2d_winograd_without_weight_transform""" with target: return topi.generic.schedule_conv2d_winograd_without_weight_transform(outs)
e186a727ccf69c3292d8807abd003485308754db
7,273
import os import sys import mne from mne.preprocessing import read_ica from nipype.utils.filemanip import split_filename as split_f from ephypype.preproc import create_ts def preprocess_set_ica_comp_fif_to_ts(fif_file, subject_id, n_comp_exclude, is_sensor_space): """Preprocess ICA fif to ts.""" subj_path, basename, ext = split_f(fif_file) (data_path, sbj_name) = os.path.split(subj_path) print(('*** SBJ %s' % subject_id + '***')) # Read raw current_dir = os.getcwd() if os.path.exists(os.path.join(current_dir, '../ica', basename + '_ica' + ext)): raw_ica_file = os.path.join( current_dir, '../ica', basename + '_ica' + ext) elif os.path.exists(os.path.join(current_dir, '../ica', basename + '_filt_ica' + ext)): raw_ica_file = os.path.join( current_dir, '../ica', basename + '_filt_ica' + ext) elif os.path.exists(os.path.join(current_dir, '../ica', basename + '_filt_dsamp_ica' + ext)): raw_ica_file = os.path.join( current_dir, '../ica', basename + '_filt_dsamp_ica' + ext) print(('*** raw_ica_file %s' % raw_ica_file + '***')) raw = mne.io.read_raw_fif(raw_ica_file, preload=True) # load ICA if os.path.exists(os.path.join(current_dir, '../ica', basename + '_ica_solution.fif')): ica_sol_file = os.path.join( current_dir, '../ica', basename + '_ica_solution.fif') elif os.path.exists(os.path.join(current_dir, '../ica', basename + '_filt_ica_solution.fif')): ica_sol_file = os.path.join( current_dir, '../ica', basename + '_filt_ica_solution.fif') elif os.path.exists(os.path.join(current_dir, '../ica', basename + "_filt_dsamp_ica_solution." "fif")): ica_sol_file = os.path.join( current_dir, '../ica', basename + '_filt_dsamp_ica_solution.fif') if os.path.exists(ica_sol_file) is False: print(('$$$ Warning, no %s found' % ica_sol_file)) sys.exit() else: ica = read_ica(ica_sol_file) print(('\n *** ica.exclude before set components= ', ica.exclude)) if subject_id in n_comp_exclude: print(('*** ICA to be excluded for sbj %s ' % subject_id)) print((' ' + str(n_comp_exclude[subject_id]) + '***')) session_dict = n_comp_exclude[subject_id] session_names = list(session_dict.keys()) componentes = [] for s in session_names: componentes = session_dict[s] if len(componentes) == 0: print('\n no ICA to be excluded \n') else: print(('\n *** ICA to be excluded for session %s ' % s + ' ' + str(componentes) + ' *** \n')) ica.exclude = componentes print(('\n *** ica.exclude after set components = ', ica.exclude)) # apply ICA to raw data new_raw_ica_file = os.path.join(subj_path, basename + '_ica-raw.fif') raw_ica = ica.apply(raw) raw_ica.save(new_raw_ica_file, overwrite=True) # save ICA solution print(ica_sol_file) ica.save(ica_sol_file) (ts_file, channel_coords_file, channel_names_file, raw.info['sfreq']) = create_ts(new_raw_ica_file) if is_sensor_space: return (ts_file, channel_coords_file, channel_names_file, raw.info['sfreq']) else: return (raw_ica, channel_coords_file, channel_names_file, raw.info['sfreq'])
f70cd29a4a1e189dfe46e2713dfce95c8a21e8f9
7,274
def _phi(r: FloatTensorLike, order: int) -> FloatTensorLike: """Coordinate-wise nonlinearity used to define the order of the interpolation. See https://en.wikipedia.org/wiki/Polyharmonic_spline for the definition. Args: r: input op. order: interpolation order. Returns: `phi_k` evaluated coordinate-wise on `r`, for `k = r`. """ # using EPSILON prevents log(0), sqrt0), etc. # sqrt(0) is well-defined, but its gradient is not with tf.name_scope("phi"): if order == 1: r = tf.maximum(r, EPSILON) r = tf.sqrt(r) return r elif order == 2: return 0.5 * r * tf.math.log(tf.maximum(r, EPSILON)) elif order == 4: return 0.5 * tf.square(r) * tf.math.log(tf.maximum(r, EPSILON)) elif order % 2 == 0: r = tf.maximum(r, EPSILON) return 0.5 * tf.pow(r, 0.5 * order) * tf.math.log(r) else: r = tf.maximum(r, EPSILON) return tf.pow(r, 0.5 * order)
80a41c99a4ef8b396d16b02a6217eaa9191105f6
7,275
def linbin(n, nbin=None, nmin=None): """Given a number of points to bin and the number of approximately equal-sized bins to generate, returns [nbin_out,{from,to}]. nbin_out may be smaller than nbin. The nmin argument specifies the minimum number of points per bin, but it is not implemented yet. nbin defaults to the square root of n if not specified.""" if not nbin: nbin = int(np.round(n**0.5)) tmp = np.arange(nbin+1)*n//nbin return np.vstack((tmp[:-1],tmp[1:])).T
2d537131ad8d13e32375b74b9fa3e77088d046dd
7,276
from bs4 import BeautifulSoup def get_soup(url): """Gets the soup of the given URL. :param url: (str) URL the get the soup from. :return: Soup of given URL. """ header = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 Safari/537.36'} return BeautifulSoup(urllib_req.urlopen(urllib_req.Request(url, headers=header)), 'html.parser')
69982a75a5c329b0d9e0ca7638c0ffffdc3ac21e
7,277
def msd_id_to_dirs(msd_id): """Given an MSD ID, generate the path prefix. e.g. TRABCD12345678 -> A/B/C/TRABCD12345678""" return op.join(msd_id[2], msd_id[3], msd_id[4], msd_id)
e210ae919de4fc8b037a7e8d7aabb6858b6e07f9
7,278
def get_data_path(sub_path): """Returns path to file in data folder.""" return join(_data_folder_path, sub_path)
847b59cfea7f4d42b65f166230c032e71bb92ecd
7,279
import io def read_avro_bytes(URL, open_with, start_byte, length, header, nrows=None): """Pass a specific file/bytechunk and convert to dataframe with cyavro Both a python dict version of the header, and the original bytes that define it, are required. The bytes are prepended to the data, so that the C avro reader can interpret them. """ with open_with(URL, 'rb') as f: f.seek(start_byte) if start_byte == 0: header = read_header(f) f.seek(header['header_size']) data = header['head_bytes'] + f.read(length) if nrows is None: b = io.BytesIO(data) header['blocks'] = [] scan_blocks(b, header, len(data)) nrows = sum(b['nrows'] for b in header['blocks']) f = cyavro.AvroReader() f.init_bytes(data) df, arrs = empty(header['dtypes'].values(), nrows, cols=header['dtypes']) f.init_reader() f.init_buffers(10000) for i in range(0, nrows, 10000): d = f.read_chunk() for c in d: s = [f for f in header['schema']['fields'] if f['name'] == c][0] if 'logicalType' in s: df[c].values[i:i + 10000] = time_convert(d[c], s) else: df[c].values[i:i + 10000] = d[c] return df
9542eb13c1247de35f00a1fa370aba721f8657cd
7,280
def get_launches(method="", **query): """Gets launches based on query strings Gets launches based on query strings from the API Parameters ---------- method : str (optional) the method used for the request query : keyword args keyword args based on the API query strings Returns ------- list a list of the launches """ return _get("launches", method, query)
ca162affdd7aef187985e0d2c75e153ad75db162
7,281
def state(obj): """Gets the UnitOfWork state of a mapped object""" return obj.__ming__.state
1072265fe175ffcd581d14af5d4ee85f2941a5e4
7,282
def save_file_in_path(file_path, content): """Write the content in a file """ try: with open(file_path, 'w', encoding="utf-8") as f: f.write(content) except Exception as err: print(err) return None return file_path
7b1e453a9b2a8c1211e111a6e8db432811d84a7a
7,283
import json from datetime import datetime def export_entity_for_model_and_options(request): """ Export entity list in a list of 'format' type. @note EntityModelClass.export_list() must return a list of results. User of the request is used to check for permissions. """ limit = int_arg(request.GET.get('limit', 100000)) app_label = request.GET['app_label'] validictory.validate(app_label, Entity.NAME_VALIDATOR) model = request.GET['model'] validictory.validate(model, Entity.NAME_VALIDATOR) columns = request.GET.getlist('columns[]', ['id']) validictory.validate(model, COLUMNS_VALIDATOR) file_format = request.GET['format'] validictory.validate(model, {"type": "string"}) content_type = ContentType.objects.get_by_natural_key(app_label, model) entity_model = content_type.model_class() sort_by = json.loads(request.GET.get('sort_by', '[]')) if not len(sort_by) or sort_by[-1] not in ('id', '+id', '-id'): order_by = sort_by + ['id'] else: order_by = sort_by if request.GET.get('search'): search = json.loads(request.GET['search']) else: search = None if request.GET.get('filters'): filters = json.loads(request.GET['filters']) else: filters = None export_list = getattr(entity_model, 'export_list') if export_list and callable(export_list): cursor = None columns, items = export_list(columns, cursor, search, filters, order_by, limit, request.user) else: # nothing to export columns, items = [], [] exporter = DataExporter(columns, items) if file_format == 'csv': data = exporter.export_data_as_csv() elif file_format == 'xlsx': data = exporter.export_data_as_xslx() else: raise SuspiciousOperation("Invalid format") timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H-%M-%S") file_name = "%s-%s-%s" % (app_label, model, timestamp) + exporter.file_ext response = StreamingHttpResponse(data, content_type=exporter.mime_type) response['Content-Disposition'] = 'attachment; filename="' + file_name + '"' response['Content-Length'] = exporter.size return response
5539d3fe66dd3163044acf7073e40e55cc1c3b5c
7,284
def gen_instance_hv_map(ann, crop_shape): """Input annotation must be of original shape. The map is calculated only for instances within the crop portion but based on the original shape in original image. Perform following operation: Obtain the horizontal and vertical distance maps for each nuclear instance. """ orig_ann = ann.copy() # instance ID map fixed_ann = fix_mirror_padding(orig_ann) # re-cropping with fixed instance id map crop_ann = cropping_center(fixed_ann, crop_shape) # TODO: deal with 1 label warning crop_ann = morph.remove_small_objects(crop_ann, min_size=30) x_map = np.zeros(orig_ann.shape[:2], dtype=np.float32) y_map = np.zeros(orig_ann.shape[:2], dtype=np.float32) inst_list = list(np.unique(crop_ann)) inst_list.remove(0) # 0 is background for inst_id in inst_list: inst_map = np.array(fixed_ann == inst_id, np.uint8) inst_box = get_bounding_box(inst_map) # expand the box by 2px # Because we first pad the ann at line 207, the bboxes # will remain valid after expansion inst_box[0] -= 2 inst_box[2] -= 2 inst_box[1] += 2 inst_box[3] += 2 inst_map = inst_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]] if inst_map.shape[0] < 2 or inst_map.shape[1] < 2: continue # instance center of mass, rounded to nearest pixel inst_com = list(measurements.center_of_mass(inst_map)) inst_com[0] = int(inst_com[0] + 0.5) inst_com[1] = int(inst_com[1] + 0.5) inst_x_range = np.arange(1, inst_map.shape[1] + 1) inst_y_range = np.arange(1, inst_map.shape[0] + 1) # shifting center of pixels grid to instance center of mass inst_x_range -= inst_com[1] inst_y_range -= inst_com[0] inst_x, inst_y = np.meshgrid(inst_x_range, inst_y_range) # remove coord outside of instance inst_x[inst_map == 0] = 0 inst_y[inst_map == 0] = 0 inst_x = inst_x.astype("float32") inst_y = inst_y.astype("float32") # normalize min into -1 scale if np.min(inst_x) < 0: inst_x[inst_x < 0] /= -np.amin(inst_x[inst_x < 0]) if np.min(inst_y) < 0: inst_y[inst_y < 0] /= -np.amin(inst_y[inst_y < 0]) # normalize max into +1 scale if np.max(inst_x) > 0: inst_x[inst_x > 0] /= np.amax(inst_x[inst_x > 0]) if np.max(inst_y) > 0: inst_y[inst_y > 0] /= np.amax(inst_y[inst_y > 0]) #### x_map_box = x_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]] x_map_box[inst_map > 0] = inst_x[inst_map > 0] y_map_box = y_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]] y_map_box[inst_map > 0] = inst_y[inst_map > 0] hv_map = np.dstack([x_map, y_map]) return x_map, y_map, hv_map
e6a5d6f50d91e0e6b7cf27cb05568b6526608ff9
7,285
import torch def jaccard_loss(true, logits, eps=1e-7): """Computes the Jaccard loss, a.k.a the IoU loss. Note that PyTorch optimizers minimize a loss. In this case, we would like to maximize the jaccard loss so we return the negated jaccard loss. Args: true: a tensor of shape [B, H, W] or [B, 1, H, W]. logits: a tensor of shape [B, C, H, W]. Corresponds to the raw output or logits of the model. eps: added to the denominator for numerical stability. Returns: jacc_loss: the Jaccard loss. """ num_classes = logits.shape[1] if num_classes == 1: true_1_hot = torch.eye(num_classes + 1)[true.squeeze(1)] true_1_hot = true_1_hot.permute(0, 3, 1, 2).float() true_1_hot_f = true_1_hot[:, 0:1, :, :] true_1_hot_s = true_1_hot[:, 1:2, :, :] true_1_hot = torch.cat([true_1_hot_s, true_1_hot_f], dim=1) pos_prob = torch.sigmoid(logits) neg_prob = 1 - pos_prob probas = torch.cat([pos_prob, neg_prob], dim=1) else: true_1_hot = torch.eye(num_classes)[true.squeeze(1)] true_1_hot = true_1_hot.permute(0, 3, 1, 2).float() probas = F.softmax(logits, dim=1) true_1_hot = true_1_hot.type(logits.type()) dims = (0,) + tuple(range(2, true.ndimension())) intersection = torch.sum(probas * true_1_hot, dims) cardinality = torch.sum(probas + true_1_hot, dims) union = cardinality - intersection jacc_loss = (intersection / (union + eps)).mean() return (1 - jacc_loss)
ae6c8f94662f48be81abf60c8a8fcd88f7ff7d81
7,286
def _get_distribution_schema(): """ get the schema for distribution type """ return schemas.load(_DISTRIBUTION_KEY)
32af1d9547d978a8a57a799ba74723f21e05c756
7,287
def compute_transforms(rmf_coordinates, mir_coordinates, node=None): """Get transforms between RMF and MIR coordinates.""" transforms = { 'rmf_to_mir': nudged.estimate(rmf_coordinates, mir_coordinates), 'mir_to_rmf': nudged.estimate(mir_coordinates, rmf_coordinates) } if node: mse = nudged.estimate_error(transforms['rmf_to_mir'], rmf_coordinates, mir_coordinates) node.get_logger().info(f"Transformation estimate error: {mse}") return transforms
3190a94cc406bb1199df3480202df4a3258912f9
7,288
def merge_dicts(*list_of_dicts): """Merge a list of dictionaries and combine common keys into a list of values. args: list_of_dicts: a list of dictionaries. values within the dicts must be lists dict = {key: [values]} """ output = {} for dikt in list_of_dicts: for k, v in dikt.items(): if not output.get(k): output[k] = v else: output[k].extend(v) output[k] = list(set(output[k])) return output
3d629bb9bc6af2a637a622fea158447b24c00bd0
7,289
def highpass_filter(src, size): """ highpass_filter(src, size) ハイパスフィルター 引数 ---------- src : AfmImg形式の画像 size : 整数 フィルターのサイズ 戻り値 ------- dst : AfmImg形式の画像 フィルターがかかった画像 """ def highpass(dft_img_src, *args): dft_img = dft_img_src.copy() #マスク作成 mask = __make_filter(dft_img.shape, args[0], True) #マスキング dft_img = dft_img.real*mask + dft_img.imag*mask * 1j return dft_img dst = __dft_filter(src, highpass, size) return dst
7945e3556cdd2eb4fd1e2303cbba00052a4a5900
7,290
import re import socket def parse_target(target): """ 解析目标为ip格式 :param str target: 待解析的目标 :return tuple scan_ip: 解析后的ip和域名 """ scan_ip = '' domain_result = '' main_domain = '' try: url_result = re.findall('https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+', target) if url_result == []: ip_result = re.findall(r"\b(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\b", target) if ip_result == []: result = tldextract.extract(target) main_domain = result.domain + '.' + result.suffix domain_regex = re.compile(r'(?:[A-Z0-9_](?:[A-Z0-9-_]{0,247}[A-Z0-9])?\.)+(?:[A-Z]{2,6}|[A-Z0-9-]{2,}(?<!-))\Z', re.IGNORECASE) domain_result = domain_regex.findall(target) if domain_result: scan_ip = socket.gethostbyname(domain_result[0]) else: net = IP(target) #print(net.len()) scan_ip = net else: scan_ip = ip_result[0] else: url_parse = urlparse(target) result = tldextract.extract(target) main_domain = result.domain + '.' + result.suffix domain_regex = re.compile(r'(?:[A-Z0-9_](?:[A-Z0-9-_]{0,247}[A-Z0-9])?\.)+(?:[A-Z]{2,6}|[A-Z0-9-]{2,}(?<!-))\Z', re.IGNORECASE) domain_result = domain_regex.findall(url_parse.netloc) scan_ip = socket.gethostbyname(url_parse.hostname) except Exception as e: print(e) finally: pass if domain_result: domain_result = domain_result[0] return scan_ip, main_domain, domain_result
292d90eebefb8da5289b20914dfbcd9c294ee5b7
7,291
from typing import Type def isWrappedScalarType(typ: Type) -> bool: """ Given a type, determine if it is a c10::scalar which we will wrap in a lazy Value. Since we literally change the type from scalarT to valueT, information is lost. This function helps build a list of wrapped scalars to save that information """ if isinstance(typ, BaseType): # I am regretting my naming conventions, but now we are wrapping at::scalar in # lazy value, while preserving other 'scalar' types as scalars in the IR return typ.name == BaseTy.Scalar elif isinstance(typ, (OptionalType, ListType)): return isWrappedScalarType(typ.elem) return False
0d854c734ddf3441dd2524c56d1d84d85fc7ac22
7,292
def assign_topic(data, doc_topic_distr): """ Assigns dominant topic to documents of corpus. :param data: DF of preprocessed and filtered text data :type data: pd.DataFrame :param doc_topic_distr: Array of topic distribution per doc of corpus :type doc_topic_distr: np.array :return: DF incl assigned topics :rtype: pd.DataFrame """ data["topic_distribution"] = doc_topic_distr.tolist() data["topic"] = np.argmax(doc_topic_distr, axis=1) + 1 return data
d53661831d9ee1431f989b290396be3ebde0582a
7,293
def _enable_scan_single_bytecode(code, name): """ Part of the ``_enable_scan`` that applies the scan behavior on a single given list/set comprehension or generator expression code. """ bc = bytecode.Bytecode.from_code(code) Instr = bytecode.Instr # Updates LOAD_GLOBAL to LOAD_FAST when arg is name for instr in bc: if isinstance(instr, Instr) \ and instr.name == "LOAD_GLOBAL" and instr.arg == name: instr.set("LOAD_FAST", name) # Some needed information from the first/main FOR_ITER and the heading # "filter" part of the generator expression or list/set comprehension for_idx = next(idx for idx, instr in enumerate(bc) if getattr(instr, "name", None) == "FOR_ITER") for_instr = bc[for_idx] begin_label_idx = for_idx - 1 try: filter_last_idx = last(idx for idx, instr in enumerate(bc) if isinstance(instr, Instr) and instr.is_cond_jump() and instr.arg == begin_label_idx) except StopIteration: filter_last_idx = for_idx # Adds the block before the loop (i.e., first label) to append/add/yield # the first input directly from FOR_ITER and save the first "prev" # accordingly heading_instructions = [("DUP_TOP",), ("STORE_FAST", name)] + { "<listcomp>": [("LIST_APPEND", 2)], "<setcomp>": [("SET_ADD", 2)], "<genexpr>": [("YIELD_VALUE",), ("POP_TOP",)] }[bc.name] bc[begin_label_idx:begin_label_idx] = ( [instr.copy() for instr in bc[for_idx:filter_last_idx + 1]] + [Instr(*args) for args in heading_instructions] ) # Adds ending block that stores the result to prev before a new iteration loop_instructions = ["SET_ADD", "LIST_APPEND", "YIELD_VALUE"] ending_idx = next(-idx for idx, instr in enumerate(reversed(bc), 1) if isinstance(instr, Instr) and instr.name in loop_instructions) ending_instructions = [("DUP_TOP",), ("STORE_FAST", name)] bc[ending_idx:ending_idx] = \ [Instr(*args) for args in ending_instructions] return bc.to_code()
d1bd12f50961869e09d4cbdc121e01abbe34232a
7,294
def composite_rotation(r, p1=qt.QH([1, 0, 0, 0]), p2=qt.QH([1, 0, 0, 0])): """A composite function of next_rotation.""" return next_rotation(next_rotation(r, p1), p2)
335363a18efb36d28c87b0266bd4dcdd27b6b85a
7,295
def extract_vectors_ped_feature(residues, conformations, key=None, peds=None, features=None, indexes=False, index_slices=False): """ This function allows you to extract information of the ped features from the data structure. In particular allows: - all rows or a specific subset of them, containing a certain feature (i.e., RD, EN, MED_ASA, etc ...) - the interval extremes for a certain features (i.e., RD, EN, MED_ASA, etc ...) - all the feature intervals as slices :param residues: number of residues in the model :param conformations: maximum number of conformations available :param key: the key of the feature or None if considering all of them, default: False :param peds: the ped id or None if considering all of them, default: False :param features: matrix of features or None if extracting only the indexes, default: False :param indexes: return (begin, end) indexes of a feature if it's True, default: False :param index_slices: return all the intervals of the features if it's True, default: False :return: begin/end, slices or features """ begin = end = -1 residues = int(residues) conformations = int(conformations) slices = [] if key == 'PED_ID' or index_slices: begin = 0 end = 1 slices.append(slice(begin, end)) if key == 'RD' or index_slices: begin = 1 end = conformations + 1 slices.append(slice(begin, end)) if key == 'EN' or index_slices: begin = conformations + 1 end = conformations + residues + 1 slices.append(slice(begin, end)) if key == 'MED_ASA' or index_slices: begin = conformations + residues + 1 end = conformations + 2 * residues + 1 slices.append(slice(begin, end)) if key == 'MED_RMSD' or index_slices: begin = conformations + 2 * residues + 1 end = conformations + 3 * residues + 1 slices.append(slice(begin, end)) if key == 'MED_DIST' or index_slices: begin = conformations + 3 * residues + 1 end = int(conformations + 3 * residues + 1 + residues * (residues - 1) / 2) slices.append(slice(begin, end)) if key == 'STD_DIST' or index_slices: begin = int(conformations + 3 * residues + 1 + residues * (residues - 1) / 2) end = None slices.append(slice(begin, end)) begin = int(begin) if end is not None: end = int(end) if begin == -1: return None if index_slices: return slices if indexes is True or features is None: return begin, end if peds is None: return features[:, begin:end] else: if isinstance(peds, int): return np.array(features[peds][begin:end]) else: return features[peds, begin:end]
3d0efb833ffd80303e2494d017c12e1d06d10bcc
7,296
def Load_File(filename): """ Loads a data file """ with open(filename) as file: data = file.readlines() return data
f49aa4474d9af0b8a778b9575e282eb579c103ab
7,297
from scipy.ndimage import morphology import numpy def massage_isig_and_dim(isig, im, flag, band, nm, nu, fac=None): """Construct a WISE inverse sigma image and add saturation to flag. unWISE provides nice inverse variance maps. These however have no contribution from Poisson noise from sources, and so underestimate the uncertainties dramatically in bright regions. This can pull the whole fit awry in bright areas, since the sky model means that every pixel feels every other pixel. It's not clear what the best solution is. We make a goofy inverse sigma image from the original image and the inverse variance image. It is intended to be sqrt(ivar) for the low count regime and grow like sqrt(1/im) for the high count regime. The constant of proportionality should in principle be worked out; here I set it to 0.15, which worked once, and it doesn't seem like this should depend much on which WISE exposure the image came from? It's ultimately something like the gain or zero point... """ if fac is None: bandfacs = {1: 0.15, 2: 0.3} bandfloors = {1: 0.5, 2: 2} fac = bandfacs[band] floor = bandfloors[band] satbit = 16 if band == 1 else 32 satlimit = 85000 # if band == 1 else 130000 msat = ((flag & satbit) != 0) | (im > satlimit) | ((nm == 0) & (nu > 1)) # dilate = morphology.iterate_structure( # morphology.generate_binary_structure(2, 1), 3) xx, yy = numpy.mgrid[-3:3+1, -3:3+1] dilate = xx**2+yy**2 <= 3**2 msat = morphology.binary_dilation(msat, dilate) isig[msat] = 0 flag = flag.astype('i8') # zero out these bits; we claim them for our own purposes. massagebits = (extrabits['crowdsat'] | crowdsource.nodeblend_maskbit | crowdsource.sharp_maskbit | extrabits['nebulosity']) flag &= ~massagebits flag[msat] |= extrabits['crowdsat'] flag[(flag & nodeblend_bits) != 0] |= crowdsource.nodeblend_maskbit flag[(flag & sharp_bits) != 0] |= crowdsource.sharp_maskbit sigma = numpy.sqrt(1./(isig + (isig == 0))**2 + floor**2 + fac**2*numpy.clip(im, 0, numpy.inf)) sigma[msat] = numpy.inf sigma[isig == 0] = numpy.inf return (1./sigma).astype('f4'), flag
b0bf70ddfff3a6b0a48005b9e1069c5c5f670dac
7,298
import subprocess def sh(arg): """ Execute command in a background shell. Args: arg (str or list): shell command, or a list of shell commands. """ if isinstance(arg, list): return [sh(a) for a in arg] else: return subprocess.check_output(arg, shell=True).decode("utf-8").strip()
bfde2eaca0b25a0c8012f5541b72a6f142d1180f
7,299