content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def create_connection(host, username, password): """ create a database connection to the SQLite database specified by db_file :return: Connection object or None """ try: conn = mysql.connect(host=host, # your host, usually db-guenette_neutrinos.rc.fas.harvard.edu user=username, # your username passwd=password, # your password db='guenette_neutrinos') # name of the data base # autocommit=False) # Prevent automatic commits return conn except mysql.Error as e: print(e) return None
09c540115ce788d1f5fd09d789327ac6951cb9a2
7,600
def Dadjust(profile_ref, profile_sim, diffsys, ph, pp=True, deltaD=None, r=0.02): """ Adjust diffusion coefficient fitting function by comparing simulated profile against reference profile. The purpose is to let simulated diffusion profile be similar to reference profile. Parameters ---------- profile_ref : DiffProfile Reference diffusion profile profile_sim : DiffProfile Simulated diffusion profile diffsys : DiffSystem Diffusion system ph : int Phase # to be adjusted, 0 <= ph <= diffsys.Np-1 Xp : 1d-array Reference composition to adjust their corresponding diffusivities. If provided, spline function Dfunc must be determined by [Xp, Dp] alone, where Dp = exp(Dfunc(Xp)). pp : bool, optional Point Mode (True) or Phase Mode (False). Point Mode adjusts each Dp at Xp by itself. In Phase Mode, all Dp are adjusted by the same rate, i.e. the diffusivity curve shape won't change. deltaD: float, optional Only useful at Phase Mode. deltaD gives the rate to change diffusion coefficients DC. DC = DC * 10^deltaD r : float, optional Only useful at Phase Mode, default = 0.02, 0 < r < 1. r gives the range to calculate the concentration gradient around X, [X-r, X+r]. """ dref, Xref, Ifref = profile_ref.dis, profile_ref.X, profile_ref.If dsim, Xsim, Ifsim = profile_sim.dis, profile_sim.X, profile_sim.If if ph >= diffsys.Np: raise ValueError('Incorrect phase #, 0 <= ph <= %i' % diffsys.Np-1) if pp and 'Xspl' not in dir(diffsys): raise ValueError('diffsys must have Xspl properties in per-point mode') Dfunc, Xr, Np = diffsys.Dfunc[ph], diffsys.Xr[ph], diffsys.Np rate = 1 # If there is phase consumed, increase adjustment rate if len(Ifref) != len(Ifsim): print('Phase consumed found, increase adjustment rate') rate = 2 if Xr[1] > Xr[0]: idref = np.where((Xref >= Xr[0]) & (Xref <= Xr[1]))[0] idsim = np.where((Xsim >= Xr[0]) & (Xsim <= Xr[1]))[0] else: idref = np.where((Xref <= Xr[0]) & (Xref >= Xr[1]))[0] idsim = np.where((Xsim <= Xr[0]) & (Xsim >= Xr[1]))[0] if 'Xspl' in dir(diffsys): Xp = diffsys.Xspl[ph] else: Xp = np.linspace(Xr[0], Xr[1], 30) Dp = np.exp(splev(Xp, Dfunc)) # If this is consumed phase, increase DC by 2 or 10^deltaD if len(idsim) == 0: Dp = np.exp(splev(Xp, Dfunc)) if deltaD is None: return Dfunc_spl(Xp, Dp*2) else: return Dfunc_spl(Xp, Dp*10**deltaD) dref, Xref = dref[idref], Xref[idref] dsim, Xsim = dsim[idsim], Xsim[idsim] # Per phase adjustment if not pp: if deltaD is not None: return Dfunc_spl(Xp, Dp*10**deltaD) # Calculate deltaD by phase width # When it comes to first or last phase, data closed to end limits are not considered fdis_ref = disfunc(dref, Xref) fdis_sim = disfunc(dsim, Xsim) X1, X2 = Xr[0], Xr[1] if ph == 0: X1 = Xr[0]*0.9 + Xr[1]*0.1 if ph == Np-1: X2 = Xr[0]*0.1 + Xr[1]*0.9 ref = splev([X1, X2], fdis_ref) sim = splev([X1, X2], fdis_sim) wref = ref[1]-ref[0] wsim = sim[1]-sim[0] Dp *= np.sqrt(wref/wsim) return Dfunc_spl(Xp, Dp) # Point Mode adjustment for i in range(len(Xp)): # X1, X2 is the lower, upper bound to collect profile data # X1, X2 cannot exceed phase bound Xr if Xr[0] < Xr[1]: X1, X2 = max(Xp[i]-r, Xr[0]), min(Xp[i]+r, Xr[1]) else: X1, X2 = max(Xp[i]-r, Xr[1]), min(Xp[i]+r, Xr[0]) # Calculate the gradient inside [X1, X2] by linear fitting fdis_ref = disfunc(dref, Xref) fdis_sim = disfunc(dsim, Xsim) Xf = np.linspace(X1, X2, 10) pref = np.polyfit(splev(Xf, fdis_ref), Xf, 1)[0] psim = np.polyfit(splev(Xf, fdis_sim), Xf, 1)[0] # Adjust DC by gradient difference Dp[i] *= (psim/pref)**rate return Dfunc_spl(Xp, Dp)
d8b13e8d785a31219197936a9bd7b5d275f23351
7,601
def setup_test(): """setup test""" def create_test_tables(db): """create test tables""" db(""" create table if not exists person ( id integer PRIMARY KEY AUTOINCREMENT, name varchar(100), age integer, kids integer, salary decimal(10,2), birthdate date ) """) def delete_test_tables(db): """drop test tables""" db('drop table if exists person') db = zoom.database.database('sqlite3', ':memory:') delete_test_tables(db) create_test_tables(db) return db
539ca396ba3098e79ec5064ccde7245d91106ef2
7,602
def compute_levenshtein_blocks(seq1, seq2, max_complexity=1e8): """Compute the Levenshtein blocks of insertion, deletion, replacement. """ # TODO: better method for dealing with long sequences? l1, l2 = len(seq1), len(seq2) if l1 * l2 > max_complexity: return [("change", (0, l1), (0, l2))] def block_format(op, s1, e1, s2, e2): if op == "delete": return (op, (s1, e1 + 1), (s2, e2)) if op == "insert": return (op, (s1, e1), (s2, e2 + 1)) else: return (op, (s1, e1 + 1), (s2, e2 + 1)) edits = Levenshtein.editops(seq1, seq2) if len(edits) == 0: return [] bop, s1, s2 = edits[0] e1, e2 = s1, s2 blocks = [] for (op, _e1, _e2) in edits[1:]: continuity = any( [ all([op == "delete", _e1 == e1 + 1, e2 == _e2]), all([op == "insert", _e1 == e1, _e2 == e2 + 1]), all([op == "replace", _e1 == e1 + 1, _e2 == e2 + 1]), ] ) if op == bop and continuity: e1, e2 = _e1, _e2 else: blocks.append(block_format(bop, s1, e1, s2, e2)) bop, s1, s2 = op, _e1, _e2 e1, e2 = s1, s2 blocks.append(block_format(bop, s1, e1, s2, e2)) return blocks
78b12b0cdffdf42403ace31d33d30c1e0a0e23d4
7,603
def mapdict_values(function, dic): """ Apply a function to a dictionary values, creating a new dictionary with the same keys and new values created by applying the function to the old ones. :param function: A function that takes the dictionary value as argument :param dic: A dictionary :return: A new dicitonary with same keys and values changed Example: >>> dic1 = { 'a' : 10, 'b' : 20, 'c' : 30 } >>> mapdict_values(lambda x: x*2, dic1) {'a': 20, 'b': 40, 'c': 60} >>> dic1 {'a': 10, 'b': 20, 'c': 30} """ return dict(map(lambda x: (x[0], function(x[1])), dic.items()))
03abbe7d7ec32d70ad0d4729913037f2199e977c
7,604
from typing import Optional async def callback( request: Request, code: str = None, error: Optional[str] = Query(None), db: AsyncSession = Depends(get_db), ): """ Complete the OAuth2 login flow """ client = get_discord_client() with start_span(op="oauth"): with start_span(op="oauth.authorization_token"): # Get the authorization token if code: token = await client.authorize_access_token(request) else: return RedirectResponse(URL("/login").include_query_params(error=error)) with start_span(op="oauth.user_info"): # Get the user's info client.token = token user_info = await client.userinfo(token=token) user_id = int(user_info.get("id")) with start_span(op="permissions"): with start_span(op="permissions.access"): # Get the user's role ids roles = list(map(lambda r: r.id, await get_user_roles(user_id))) # Determine if the user has panel access if (await CONFIG.panel_access_role()) not in roles: return RedirectResponse("/login?error=unauthorized") with start_span(op="permissions.admin"): # Get all the user's guilds async with ClientSession() as session: async with session.get( "https://discord.com/api/v8/users/@me/guilds", headers={"Authorization": f"Bearer {token['access_token']}"}, ) as response: guilds = await response.json() # Determine if the user has admin access is_owner = any( map( lambda g: g.get("id") == str(SETTINGS.discord_guild_id) and g.get("owner"), guilds, ) ) is_admin = (await CONFIG.management_role()) in roles or is_owner # Save the user's info to the database user = User( id=user_id, username=user_info["username"], avatar=user_info["picture"], is_admin=is_admin, ) # Insert and ignore failures try: db.add(user) await db.commit() except IntegrityError: pass # Store the info in the session request.session["logged_in"] = True request.session["user"] = dict(user_info) request.session["is_admin"] = is_admin request.session["expiration"] = dict(token).get("expires_at") return RedirectResponse("/login/complete")
f7d76c385360f6d2113cd7fb470344c1e7c96027
7,605
def align_centroids(config, ref): """Align centroids""" diff_centroids = np.round(ref.mean(axis=0) - config.mean(axis=0)) # diff_centroids = np.round(diff_centroids).astype(int) config = config + diff_centroids return config
cd579a911cb4ae59aa274836de156620305e592a
7,606
def _make_headers_df(headers_response): """ Parses the headers portion of the watson response and creates the header dataframe. :param headers_response: the ``row_header`` or ``column_header`` array as returned from the Watson response, :return: the completed header dataframe """ headers_df = util.make_dataframe(headers_response) headers_df = headers_df[ ["text", "column_index_begin", "column_index_end", "row_index_begin", "row_index_end", "cell_id", "text_normalized"]] return headers_df
621d46da0de2056ac98747a51f2ac2cbfdd52e5e
7,607
def getMemInfo() -> CmdOutput: """Returns the RAM size in bytes. Returns: CmdOutput: The output of the command, as a `CmdOutput` instance containing `stdout` and `stderr` as attributes. """ return runCommand(exe_args=ExeArgs("wmic", ["memorychip", "get", "capacity"]))
c57312d83182349e0847d0eb49606c401a3a0d27
7,608
def svn_swig_py_make_editor(*args): """svn_swig_py_make_editor(PyObject * py_editor, apr_pool_t pool)""" return _delta.svn_swig_py_make_editor(*args)
2041342a1bef3ea0addb004e1bd4539c58445c66
7,609
def register_confirm(request, activation_key): """finish confirmation and active the account Args: request: the http request activation_key: the activation key Returns: Http redirect to successful page """ user_safety = get_object_or_404(UserSafety, activation_key=activation_key) if user_safety.user.is_confirmed: return HttpResponseRedirect('/home/project') if user_safety.key_expires < timezone.now(): return render_to_response('accounts/confirmExpires.html') user = user_safety.user user.is_confirmed = True user.save() return render_to_response('accounts/confirmed.html')
c677f246ff3088d58912bc136f1d2461f58ba10b
7,610
def get_best_z_index(classifications): """Get optimal z index based on quality classifications Ties are broken using the index nearest to the center of the sequence of all possible z indexes """ nz = len(classifications) best_score = np.min(classifications) top_z = np.argwhere(np.array(classifications) == best_score).ravel() return top_z[np.argmin(np.abs(top_z - (nz // 2)))]
90b10dda47c071a3989a9de87061694270e67d69
7,611
import glob def mean_z_available(): """docstring for mean_z_available""" if glob.glob("annual_mean_z.nc"): return True return False
d53f8dc6fe540e8f74fd00760d1c810e510e53b8
7,612
import time def wait_for_url(monitor_url, status_code=None, timeout=None): """Blocks until the URL is availale""" if not timeout: timeout = URL_TIMEOUT end_time = time.time() + timeout while (end_time - time.time()) > 0: if is_url(monitor_url, status_code): return True time.sleep(1) LOG.error('URL %s could not be reached after %s seconds', monitor_url, timeout) return False
7d7ca1fd51d4415c58ab3928bd163401fb548b9a
7,613
import requests import io import tarfile def sources_from_arxiv(eprint): """ Download sources on arXiv for a given preprint. :param eprint: The arXiv id (e.g. ``1401.2910`` or ``1401.2910v1``). :returns: A ``TarFile`` object of the sources of the arXiv preprint. """ r = requests.get("http://arxiv.org/e-print/%s" % (eprint,)) file_object = io.BytesIO(r.content) return tarfile.open(fileobj=file_object)
b26c46009b23c5a107d6303b567ab97492f91ad9
7,614
import subprocess import os def nvidia_smi_gpu_memused(): # pragma: no cover """Returns the GPU memory used by the process. (tested locally, cannot be tested on Travis CI bcs no GPU available) Returns ------- int [MiB] """ # if theano.config.device=='cpu': return -2 try: xml = subprocess.Popen(['nvidia-smi', '-q', '-x'], stdout=subprocess.PIPE).communicate()[0] root = ET.fromstring(xml) for gpu in root.findall('gpu'): for proc in gpu.find('processes').findall('process_info'): if int(proc.find('pid').text) == os.getpid(): return int(proc.find('used_memory').text.split(' ')[0]) except: return -1 return -1
147fb1c537e00ca88f567a4ab0701bafd8624e0d
7,615
def render(): """ This method renders the HTML webside including the isOnline Status and the last 30 database entries. :return: """ online = isonline() return render_template("index.html", news=News.query.order_by(News.id.desc()).limit(30), online=online)
4b0584d33fb84f05afbbcfe016d7428c4f75a4d3
7,616
import aiohttp async def execute_request(url): """Method to execute a http request asynchronously """ async with aiohttp.ClientSession() as session: json = await fetch(session, url) return json
1845fed4acce963a0bc1bb780cdea16ba9dec394
7,617
from typing import List def game_over(remaining_words: List[str]) -> bool: """Return True iff remaining_words is empty. >>> game_over(['dan', 'paul']) False >>> game_over([]) True """ return remaining_words == []
8d29ef06bd5d60082646cef00f77bbabfbac32eb
7,618
import csv def read_manifest(instream): """Read manifest file into a dictionary Parameters ---------- instream : readable file like object """ reader = csv.reader(instream, delimiter="\t") header = None metadata = {} for row in reader: if header is None: header = row else: metadata[row[0]] = row[1] return metadata
afa6c2bb0a9d81267b1d930026a229be924a1994
7,619
def get_backbone_from_model(model:Model, key_chain:list) -> nn.Cell: """Obtain the backbone from a wrapped mindspore Model using the key chain provided. Args: model(Model): A Model instance with wrapped network and loss. key_chain(list[str]): the keys in the right order according to to which we can get backbone. Returns: The desired backbone(nn.Cell).""" network = model.train_network # if network is a WithLossCell if getattr(model, '_loss_fn') is None: assert hasattr(network, '_net') network = getattr(network, '_net') for key in key_chain: assert hasattr(network, key), f'network has no attr named {key}' network = getattr(network, key) return network
0ddabf30c50e9d58ce18b0010107d92f8518b9bc
7,620
def dv_upper_lower_bound(f): """ Donsker-Varadhan lower bound, but upper bounded by using log outside. Similar to MINE, but did not involve the term for moving averages. """ first_term = f.diag().mean() second_term = logmeanexp_nodiag(f) return first_term - second_term
a7f9a3910a934f836204c5c47d9139be31860ec1
7,621
def create_training_files_for_document( file_name, key_field_names, ground_truth_df, ocr_data, pass_number): """ Create the ocr.json file and the label file for a document :param file_path: location of the document :param file_name: just the document name.ext :param key_field_names: names of the key fields to extract :param ocr_data: Previously OCR form :param pass_number: Are we processing word level or both word and line level """ extraction_file_name = file_name[:-4] + '.ocr.json' # Now we go and reverse search the form for the Ground Truth values key_field_data = find_anchor_keys_in_form( df_gt=ground_truth_df, filename=extraction_file_name, data=ocr_data, anchor_keys=key_field_names, pass_number=pass_number) print(f"key_field_data {len(key_field_data)} {key_field_data} {file_name}") label_file, unique_fields_extracted = create_label_file( file_name, key_field_names, key_field_data[extraction_file_name] ) return ocr_data, label_file, unique_fields_extracted
4832e28904f2c950ceb5526eaa8ab61568c55a8c
7,622
def incoming(ui, repo, source="default", **opts): """show new changesets found in source Show new changesets found in the specified path/URL or the default pull location. These are the changesets that would have been pulled if a pull at the time you issued this command. See pull for valid source format details. .. container:: verbose With -B/--bookmarks, the result of bookmark comparison between local and remote repositories is displayed. With -v/--verbose, status is also displayed for each bookmark like below:: BM1 01234567890a added BM2 1234567890ab advanced BM3 234567890abc diverged BM4 34567890abcd changed The action taken locally when pulling depends on the status of each bookmark: :``added``: pull will create it :``advanced``: pull will update it :``diverged``: pull will create a divergent bookmark :``changed``: result depends on remote changesets From the point of view of pulling behavior, bookmark existing only in the remote repository are treated as ``added``, even if it is in fact locally deleted. .. container:: verbose For remote repository, using --bundle avoids downloading the changesets twice if the incoming is followed by a pull. Examples: - show incoming changes with patches and full description:: hg incoming -vp - show incoming changes excluding merges, store a bundle:: hg in -vpM --bundle incoming.hg hg pull incoming.hg - briefly list changes inside a bundle:: hg in changes.hg -T "{desc|firstline}\\n" Returns 0 if there are incoming changes, 1 otherwise. """ if opts.get('graph'): cmdutil.checkunsupportedgraphflags([], opts) def display(other, chlist, displayer): revdag = cmdutil.graphrevs(other, chlist, opts) showparents = [ctx.node() for ctx in repo[None].parents()] cmdutil.displaygraph(ui, revdag, displayer, showparents, graphmod.asciiedges) hg._incoming(display, lambda: 1, ui, repo, source, opts, buffered=True) return 0 if opts.get('bundle') and opts.get('subrepos'): raise util.Abort(_('cannot combine --bundle and --subrepos')) if opts.get('bookmarks'): source, branches = hg.parseurl(ui.expandpath(source), opts.get('branch')) other = hg.peer(repo, opts, source) if 'bookmarks' not in other.listkeys('namespaces'): ui.warn(_("remote doesn't support bookmarks\n")) return 0 ui.status(_('comparing with %s\n') % util.hidepassword(source)) return bookmarks.incoming(ui, repo, other) repo._subtoppath = ui.expandpath(source) try: return hg.incoming(ui, repo, source, opts) finally: del repo._subtoppath
9bf41cdc4de5c82634fae038940951ad738fd636
7,623
import time def timeout(limit=5): """ Timeout This decorator is used to raise a timeout error when the given function exceeds the given timeout limit. """ @decorator def _timeout(func, *args, **kwargs): start = time.time() result = func(*args, **kwargs) duration = time.time() - start if duration > limit: msg = f"Function {func.__name__} exceeded timeout limit ({limit} seconds)" raise TimeoutError(msg) return result return _timeout
c68fee9530512ce1603ec7976f4f1278205b1f92
7,624
from typing import Union def OIII4363_flux_limit(combine_flux_file: str, verbose: bool = False, log: Logger = log_stdout()) -> \ Union[None, np.ndarray]: """ Determine 3-sigma limit on [OIII]4363 based on H-gamma measurements :param combine_flux_file: Filename of ASCII file containing emission-line flux measurements :param verbose: Write verbose message to stdout. Default: file only :param log: logging.Logger object :return: Array containing 3-sigma flux limit """ log_verbose(log, "starting ...", verbose=verbose) try: combine_fits = asc.read(combine_flux_file) except FileNotFoundError: log.warning(f"File not found! {combine_flux_file}") return Hgamma = combine_fits['HGAMMA_Flux_Gaussian'].data Hgamma_SN = combine_fits['HGAMMA_S/N'].data flux_limit = (Hgamma / Hgamma_SN) * 3 log_verbose(log, "finished.", verbose=verbose) return flux_limit
109f887693df16661d7766840b0026f7e9bca82d
7,625
import numpy def convert_units_co2(ds,old_data,old_units,new_units): """ Purpose: General purpose routine to convert from one set of CO2 concentration units to another. Conversions supported are: umol/m2/s to gC/m2 (per time step) gC/m2 (per time step) to umol/m2/s mg/m3 to umol/mol mgCO2/m3 to umol/mol umol/mol to mg/m3 mg/m2/s to umol/m2/s mgCO2/m2/s to umol/m2/s Usage: new_data = qcutils.convert_units_co2(ds,old_data,old_units,new_units) where ds is a data structure old_data (numpy array) is the data to be converted old_units (string) is the old units new_units (string) is the new units Author: PRI Date: January 2016 """ ts = int(ds.globalattributes["time_step"]) if old_units=="umol/m2/s" and new_units=="gC/m2": new_data = old_data*12.01*ts*60/1E6 elif old_units=="gC/m2" and new_units=="umol/m2/s": new_data = old_data*1E6/(12.01*ts*60) elif old_units in ["mg/m3","mgCO2/m3"] and new_units=="umol/mol": Ta,f,a = GetSeriesasMA(ds,"Ta") ps,f,a = GetSeriesasMA(ds,"ps") new_data = mf.co2_ppmfrommgpm3(old_data,Ta,ps) elif old_units=="umol/mol" and new_units in ["mg/m3","mgCO2/m3"]: Ta,f,a = GetSeriesasMA(ds,"Ta") ps,f,a = GetSeriesasMA(ds,"ps") new_data = mf.co2_mgpm3fromppm(old_data,Ta,ps) elif old_units in ["mg/m2/s","mgCO2/m2/s"] and new_units=="umol/m2/s": new_data = mf.Fc_umolpm2psfrommgpm2ps(old_data) else: msg = " Unrecognised conversion from "+old_units+" to "+new_units log.error(msg) new_data = numpy.ma.array(old_data,copy=True,mask=True) return new_data
38ce2987bfa4c5505fe64779ce752617862138fd
7,626
def query_urlhaus(session, provided_ioc, ioc_type): """ """ uri_dir = ioc_type if ioc_type in ["md5_hash", "sha256_hash"]: uri_dir = "payload" api = "https://urlhaus-api.abuse.ch/v1/{}/" resp = session.post(api.format(uri_dir), timeout=180, data={ioc_type: provided_ioc}) ioc_dicts = [] if resp.status_code == 200 and resp.text != "": resp_content = resp.json() if ioc_type == "host": if "urls" not in resp_content.keys() or len(resp_content["urls"]) == 0: ioc_dicts.append({"no data": provided_ioc}) return ioc_dicts for url in resp_content["urls"]: ioc_dict = { "provided_ioc": provided_ioc, "host": resp_content.get("host", None), "firstseen (host)": resp_content.get("firstseen", None), "urlhaus_reference (host)": resp_content.get("urlhaus_reference", None), "url": url.get("url", None), "url_status": url.get("url_status", None), "date_added (url)": url.get("date_added", None), "urlhaus_reference (url)": url.get("urlhaus_reference", None) } if url["tags"] != None: ioc_dict.update({ "tags (url)": ",".join(url.get("tags", None)) }) ioc_dicts.append(ioc_dict) elif ioc_type == "url": if "payloads" not in resp_content.keys() or len(resp_content["payloads"]) == 0: ioc_dicts.append({"invalid": provided_ioc}) return ioc_dicts for payload in resp_content["payloads"]: ioc_dict = { "provided_ioc": provided_ioc, "host": resp_content.get("host", None), "url": resp_content.get("url", None), "url_status": resp_content.get("url_status", None), "date_added (url)": resp_content.get("date_added", None), "urlhaus_reference (url)": resp_content.get("urlhaus_reference", None), "filename (payload)": payload.get("filename", None), "content_type (payload)": payload.get("content_type", None), "response_size (payload)": payload.get("response_size", None), "md5_hash (payload)": payload.get("response_md5", None), "sha256_hash (payload)": payload.get("response_sha256", None), "firstseen (payload)": payload.get("firstseen", None), "signature (payload)": payload.get("signature", None) } if resp_content["tags"] != None: ioc_dict.update({ "tags (url)": ",".join(resp_content.get("tags", None)) }) if payload["virustotal"] != None: ioc_dict.update({ "vt_result (payload)": payload["virustotal"].get("result", None), "vt_link (payload)": payload["virustotal"].get("link", None) }) ioc_dicts.append(ioc_dict) elif ioc_type in ["md5_hash", "sha256_hash"]: if len(resp_content["urls"]) == 0: ioc_dicts.append({"invalid": provided_ioc}) return ioc_dicts for url in resp_content["urls"]: ioc_dict = { "provided_ioc": provided_ioc, "content_type (payload)": resp_content.get("content_type", None), "file_size (payload)": resp_content.get("file_size", None), "md5_hash (payload)": resp_content.get("md5_hash", None), "sha256_hash (payload)": resp_content.get("sha256_hash", None), "firstseen (payload)": resp_content.get("firstseen", None), "lastseen (payload)": resp_content.get("lastseen", None), "signature (payload)": resp_content.get("signature", None), "url": url.get("url", None), "url_status": url.get("url_status", None), "filename (url)": url.get("filename", None), "firstseen (url)": url.get("firstseen", None), "lastseen (url)": url.get("lastseen", None), "urlhaus_reference (url)": url.get("urlhaus_reference", None) } if resp_content["virustotal"] != None: ioc_dict.update({ "vt_result (payload)": resp_content["virustotal"].get("result", None), "vt_link (payload)": resp_content["virustotal"].get("link", None) }) ioc_dicts.append(ioc_dict) return ioc_dicts return [{"invalid": provided_ioc}]
171bff1e9b1bfdf8ac6b91a4bbbd7226f80c8c4c
7,627
def arrow_to_json(data): """ Convert an arrow FileBuffer into a row-wise json format. Go via pandas (To be revisited!!) """ reader = pa.ipc.open_file(data) try: frame = reader.read_pandas() return frame.to_json(orient='records') except: raise DataStoreException("Unable to convert to JSON")
d49ee49b7071d0b857feeb878c99ce65e82460e9
7,628
import pathlib def get_wmc_pathname(subject_id, bundle_string): """Generate a valid pathname of a WMC file given subject_id and bundle_string (to resolve ACT vs noACT). The WMC file contrains the bundle-labels for each streamline of the corresponding tractogram. """ global datadir ACT_string = 'ACT' if bundle_string in noACT_list: ACT_string = 'noACT' try: pathname = next(pathlib.Path(f'{datadir}/sub-{subject_id}/').glob(f'dt-neuro-wmc.tag-{ACT_string}.id-*/classification.mat')) return pathname except StopIteration: print('WMC file not available!') raise FileNotFoundError
fcc570e3e59b99b94de95dc4f15c1fee2fe0f0f2
7,629
def _union_polygons(polygons, precision = 1e-4, max_points = 4000): """ Performs the union of all polygons within a PolygonSet or list of polygons. Parameters ---------- polygons : PolygonSet or list of polygons A set containing the input polygons. precision : float Desired precision for rounding vertex coordinates. max_points : int The maximum number of vertices within the resulting polygon. Returns ------- unioned : polygon The result of the union of all the polygons within the input PolygonSet. """ polygons = _merge_floating_point_errors(polygons, tol = precision/1000) unioned = gdspy.boolean(polygons, [], operation = 'or', precision = precision, max_points = max_points) return unioned
f6951a67a2ed4099b5321b98517810de43024036
7,630
from typing import Callable from re import T from typing import Optional def parse_or_none( field: str, field_name: str, none_value: str, fn: Callable[[str, str], T], ) -> Optional[T]: """ If the value is the same as the none value, will return None. Otherwise will attempt to run the fn with field and field name as the first and 2nd arguments. """ if field == none_value: return None try: val = fn(field, field_name) except LineParseError as e: msg = e.message + ( f"\nThe value may also be '{none_value}', which will be" "interpreted as None." ) raise LineParseError(msg) return val
4a0c2d8ec819fe6b8a9a24a60f54c62cb83e68ac
7,631
def get_lattice_parameter(elements, concentrations, default_title): """Finds the lattice parameters for the provided atomic species using Vagars law. :arg elements: A dictionary of elements in the system and their concentrations. :arg title: The default system title. :arg concentrations: The concentrations of each element. """ if elements == None: lat_param = 1.0 title = default_title else: if len(elements) != len(concentrations): raise ValueError("You have provided {} element names when {} elements are present " "in the system. Please provide the correct number of elements." .format(len(elements),len(concentrations))) else: title = "" lat_param = 0 for i in range(len(elements)): lat_param += concentrations[i]*all_elements[elements[i]] if concentrations[i] > 0: title += " {} ".format(elements[i]) lat_param = float(lat_param) / sum(concentrations) title = "{0} {1}\n".format(default_title.strip(),title) return lat_param, title
34e914e38b8c4d25d9ed5fd09f435d7358f99a99
7,632
import string def tokenize(text): """ Tokenizes,normalizes and lemmatizes a given text. Input: text: text string Output: - array of lemmatized and normalized tokens """ def is_noun(tag): return tag in ['NN', 'NNS', 'NNP', 'NNPS'] def is_verb(tag): return tag in ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'] def is_adverb(tag): return tag in ['RB', 'RBR', 'RBS'] def is_adjective(tag): return tag in ['JJ', 'JJR', 'JJS'] def penn_to_wn(tag): if is_adjective(tag): return wn.ADJ elif is_noun(tag): return wn.NOUN elif is_adverb(tag): return wn.ADV elif is_verb(tag): return wn.VERB return wn.NOUN tokens = word_tokenize(text.lower()) #split words into tokens and turn thwm into lower case tokens = [w for w in tokens if (w not in stopwords.words("english") and w not in string.punctuation)] # remove stopwords and punctuation tagged_words = pos_tag(tokens) #tag the tokens lemmed = [WordNetLemmatizer().lemmatize(w.lower(), pos=penn_to_wn(tag)) for (w,tag) in tagged_words] #lemmatize the tagged words if len(lemmed) == 0: #no lemmatized word should have zero length return ["error"] return lemmed
672af73d594c7a134226f4ae9a265f19b14ced34
7,633
def bandpass_filterbank(bands, fs=1.0, order=8, output="sos"): """ Create a bank of Butterworth bandpass filters Parameters ---------- bands: array_like, shape == (n, 2) The list of bands ``[[flo1, fup1], [flo2, fup2], ...]`` fs: float, optional Sampling frequency (default 1.) order: int, optional The order of the IIR filters (default: 8) output: {'ba', 'zpk', 'sos'} Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (b) and denominator (a) polynomials of the IIR filter. Only returned if output='ba'. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if output='zpk'. sos : ndarray Second-order sections representation of the IIR filter. Only returned if output=='sos'. """ filters = [] nyquist = fs / 2.0 for band in bands: # remove bands above nyquist frequency if band[0] >= nyquist: raise ValueError("Bands should be below Nyquist frequency") # Truncate the highest band to Nyquist frequency norm_band = np.minimum(0.99, np.array(band) / nyquist) # Compute coefficients coeffs = butter(order / 2, norm_band, "bandpass", output=output) filters.append(coeffs) return filters
4cbe3acb30a0f08d39e28b46db520fdac420010d
7,634
def get_couch_client(https: bool = False, host: str = 'localhost', port: int = 5984, request_adapter: BaseHttpClient = HttpxCouchClient, **kwargs) -> CouchClient: """ Initialize CouchClient Parameters ---------- https: bool = False Schema type. Use https if value is True host: str = 'localhost' CouchDB host port: int = 5984 CouchDB port request_adapter: BaseHttpClient = HttpxCouchClient Http client adapter Returns ------- CouchClient CouchDB API realisation """ schema = 'http' if https: schema += 's' url = f'{schema}://{host}' if port: url += f':{port}' http_client = request_adapter.get_client(url, **kwargs) return CouchClient(http_client=http_client)
db242556c11debc9dff57929182d3e6932ef13d1
7,635
def compute_rmse(loss_mse): """ Computes the root mean squared error. Args: loss_mse: numeric value of the mean squared error loss Returns: loss_rmse: numeric value of the root mean squared error loss """ return np.sqrt(2 * loss_mse)
a81024cd402c00b0d6f3bfaccc089695fb5f4e0a
7,636
def __detect_geometric_decomposition(pet: PETGraphX, root: CUNode) -> bool: """Detects geometric decomposition pattern :param pet: PET graph :param root: root node :return: true if GD pattern was discovered """ for child in pet.subtree_of_type(root, NodeType.LOOP): if not (child.reduction or child.do_all): return False for child in pet.direct_children_of_type(root, NodeType.FUNC): for child2 in pet.direct_children_of_type(child, NodeType.LOOP): if not (child2.reduction or child2.do_all): return False return True
27d90b6ced48a0db081d9881e39600d641855343
7,637
def add_two_frags_together(fragList, atm_list, frag1_id, frag2_id): """Combine two fragments in fragList.""" new_id = min(frag1_id, frag2_id) other_id = max(frag1_id, frag2_id) new_fragList = fragList[:new_id] # copy up to the combined one new_frag = { # combined frag 'ids': fragList[frag1_id]['ids'] + fragList[frag2_id]['ids'], 'syms': fragList[frag1_id]['syms'] + fragList[frag2_id]['syms'], 'grp': new_id, 'chrg': fragList[frag1_id]['chrg'] + fragList[frag2_id]['chrg'], 'mult': fragList[frag1_id]['mult'] + fragList[frag2_id]['mult'] - 1, 'name': fragList[new_id]['name'], } new_frag = add_centroids([new_frag], atm_list) new_fragList.extend(new_frag) # add new frag # add up to removed frag new_fragList.extend(fragList[new_id+1:other_id]) # change rest of values for i in range(other_id+1,len(fragList)): fragList[i]['grp'] = i-1 fragList[i]['name'] = f"frag{i-1}" new_fragList.append(fragList[i]) for i in range(len(new_fragList)): if i != new_fragList[i]["grp"]: print(i, "does not") return new_fragList, new_id
9c226883d6c021e151c51889017f56ea6a4cba3a
7,638
from typing import Tuple import tqdm from sys import stdout import tarfile def load_dataset( file: str, out_dir: str = "/tmp", download: bool = True, url: str = None, labels: str = "labels", verbose: int = 2, ) -> Tuple[ndarray, ndarray, ndarray, ndarray]: """Load Dataset from storage or cloud h5 format Args: file (str): File name or file path if local (tar gzipped, file extension not necessary) out_dir (str, optional): Location to save the dataset (or open if local). Defaults to '/tmp'. download (bool, optional): Whether to download from repo. If false, 'file' should be the path to the tar file. Defaults to 'True'. url (str, optional): URL of cloud storage pointing to file. Defaults to None. labels (str, optional): Key of labels in hdf5 file verbose (int, optional): Verbosity level: 2 is most, 0 is none. Defaults to 2. Returns: Tuple[ndarray, ndarray, ndarray, ndarray]: X, y train, X, y test """ file += ".tar.gz" if not file.endswith(".tar.gz") else "" location = join(out_dir, file) url = ( url if url else f"https://storage.gorchilov.net/datasets/{file.split('/')[-1]}" ) # get from cloud if not exists(location) and download: res = get(url, allow_redirects=True, stream=True) with open(location, "wb") as f: if verbose == 2 and "Content-Length" in head(url).headers: filesize = int(head(url).headers["Content-Length"]) with tqdm( unit="B", unit_scale=True, unit_divisor=1024, total=filesize * 1024, file=stdout, desc=file, ) as progress: for chunk in res.iter_content(chunk_size=1024): datasize = f.write(chunk) progress.update(datasize) else: f.write(res.content) if verbose > 0: print("Finished downloading file") # open tarball tar = tarfile.open(location, "r:gz") # get filenames from tarball files = list(filter(lambda x: x.name[0] != ".", tar.getmembers())) train_filename = join( out_dir, next(filter(lambda x: "train" in x.name, files)).name, ) test_filename = join(out_dir, next(filter(lambda x: "test" in x.name, files)).name) # extract files if not already if not exists(train_filename) or not exists(test_filename): tar.extractall(path=out_dir) if verbose > 0: print("Extracted tarball") tar.close() train_file = File(train_filename, mode="r") test_file = File(test_filename, mode="r") X_train = train_file["data"][:] y_train = train_file[labels][:] train_file.close() X_test = test_file["data"][:] y_test = test_file[labels][:] test_file.close() return (X_train, y_train, X_test, y_test)
17ad37b04c5dc14f0575d07cf677d6335058bf8b
7,639
def concatenate(arrays, axis=0): """ Joins a sequence of tensors along an existing axis. Args: arrays: Union[Tensor, tuple(Tensor), list(Tensor)], a tensor or a list of tensors to be concatenated. axis (int, optional): The axis along which the tensors will be joined, if axis is None, tensors are flattened before use. Default is 0. Returns: Tensor, a tensor concatenated from a tensor or a list of tensors. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore.numpy as np >>> x1 = np.ones((1,2,3)) >>> x2 = np.ones((1,2,1)) >>> x = np.concatenate((x1, x2), axis=-1) >>> print(x.shape) (1, 2, 4) """ array_type = F.typeof(arrays) if _check_is_tensor(array_type): # if the input is a single tensor # if only one tensor is provided, it is treated as a tuple along the # first dimension. For example, a tensor of shape (3,4,5) will be treated # as: tuple(tensor_1(4,5), tensor_2(4,5), tensor_3(4,5)) if axis is None: return ravel(arrays) arr_shape = F.shape(arrays) _check_axes_range((axis,), len(arr_shape)) # move axis 0 to the disiganated position, while keep other axes' relative # positions unchanged new_axes, new_shape = _move_axes_for_concatenate(arr_shape, axis) arrays = transpose(arrays, new_axes) arrays = reshape(arrays, new_shape) return arrays flattened_arrays = () if axis is None: for arr in arrays: flattened_arrays += (ravel(arr),) axis = -1 return P.Concat(axis)(flattened_arrays) arr_shape = F.shape(arrays[0]) _check_axes_range((axis,), len(arr_shape)) # if only one tensor in the tuple/list, return the tensor itself if len(arrays) == 1: return arrays[0] return P.Concat(axis)(arrays)
a85db3673d3a50d76374b809b583a8ca5325d4c3
7,640
import json def get_answer(): """ get answer """ # logger M_LOG.info("get_answer") # exist answer in dict ? if "answer" in gdct_data: # convert to JSON l_json = json.dumps(gdct_data["answer"]) M_LOG.debug("Requested answer: %s", str(l_json)) # remove answer from dict del gdct_data["answer"] # return ok return flask.Response(l_json, status=200, mimetype="application/json") M_LOG.debug("No answer yet...") # return error return flask.Response(status=503)
7f4b97b2a470d491326cdd341475bc15987fa299
7,641
def default_todo_data(): """Словарь с данными пользователя поумолчанию""" return {"title": "Молоко", "description": "Купить молоко в Ашане 200 литров", "created_datetime": "2041-08-12T00:00:00.000Z"}
2cd873f266d758c8d8510418fd173f35f4b366ab
7,642
def generate_new_key(access_key, secret_key, user_to_rotate): """generates a new key pair and returns the access key and secret key""" LOGGER.info("Begin generate new key") iam_client = boto3.client('iam', aws_access_key_id=access_key, aws_secret_access_key=secret_key) resp = iam_client.create_access_key(UserName=user_to_rotate) LOGGER.debug(resp) LOGGER.info("End generate new key") return resp['AccessKey']['AccessKeyId'].strip(), resp['AccessKey']['SecretAccessKey'].strip()
41fff2da39408661f329d2e1f47488dce8d76652
7,643
def withCHID(fcn): """decorator to ensure that first argument to a function is a Channel ID, ``chid``. The test performed is very weak, as any ctypes long or python int will pass, but it is useful enough to catch most accidental errors before they would cause a crash of the CA library. """ # It may be worth making a chid class (which could hold connection # data of _cache) that could be tested here. For now, that # seems slightly 'not low-level' for this module. def wrapper(*args, **kwds): "withCHID wrapper" if len(args)>0: chid = args[0] args = list(args) if isinstance(chid, int): args[0] = chid = dbr.chid_t(args[0]) if not isinstance(chid, dbr.chid_t): msg = "%s: not a valid chid %s %s args %s kwargs %s!" % ( (fcn.__name__, chid, type(chid), args, kwds)) raise ChannelAccessException(msg) return fcn(*args, **kwds) wrapper.__doc__ = fcn.__doc__ wrapper.__name__ = fcn.__name__ wrapper.__dict__.update(fcn.__dict__) return wrapper
98ac8fdc812a8e9b7706e1932db662819e830597
7,644
import inspect def current_user_get(): """ユーザー情報取得 user info get Returns: Response: HTTP Respose """ app_name = multi_lang.get_text("EP020-0001", "ユーザー情報:") exec_stat = multi_lang.get_text("EP020-0017", "取得") error_detail = "" try: globals.logger.debug('#' * 50) globals.logger.debug('CALL {}'.format(inspect.currentframe().f_code.co_name)) globals.logger.debug('#' * 50) ret_user = user_get() return jsonify({"result": "200", "info": ret_user}), 200 except common.UserException as e: return common.server_error_to_message(e, app_name + exec_stat, error_detail) except Exception as e: return common.server_error_to_message(e, app_name + exec_stat, error_detail)
f2bf2c81b176e985973dad9e5841ecd1af599a48
7,645
def asin(a: Dual) -> Dual: """inverse of sine or arcsine of the dual number a, using math.asin(x)""" if abs(a.value) >= 1: raise ValueError('Arcsin cannot be evaluated at {}.'.format(a.value)) value = np.arcsin(a.value) ders = dict() for k,v in a.ders.items(): ders[k] = 1/(np.sqrt(1-a.value**2))*v return Dual(value, ders)
6b15e737ae5beb69f8963aa752d7fba761dce56f
7,646
def hydrotopeQ(cover,hydrotopemap): """Get mean values of the cover map for the hydrotopes""" grass.message(('Get mean hydrotope values for %s' %cover)) tbl = grass.read_command('r.univar', map=cover, zones=hydrotopemap, flags='gt').split('\n')[:-1] #:-1 as last line hast line break] tbl = [tuple(l.split('|')) for l in tbl] tbl = np.array(tbl[1:], dtype=list(zip(tbl[0],['S250']*len(tbl[0])))) tbl = np.array(list(zip(tbl['zone'],tbl['mean'])), dtype=[('cat',np.int64),('mean',np.float64)]) return tbl[np.isfinite(tbl['mean'])]
371dc496a4bb2e33fc382dddaea66e83aa613abc
7,647
import re def convert_to_seconds(duration_str): """ return duration in seconds """ seconds = 0 if re.match(r"[0-9]+$", duration_str): seconds = int(duration_str) elif re.match(r"[0-9]+s$", duration_str): seconds = int(duration_str[:-1]) elif re.match(r"[0-9]+m$", duration_str): seconds = 60 * int(duration_str[:-1]) elif re.match(r"[0-9]+h$", duration_str): seconds = 3600 * int(duration_str[:-1]) elif re.match(r"[0-9]+d$", duration_str): seconds = 84600 * int(duration_str[:-1]) return seconds
222905e6089510c6f204c6ea710572a5b2132d28
7,648
def get_chunk_n_rows(row_bytes: int, working_memory: Num, max_n_rows: int = None) -> int: """Calculates how many rows can be processed within working_memory Parameters ---------- row_bytes : int The expected number of bytes of memory that will be consumed during the processing of each row. working_memory : int or float, optional The number of rows to fit inside this number of MiB will be returned. max_n_rows : int, optional The maximum return value. Returns ------- int or the value of n_samples Warns ----- Issues a UserWarning if ``row_bytes`` exceeds ``working_memory`` MiB. """ chunk_n_rows = int(working_memory * (2 ** 20) // row_bytes) if max_n_rows is not None: chunk_n_rows = min(chunk_n_rows, max_n_rows) if chunk_n_rows < 1: # Could not adhere to working_memory config. chunk_n_rows = 1 return chunk_n_rows
b7c2ab10c59edb6c2541e31264b28e06266d2fc3
7,649
import re def elasticsearch_ispartial_log(line): """ >>> line1 = ' [2018-04-03T00:22:38,048][DEBUG][o.e.c.u.c.QueueResizingEsThreadPoolExecutor] [search17/search]: there were [2000] tasks in [809ms], avg task time [28.4micros], EWMA task execution [790nanos], [35165.36 tasks/s], optimal queue is [35165], current capacity [1000]' >>> line2 = ' org.elasticsearch.ResourceAlreadyExistsException: index [media_corpus_refresh/6_3sRAMsRr2r63J6gbOjQw] already exists' >>> line3 = ' at org.elasticsearch.cluster.metadata.MetaDataCreateIndexService.validateIndexName(MetaDataCreateIndexService.java:151) ~[elasticsearch-6.2.0.jar:6.2.0]' >>> elasticsearch_ispartial_log(line1) False >>> elasticsearch_ispartial_log(line2) True >>> elasticsearch_ispartial_log(line3) True """ match_result = [] for p in LOG_BEGIN_PATTERN: if re.match(p, line) != None: return False return True
7263be4a74f1a92a6347393f62d9b67300d30c30
7,650
def find_signal_analysis(prior, sparsity, sigma_data): """ Generates a signal using an analytic prior. Works only with square and overcomplete full-rank priors. """ N, L = prior.shape k = np.sum(np.random.random(L) > (1 - sparsity)) V = np.zeros(shape=(L, L - k)) while np.linalg.matrix_rank(V) != L - k: s = np.random.permutation(N) V = prior[s[:L - k]] x = np.random.normal(scale=sigma_data, size=(L)) x / np.linalg.norm(x) x -= np.linalg.pinv(V) @ V @ x return x
49a7c26b6bc934d3588ae25c99eb62e0b544616f
7,651
from typing import List import asyncio import requests def download_images(sorted_urls) -> List: """Download images and convert to list of PIL images Once in an array of PIL.images we can easily convert this to a PDF. :param sorted_urls: List of sorted URLs for split financial disclosure :return: image_list """ async def main(urls): image_list = [] loop = asyncio.get_event_loop() futures = [loop.run_in_executor(None, requests.get, url) for url in urls] for response in await asyncio.gather(*futures): image_list.append(response.content) return image_list loop = asyncio.get_event_loop() image_list = loop.run_until_complete(main(sorted_urls)) return image_list
3efde31975c7912e16ab2d990417c2aa753ca5bf
7,652
def get_molecules(struct, bonds_kw={"mult":1.20, "skin":0.0, "update":False}, ret="idx"): """ Returns the index of atoms belonging to each molecule in the Structure. """ bonds = struct.get_bonds(**bonds_kw) ## Build connectivity matrix graph = np.zeros((struct.geometry.shape[0],struct.geometry.shape[0])) for atom_idx,bonded_idx_list in enumerate(bonds): for bond_idx in bonded_idx_list: graph[atom_idx][bonded_idx_list] = 1 graph = csr_matrix(graph) n_components, component_list = connected_components(graph) molecule_idx_list = [np.where(component_list == x)[0] for x in range(n_components)] if ret == "idx": return molecule_idx_list elif ret == "struct": ## Returns list of structures geo = struct.get_geo_array() ele = struct.geometry["element"] molecule_struct_list = [] for idx,entry in enumerate(molecule_idx_list): mol_geo = geo[entry] mol_ele = ele[entry] mol = Structure.from_geo(mol_geo,mol_ele) mol.struct_id = "{}_molecule_{}".format(struct.struct_id, idx) molecule_struct_list.append(mol) return molecule_struct_list else: ## Returns list of structures geo = struct.get_geo_array() ele = struct.geometry["element"] molecule_struct_dict = {} for idx,entry in enumerate(molecule_idx_list): mol_geo = geo[entry] mol_ele = ele[entry] mol = Structure.from_geo(mol_geo,mol_ele) mol.struct_id = "{}_molecule_{}".format(struct.struct_id, idx) molecule_struct_dict[mol.struct_id] = mol return molecule_struct_dict
99b67f95114ddd6c712c8fe63a0713a914b8888f
7,653
def cdivs(a,b,c,d,e,f,al1,al2,al3,x11,x21,x22,x23,x31,x32,x33): """Finds the c divides conditions for the symmetry preserving HNFs. Args: a (int): a from the HNF. b (int): b from the HNF. c (int): c from the HNF. d (int): d from the HNF. e (int): e from the HNF. f (int): f from the HNF. al1 (numpy.array): array of alpha1 values from write up. al2 (numpy.array): array of alpha2 values from write up. al3 (numpy.array): array of alpha3 values from write up. x11 (numpy.array): array of pg values for x(1,1) spot. x21 (numpy.array): array of pg values for x(2,1) spot. x22 (numpy.array): array of pg values for x(2,2) spot. x23 (numpy.array): array of pg values for x(2,3) spot. x31 (numpy.array): array of pg values for x(3,1) spot. x32 (numpy.array): array of pg values for x(3,2) spot. x33 (numpy.array): array of pg values for x(3,3) spot. Returns: HNFs (list of lists): The symmetry preserving HNFs. """ HNFs = [] if np.allclose(x23,0): if b == None: # find the b values, d and e still unkown if not np.allclose(al3, 0): N=0 at = al3[np.nonzero(al3)] val = np.unique(N*c/at) while any(abs(val) <c): for v in val: if v < c and v >= 0 and np.allclose(v%1==0): b = v c1 = a*x21 + b*(x22-al1-x11) c2 =(-b*al2) if np.allclose(c1%c,0) and np.allclose(c2%c,0): be1 = c1/c be2 =c2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N += 1 val = np.unique(N*c/at) elif not np.allclose(al2,0): N=0 at = al2[np.nonzero(al2)] val = np.unique(N*c/at) while any(abs(val) <c): for v in val: if v < c and v>=0 and np.allclose(v%1,0): b = v c1 = a*x21 + b*(x22-al1-x11) c3 =(-b*al3) if np.allclose(c1%c,0) and np.allclose(c3%c,0): be1 = c1/c be2 =-b*al2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N += 1 val = np.unique(N*c/at) else: if not np.allclose((x22-x11-al1),0): N=0 xt = (x22-x11-al1) xt = xt[np.nonzero(xt)] val = np.unique(np.reshape(np.outer(N*c-a*x21,1/xt),len(x21)*len(xt))) while any(abs(val) <c): for v in val: if v < c and v>=0 and np.allclose(v%1,0): b = v c2 = -b*al2 c3 =(-b*al3) if np.allclose(c2%c,0) and np.allclose(c3%c,0): be1 = (a*x21+b*(x22-x11-al1))/c be2 =-b*al2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in HNFs: HNFs.append(t) N += 1 xt = (x22-x11-al1) xt = xt[np.nonzero(xt)] val = np.unique(np.reshape(np.outer(N*c-a*x21,1/xt),len(x21)*len(xt))) else: c1 = a*x21 c2 = 0 c3 = 0 if np.allclose(c1%c,0) and np.allclose(c2%c,0) and np.allclose(c3%c,0): tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in HNFs: HNFs.append(t) else: c1 = a*x21 + b*(x22-al1-x11) c2 = (-b*al2) c3 = (-b*a13) if np.allclose(c1%c,0) and np.allclose(c2%c,0) and np.allclose(c3%c,0): tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in HNFs: HNFs.append(t) else: if np.allclose(al3,0): if np.allclose((f*x23)%c,0): if b == None and e == None and d == None: if np.allclose(al3,0) and np.allclose(al2,0) and np.allclose(al3,0): N = 0 xt = x23[np.nonzero(x23)] val = np.unique(N*c/xt) while any(abs(val)<f): for v in val: if v <f and v>=0 and np.allclose(v%1,0): e = v for b in range(c): N2 =0 xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer((N2*c-a*x21-b*(x22-x11)),1/xt),len(x22)*len(xt))) while any(abs(val2)<f): for v2 in val2: if v2 <f and v2>=0 and np.allclose(v2%1,0): d = v2 be1 = (a*x21+b*(x22-x11)+d*x23)/c be2 = e*x23/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.appned(t) N2 += 1 xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer((N2*c-a*x21-b*(x22-x11)),1/xt),len(x22)*len(xt))) N += 1 val = np.unique(N*c/xt) elif not np.allclose(al3,0): N = max(np.round(f*x23/c)) at = al3[np.nonzero(al3)] val = np.unique(np.reshape(np.outer(-N*c+f*x23,1/at),len(x23)*len(al3))) while any(abs(val) < c): for v in val: if v < c and v>=0 and np.allclose(v%1,0): b = v N2 = min(np.round(-b*al2/c)) xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer(N2*c+b*al2,1/xt),len(xt)*len(al2))) while any(abs(val2)<f): for v2 in val2: if v2 <f and v2>=0 and np.allclose(v2%1,0): e = v2 N3 = min(np.round((a*x21+b*(x22-x11-al1))/c)) xt = x23[np.nonzero(x23)] val3 = np.unique(np.reshape(np.outer(N3*c-a*x21-b*(x22-x11-al1),1/xt),len(xt)*len(x22))) while any(abs(val2)<f): for v3 in val3: if v3 <f and v3>=0 and np.allclose(v3%1,0): d = v3 be1 = (a*x21+b*(x22-x11-al1)+d*x23)/c be2 = (e*x32-b*al2)/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N3 += 1 xt = x23[np.nonzero(x23)] val3 = np.unique(np.reshape(np.outer(N3*c-a*x21-b*(x22-x11-al1),1/xt),len(xt)*len(x22))) N2 += 1 xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer(N2*c+b*al2,1/xt),len(x22)*len(xt))) N -= 1 at = al3[np.nonzero(al3)] val = np.unique(np.reshape(np.outer(-N*c+f*x23,1/at),len(x23)*len(at))) else: for b in range(c): N2 = min(np.round(-b*al2/c)) xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer(N2*c+b*al2,1/xt),len(xt)*len(al2))) while any(abs(val2)<f): for v2 in val2: if v2 <f and v2 >= 0 and np.allclose(v2%1,0): e = v2 N3 = min(np.round((a*x21+b*(x22-x11-al1))/c)) xt = x23[np.nonzero(x23)] val3 = np.unique(np.reshape(np.outer(N3*c-a*x21-b*(x22-x11-al1),1/xt),len(x22)*len(xt))) while any(abs(val2)<f): for v3 in val3: if v3 <f and v3 >= 0 and np.allclose(v3%1,0): d = v3 be1 = (a*x21+b*(x22-x11-al1)+d*x23)/c be2 = (e*x32-b*al2)/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N3 += 1 xt = x23[np.nonzero(x23)] val3 = np.unique(np.reshape(np.outer(N3*c-a*x21-b*(x22-x11-al1),1/xt),len(xt)*len(x22))) N2 += 1 xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer(N2*c+b*al2,1/xt),len(al2)*len(xt))) elif b == None: if not np.allclose(al3,0): N = max(np.round(f*x23/c)) at = al3[np.nonzero(al3)] val = np.unique(np.reshape(np.outer(-N*c+f*x23,1/at),len(x23)*len(at))) while any(abs(val) < c): for v in val: if v < c and v>= 0 and np.allclose(v%1,0): b = v c1 = a*x21+b*(x22-x11-al1)+d*x23 c2 = -b*al2+e*x23 if np.allclose(c1%c,0) and np.allclose(c2%c,0): be1 = c1/c be2 = c2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N -= 1 at = al3[np.nonzero(al3)] val = np.unique(np.reshape(np.outer(-N*c+f*x23,1/at),len(x23)*len(at))) elif not np.allclose(al2,0): N = max(np.round(e*x23/c)) at = al2[np.nonzero(al2)] val = np.unique(np.reshape(np.outer(-N*c+e*x23,1/at),len(x23)*len(at))) while any(abs(val) < c): for v in val: if v < c and v>= 0 and np.allclose(v%1,0): b = v c1 = a*x21+b*(x22-x11-al1)+d*x23 c2 = -b*al2+e*x23 if np.allclose(c1%c,0) and np.allclose(c2%c,0): be1 = c1/c be2 = c2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N -= 1 at = al2[np.nonzero(al2)] val = np.unique(np.reshape(np.outer(-N*c+e*x23,1/at),len(x23)*len(at))) else: if not np.allclose((x22-x11-al1),0): N = min(np.round((a*x21-d*x23)/c)) xt = (x22-x11-al1) xt = xt[np.nonzero(xt)] val = np.unique(np.reshape(np.outer(N*c-a*x21sd*x23,1/xt),len(x23)*len(xt))) while any(abs(val) < c): for v in val: if v < c and v>=0 and np.allclose(v%1,0): b = v c1 = a*x21+b*(x22-x11-al1)+d*x23 c2 = -b*al2+e*x23 if np.allclose(c1%c,0) and np.allclose(c2%c,0): be1 = c1/c be2 = c2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N += 1 xt = (x22-x11-al1) xt = xt[np.nonzero(xt)] val = np.unique(np.reshape(np.outer(N*c-a*x21sd*x23,1/xt),len(x23)*len(xt))) else: c1 = a*x21+d*x23 c2 = e*x23 c3 = f*x23 if np.allclose(c1%c,0) and np.allclose(c2%c,0) and np.allclose(c3%c,0): tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) elif d == None and e == None: N2 = min(np.round(-b*al2/c)) xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer(N2*c+b*al2,1/xt),len(xt)*len(al2))) while any(abs(val2)<f): for v2 in val2: if v2 <f and v2>=0 and np.allclose(v2%1,0): e = v2 N3 = min(np.round((a*x21+b*(x22-x11-al1))/c)) xt = x23[np.nonzero(x23)] val3 = np.unique(np.reshape(np.outer(N3*c-a*x21-b*(x22-x11-al1),1/xt),len(x22)*len(xt))) while any(abs(val3)<f): for v3 in val3: if v3 <f and v3>=0 and np.allclose(v3%1,0): d = v3 be1 = (a*x21+b*(x22-x11-al1)+d*x23)/c be2 = (e*x32-b*al2)/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N3 += 1 xt = x23[np.nonzero(x23)] val3 = np.unique(np.reshape(np.outer(N3*c-a*x21-b*(x22-x11-al1),1/xt),len(x22)*len(xt))) N2 += 1 xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer(N2*c+b*al2,1/xt),len(xt)*len(al2))) else: c1 = a*x21+b*(x22-al1-x11)+d*x23 c2 = -b*al2+e*x23 c3 = -b*al3+f*x23 if np.allclose(c1%c,0) and np.allclose(c2%c,0) and np.allclose(c3%c,0): be1 = c1/c be2 = c2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) # else: # print("f: ",f) # print("c: ",c) # print("x32: ",x32) # print("failed f*x32/c") else: if b==None and d==None and e==None: N = max(np.round(f*x23/c)) at = al3[np.nonzero(al3)] val = np.unique(np.reshape(np.outer(-N*c+f*x23,1/at),len(x23)*len(at))) while any(abs(val) < c): for v in val: if v < c and v>= 0 and np.allclose(v%1,0): b = v N2 = min(np.round(-b*al2/c)) xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer(N2*c+b*al2,1/xt),len(xt)*len(al2))) while any(abs(val2)<f): for v2 in val2: if v2 <f and v2>=0 and np.allclose(v2%1,0): e = v2 N3 = min(np.round((a*x21+b*(x22-x11-al1))/c)) xt = x23[np.nonzero(x23)] val3 = np.unique(np.reshape(np.outer(N3*c-a*x21-b*(x22-x11-al1),1/xt),len(x22)*len(xt))) while any(abs(val3)<f): for v3 in val3: if v3 <f and v3>=0 and np.allclose(v3%1,0): d = v3 c1 = a*x21+b*(x22-x11-al1)+d*x23 c2 = -b*al2+e*x23 if np.allclose(c1%c,0) and np.allclose(c2%c,0): be1 = c1/c be2 = c2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N3 += 1 xt = x23[np.nonzero(x23)] val3 = np.unique(np.reshape(np.outer(N3*c-a*x21-b*(x22-x11-al1),1/xt),len(x22)*len(xt))) N2 += 1 xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer(N2*c+b*al2,1/xt),len(xt)*len(al2))) N -= 1 at = al3[np.nonzero(al3)] val = np.unique(np.reshape(np.outer(-N*c+f*x23,1/at),len(x23)*len(at))) elif b==None: N = max(np.round(f*x23/c)) at = al3[np.nonzero(al3)] val = np.unique(np.reshape(np.outer(-N*c+f*x23,1/at),len(x23)*len(at))) while any(abs(val) < c): for v in val: if v < c and v>= 0 and np.allclose(v%1,0): b = v c1 = a*x21+b*(x22-x11-al1)+d*x23 c2 = -b*al2+e*x23 if np.allclose(c1%c,0) and np.allclose(c2%c,0): be1 = c1/c be2 = c2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N -= 1 at = al3[np.nonzero(al3)] val = np.unique(np.reshape(np.outer(-N*c+f*x23,1/at),len(x23)*len(at))) elif d==None and e==None: N2 = min(np.round(-b*al2/c)) xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer(N2*c+b*al2,1/xt),len(xt)*len(al2))) while any(abs(val2)<f): for v2 in val2: if v2 <f and v2>=0 and np.allclose(v2%1,0): e = v2 N3 = min(np.round((a*x21+b*(x22-x11-al1))/c)) xt = x23[np.nonzero(x23)] val3 = np.unique(np.reshape(np.outer(N3*c-a*x21-b*(x22-x11-al1),1/xt),len(x22)*len(xt))) while any(abs(val3)<f): for v3 in val3: if v3 <f and v3>=0 and np.allclose(v3%1,0): d = v3 c1 = a*x21+b*(x22-x11-al1)+d*x23 c2 = -b*al2+e*x23 if np.allclose(c1%c,0) and np.allclose(c2%c,0): be1 = c1/c be2 = c2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) N3 += 1 xt = x23[np.nonzero(x23)] val3 = np.unique(np.reshape(np.outer(N3*c-a*x21-b*(x22-x11-al1),1/xt),len(x22)*len(xt))) N2 += 1 xt = x23[np.nonzero(x23)] val2 = np.unique(np.reshape(np.outer(N2*c+b*al2,1/xt),len(xt)*len(al2))) else: be1 = c1/c be2 = c2/c tHNFs = fdivs(a,b,c,d,e,f,al1,al2,be1,be2,x11,x22,x31,x32,x33) for t in tHNFs: HNFs.append(t) return HNFs
20a0044050964c5705f3bce2297f2724d6f12f71
7,654
def numeric_field_list(model_class): """Return a list of field names for every numeric field in the class.""" def is_numeric(type): return type in [BigIntegerField, DecimalField, FloatField, IntegerField, PositiveIntegerField, PositiveSmallIntegerField, SmallIntegerField] fields = [] for (field, type) in field_list(model_class): if is_numeric(type): fields += [field] return fields
a501c2a7bc87f7cdea8945a946937f72cc0576a9
7,655
import tokenize def _get_lambda_source_code(lambda_fn, src): """Attempt to find the source code of the ``lambda_fn`` within the string ``src``.""" def gen_lambdas(): def gen(): yield src + "\n" g = gen() step = 0 tokens = [] for tok in tokenize.generate_tokens(getattr(g, "next", getattr(g, "__next__", None))): if step == 0: if tok[0] == tokenize.NAME and tok[1] == "lambda": step = 1 tokens = [tok] level = 0 elif step == 1: if tok[0] == tokenize.NAME: tokens.append(tok) step = 2 else: step = 0 elif step == 2: if tok[0] == tokenize.OP and tok[1] == ":": tokens.append(tok) step = 3 else: step = 0 elif step == 3: if level == 0 and (tok[0] == tokenize.OP and tok[1] in ",)" or tok[0] == tokenize.ENDMARKER): yield tokenize.untokenize(tokens).strip() step = 0 else: tokens.append(tok) if tok[0] == tokenize.OP: if tok[1] in "[({": level += 1 if tok[1] in "])}": level -= 1 assert not tokens actual_code = lambda_fn.__code__.co_code for lambda_src in gen_lambdas(): try: fn = eval(lambda_src, globals(), locals()) if fn.__code__.co_code == actual_code: return lambda_src.split(":", 1)[1].strip() except Exception: pass return "<lambda>"
5192a299bf88c9fdc070fae28e585cda3a09aadc
7,656
import requests import json def retrieve_keycloak_public_key_and_algorithm(token_kid: str, oidc_server_url: str) -> (str, str): """ Retrieve the public key for the token from keycloak :param token_kid: The user token :param oidc_server_url: Url of the server to authorize with :return: keycloak public key and algorithm """ handle = f'{oidc_server_url}/protocol/openid-connect/certs' logger.info(f'Getting public key for the kid={token_kid} from the keycloak...') r = requests.get(handle) if r.status_code != 200: error = "Could not get certificates from the keycloak. " \ "Reason: [{}]: {}".format(r.status_code, r.text) logger.error(error) raise ValueError(error) try: json_response = r.json() except Exception: error = "Could not retrieve the public key. " \ "Got unexpected response: '{}'".format(r.text) logger.error(error) raise ValueError(error) try: matching_key = next((item for item in json_response.get('keys') if item['kid'] == token_kid), None) matching_key_json = json.dumps(matching_key) public_key = RSAAlgorithm.from_jwk(matching_key_json) except Exception as e: error = f'Invalid public key!. Reason: {e}' logger.error(error) raise ValueError(error) logger.info(f'The public key for the kid={token_kid} has been fetched.') return matching_key.get('alg'), public_key
87e706b56c63b991e1524b5d6ffcec86d6a9bc67
7,657
def read_conformations(filename, version="default", sep="\t", comment="#", encoding=None, mode="rb", **kw_args): """ Extract conformation information. Parameters ---------- filename: str Relative or absolute path to file that contains the RegulonDB information. Returns ------- """ kw_args["mode"] = mode kw_args["encoding"] = encoding conformations = list() with open_file(filename, **kw_args) as (file_h, ext): iter_rowset = FILE_PARSERS.get(ext, iter_rowset_flat_file) for row in iter_rowset(file_h): tf_id = row["transcription_factor_id"] try: t_factor = elem.TranscriptionFactor[tf_id, version] except KeyError: LOGGER.warn("unknown transcription factor %s", tf_id) LOGGER.warn("Please parse transcription factor information before"\ " parsing conformations.") continue conf = elem.Conformation( unique_id=row["conformation_id"], name_space=version, tf=t_factor, state=row["final_state"], interaction=row["interaction_type"], conformation_type=row.get("conformation_type", None), # version dependent apo_holo=row.get("apo_holo_conformation", None) # version dependent ) t_factor.conformations.add(conf) conformations.append(conf) return conformations
3588ee68a8a498dbfb1f85d65a8eff65b5ff5ed1
7,658
def maskRipple(inRpl, outFile, mask): """maskRipple(inRpl, outFile, mask) Sets the individual data items to zero based on the specified mask. If mask.getRGB(c,r)>0 / then copy the contents at(c,r) of inRpl to outFile.rpl. Otherwise the contents of outFile / is set to all zeros.""" outRpl = "%s.rpl" % outFile outRaw = "%s.raw" % outFile len = rpl.getDepth() ty = rpl.getDataType() res = ept.RippleFile(rpl.getColumns(), rpl.getRows(), rpl.getDepth(), rpl.getDataType(), rpl.getDataSize(), ept.RippleFile.DONT_CARE_ENDIAN, outRpl, outRaw) zero = (0) * len for c in xrange(0, rpl.getColumns()): for r in xrange(0, rpl.getRows()): rpl.setPosition(c, r) res.setPosition(c, r) if mask.getRGB(c, r) > 0: if ty == rpl.FLOAT: res.write(rpl.readDouble(len)) else: res.write(rpl.readInt(len)) return res
65d5464e9de469cf45b47991ed838a79c587d965
7,659
def GetCurrentScene() -> Scene: """ Returns current scene. Raises SpykeException if current scene is not set. """ if not _currentScene: raise SpykeException("No scene is set current.") return _currentScene
82a065e4cbd0aa4b326d53b3360aac52a99ac682
7,660
import argparse import sys import os def Login(): """Performs interactive login and caches authentication token. Returns: non-zero value on error. """ ConfirmUserAgreedToS() parser = argparse.ArgumentParser() parser.add_argument('--browser', action='store_true', help=('Use browser to get goma OAuth2 token.')) options = parser.parse_args(sys.argv[2:]) config = GomaOAuth2Config() config.update(DefaultOAuth2Config()) func = GetAuthorizationCodeViaCommandLine if options.browser: func = GetAuthorizationCodeViaBrowser config['refresh_token'] = GetRefreshToken(func, config) err = VerifyRefreshToken(config) if err: sys.stderr.write(err + '\n') return 1 config.Save() flags = configFlags(config) for k in flags: if k not in os.environ: os.environ[k] = flags[k] if not CheckPing(): return 1 return 0
7b305746fa128bcdce834ee036e5e231f5f72223
7,661
def timeago(seconds=0, accuracy=4, format=0, lang="en", short_name=False): """Translate seconds into human-readable. :param seconds: seconds (float/int). :param accuracy: 4 by default (units[:accuracy]), determine the length of elements. :param format: index of [led, literal, dict]. :param lang: en or cn. :param units: day, hour, minute, second, ms. >>> timeago(93245732.0032424, 5) '1079 days, 05:35:32,003' >>> timeago(93245732.0032424, 4, 1) '1079 days 5 hours 35 minutes 32 seconds' >>> timeago(-389, 4, 1) '-6 minutes 29 seconds 0 ms' """ assert format in [0, 1, 2], ValueError("format arg should be one of 0, 1, 2") negative = "-" if seconds < 0 else "" is_en = lang == "en" seconds = abs(seconds) if is_en: if short_name: units = ("day", "hr", "min", "sec", "ms") else: units = ("day", "hour", "minute", "second", "ms") elif lang == "cn": if short_name: units = (u"日", u"时", u"分", u"秒", u"毫秒") else: units = (u"天", u"小时", u"分钟", u"秒", u"毫秒") times = split_seconds(seconds) if format == 2: return dict(zip(units, times)) day, hour, minute, second, ms = times if format == 0: day_str = ("%d %s%s, " % (day, units[0], "s" if day > 1 and is_en else "") if day else "") mid_str = ":".join(("%02d" % i for i in (hour, minute, second))) if accuracy > 4: mid_str += ",%03d" % ms return negative + day_str + mid_str elif format == 1: if seconds: # find longest valid fields index (non-zero for head and tail) for index, item in enumerate(times): if item != 0: head_index = index break for index, item in enumerate(reversed(times)): if item != 0: tail_index = len(times) - index break result_str = [ "%d %s%s" % (num, unit, "s" if is_en and num > 1 and unit != "ms" else "") for num, unit in zip(times, units) ][head_index:tail_index][:accuracy] result_str = " ".join(result_str) else: result_str = "0 %s" % units[-1] return negative + result_str
b6a5858c3f5c5291b03654d076eb3f1e835f78c0
7,662
def generate_headline(ids=None): """Generate and return an awesome headline. Args: ids: Iterable of five IDs (intro, adjective, prefix, suffix, action). Optional. If this is ``None``, random values are fetched from the database. Returns: Tuple of parts and permalink (intro, adjective, prefix, suffix, action, permalink) """ print('[schlagzeilengenerator] Generating a headline...') # Correct endings adjective_endings = { 'm': 'r', 'f': '', 's': 's', 'p': '', } # Get random database entries if ids is not None: d_intro = get_by_id('intro', ids[0]) d_adjective = get_by_id('adjective', ids[1]) d_prefix = get_by_id('prefix', ids[2]) d_suffix = get_by_id('suffix', ids[3]) d_action = get_by_id('action', ids[4]) else: d_intro = get_random('intro') d_adjective = get_random('adjective') d_prefix = get_random('prefix') d_suffix = get_random('suffix') d_action = get_random('action') ids = (d_intro['id'], d_adjective['id'], d_prefix['id'], d_suffix['id'], d_action['id']) # Get data from dictionaries case = d_suffix['case'] intro = d_intro['text'] adjective = d_adjective['text'] + adjective_endings[case] prefix = d_prefix['text'] suffix = d_suffix['text'] if case == 'p': action = '%s %s' % (d_action['action_p'], d_action['text']) else: action = '%s %s' % (d_action['action_s'], d_action['text']) # Build permalink permalink = b64encode(b','.join(str(i).encode('ascii') for i in ids)) return intro, adjective, prefix, suffix, action.strip(), permalink
09fda0075b036ea51972b2f124733de9f34671fc
7,663
import webbrowser def open_in_browser(path): """ Open directory in web browser. """ return webbrowser.open(path)
41328b2b478f0bd69695da1868c412188e494d08
7,664
def lstm_cell_forward(xt, a_prev, c_prev, parameters): """ Implement a single forward step of the LSTM-cell as described in Figure (4) Arguments: xt -- your input data at timestep "t", numpy array of shape (n_x, m). a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m) c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m) parameters -- python dictionary containing: Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) bf -- Bias of the forget gate, numpy array of shape (n_a, 1) Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) bi -- Bias of the update gate, numpy array of shape (n_a, 1) Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x) bc -- Bias of the first "tanh", numpy array of shape (n_a, 1) Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x) bo -- Bias of the output gate, numpy array of shape (n_a, 1) Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a) by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1) Returns: a_next -- next hidden state, of shape (n_a, m) c_next -- next memory state, of shape (n_a, m) yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m) cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters) Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilde), c stands for the cell state (memory) """ # Retrieve parameters from "parameters" Wf = parameters["Wf"] # forget gate weight bf = parameters["bf"] Wi = parameters["Wi"] # update gate weight (notice the variable name) bi = parameters["bi"] # (notice the variable name) Wc = parameters["Wc"] # candidate value weight bc = parameters["bc"] Wo = parameters["Wo"] # output gate weight bo = parameters["bo"] Wy = parameters["Wy"] # prediction weight by = parameters["by"] # Retrieve dimensions from shapes of xt and Wy n_x, m = xt.shape n_y, n_a = Wy.shape ### START CODE HERE ### # Concatenate a_prev and xt (≈1 line) concat = np.concatenate((a_prev,xt),axis=0) # Compute values for ft (forget gate), it (update gate), # cct (candidate value), c_next (cell state), # ot (output gate), a_next (hidden state) (≈6 lines) ft = sigmoid(np.dot(Wf,concat)+bf) # forget gate it = sigmoid(np.dot(Wi,concat)+bi) # update gate cct = np.tanh(np.dot(Wc,concat)+bc) # candidate value c_next = ft*c_prev+it*cct # cell state ot = sigmoid(np.dot(Wo,concat)+bo) # output gate a_next = ot*np.tanh(c_next) # hidden state # Compute prediction of the LSTM cell (≈1 line) yt_pred = softmax(np.dot(Wy,a_next)+by) ### END CODE HERE ### # store values needed for backward propagation in cache cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) return a_next, c_next, yt_pred, cache
9d1ae3ea6da9de6827b5ecd9f8871ee8aae26d30
7,665
def encode_letter(letter): """ This will encode a tetromino letter as a small integer """ value = None if letter == 'i': value = 0 elif letter == 'j': value = 1 elif letter == 'l': value = 2 elif letter == 'o': value = 3 elif letter == 's': value = 4 elif letter == 't': value = 5 elif letter == 'z': value = 6 return value
6c72c4c9e44c93d045296ab1f49c7783f2b4fc59
7,666
async def register_log_event( registration: LogEventRegistration, db: Session = Depends(get_db) ): """ Log event registration handler. :param db: :param registration: Registration object :return: None """ reg_id = str(uuid4()) # Generate message for registration topic msg = LogEventRegistrationMessage( to_address=registration.address, keyword=registration.keyword, position=registration.position, ) # Produce message for registration topic producer.produce( topic=settings.REGISTRATIONS_TOPIC, key=string_serializer(reg_id, key_context), value=json_serializer(msg.dict(), value_context), callback=acked, ) retry_count = 0 while True: if retry_count >= settings.MAX_CONFIRM_WAIT: raise HTTPException( 500, "Registration not confirmed. Try again. (NOINSERT)" ) try: # Query the DB to check if insert was done correctly row = crud.get_event_registration_by_id_no_404(db, reg_id) if row: break else: retry_count += 1 sleep(1) except: retry_count += 1 sleep(1) # Check if query returned correct result if ( not row.to_address == registration.address and not row.keyword == registration.keyword and not row.position == registration.position ): raise HTTPException(500, "Registration not confirmed. Try again. (NOMATCH)") return {"reg_id": reg_id, "status": "registered"}
62b84b9efa88512634d9c7a050e7c61ff06ba71a
7,667
def cvAbsDiffS(*args): """cvAbsDiffS(CvArr src, CvArr dst, CvScalar value)""" return _cv.cvAbsDiffS(*args)
b888683d1522c46c9dc7738a18b80f56efe975d3
7,668
from . import views # this must be placed here, after the app is created def create_template_app(**kwargs): """Create a template Flask app""" app = create_app(**kwargs) app.register_blueprints() return app
fbbb0018cd4da6897842f658ba3baf207e5614cc
7,669
def mse(predict, actual): """ Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> np.around(mse(predict,actual),decimals = 2) 1.33 >>> actual = [1,1,1];predict = [1,1,1] >>> mse(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual square_diff = np.square(difference) score = square_diff.mean() return score
c42ee6d5531d40f727c41463f938c9c8f4ec6e84
7,670
import random def make_demo_measurements(num_measurements, extra_tags=frozenset()): """Make a measurement object.""" return [ make_flexural_test_measurement( my_id=__random_my_id(), deflection=random.random(), extra_tags=extra_tags ) for _ in range(num_measurements) ]
10c452936e889a8553afd1a9a570e34abae73470
7,671
from re import S def _nrc_coron_rescale(self, res, coord_vals, coord_frame, siaf_ap=None, sp=None): """ Function for better scaling of NIRCam coronagraphic output for sources that overlap the image masks. """ if coord_vals is None: return res nfield = np.size(coord_vals[0]) psf_sum = _nrc_coron_psf_sums(self, coord_vals, coord_frame, siaf_ap=siaf_ap) if psf_sum is None: return res # Scale by countrate of observed spectrum if (sp is not None) and (not isinstance(sp, list)): nspec = 1 obs = S.Observation(sp, self.bandpass, binset=self.bandpass.wave) sp_counts = obs.countrate() elif (sp is not None) and (isinstance(sp, list)): nspec = len(sp) if nspec==1: obs = S.Observation(sp[0], self.bandpass, binset=self.bandpass.wave) sp_counts = obs.countrate() else: sp_counts = [] for i, sp_norm in enumerate(sp): obs = S.Observation(sp_norm, self.bandpass, binset=self.bandpass.wave) sp_counts.append(obs.countrate()) sp_counts = np.array(sp_counts) else: nspec = 0 sp_counts = 1 if nspec>1 and nspec!=nfield: _log.warn("Number of spectra should be 1 or equal number of field points") # Scale by count rate psf_sum *= sp_counts # Re-scale PSF by total sums if isinstance(res, fits.HDUList): for i, hdu in enumerate(res): hdu.data *= (psf_sum[i] / hdu.data.sum()) elif nfield==1: res *= (psf_sum[0] / res.sum()) else: for i, data in enumerate(res): data *= (psf_sum[i] / data.sum()) return res
3b4e8596177e126955c7665333dd1305603f4e66
7,672
from .serializers import DocumentRelationSerializer def re_list(request): """ Returns the available relation tasks for a specific user Accessed through a JSON API endpoint """ cmd_str = "" with open('mark2cure/api/commands/get-relations.sql', 'r') as f: cmd_str = f.read() # Start the DB Connection c = connection.cursor() c.execute('SET @user_work_max = {rel_work_size};'.format(rel_work_size=20)) c.execute('SET @k_max = {completions};'.format(completions=settings.ENTITY_RECOGNITION_K)) c.execute('SET @user_id = {user_id};'.format(user_id=request.user.pk)) c.execute('SET @rel_ann_content_type_id = 56;') c.execute(cmd_str) queryset = [{'id': x[0], 'document_id': x[1], 'title': x[2], 'total_document_relationships': x[3], 'user_document_relationships': x[4], 'community_answered': x[5], 'community_completed': x[6], 'community_progress': x[7], 'user_completed': x[8], 'user_progress': x[9], 'user_answered': x[10], 'user_view_completed': x[11]} for x in c.fetchall()] # Close the connection c.close() # Prevent documents from being shown that have since been completed # by the community before the requqest.user could complete everything for idx, item in enumerate(queryset): if int(item['user_document_relationships']) <= 0: document = get_object_or_404(Document, pk=item['id']) first_section = document.section_set.first() view = View.objects.filter(task_type='re', section=first_section, user=request.user).last() # print(' - X:', document, first_section, view) # (TODO) Why is there no View on these sections? if view: Point.objects.create(user=request.user, amount=settings.RELATION_DOC_POINTS, content_type=ContentType.objects.get_for_model(view), object_id=view.id) view.completed = True view.save() del queryset[idx] serializer = DocumentRelationSerializer(queryset, many=True) return Response(serializer.data)
458b9fc9e784144e96ef8b4203e8b7b868c3350a
7,673
import os import time def run_tc(discover): """ BeautifulReport模块实现测试报告 :param discover: 测试套件 :return: """ if not os.path.exists(path_conf.REPORT_PATH): os.makedirs(path_conf.REPORT_PATH) fileName = path_conf.PROJECT_NAME + '_' + time.strftime('%Y-%m-%d %H_%M_%S') + '.html' try: result = BeautifulReport(discover) # theme四种用法:theme_default theme_cyan theme_candy theme_memories result.report(filename=fileName, description=path_conf.PROJECT_NAME + '_testreport', report_dir=path_conf.REPORT_PATH, theme='theme_cyan') except Exception as e: log.exception('Failed to generate test report') raise e else: log.info('Test report generated successfully [%s]' % fileName) return fileName
da601470bf901905f5ca43e1b6bdeec5d330eafa
7,674
def csv_to_blob_ref(csv_str, # type: str blob_service, # type: BlockBlobService blob_container, # type: str blob_name, # type: str blob_path_prefix=None, # type: str charset=None # type: str ): # type: (...) -> AzmlBlobTable """ Uploads the provided CSV to the selected Blob Storage service, and returns a reference to the created blob in case of success. :param csv_str: :param blob_service: the BlockBlobService to use, defining the connection string :param blob_container: the name of the blob storage container to use. This is the "root folder" in azure blob storage wording. :param blob_name: the "file name" of the blob, ending with .csv or not (in which case the .csv suffix will be appended) :param blob_path_prefix: an optional folder prefix that will be used to store your blob inside the container. For example "path/to/my/" :param charset: :return: """ # setup the charset used for file encoding if charset is None: charset = 'utf-8' elif charset != 'utf-8': print("Warning: blobs can be written in any charset but currently only utf-8 blobs may be read back into " "DataFrames. We recommend setting charset to None or utf-8 ") # validate inputs (the only one that is not validated below) validate('csv_str', csv_str, instance_of=str) # 1- first create the references in order to check all params are ok blob_reference, blob_full_name = create_blob_ref(blob_service=blob_service, blob_container=blob_container, blob_path_prefix=blob_path_prefix, blob_name=blob_name) # -- push blob blob_stream = BytesIO(csv_str.encode(encoding=charset)) # noinspection PyTypeChecker blob_service.create_blob_from_stream(blob_container, blob_full_name, blob_stream, content_settings=ContentSettings(content_type='text.csv', content_encoding=charset)) # (For old method with temporary files: see git history) return blob_reference
c0df47839e963a5401204bcd422c7f78a94efc87
7,675
def col_rev_reduce(matrix, col, return_ops=False): """ Reduces a column into reduced echelon form by transforming all numbers above the pivot position into 0's :param matrix: list of lists of equal length containing numbers :param col: index of column :param return_ops: performed operations are returned :return: list of lists of equal length containing numbers """ ops = [] pivot_row = 0 # Defaults to top row # Find pivot row of the column for row in range(len(matrix)-1, -1, -1): if matrix[row][col] != 0: pivot_row = row break # Transform all numbers above the pivot to 0 if matrix[pivot_row][col] != 0 and matrix[pivot_row][col] != 1: factor = 1 / matrix[pivot_row][col] matrix = row_multiply(matrix, pivot_row, factor) ops.append(['multiplication', pivot_row, factor]) if pivot_row != 0: for row in range(pivot_row): if matrix[row][col] != 0: factor = matrix[row][col] / matrix[pivot_row][col] matrix = row_subtract(matrix, pivot_row, row, factor) ops.append(['subtract', pivot_row, row, factor]) if return_ops: return matrix, ops else: return matrix
ab97078f0c92537532673d3dba3cb399d932342e
7,676
from typing import Dict import math def calculate_correlations(tetra_z: Dict[str, Dict[str, float]]) -> pd.DataFrame: """Return dataframe of Pearson correlation coefficients. :param tetra_z: dict, Z-scores, keyed by sequence ID Calculates Pearson correlation coefficient from Z scores for each tetranucleotide. This is done longhand here, which is fast enough, but for robustness we might want to do something else... (TODO). Note that we report a correlation by this method, rather than a percentage identity. """ orgs = sorted(tetra_z.keys()) correlations = pd.DataFrame(index=orgs, columns=orgs, dtype=float).fillna(1.0) for idx, org1 in enumerate(orgs[:-1]): for org2 in orgs[idx + 1 :]: if not sorted(tetra_z[org1].keys()) == sorted(tetra_z[org2].keys()): raise AssertionError() tets = sorted(tetra_z[org1].keys()) zscores = [ [tetra_z[org1][t] for t in tets], [tetra_z[org2][t] for t in tets], ] zmeans = [sum(zscore) / len(zscore) for zscore in zscores] zdiffs = [ [z - zmeans[0] for z in zscores[0]], [z - zmeans[1] for z in zscores[1]], ] diffprods = sum( [zdiffs[0][i] * zdiffs[1][i] for i in range(len(zdiffs[0]))] ) zdiffs2 = [sum([z * z for z in zdiffs[0]]), sum([z * z for z in zdiffs[1]])] correlations[org1][org2] = diffprods / math.sqrt(zdiffs2[0] * zdiffs2[1]) correlations[org2][org1] = correlations[org1][org2] return correlations
8acc745fb35f41b38ba186e8f367ea895191f894
7,677
def rowfuncbynumber(tup,othertable, number): """tup is the tuple of row labels for the current row. By default it is passed back unmodified. You can supply your own rowfunc to transform it when the tables being merged do not have the same structure or if you want to prevent the merging of certain rows. Note that the tuple starts with "row" or "column", so the first normally visible element is tup[1]. othertable is True if the function was called while processing the "other" table and False if processing the main table. number is the row number of the table. If the join is just by position, you can use this function to align the tables even if the labels are not unique to use this function, specify ROWFUNCTION=SPSSINC_MERGE_TABLES.rowfuncbynumber""" if debug: print(("row:", (othertable and "other:" or "main:"), number, tup)) tup = (str(number),) return tup
bd64c52489a9786b4c1de2c9ee7c95643b2a5fe9
7,678
import os def save_book_metadata() -> FlaskResponse: """ XHR request. Update the information about a book. Raises: 404: if the user is not admin or the request is not POST. """ if not is_admin(): abort(404) # pragma: no cover if not ( all( x in request.form for x in [ "input-book-id", # hidden field "input-book-url", # hidden field "input-book-filename", # hidden field, this is the current file before update "input-title", "input-description", "input-period", "input-status", "input-status", "input-crowdfunding-goal", "input-access-level", ] ) and (all(x in request.files for x in ["input-book-file", "input-thumbnail"])) ): return basic_json(False, "Bad request, missing data!") book_id = int(request.form["input-book-id"]) book_url = secure_filename(escape(request.form["input-book-url"])) book_filename = secure_filename(escape(request.form["input-book-filename"])) title = escape(request.form["input-title"].strip()) if not title: return basic_json(False, "Missing title!") description_md = escape(request.form["input-description"].strip()) if not description_md: return basic_json(False, "Missing description!") description_html = markdown.Markdown( extensions=current_app.config["MD_EXT"] ).convert(description_md) period = escape(request.form["input-period"].strip()) status = escape(request.form["input-status"]).lower() if status not in ["released", "crowdfunding"]: status = "draft" # reset unknown or empty status to 'draft' try: crowdfunding_goal = float(request.form["input-crowdfunding-goal"]) except (ValueError, TypeError): crowdfunding_goal = 0 if status == "crowdfunding" and crowdfunding_goal <= 0: return basic_json(False, "Crowdfunding goal required or change status!") access_level = int(request.form["input-access-level"]) if not check_access_level_range(access_level): return basic_json(False, "Invalid access level!") book_dir_path = os.path.join(current_app.config["SHELF_FOLDER"], book_url) file = request.files["input-book-file"] new_book = file.filename != "" if new_book: if not file_extension(file.filename, "book"): return basic_json(False, "Wrong book file extension!") new_book_filename = secure_filename( file.filename.rsplit("/", 1)[1] if "/" in file.filename else file.filename ) if book_filename != new_book_filename: # replace the old file with the new one old_path_file = os.path.join(book_dir_path, book_filename) if os.path.isfile(old_path_file): os.remove(old_path_file) book_filename = new_book_filename file.save(os.path.join(book_dir_path, new_book_filename)) thumbnail = request.files["input-thumbnail"] new_thumbnail = thumbnail.filename != "" if new_thumbnail: thumbnail_ext = file_extension(thumbnail.filename, "any") if thumbnail_ext != "jpg": return basic_json( False, "Thumbnail extension must be jpg!" ) # changes had been done if new_book anyway! thumbnail_path = os.path.join(book_dir_path, "card.jpg") thumbnail.save(thumbnail_path) preview_card = preview_image(thumbnail_path).decode() cursor = mysql.cursor() cursor.execute( """UPDATE shelf SET file_name='{file_name}', title='{title}', period='{period}', description_md='{description_md}', description_html='{description_html}', access_level={access_level}, date_modified=CURRENT_TIMESTAMP,status='{status}', crowdfunding_goal={crowdfunding_goal}, preview_card={preview_card} WHERE book_id={book_id}""".format( file_name=book_filename, title=title, period=period, description_md=description_md, description_html=description_html, access_level=access_level, status=status, crowdfunding_goal=crowdfunding_goal if crowdfunding_goal > 0 else "NULL", book_id=book_id, preview_card="'" + preview_card + "'" if new_thumbnail else "preview_card", ) ) mysql.commit() return basic_json(True, "Changes saved!")
df92df8dbc817df1778b5d25c71f6d66a46463b5
7,679
def query_category_members(category, language='en', limit=100): """ action=query,prop=categories Returns all the members of a category up to the specified limit """ url = api_url % (language) query_args = { 'action': 'query', 'list': 'categorymembers', 'cmtitle': category, 'format': 'json', 'cmlimit': min(limit, 500) } members = [] while True: json = _run_query(query_args, language) for member in json['query']['categorymembers']: members.append(member['title']) if 'query-continue' in json and len(members) <= limit: continue_item = json['query-continue']['categorymembers']['cmcontinue'] query_args['cmcontinue'] = continue_item else: break return members[0:limit]
4a09d73cce237152405031004e967192ad3f8929
7,680
from typing import List def _tokenize_text(text: str, language: str) -> List[str]: """Splits text into individual words using the correct method for the given language. Args: text: Text to be split. language: The configured language code. Returns: The text tokenized into a list of words. """ if language == constants.LANGUAGE_CODE_JA: return _split_words_in_japanese(text) else: return text.split()
284f1a7625de149b7f97ce51dcf88110ebae02b0
7,681
def ml64_sort_order(c): """ Sort function for measure contents. Items are sorted by time and then, for equal times, in this order: * Patch Change * Tempo * Notes and rests """ if isinstance(c, chirp.Note): return (c.start_time, 10) elif isinstance(c, Rest): return (c.start_time, 10) elif isinstance(c, MeasureMarker): return (c.start_time, 1) elif isinstance(c, TempoEvent): return (c.start_time, 3) elif isinstance(c, ProgramEvent): return (c.start_time, 2) else: return (c.start_time, 5)
752a68796a12835661cfce5b2cfe5cba3ad5d7ef
7,682
def binary_logistic_loss_grad(linear_o, y): """Derivative of the binary_logistic_loss w.r.t. the linear output""" # Sometimes denom overflows, but it's OK, since if it's very large, it would # be set to INF and the output correctly takes the value of 0. # TODO: Fix overflow warnings. denom = 1 + np.exp(y.flatten() * linear_o.flatten()) return -y / (denom * linear_o.size)
8c7aabfedafbd08f0e82b5d8a01837a70ab314ac
7,683
def electron_mass_MeVc2(): """The rest mass of the electron in MeV/c**2 https://en.wikipedia.org/wiki/Electron """ return 0.5109989461
4496ddcc35a0aa6528cc19e47233f5a81626fefe
7,684
def opensearch_plugin(request): """Render an OpenSearch Plugin.""" host = "%s://%s" % ("https" if request.is_secure() else "http", request.get_host()) # Use `render_to_response` here instead of `render` because `render` # includes the request in the context of the response. Requests # often include the session, which can include pickable things. # `render_to_respones` doesn't include the request in the context. return render_to_response( "search/plugin.html", {"host": host, "locale": request.LANGUAGE_CODE}, content_type="application/opensearchdescription+xml", )
5df7e8a8bb89ff5e83b51f1bc4b634db9dea6930
7,685
from datetime import datetime def serialize_time(output_value: datetime.time) -> str: """ Serializes an internal value to include in a response. """ return output_value.isoformat()
81fc648eaf27efc47531f9895a9523aa5f012cf6
7,686
from . import persist def find_posix_python(version): """Find the nearest version of python and return its path.""" if version: # Try the exact requested version first path = find_executable('python' + version) persist.debug('find_posix_python: python{} => {}'.format(version, path)) # If that fails, try the major version if not path: path = find_executable('python' + version[0]) persist.debug('find_posix_python: python{} => {}'.format(version[0], path)) # If the major version failed, see if the default is available if not path: path = find_executable('python') persist.debug('find_posix_python: python =>', path) else: path = find_executable('python') persist.debug('find_posix_python: python =>', path) return path
c3bbfa6d4dba5321242ada0f73acccd701bc9796
7,687
def decode_binary(state_int): """ Decode binary representation into the list view :param state_int: integer representing the field :return: list of GAME_COLS lists """ assert isinstance(state_int, int) bits = int_to_bits(state_int, bits=GAME_COLS*GAME_ROWS + GAME_COLS*BITS_IN_LEN) res = [] len_bits = bits[GAME_COLS*GAME_ROWS:] for col in range(GAME_COLS): vals = bits[col*GAME_ROWS:(col+1)*GAME_ROWS] lens = bits_to_int(len_bits[col*BITS_IN_LEN:(col+1)*BITS_IN_LEN]) if lens > 0: vals = vals[:-lens] res.append(vals) return res
a2dd5462031eeb82d9e3b59565d41b2b06e8e2d8
7,688
def clean_features(vgsales): """ This function cleans up some of the dataset's features. The dataset is quite messy as many values are missing from both categorical and numerical features. Many of these features are difficult to impute in a reasonable manner. <class 'pandas.core.frame.DataFrame'> Index: 16719 entries, Wii Sports to Winning Post 8 2016 Data columns (total 9 columns): Platform 16719 non-null category Release 16450 non-null Int64 Genre 16717 non-null category Publisher 16665 non-null category Sales 16719 non-null float64 Metacritic 8137 non-null float64 Metacritic_N 8137 non-null Int64 Developer 10096 non-null category ESRB 9950 non-null category dtypes: Int64(2), category(5), float64(2) memory usage: 1.5+ MB Some of the hardest features to impute (genre or platform, for example) don't have many nulls. Others, like the review averages, can be imputed. :param path: A path to a Video_Games_Sales_as_at_22_Dec_2016.csv compatible dataset. """ # A few of the release years are set to 2020 or other years past 2016. # Just setting them to 2016 here. They're not a lot of them anyway. vgsales.Release.loc[vgsales.Release > 2016] = 2016 # ============================================================================= # https://en.wikipedia.org/wiki/Entertainment_Software_Rating_Board # # The ESRB feature will be converted to an ordinal variable for machine # learning during preprocessing later. Thus, we organize them here and # add an NA for missing values. # ============================================================================= esrb_ordinal = ["NA", "RP", "EC", "E", "E10+", "T", "M", "AO"] vgsales.ESRB.cat.set_categories(esrb_ordinal, True, False, True) return vgsales
ffcae20af436d4012381c4933c841c3689fbbca0
7,689
def get_object(proposition): """[75] Returns the object of a given proposition """ return proposition[2][0]
dc9d5fe007bb66ee92cddd964bb29b897a561c8c
7,690
import hmac def __verify_hmac(data: bytes, ohmac: bytes, key: bytes) -> bool: """ This function verifies that a provided HMAC matches a computed HMAC for the data given a key. Args: data: the data to HMAC and verify ohmac: the original HMAC, normally appended to the data key: the key to HMAC with for verification Returns: a boolean value denoting whether or not the HMAC's match """ return compare_digest(ohmac, hmac(key, data, HMAC_HS).digest())
6381bb70e35cccafdb3dcafc2428ca5ca850364a
7,691
def create_block_option_from_template(text: str, value: str): """Helper function which generates the option block for modals / views""" return {"text": {"type": "plain_text", "text": str(text), "emoji": True}, "value": str(value)}
23f0cf455e659eddeca0b4eda732995feeac6341
7,692
from typing import Any import json def get_token_payload(token: str) -> Any: """Extract the payload from the token. Args: token (str): A JWT token containing the session_id and other data. Returns: dict """ decoded = json.loads(_base64_decode(token.split('.')[0])) del decoded['session_id'] return decoded
1b9b03f8e9db6940cc44725025c1ed2ccf751e89
7,693
import torch def create_mock_target(number_of_nodes, number_of_classes): """ Creating a mock target vector. """ return torch.LongTensor([np.random.randint(0, number_of_classes-1) for node in range(number_of_nodes)])
e226d9e7d1944b0736952d5952e8ef3438a1e54b
7,694
def initFindAndFit(parameters): """ Initialize and return a SplinerFISTAFinderFitter object. """ # Create spline object. spline_fn = splineToPSF.loadSpline(parameters.getAttr("spline")) # Create peak finder. finder = SplinerFISTAPeakFinder(parameters = parameters, psf_object = spline_fn) # Create cubicFitC.CSplineFit object. mfitter = findPeaksStd.initFitter(finder, parameters, spline_fn) # Create peak fitter. fitter = fitting.PeakFitterArbitraryPSF(mfitter = mfitter, parameters = parameters) # Specify which properties we want from the analysis. properties = ["background", "error", "height", "sum", "x", "y", "z"] return fitting.PeakFinderFitter(peak_finder = finder, peak_fitter = fitter, properties = properties)
6f045b664157437fb33ab3804b84fe1c7d1deb4e
7,695
def UpdateDatabase(asset, images, status): """Update the database entries of the given asset with the given data.""" return {'asset': asset}
1d7d42355410be7481e706e47d7810755974dadc
7,696
def get_max_word_length(days: dict, keys: list) -> int: """ Находит длину самого длинного слова. """ max_word_len = 0 for key in keys: if days.get(key): for _, data in days.get(key).items(): value = data.split(" ") for word in value: if len(word) > max_word_len: max_word_len = len(word) return int(max_word_len)
8a98c7384839f10fdfa713c535b3bf7765416b4c
7,697
def rateCBuf(co2: float, par: float, params: dict, rates: dict, states: dict) -> float: """ Rate of increase of carbohydrates in the buffer During the light period, carbohydrates produced by photosynthesis are stored in the buffer and, whenever carbohydrates are available in the buffer, carbohydrates flow to the plant organs. This carbohydrate flow stops when the buffer approaches its lower limit. When the buffer approaches its upper limit, further carbohydrates cannot be stored and photosynthesis will be inhibited. Parameters ---------- co2 : float Carbon dioxide concentration on air [μmol {CO2} mol-1 {air}] par : float Photosynthetic active radiation [μmol {photons} m-2 s-1] params : dict Parameters saved as model constants rates : dict Auxiliary variable including rates and flows for the different fruit development stages states : dict State variables of the model Returns ------- float Rate of accumulation of carbohydrates in the buffer [mg m-2 s-1] """ # These rates relate to the carbs available in the buffer by the maximum # value available for the buffer. So in theory even if all of them # are maximum, they would be compatible. However, the buffer is not always # in the maximum. So they could reach their potential and demand more # carbs than are available in the buffer. # If there are not enough, there is the inhibition phenomena, but right # now they don't seem compatible, as there is growth without # enough carbs because of the different treatment of the first fruit # stage. rates["MCBufLeaf"] = mcBufOrg(organ="leaf", params=params, states=states) rates["MCBufFruit"] = mcBufOrg(organ="fruit", params=params, states=states) rates["MCBufStem"] = mcBufOrg(organ="stem", params=params, states=states) co2_st = co2Stom(co2=co2, params=params) # Photosynthesis Rate mcAirBuf_ = mcAirBuf(co2=co2_st, par=par, params=params, states=states) # Growth respiration mcBufAir_ = mcBufAir(params=params, states=states) cBuf_ = (mcAirBuf_ - rates["MCBufLeaf"] - rates["MCBufFruit"] - rates["MCBufStem"] - mcBufAir_) return cBuf_
33a6c5fcc6d9d1a0641d197dffa1ee5fd6afd038
7,698
import hashlib import json def get_config_tag(config): """Get configuration tag. Whenever configuration changes making the intermediate representation incompatible the tag value will change as well. """ # Configuration attributes that affect representation value config_attributes = dict(frame_sampling=config.proc.frame_sampling) sha256 = hashlib.sha256() sha256.update(json.dumps(config_attributes).encode("utf-8")) return sha256.hexdigest()[:40]
2cab6e9473822d0176e878114ceb3fda94d1e0f7
7,699