content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def create_fixxation_map(eye_x, eye_y, fixxation_classifier): """ :param eye_x: an indexable datastructure with the x eye coordinates :param eye_y: an indexable datastructure with the y eye coordinates :param fixxation_classifier: a list with values which indicate if the move from the previos is a fixxations. :return: a List of circles which bound around the fixxation and witch saccades they dont bound. The List is organized Liked this [((circle1_x, circle1_y), circle1_radius), ...]) """ # process into fixxation and saccade movements points_array = [] currently_fixxation = False current_points = [] for idx, classifier in enumerate(fixxation_classifier): if classifier == 1 and currently_fixxation == False: current_points = [(eye_x[idx], eye_y[idx])] elif classifier == 1: current_points.append((eye_x[idx], eye_y[idx])) elif classifier == 0 and currently_fixxation == True: points_array.append((current_points.copy(), True)) current_points = [] currently_fixxation = False points_array.append(([(eye_x[idx], eye_y[idx])], False)) else: points_array.append(([(eye_x[idx], eye_y[idx])], True)) circles = [(make_circle(points), is_fixxation) for points, is_fixxation in points_array] circles = [((x, y), radius, is_fixxation) for ((x, y, radius), is_fixxation) in circles] return circles
bccf37777eb4d74fcb48a8316fc3d2695a209371
12,400
from re import T from typing import Any def with_metadata(obj: T, key: str, value: Any) -> T: """ Adds meta-data to an object. :param obj: The object to add meta-data to. :param key: The key to store the meta-data under. :param value: The meta-data value to store. :return: obj. """ # Create the meta-data map if not hasattr(obj, META_DATA_KEY): try: setattr(obj, META_DATA_KEY, {}) except AttributeError as e: raise ValueError(f"Cannot set meta-data against objects of type {obj.__class__.__name__}") from e # Put this mapping in the map getattr(obj, META_DATA_KEY)[key] = value return obj
566f9a2c1d083bbe44b86f0a8716e5bb44892b13
12,401
import hashlib def checksum(uploaded_file: 'SimpleUploadedFile', **options): """ Function to calculate checksum for file, can be used to verify downloaded file integrity """ hash_type = options['type'] if hash_type == ChecksumType.MD5: hasher = hashlib.md5() elif hash_type == ChecksumType.SHA256: hasher = hashlib.sha256() else: raise ValueError(f'Hash type "{hash_type}" in "checksum" function is not valid') if uploaded_file.multiple_chunks(): for data in uploaded_file.chunks(HASH_CHUNK_SIZE): hasher.update(data) else: hasher.update(uploaded_file.read()) return { 'checksum': hasher.hexdigest() }
766a288a09791242029669a63734143cf8e2c007
12,402
import requests def get_page(url): """Get source of url Keyword Arguments: url : string """ logger.debug(f'Getting source for {url}') res = requests.get(url) logger.debug(f'Status code for {url} is {res.status_code}') if res.status_code < 200 or res.status_code >= 300: raise Exception(f''' Not succesful retrieving {url}, the status code is {res.status_code} ''') logger.debug(f'Request succesful, returning text') return res.text
3b273e895fe36f050423b514e046961045a30017
12,403
import types from typing import Optional from typing import Tuple def preceding_words(document: Document, position: types.Position) -> Optional[Tuple[str, str]]: """ Get the word under the cursor returning the start and end positions. """ lines = document.lines if position.line >= len(lines): return None row, col = position_from_utf16(lines, position) line = lines[row] try: word = line[:col].strip().split()[-2:] return word except ValueError: return None
9d1078084045ac468639a903c74dd24e45ed1087
12,404
def check_gpu(gpu, *args): """Move data in *args to GPU? gpu: options.gpu (None, or 0, 1, .. gpu index) """ if gpu == None: if isinstance(args[0], dict): d = args[0] #print(d.keys()) var_dict = {} for key in d: var_dict[key] = Variable(d[key]) if len(args) > 1: return [var_dict] + check_gpu(gpu, *args[1:]) else: return [var_dict] # it's a list of arguments if len(args) > 1: return [Variable(a) for a in args] else: # single argument, don't make a list return Variable(args[0]) else: if isinstance(args[0], dict): d = args[0] #print(d.keys()) var_dict = {} for key in d: var_dict[key] = Variable(d[key].cuda(gpu)) if len(args) > 1: return [var_dict] + check_gpu(gpu, *args[1:]) else: return [var_dict] # it's a list of arguments if len(args) > 1: return [Variable(a.cuda(gpu)) for a in args] else: # single argument, don't make a list return Variable(args[0].cuda(gpu))
e4849a0a99dd6ca7baeacadc130e46006dd23c3a
12,405
async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up the SleepIQ config entry.""" conf = entry.data email = conf[CONF_USERNAME] password = conf[CONF_PASSWORD] client_session = async_get_clientsession(hass) gateway = AsyncSleepIQ(client_session=client_session) try: await gateway.login(email, password) except SleepIQLoginException: _LOGGER.error("Could not authenticate with SleepIQ server") return False except SleepIQTimeoutException as err: raise ConfigEntryNotReady( str(err) or "Timed out during authentication" ) from err try: await gateway.init_beds() except SleepIQTimeoutException as err: raise ConfigEntryNotReady( str(err) or "Timed out during initialization" ) from err except SleepIQAPIException as err: raise ConfigEntryNotReady(str(err) or "Error reading from SleepIQ API") from err coordinator = SleepIQDataUpdateCoordinator(hass, gateway, email) # Call the SleepIQ API to refresh data await coordinator.async_config_entry_first_refresh() hass.data.setdefault(DOMAIN, {})[entry.entry_id] = coordinator hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True
e4a4765113c7bc1e3c50290c72f3ca8196ba2bf2
12,406
def expansion(svsal,temp,pres,salt=None,dliq=None,dvap=None, chkvals=False,chktol=_CHKTOL,salt0=None,dliq0=None,dvap0=None, chkbnd=False,useext=False,mathargs=None): """Calculate seawater-vapour thermal expansion coefficient. Calculate the thermal expansion coefficient of a seawater-vapour parcel. :arg float svsal: Total sea-vapour salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Seawater salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Seawater liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the seawater salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the seawater liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg dvap0: Initial guess for the salinity in kg/kg. If None (default) then `flu3a._dvap_default` is used. :type dvap0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Expansion coefficient in 1/K. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :raises RuntimeWarning: If the equilibrium seawater salinity is lower than the total parcel salinity. :Examples: >>> expansion(0.035,274.,610.) 0.4588634213 """ salt, dliq, dvap = eq_seavap(svsal,temp,pres,salt=salt,dliq=dliq, dvap=dvap,chkvals=chkvals,chktol=chktol,salt0=salt0,dliq0=dliq0, dvap0=dvap0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) g_p = seavap_g(0,0,1,svsal,temp,pres,salt=salt,dliq=dliq,dvap=dvap, useext=useext) g_tp = seavap_g(0,1,1,svsal,temp,pres,salt=salt,dliq=dliq,dvap=dvap, useext=useext) alpha = g_tp / g_p return alpha
78c47eabf1d8e96c655652c3c8847b391264b05b
12,407
import yaml def yaml_to_dict(yaml_str=None, str_or_buffer=None): """ Load YAML from a string, file, or buffer (an object with a .read method). Parameters are mutually exclusive. Parameters ---------- yaml_str : str, optional A string of YAML. str_or_buffer : str or file like, optional File name or buffer from which to load YAML. Returns ------- dict Conversion from YAML. """ if not yaml_str and not str_or_buffer: raise ValueError('One of yaml_str or str_or_buffer is required.') if yaml_str: d = yaml.load(yaml_str) elif isinstance(str_or_buffer, str): with open(str_or_buffer) as f: d = yaml.load(f) else: d = yaml.load(str_or_buffer) return d
37aefe8e5b1bcc734626cbf7177e3b3dffda2416
12,408
from typing import Dict from typing import Any from typing import Tuple def verify_block_arguments( net_part: str, block: Dict[str, Any], num_block: int, ) -> Tuple[int, int]: """Verify block arguments are valid. Args: net_part: Network part, either 'encoder' or 'decoder'. block: Block parameters. num_block: Block ID. Return: block_io: Input and output dimension of the block. """ block_type = block.get("type") if block_type is None: raise ValueError( "Block %d in %s doesn't a type assigned.", (num_block, net_part) ) if block_type == "transformer": arguments = {"d_hidden", "d_ff", "heads"} elif block_type == "conformer": arguments = { "d_hidden", "d_ff", "heads", "macaron_style", "use_conv_mod", } if block.get("use_conv_mod", None) is True and "conv_mod_kernel" not in block: raise ValueError( "Block %d: 'use_conv_mod' is True but " " 'conv_mod_kernel' is not specified" % num_block ) elif block_type == "causal-conv1d": arguments = {"idim", "odim", "kernel_size"} if net_part == "encoder": raise ValueError("Encoder does not support 'causal-conv1d.'") elif block_type == "conv1d": arguments = {"idim", "odim", "kernel_size"} if net_part == "decoder": raise ValueError("Decoder does not support 'conv1d.'") else: raise NotImplementedError( "Wrong type. Currently supported: " "causal-conv1d, conformer, conv-nd or transformer." ) if not arguments.issubset(block): raise ValueError( "%s in %s in position %d: Expected block arguments : %s." " See tutorial page for more information." % (block_type, net_part, num_block, arguments) ) if block_type in ("transformer", "conformer"): block_io = (block["d_hidden"], block["d_hidden"]) else: block_io = (block["idim"], block["odim"]) return block_io
cead023afcd72d1104e02b2d67406b9c47102589
12,409
from pathlib import Path def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (nparray, nx1 or nx10). conf: Objectness value from 0-1 (nparray). pred_cls: Predicted object classes (nparray). target_cls: True object classes (nparray). plot: Plot precision-recall curve at [email protected] save_dir: Plot save directory # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(target_cls) nc = unique_classes.shape[0] # number of classes, number of detections # Create Precision-Recall curve and compute AP for each class px, py = np.linspace(0, 1, 1000), [] # for plotting ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) for ci, c in enumerate(unique_classes): i = pred_cls == c n_l = (target_cls == c).sum() # number of labels n_p = i.sum() # number of predictions if n_p == 0 or n_l == 0: print("n_p: n_l:", n_p, n_l, flush=True) continue else: # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum(0) tpc = tp[i].cumsum(0) # Recall recall = tpc / (n_l + 1e-16) # recall curve #print("recall: ", recall, flush=True) #print("recall.shape: ", recall.shape, flush=True) r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases # Precision precision = tpc / (tpc + fpc) # precision curve #print("precision: ", precision, flush=True) #print("precision.shape: ", precision.shape, flush=True) p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score # AP from recall-precision curve for j in range(tp.shape[1]): ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) if plot and j == 0: py.append(np.interp(px, mrec, mpre)) # precision at [email protected] # Compute F1 (harmonic mean of precision and recall) f1 = 2 * p * r / (p + r + 1e-16) if plot: plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names) plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1') plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision') plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall') i = f1.mean(0).argmax() # max F1 index return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
9a41478f8b85b7d43ceeaaaf6425ece67672fc64
12,410
from typing import Optional def frame_aligned_point_error( pred_frames: r3.Rigids, target_frames: r3.Rigids, frames_mask: paddle.Tensor, pred_positions: r3.Vecs, target_positions: r3.Vecs, positions_mask: paddle.Tensor, length_scale: float, l1_clamp_distance: Optional[float] = None, epsilon=1e-4) -> paddle.Tensor: """Measure point error under different alignments. Jumper et al. (2021) Suppl. Alg. 28 "computeFAPE" Computes error between two structures with B points under A alignments derived from the given pairs of frames. Args: pred_frames: num_frames reference frames for 'pred_positions'. target_frames: num_frames reference frames for 'target_positions'. frames_mask: Mask for frame pairs to use. pred_positions: num_positions predicted positions of the structure. target_positions: num_positions target positions of the structure. positions_mask: Mask on which positions to score. length_scale: length scale to divide loss by. l1_clamp_distance: Distance cutoff on error beyond which gradients will be zero. epsilon: small value used to regularize denominator for masked average. Returns: Masked Frame Aligned Point Error. """ def unsqueeze_rigids(rigid, axis=-1): """add an axis in the axis of rot.xx and trans.x""" if axis < 0: axis_t = axis - 1 axis_r = axis - 2 else: axis_t = axis axis_r = axis rotation = paddle.unsqueeze(rigid.rot.rotation, axis=axis_r) translation = paddle.unsqueeze(rigid.trans.translation, axis=axis_t) return r3.Rigids(rot=r3.Rots(rotation), trans=r3.Vecs(translation)) def unsqueeze_vecs(vecs, axis=-1): """add an axis in the axis of rot.xx and trans.x""" if axis < 0: axis_t = axis - 1 else: axis_t = axis translation = paddle.unsqueeze(vecs.translation, axis=axis_t) return r3.Vecs(translation) # Compute array of predicted positions in the predicted frames. # r3.Vecs (num_frames, num_positions) local_pred_pos = r3.rigids_mul_vecs( unsqueeze_rigids(r3.invert_rigids(pred_frames)), unsqueeze_vecs(pred_positions, axis=1)) # Compute array of target positions in the target frames. # r3.Vecs (num_frames, num_positions) local_target_pos = r3.rigids_mul_vecs( unsqueeze_rigids(r3.invert_rigids(target_frames)), unsqueeze_vecs(target_positions, axis=1)) # Compute errors between the structures. # paddle.Tensor (num_frames, num_positions) error_dist = paddle.sqrt(r3.vecs_squared_distance(local_pred_pos, local_target_pos) + epsilon) if l1_clamp_distance: error_dist = paddle.clip(error_dist, min=0, max=l1_clamp_distance) normed_error = error_dist / length_scale normed_error *= paddle.unsqueeze(frames_mask, axis=-1) normed_error *= paddle.unsqueeze(positions_mask, axis=-2) normalization_factor = ( paddle.sum(frames_mask, axis=-1) * paddle.sum(positions_mask, axis=-1)) return (paddle.sum(normed_error, axis=[-2, -1]) / (epsilon + normalization_factor))
fe66fea6d3d6ca418b64a2d18bdc75a6e10d6707
12,411
def remove_app_restriction_request(machine_id, comment): """Enable execution of any application on the machine. Args: machine_id (str): Machine ID comment (str): Comment to associate with the action Notes: Machine action is a collection of actions you can apply on the machine, for more info https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/machineaction Returns: dict. Machine action """ cmd_url = '/machines/{}/unrestrictCodeExecution'.format(machine_id) json = { 'Comment': comment } response = http_request('POST', cmd_url, json=json) return response
f4dd44cbef6194b9fcc301fb19bb5c3ba77ad269
12,412
import torch def fix_bond_lengths( dist_mat: torch.Tensor, bond_lengths: torch.Tensor, delim: int = None, delim_value: float = ARBITRARILY_LARGE_VALUE) -> torch.Tensor: """ Replace one-offset diagonal entries with ideal bond lengths """ mat_len = dist_mat.shape[1] bond_lengths = torch.cat([bond_lengths] * (mat_len // 3))[:mat_len - 1] dist_mat[1:, :-1][torch.eye(mat_len - 1) == 1] = bond_lengths dist_mat[:-1, 1:][torch.eye(mat_len - 1) == 1] = bond_lengths # Set chain break distance to arbitrarily large value for replacement by F-W algorithm if delim is not None: dist_mat[delim * 3 + 2, (delim + 1) * 3] = delim_value dist_mat[(delim + 1) * 3, delim * 3 + 2] = delim_value return dist_mat
1112ad7019c1cb82360ad6e784f7f8262dc7b4a0
12,413
def CommandToString(command): """Returns quoted command that can be run in bash shell.""" return ' '.join(cmd_helper.SingleQuote(c) for c in command)
bcb6d3f108997b35336a68a559243931ca50a2c5
12,414
def sample_trilinear(t, coords, img_h=128, img_w=128): """ Samples noise octaves in one shot :param t: noise cube [n_octaves, noise_res, noise_res, noise_res] (same noise foreach sample in batch) :param coords: octave-transformed sampling positions [bs, n_octaves, 3, img_h*img_w] :param img_h: height of image to synthesize :param img_w: width of image to synthesize :return: sampled noise octaves [bs, n_octaves, img_h, img_w] """ # in- and output dimensions n_octaves, noise_res = t.get_shape().as_list()[:2] bs = coords.get_shape().as_list()[0] # all contributing source coordinates (interpolation endpoints) x0 = tf.floor(coords[:, :, 0, :]) x1 = x0 + 1 y0 = tf.floor(coords[:, :, 1, :]) y1 = y0 + 1 z0 = tf.floor(coords[:, :, 2, :]) z1 = z0 + 1 # interpolation weights w_x = coords[:, :, 0, :] - x0 w_y = coords[:, :, 1, :] - y0 w_z = coords[:, :, 2, :] - z0 # modulo for out-of-bound indices x0 = tf.floormod(x0, tf.ones_like(x0) * noise_res) x1 = tf.floormod(x1, tf.ones_like(x1) * noise_res) y0 = tf.floormod(y0, tf.ones_like(y0) * noise_res) y1 = tf.floormod(y1, tf.ones_like(y1) * noise_res) z0 = tf.floormod(z0, tf.ones_like(z0) * noise_res) z1 = tf.floormod(z1, tf.ones_like(z1) * noise_res) # for mem efficiency we flatten voxels s.t. we need only one index per element instead of 3 t = tf.reshape(t, [n_octaves, noise_res**3]) # index arrays (in flattened voxel array) idx_x0_y0_z0 = tf.cast(y0 * noise_res + x0 * noise_res**2 + z0, tf.int32) idx_x0_y0_z1 = tf.cast(y0 * noise_res + x0 * noise_res**2 + z1, tf.int32) idx_x0_y1_z0 = tf.cast(y1 * noise_res + x0 * noise_res**2 + z0, tf.int32) idx_x0_y1_z1 = tf.cast(y1 * noise_res + x0 * noise_res**2 + z1, tf.int32) idx_x1_y0_z0 = tf.cast(y0 * noise_res + x1 * noise_res**2 + z0, tf.int32) idx_x1_y0_z1 = tf.cast(y0 * noise_res + x1 * noise_res**2 + z1, tf.int32) idx_x1_y1_z0 = tf.cast(y1 * noise_res + x1 * noise_res**2 + z0, tf.int32) idx_x1_y1_z1 = tf.cast(y1 * noise_res + x1 * noise_res**2 + z1, tf.int32) def _gather(idx): # TODO: not quite efficient. ;) out = [] for i in range(n_octaves): g = tf.gather(t[i], idx[:, i, :], axis=0, batch_dims=1) out.append(tf.expand_dims(g, 1)) return tf.concat(out, 1) # gather contributing samples --> now 2D! val_x0_y0_z0 = _gather(idx_x0_y0_z0) val_x0_y0_z1 = _gather(idx_x0_y0_z1) val_x0_y1_z0 = _gather(idx_x0_y1_z0) val_x0_y1_z1 = _gather(idx_x0_y1_z1) val_x1_y0_z0 = _gather(idx_x1_y0_z0) val_x1_y0_z1 = _gather(idx_x1_y0_z1) val_x1_y1_z0 = _gather(idx_x1_y1_z0) val_x1_y1_z1 = _gather(idx_x1_y1_z1) # interpolate along z ... c_00 = val_x0_y0_z0 * (1.0 - w_z) + val_x0_y0_z1 * w_z c_01 = val_x0_y1_z0 * (1.0 - w_z) + val_x0_y1_z1 * w_z c_10 = val_x1_y0_z0 * (1.0 - w_z) + val_x1_y0_z1 * w_z c_11 = val_x1_y1_z0 * (1.0 - w_z) + val_x1_y1_z1 * w_z # ... along y ... c_0 = c_00 * (1.0 - w_y) + c_01 * w_y c_1 = c_10 * (1.0 - w_y) + c_11 * w_y # ... and along x c = c_0 * (1.0 - w_x) + c_1 * w_x # reshape c = tf.reshape(c, [bs, n_octaves, img_h, img_w]) return c
251a0eeaefe3eccd1d4d72ba16aa121a5f17c483
12,415
import re def version(output): """ `git --version` > git version 1.8.1.1 """ output = output.rstrip() words = re.split('\s+', output, 3) if not words or words[0] != 'git' or words[1] != 'version': raise WrongOutputError() version = words[2] parts = version.split('.') try: major = int(parts[0]) if len(parts) > 0 else None except ValueError: major = None try: minor = int(parts[1]) if len(parts) > 1 else None except ValueError: minor = None return Version(version, parts, major, minor)
21a16245cf7729b56588016f358667b210113eec
12,416
def set_up_s3_encryption_configuration(kms_arn=None): """ Use the default SSE-S3 configuration for the journal export if a KMS key ARN was not given. :type kms_arn: str :param kms_arn: The Amazon Resource Name to encrypt. :rtype: dict :return: The encryption configuration for JournalS3Export. """ if kms_arn is None: return {'ObjectEncryptionType': 'SSE_S3'} return {'ObjectEncryptionType': {'S3ObjectEncryptionType': 'SSE_KMS', 'KmsKeyArn': kms_arn}}
dd8663c17e040423a08c772fd9ca64d25abd2850
12,417
import click import json def search(dataset, node, aoi, start_date, end_date, lng, lat, dist, lower_left, upper_right, where, geojson, extended, api_key): """ Search for images. """ node = get_node(dataset, node) if aoi == "-": src = click.open_file('-') if not src.isatty(): lines = src.readlines() if len(lines) > 0: aoi = json.loads(''.join([ line.strip() for line in lines ])) bbox = map(get_bbox, aoi.get('features') or [aoi])[0] lower_left = bbox[0:2] upper_right = bbox[2:4] if where: # Query the dataset fields endpoint for queryable fields resp = api.dataset_fields(dataset, node) def format_fieldname(s): return ''.join(c for c in s if c.isalnum()).lower() field_lut = { format_fieldname(field['name']): field['fieldId'] for field in resp['data'] } where = { field_lut[format_fieldname(k)]: v for k, v in where if format_fieldname(k) in field_lut } if lower_left: lower_left = dict(zip(['longitude', 'latitude'], lower_left)) upper_right = dict(zip(['longitude', 'latitude'], upper_right)) result = api.search(dataset, node, lat=lat, lng=lng, distance=dist, ll=lower_left, ur=upper_right, start_date=start_date, end_date=end_date, where=where, extended=extended, api_key=api_key) if geojson: result = to_geojson(result) print(json.dumps(result))
309a98cf3cfc81f12631bbc15ee0325d16385338
12,418
from typing import Callable def _make_rnn_cell(spec: RNNSpec) -> Callable[[], tf.nn.rnn_cell.RNNCell]: """Return the graph template for creating RNN cells.""" return RNN_CELL_TYPES[spec.cell_type](spec.size)
48cf85bcb8d39ab7b4dd150fc890eb281d9b83d9
12,419
def run_baselines(env, seed, log_dir): """Create baselines model and training. Replace the ppo and its training with the algorithm you want to run. Args: env (gym.Env): Environment of the task. seed (int): Random seed for the trial. log_dir (str): Log dir path. Returns: str: The log file path. """ seed = seed + 1000000 set_global_seeds(seed) env.seed(seed) # Set up logger for baselines configure(dir=log_dir, format_strs=['stdout', 'log', 'csv', 'tensorboard']) baselines_logger.info('seed={}, logdir={}'.format( seed, baselines_logger.get_dir())) env = DummyVecEnv([ lambda: bench.Monitor( env, baselines_logger.get_dir(), allow_early_resets=True) ]) ddpg.learn(network='mlp', env=env, nb_epochs=params['n_epochs'], nb_epoch_cycles=params['steps_per_epoch'], normalize_observations=False, critic_l2_reg=0, actor_lr=params['policy_lr'], critic_lr=params['qf_lr'], gamma=params['discount'], nb_train_steps=params['n_train_steps'], nb_rollout_steps=params['n_rollout_steps'], nb_eval_steps=100) return osp.join(log_dir, 'progress.csv')
2a020c5efe548d3722155569fbe69cd836efeebd
12,420
from config import STL10_PATH import os def load_stl(): """Loads the STL-10 dataset from config.STL10_PATH or downloads it if necessary. :return: (x_train, y_train), (x_test, y_test), min, max :rtype: tuple of numpy.ndarray), (tuple of numpy.ndarray), float, float """ min_, max_ = 0., 1. # Download and extract data if needed path = data_utils.get_file('stl10_binary', cache_subdir=STL10_PATH, untar=True, origin='https://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz') with open(os.path.join(path, 'train_X.bin'), 'rb') as f: x_train = np.fromfile(f, dtype=np.uint8) x_train = np.reshape(x_train, (-1, 3, 96, 96)) with open(os.path.join(path, 'test_X.bin'), 'rb') as f: x_test = np.fromfile(f, dtype=np.uint8) x_test = np.reshape(x_test, (-1, 3, 96, 96)) if k.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) with open(os.path.join(path, 'train_y.bin'), 'rb') as f: y_train = np.fromfile(f, dtype=np.uint8) y_train -= 1 with open(os.path.join(path, 'test_y.bin'), 'rb') as f: y_test = np.fromfile(f, dtype=np.uint8) y_test -= 1 x_train, y_train = preprocess(x_train, y_train) x_test, y_test = preprocess(x_test, y_test) return (x_train, y_train), (x_test, y_test), min_, max_
a521cb4d5ff5bcc095cccaab256297ac21b38cc2
12,421
def count_transitions(hypno): """ return the count for all possible transitions """ possible_transitions = [(0,1), (0,2), (0,4), # W -> S1, S2, REM (1,2), (1,0), (1,3), # S1 -> W, S2, REM (2,0), (2,1), (2,3), (2,4), # S2 -> W, S1, SWS, REM (3,0), (3,2), # SWS -> W, S2 (4,0), (4,1), (4,2)] # counts = [] for trans in possible_transitions: counts += [transition_index(hypno, trans)] return counts
4a0dc835c2e72bf46ad8d3ebe33256f32ce2ede9
12,422
def mu_ref_normal_sampler_tridiag(loc=0.0, scale=1.0, beta=2, size=10, random_state=None): """Implementation of the tridiagonal model to sample from .. math:: \\Delta(x_{1}, \\dots, x_{N})^{\\beta} \\prod_{n=1}^{N} \\exp(-\\frac{(x_i-\\mu)^2}{2\\sigma^2} ) dx_i .. seealso:: :cite:`DuEd02` II-C """ rng = check_random_state(random_state) if not (beta > 0): raise ValueError('`beta` must be positive. Given: {}'.format(beta)) # beta/2*[N-1, N-2, ..., 1] b_2_Ni = 0.5 * beta * np.arange(size - 1, 0, step=-1) alpha_coef = rng.normal(loc=loc, scale=scale, size=size) beta_coef = rng.gamma(shape=b_2_Ni, scale=scale**2) return la.eigvalsh_tridiagonal(alpha_coef, np.sqrt(beta_coef))
75e7d46ec4816bbfa46443537f66cd27043b212d
12,423
import os import re def get_ofi_info(hosts, supported=None, verbose=True): """Get the OFI provider information from the specified hosts. Args: hosts (NodeSet): hosts from which to gather the information supported (list, optional): list of supported providers when if provided will limit the inclusion to only those providers specified. Defaults to None. verbose (bool, optional): display command details. Defaults to True. Returns: dict: a dictionary of interface keys with a dictionary value of a comma-separated string of providers key with a NodeSet value where the providers where detected. """ task = run_task(hosts, "fi_info", verbose=verbose) if verbose: display_task(task) # Populate a dictionary of interfaces with a list of provider lists and NodSet of hosts on which # the providers were detected. providers = {} results = dict(task.iter_retcodes()) if 0 in results: for output, nodelist in task.iter_buffers(results[0]): output_lines = [line.decode("utf-8").rstrip(os.linesep) for line in output] nodeset = NodeSet.fromlist(nodelist) # Find all the provider and domain pairings. The fi_info output reports these on # separate lines when processing the re matches ensure each domain is preceded by a # provider. interface_providers = {} data = re.findall(r"(provider|domain):\s+([A-Za-z0-9;_+]+)", "\n".join(output_lines)) while data: provider = list(data.pop(0)) if provider[0] == "provider" and data[0][0] == "domain": provider.pop(0) domain = list(data.pop(0)) domain.pop(0) # A provider and domain must be specified if not provider or not domain: continue # Add 'ofi+' to the provider provider = ["+".join(["ofi", item]) for item in provider] # Only include supported providers if a supported list is provided if supported and provider[0] not in supported: continue if domain[0] not in interface_providers: interface_providers[domain[0]] = set() interface_providers[domain[0]].update(provider) for interface, provider_set in interface_providers.items(): if interface not in providers: providers[interface] = {} provider_key = ",".join(list(provider_set)) if provider_key not in providers[interface]: providers[interface][provider_key] = NodeSet() providers[interface][provider_key].update(nodeset) return providers
dbb9669d642a68e70aaaee7bc0e4f78e15474b0b
12,424
def get_pokemon(name:str) -> dict: """ Busca el pokémon dado su nombre en la base de datos y crea un diccionario con su información básica. Paramétros: name(str): Nombre del pokémon a buscar Retorna: Diccionario con la información básica del pokémon y sus evoluciones. """ try: p = Pokemon.objects.get(name=name) pokemon = { "name": p.name, "id": p.id, "weight": p.weight, "height": p.height, "stats": [], "evolutions": [] } stats = PokemonStat.objects.filter(pokemon_name=p) for stat in stats: pokemon["stats"].append({"stat": stat.stat_id, "base": stat.base}) evolutionChain = PokemonEvolution.objects.get(pokemon=p) evolutionId = evolutionChain.evolution_chain position = evolutionChain.position chain = PokemonEvolution.objects.filter(evolution_chain=evolutionId) for evolution in chain: if evolution.position > position: pokemon["evolutions"].append({"name": evolution.pokemon.name, "id": evolution.pokemon.id, "evolution_type": "Evolution"}) elif evolution.position < position: pokemon["evolutions"].append({"name": evolution.pokemon.name, "id": evolution.pokemon.id, "evolution_type": "Preevolution"}) return pokemon except ObjectDoesNotExist: return None
fa19704b2dfb6d2223a73264df6b5dc9e866fb8e
12,425
def create_cluster(module, switch, name, node1, node2): """ Method to create a cluster between two switches. :param module: The Ansible module to fetch input parameters. :param switch: Name of the local switch. :param name: The name of the cluster to create. :param node1: First node of the cluster. :param node2: Second node of the cluster. :return: String describing if cluster got created or if it's already exists. """ global CHANGED_FLAG cli = pn_cli(module) clicopy = cli cli += ' switch %s cluster-show format name no-show-headers ' % node1 cluster_list = run_cli(module, cli).split() if name not in cluster_list: cli = clicopy cli += ' switch %s cluster-create name %s ' % (switch, name) cli += ' cluster-node-1 %s cluster-node-2 %s ' % (node1, node2) if 'Success' in run_cli(module, cli): CHANGED_FLAG.append(True) return ' %s: %s created successfully \n' % (switch, name) else: return ' %s: %s already exists \n' % (switch, name)
a7f0a415d019b7fa3622d18da396879df566b365
12,426
from typing import List import random def random_terminals_for_primitive( primitive_set: dict, primitive: Primitive ) -> List[Terminal]: """ Return a list with a random Terminal for each required input to Primitive. """ return [random.choice(primitive_set[term_type]) for term_type in primitive.input]
b3160800bb5da87c0215ed4857f2596934d28c05
12,427
def _specie_is_intermediate_old( specie_id: str, specie_dict: dict = None, ) -> bool: """Detect is a specie should be considered as an intermediate compound. FIXME, this needs to be refined so that we don't rely on the specie ID. :param specie_id: specie ID :type: str :param specie_dict: dictionary about the specie :type specie_dict: dict :return: true if it is, otherwise false :rtype: bool """ if specie_id.startswith('CMPD_'): return True return False
b1a4f99abf0379ea3cacf6ab53f45fca636072c5
12,428
def where_from_pos(text, pos): """ Format a textual representation of the given position in the text. """ return "%d:%d" % (line_from_pos(text, pos), col_from_pos(text, pos))
587387f017fe32b297c06123fc3853c18a7aea46
12,429
def generateHuffmanCodes (huffsize): """ Calculate the huffman code of each length. """ huffcode = [] k = 0 code = 0 # Magic for i in range (len (huffsize)): si = huffsize[i] for k in range (si): huffcode.append ((i + 1, code)) code += 1 code <<= 1 return huffcode
60d5a2bd5524627dd5cc624dbb6b0ea09b8032d4
12,430
def one_hot_df(df, cat_col_list): """ Make one hot encoding on categoric columns. Returns a dataframe for the categoric columns provided. ------------------------- inputs - df: original input DataFrame - cat_col_list: list of categorical columns to encode. outputs - df_hot: one hot encoded subset of the original DataFrame. """ df_hot = pd.DataFrame() for col in cat_col_list: encoded_matrix = col_encoding(df, col) df_ = pd.DataFrame(encoded_matrix, columns = [col+ ' ' + str(int(i))\ for i in range(encoded_matrix.shape[1])]) df_hot = pd.concat([df_hot, df_], axis = 1) return df_hot
d47978a551edbc11f93f9a2e87dbe1598e39161b
12,431
from typing import List from typing import Optional import select from typing import Dict async def load_users_by_id(user_ids: List[int]) -> List[Optional[User]]: """ Batch-loads users by their IDs. """ query = select(User).filter(User.id.in_(user_ids)) async with get_session() as session: result: Result = await session.execute(query) user_map: Dict[int, User] = {user.id: user for user in result.scalars()} return [user_map.get(user_id) for user_id in user_ids]
ac9d0a16a40d478ed7fec590bf591aa0124270d9
12,432
def create_timetravel_model(for_model): """ Returns the newly created timetravel model class for the model given. """ if for_model._meta.proxy: _tt_model = for_model._meta.concrete_model._tt_model for_model._tt_model = _tt_model for_model._meta._tt_model = _tt_model return opt = for_model._meta name = 'tt_%s' % opt.db_table class Meta: app_label = get_migration_app() db_table = name index_together = [[OK, VU]] verbose_name = name[:39] attrs = {'Meta': Meta, '_tt_is_timetravel_model': True, '__module__': for_model.__module__} fields = copy_fields(for_model) attrs.update(fields) for_model._tt_has_history = True ret = type(str(name), (Model,), attrs) for_model._tt_model = ret for_model._meta._tt_model = ret return ret
6a2557f3737ce014e14ba9dd36cd7a6d9c8c78b7
12,433
def public_route_server_has_read(server_id, user_id=None): """ check if current user has read access to the given server """ user = user_id and User.query.get_or_404(user_id) or current_user server = DockerServer.query.get_or_404(server_id) if server.has_group_read(user): return Response("read access", 200) abort(403)
b9f812feac7c7e951f8c37178fd1dc2913601631
12,434
def isValidPublicAddress(address: str) -> bool: """Check if address is a valid NEO address""" valid = False if len(address) == 34 and address[0] == 'A': try: base58.b58decode_check(address.encode()) valid = True except ValueError: # checksum mismatch valid = False return valid
a99f08c289f9d3136adf7e17697645131e785ecb
12,435
def cost_to_go_np(cost_seq, gamma_seq): """ Calculate (discounted) cost to go for given cost sequence """ # if np.any(gamma_seq == 0): # return cost_seq cost_seq = gamma_seq * cost_seq # discounted reward sequence cost_seq = np.cumsum(cost_seq[:, ::-1], axis=-1)[:, ::-1] # cost to go (but scaled by [1 , gamma, gamma*2 and so on]) cost_seq /= gamma_seq # un-scale it to get true discounted cost to go return cost_seq
bea4de4cb32c3a346ebe8ea532c2c94589893e65
12,436
import re def parse_args(): """ Parses the command line arguments. """ # Override epilog formatting OptionParser.format_epilog = lambda self, formatter: self.epilog parser = OptionParser(usage="usage: %prog -f secret.txt | --file secret.txt | --folder allmysecrets", epilog=EXAMPLES) parser.add_option("-p", "--password", dest="password", help="set password file for AES decryption") parser.add_option("-f", "--file", dest="file", help="encrypt/decrypt this file") parser.add_option("-F", "--folder", dest="folder", help="encrypt/decrypt all files in this folder") parser.add_option("--encrypt", action="store_true", dest="encrypt", help="encrypt file(s)") parser.add_option("--decrypt", action="store_true", dest="decrypt", help="decrypt file(s)") parser.add_option("--recursive", action="store_true", dest="recursive", help="encrypt/decrypt files in folder recursively") parser.formatter.store_option_strings(parser) parser.formatter.store_option_strings = lambda _: None for option, value in parser.formatter.option_strings.items(): value = re.sub(r"\A(-\w+) (\w+), (--[\w-]+=(\2))\Z", r"\g<1>/\g<3>", value) value = value.replace(", ", '/') if len(value) > MAX_HELP_OPTION_LENGTH: value = ("%%.%ds.." % (MAX_HELP_OPTION_LENGTH - parser.formatter.indent_increment)) % value parser.formatter.option_strings[option] = value args = parser.parse_args()[0] if not any((args.file, args.folder)): parser.error("Required argument is missing. Use '-h' for help.") if not any((args.encrypt, args.decrypt)): parser.error("Required argument is missing. Use '-h' for help.") if args.decrypt and not args.password: parser.error("Required password file is missing. Use '-h' for help.") return args
8f696bb8b419269766bceadb42b36f2a3e052e5b
12,437
def x_to_ggsg(seq): """replace Xs with a Serine-Glycine linker (GGSG pattern) seq and return value are strings """ if "X" not in seq: return seq replacement = [] ggsg = _ggsg_generator() for aa in seq: if aa != "X": replacement.append(aa) # restart linker iterator for next stretch of Xs ggsg = _ggsg_generator() else: replacement.append(next(ggsg)) return "".join(replacement)
53885ca76484f25a04ffc4220af0d7b0e56defd4
12,438
from typing import OrderedDict def gini_pairwise(idadf, target=None, features=None, ignore_indexer=True): """ Compute the conditional gini coefficients between a set of features and a set of target in an IdaDataFrame. Parameters ---------- idadf : IdaDataFrame target : str or list of str, optional A column or list of columns against to be used as target. Per default, consider all columns features : str or list of str, optional A column or list of columns to be used as features. Per default, consider all columns. ignore_indexer : bool, default: True Per default, ignore the column declared as indexer in idadf Returns ------- Pandas.DataFrame or Pandas.Series if only one target Notes ----- Input columns as target and features should be categorical, otherwise this measure does not make much sense. Examples -------- >>> idadf = IdaDataFrame(idadb, "IRIS") >>> gini_pairwise(idadf) """ # Check input target, features = _check_input(idadf, target, features, ignore_indexer) gini_dict = OrderedDict() length = len(idadf) for t in target: gini_dict[t] = OrderedDict() features_notarget = [x for x in features if (x != t)] for feature in features_notarget: if t not in gini_dict: gini_dict[t] = OrderedDict() query = ("SELECT SUM((POWER(c,2) - gini)/c)/%s FROM "+ "(SELECT SUM(POWER(count,2)) as gini, SUM(count) as c FROM "+ "(SELECT CAST(COUNT(*) AS FLOAT) AS count, \"%s\" FROM %s GROUP BY \"%s\",\"%s\") "+ "GROUP BY \"%s\")") query0 = query%(length, feature, idadf.name, t, feature, feature) gini_dict[t][feature] = idadf.ida_scalar_query(query0) result = pd.DataFrame(gini_dict).fillna(np.nan) if len(result.columns) > 1: order = [x for x in result.columns if x in features] + [x for x in features if x not in result.columns] result = result.reindex(order) result = result.dropna(axis=1, how="all") if len(result.columns) == 1: if len(result) == 1: result = result.iloc[0,0] else: result = result[result.columns[0]].copy() result.sort_values(ascending = True) else: result = result.fillna(0) return result
aa886c8d44e54597e86f0736ea383671bda2e13f
12,439
def init_isolated_80(): """ Real Name: b'init Isolated 80' Original Eqn: b'0' Units: b'person' Limits: (None, None) Type: constant b'' """ return 0
5511cac38bf9bd68446fcb1dc41ac96807ea57a2
12,440
def xcom_api_setup(): """Instantiate api""" return XComApi(API_CLIENT)
1a47066f389ab2846f1aa31ce8338389def07e6d
12,441
def zeros_tensor(*args, **kwargs): """Construct a tensor of a given shape with every entry equal to zero.""" labels = kwargs.pop("labels", []) dtype = kwargs.pop("dtype", np.float) base_label = kwargs.pop("base_label", "i") return Tensor(np.zeros(*args, dtype=dtype), labels=labels, base_label=base_label)
3baba23ba763afb51c715a85aa6f84c8c2d99c43
12,442
from typing import Tuple def reg_split_from( splitted_mappings: np.ndarray, splitted_sizes: np.ndarray, splitted_weights: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ When creating the regularization matrix of a source pixelization, this function assumes each source pixel has been split into a cross of four points (the size of which is based on the area of the source pixel). This cross of points represents points which together can evaluate the gradient of the pixelization's reconstructed values. This function takes each cross of points and determines the regularization weights of every point on the cross, to construct a regulariaztion matrix based on the gradient of each pixel. The size of each cross depends on the Voronoi pixel area, thus this regularization scheme and its weights depend on the pixel area (there are larger weights for bigger pixels). This ensures that bigger pixels are regularized more. The number of pixel neighbors over which regularization is 4 * the total number of source pixels. This contrasts other regularization schemes, where the number of neighbors changes depending on, for example, the Voronoi mesh geometry. By having a fixed number of neighbors this removes stochasticty in the regularization that is applied to a solution. There are cases where a grid has over 100 neighbors, corresponding to very coordinate transformations. In such extreme cases, we raise a `exc.FitException`. Parameters ---------- splitted_mappings splitted_sizes splitted_weights Returns ------- """ max_j = np.shape(splitted_weights)[1] - 1 splitted_weights *= -1.0 for i in range(len(splitted_mappings)): pixel_index = i // 4 flag = 0 for j in range(splitted_sizes[i]): if splitted_mappings[i][j] == pixel_index: splitted_weights[i][j] += 1.0 flag = 1 if j >= max_j: raise exc.PixelizationException( "the number of Voronoi natural neighbours exceeds 100." ) if flag == 0: splitted_mappings[i][j + 1] = pixel_index splitted_sizes[i] += 1 splitted_weights[i][j + 1] = 1.0 return splitted_mappings, splitted_sizes, splitted_weights
545f0bd7345a8ab908d2338eaa7cb4c3562f4234
12,443
def get_initiator_IP(json_isessions): """ pull the IP from the host session """ print("-" * 20 + " get_initiator started") for session in json_isessions['sessions']: session_array[session['initiatorIP']] = session['initiatorName'] return session_array
4140b9f32727d1e5e1e98fd6714e8d91276b2272
12,444
def get_data_for_recent_jobs(recency_msec=DEFAULT_RECENCY_MSEC): """Get a list containing data about recent jobs. This list is arranged in descending order based on the time the job was enqueued. At most NUM_JOBS_IN_DASHBOARD_LIMIT job descriptions are returned. Args: - recency_secs: the threshold for a recent job, in seconds. """ recent_job_models = job_models.JobModel.get_recent_jobs( NUM_JOBS_IN_DASHBOARD_LIMIT, recency_msec) return [_get_job_dict_from_job_model(model) for model in recent_job_models]
032f27b55c70947a44cd6ed244291118e3660f77
12,445
def construct_outgoing_multicast_answers(answers: _AnswerWithAdditionalsType) -> DNSOutgoing: """Add answers and additionals to a DNSOutgoing.""" out = DNSOutgoing(_FLAGS_QR_RESPONSE | _FLAGS_AA, multicast=True) _add_answers_additionals(out, answers) return out
65f0a2a42f9d3f1bd8fbc74e8303248adf01e65d
12,446
import struct def load_analog_binary_v1(filename): """Load analog traces stored in the binary format by Logic 1.2.0+ The format is documented at https://support.saleae.com/faq/technical-faq/data-export-format-analog-binary Returns (data, period) where data is a numpy array of 32-bit floats of shape (nchannels, nsamples) and period is the sampling period in seconds. """ with open(filename, 'rb') as f: nsamples, nchannels, period = struct.unpack('<QId', f.read(20)) if nchannels > 16: raise RuntimeError(f'Invalid nchannels={nchannels}. Are you sure this is binary analog data from v1.2.0+?') if period < 1 / 50e6 or period > 1: raise RuntimeError(f'Invalid period={period}. Are you sure this is binary analog data from v1.2.0+?') data = np.fromfile(f, dtype=np.dtype('<f'), count=nsamples * nchannels).reshape(nchannels, nsamples).astype('=f') return data, period
5fcb97c4da367a8abeb12d7dc2852dbb7412956d
12,447
import click def setup_phantomjs(): """Create and return a PhantomJS browser object.""" try: # Setup capabilities for the PhantomJS browser phantomjs_capabilities = DesiredCapabilities.PHANTOMJS # Some basic creds to use against an HTTP Basic Auth prompt phantomjs_capabilities['phantomjs.page.settings.userName'] = 'none' phantomjs_capabilities['phantomjs.page.settings.password'] = 'none' # Flags to ignore SSL problems and get screenshots service_args = [] service_args.append('--ignore-ssl-errors=true') service_args.append('--web-security=no') service_args.append('--ssl-protocol=any') # Create the PhantomJS browser and set the window size browser = webdriver.PhantomJS(desired_capabilities=phantomjs_capabilities,service_args=service_args) browser.set_window_size(1920,1080) except Exception as error: click.secho("[!] Bad news: PhantomJS failed to load (not installed?), so activities \ requiring a web browser will be skipped.",fg="red") click.secho("L.. Details: {}".format(error),fg="red") browser = None return browser
5a8e536850e2a3c39adaf3228fc1a1f7ad4694dd
12,448
def normal_pdf(x, mu, cov, log=True): """ Calculate the probability density of Gaussian (Normal) distribution. Parameters ---------- x : float, 1-D array_like (K, ), or 2-D array_like (K, N) The variable for calculating the probability density. mu : float or 1-D array_like, (K, ) The mean of the Gaussian distribution. cov : float or 2-D array_like, (K, K) The variance or the covariance matrix of the Gaussian distribution. log : bool If true, the return value is at log scale. Returns ------- pdf : numpy float The probability density of x. if N==1, return a float elif N>1, return an array """ if len(np.array(mu).shape) == 0: x = np.array(x).reshape(-1,1) elif len(np.array(x).shape) <= 1: x = np.array(x).reshape(1, -1) x = x - np.array(mu) N, K = x.shape if len(np.array(cov).shape) < 2: cov = np.array(cov).reshape(-1,1) cov_inv = np.linalg.inv(cov) cov_det = np.linalg.det(cov) if cov_det <= 0: print("Warning: the det of covariance is not positive!") return None pdf_all = np.zeros(N) pdf_part1 = -(K*np.log(2*np.pi) + np.log(cov_det)) / 2.0 for i in range(N): pdf_all[i] = pdf_part1 - np.dot(np.dot(x[i,:], cov_inv), x[i,:]) / 2.0 if log == False: pdf_all = np.exp(pdf_all) if N == 1: pdf_all = pdf_all[0] return pdf_all
4cdb573e1283a5740cb8d5b518b69c02bc013fe6
12,449
import sqlite3 from datetime import datetime def get_quiz(id, user): """Get Quiz""" conn = sqlite3.connect(DBNAME) cursor = conn.cursor() if user == 'admin' or user == 'fabioja': cursor.execute( "SELECT id, release, expire, problem, tests, results, diagnosis, numb from QUIZ where id = {0}".format(id)) else: cursor.execute("SELECT id, release, expire, problem, tests, results, diagnosis, numb from QUIZ where id = {0} and release < '{1}'".format( id, datetime.now().strftime("%Y-%m-%d %H:%M:%S"))) info = [reg for reg in cursor.fetchall()] conn.close() return info
7e517e2ca84ebd320883950d4c3d6e572f82c226
12,450
def filesystem_entry(filesystem): """ Filesystem tag {% filesystem_entry filesystem %} is used to display a single filesystem. Arguments --------- filesystem: filesystem object Returns ------- A context which maps the filesystem object to filesystem. """ return {'filesystem': filesystem}
3afbd0b8ee9e72ab8841ca5c5517396650d2a898
12,451
def haversine(lat1, lon1, lat2, lon2, units='miles'): """ Calculates arc length distance between two lat_lon points (must be in radians) lat2 & and lon2 can be numpy arrays units can be 'miles' or 'km' (kilometers) """ earth_radius = {'miles': 3959., 'km': 6371.} a = np.square(np.sin((lat2 - lat1)/2.)) + np.cos(lat1) * np.cos(lat2) * np.square(np.sin((lon2 - lon1)/2.)) return 2 * earth_radius[units] * np.arcsin(np.sqrt(a))
cadfa496f39e0a02115140d827bebfa6ff96a2dd
12,452
from typing import Optional def OptionalDateField(description='',validators=[]): """ A custom field that makes the DateField optional """ validators.append(Optional()) field = DateField(description,validators) return field
66695ca94ff7d7283ff5508b4ef3f78efba9a988
12,453
def init_brats_metrics(): """Initialize dict for BraTS Dice metrics""" metrics = {} metrics['ET'] = {'labels': [3]} metrics['TC'] = {'labels': [1, 3]} metrics['WT'] = {'labels': [1, 2, 3]} for _, value in metrics.items(): value.update({'tp':0, 'tot':0}) return metrics
755dc706f7090d78dac18a989745041b8617a9d6
12,454
def add_rse(rse, issuer, vo='def', deterministic=True, volatile=False, city=None, region_code=None, country_name=None, continent=None, time_zone=None, ISP=None, staging_area=False, rse_type=None, latitude=None, longitude=None, ASN=None, availability=None): """ Creates a new Rucio Storage Element(RSE). :param rse: The RSE name. :param issuer: The issuer account. :param vo: The VO to act on. :param deterministic: Boolean to know if the pfn is generated deterministically. :param volatile: Boolean for RSE cache. :param city: City for the RSE. :param region_code: The region code for the RSE. :param country_name: The country. :param continent: The continent. :param time_zone: Timezone. :param staging_area: staging area. :param ISP: Internet service provider. :param rse_type: RSE type. :param latitude: Latitude coordinate of RSE. :param longitude: Longitude coordinate of RSE. :param ASN: Access service network. :param availability: Availability. """ validate_schema(name='rse', obj=rse, vo=vo) kwargs = {'rse': rse} if not permission.has_permission(issuer=issuer, vo=vo, action='add_rse', kwargs=kwargs): raise exception.AccessDenied('Account %s can not add RSE' % (issuer)) return rse_module.add_rse(rse, vo=vo, deterministic=deterministic, volatile=volatile, city=city, region_code=region_code, country_name=country_name, staging_area=staging_area, continent=continent, time_zone=time_zone, ISP=ISP, rse_type=rse_type, latitude=latitude, longitude=longitude, ASN=ASN, availability=availability)
3b41e227ea64c5f03d80ae8734c29b24f9c3bed9
12,455
from typing import Dict from typing import Tuple from typing import List def multi_graph_partition(costs: Dict, probs: Dict, p_t: np.ndarray, idx2nodes: Dict, ot_hyperpara: Dict, weights: Dict = None, predefine_barycenter: bool = False) -> \ Tuple[List[Dict], List[Dict], List[Dict], Dict, np.ndarray]: """ Achieve multi-graph partition via calculating Gromov-Wasserstein barycenter between the target graphs and a proposed one Args: costs: a dictionary of graphs {key: graph idx, value: (n_s, n_s) adjacency matrix of source graph} probs: a dictionary of graphs {key: graph idx, value: (n_s, 1) the distribution of source nodes} p_t: (n_t, 1) the distribution of target nodes idx2nodes: a dictionary of graphs {key: graph idx, value: a dictionary {key: idx of row in cost, value: name of node}} ot_hyperpara: a dictionary of hyperparameters weights: a dictionary of graph {key: graph idx, value: the weight of the graph} predefine_barycenter: False: learn barycenter, True: use predefined barycenter Returns: sub_costs_all: a list of graph dictionary: a dictionary {key: graph idx, value: sub cost matrices}} sub_idx2nodes: a list of graph dictionary: a dictionary {key: graph idx, value: a dictionary mapping indices to nodes' names}} trans: a dictionary {key: graph idx, value: an optimal transport between the graph and the barycenter} cost_t: the reference graph corresponding to partition result """ sub_costs_cluster = [] sub_idx2nodes_cluster = [] sub_probs_cluster = [] sub_costs_all = {} sub_idx2nodes_all = {} sub_probs_all = {} if predefine_barycenter is True: cost_t = csr_matrix(np.diag(p_t[:, 0])) trans = {} for n in costs.keys(): sub_costs_all[n], sub_probs_all[n], sub_idx2nodes_all[n], trans[n] = graph_partition(costs[n], probs[n], p_t, idx2nodes[n], ot_hyperpara) else: cost_t, trans, _ = Gwl.gromov_wasserstein_barycenter(costs, probs, p_t, ot_hyperpara, weights) for n in costs.keys(): sub_costs, sub_probs, sub_idx2nodes = node_cluster_assignment(costs[n], trans[n], probs[n], p_t, idx2nodes[n]) sub_costs_all[n] = sub_costs sub_idx2nodes_all[n] = sub_idx2nodes sub_probs_all[n] = sub_probs for i in range(p_t.shape[0]): sub_costs = {} sub_idx2nodes = {} sub_probs = {} for n in costs.keys(): if i in sub_costs_all[n].keys(): sub_costs[n] = sub_costs_all[n][i] sub_idx2nodes[n] = sub_idx2nodes_all[n][i] sub_probs[n] = sub_probs_all[n][i] sub_costs_cluster.append(sub_costs) sub_idx2nodes_cluster.append(sub_idx2nodes) sub_probs_cluster.append(sub_probs) return sub_costs_cluster, sub_probs_cluster, sub_idx2nodes_cluster, trans, cost_t
a3743cd9cc9e7f9a10eb84992fb74e7fe57f5792
12,456
def TDataStd_BooleanArray_Set(*args): """ * Finds or creates an attribute with the array. :param label: :type label: TDF_Label & :param lower: :type lower: int :param upper: :type upper: int :rtype: Handle_TDataStd_BooleanArray """ return _TDataStd.TDataStd_BooleanArray_Set(*args)
c458a1182474432d2df049ae3126a6b6b2b49a8e
12,457
def py_list_to_tcl_list(py_list): """ Convert Python list to Tcl list using Tcl interpreter. :param py_list: Python list. :type py_list: list :return: string representing the Tcl string equivalent to the Python list. """ py_list_str = [str(s) for s in py_list] return tcl_str(tcl_interp_g.eval('split' + tcl_str('\t'.join(py_list_str)) + '\\t'))
7f42044b8a0b28089abf453e7a1b65d5cb1fb399
12,458
def get_post_count(user): """ Get number of posts published by the requst user. Parameters ------------ user: The request user Returns ------- count: int The number of posts published by the requst user. """ count = Post.objects.filter(publisher=user).count() return count
6000bcd43ef2b8edf3c1dd04df89dcef38f110d5
12,459
from config import employee_required_fields def create_new_employee(employees): """ Create a new employee record with the employees dictionary Use the employee_sections dictionary template to create a new employee record. """ subsidiary = input('Employee Subsidiary (SK, CZ):') employee_id = generate_employee_id(subsidiary, employees) employee = {} # Storage for new employee print('Please, enter records for new employee ID: ' + employee_id) # Iterating over 'employee_sections' for section in employee_sections['<employee_id>']: # Inserting empty section employee[section] = {} for field in employee_sections['<employee_id>'][section]: _input = '' while not _input: _input = input(section + '/' + field + ': ') if not _input and field in employee_required_fields: print('This field is required, please enter the value.') else: employee[section][field] = _input break print(employee) employees[employee_id] = employee print('Thank you, entry has been completed for ID: ' + employee_id) input('Press ENTER to continue') commit_changes(file_with_employees, str(employees)) return employees
aa5d0981c2b81ad65ed5ad0368fd1b3b79796a40
12,460
def gather_squares_triangles(p1,p2,depth): """ Draw Square and Right Triangle given 2 points, Recurse on new points args: p1,p2 (float,float) : absolute position on base vertices depth (int) : decrementing counter that terminates recursion return: squares [(float,float,float,float)...] : absolute positions of vertices of squares triangles [(float,float,float)...] : absolute positions of vertices of right triangles """ # Break Recursion if depth is met if depth == 0: return [],[] # Generate Points pd = (p2[0] - p1[0]),(p1[1] - p2[1]) p3 = (p2[0] - pd[1]),(p2[1] - pd[0]) p4 = (p1[0] - pd[1]),(p1[1] - pd[0]) p5 = (p4[0] + (pd[0] - pd[1])/2),(p4[1] - (pd[0] + pd[1])/2) # Gather Points further down the tree squares_left,triangles_left = gather_squares_triangles(p4,p5,depth-1) squares_right,triangles_right = gather_squares_triangles(p5,p3,depth-1) # Merge and Return squares = [[p1,p2,p3,p4]]+squares_left+squares_right triangles = [[p3,p4,p5]]+triangles_left+triangles_right return squares,triangles
de4e720eb10cb378f00086a6e8e45886746055c0
12,461
def update_node(node_name, node_type, root=None): """ ! Node is assumed to have only one input and one output port with a maximum of one connection for each. Returns: NodegraphAPI.Node: newly created node """ new = NodegraphAPI.CreateNode(node_type, root or NodegraphAPI.GetRootNode()) if new.getType() == "Group": new_in = new.addInputPort("in") new_out = new.addOutputPort("out") else: new_in = new.getInputPortByIndex(0) new_out = new.getOutputPortByIndex(0) existingn = NodegraphAPI.GetNode(node_name) if existingn: # we assume there is only 1 input/output port with only one connection in_port = existingn.getInputPorts()[0] in_port = in_port.getConnectedPort(0) out_port = existingn.getOutputPorts()[0] out_port = out_port.getConnectedPort(0) pos = NodegraphAPI.GetNodePosition(existingn) # type: tuple existingn.delete() NodegraphAPI.SetNodePosition(new, pos) if in_port: in_port.connect(new_in) if out_port: out_port.connect(new_out) logger.info("[update_node] Found existing node, it has been updated.") new.setName(node_name) logger.info("[update_node] Finished for node <{}>".format(node_name)) return new
916beec7de527ee56d5326061aa2c367af17434f
12,462
def dan_acf(x, axis=0, fast=False): """ Estimate the autocorrelation function of a time series using the FFT. Args: x (array): The time series. If multidimensional, set the time axis using the ``axis`` keyword argument and the function will be computed for every other axis. axis (Optional[int]): The time axis of ``x``. Assumed to be the first axis if not specified. fast (Optional[bool]): If ``True``, only use the largest ``2^n`` entries for efficiency. (default: False) Returns: acf (array): The acf array. """ x = np.atleast_1d(x) m = [slice(None), ] * len(x.shape) # For computational efficiency, crop the chain to the largest power of # two if requested. if fast: n = int(2**np.floor(np.log2(x.shape[axis]))) m[axis] = slice(0, n) x = x else: n = x.shape[axis] # Compute the FFT and then (from that) the auto-correlation function. f = np.fft.fft(x-np.mean(x, axis=axis), n=2*n, axis=axis) m[axis] = slice(0, n) acf = np.fft.ifft(f * np.conjugate(f), axis=axis)[tuple(m)].real m[axis] = 0 return acf / acf[m]
85273d95564f0e8c0afb9ff00ac23dc04539f291
12,463
from datetime import datetime def schedule_decision(): """最適化の実行と結果の表示を行う関数""" # トップページを表示する(GETリクエストがきた場合) if request.method == "GET": return render_template("scheduler/schedule_decision.html", solution_html=None) # POSTリクエストである「最適化を実行」ボタンが押された場合に実行 # データがアップロードされているかチェックする。適切でなければ元のページに戻る if not check_request(request): return redirect(request.url) # 前処理(データ読み込み) df_kagisime, df_gomisute = preprocess(request) # 最適化実行 prob = KandGProblem(df_kagisime, df_gomisute) solution_df = prob.solve() L_gomisute_members = list(prob.L_gomisute_members) # ログインしている場合,DBに決定した予定表を追加. if current_user.is_authenticated: yyyy, mm, _ = solution_df.index[0].split("/") user_id = session["_user_id"] print(user_id) print("currentuser:", current_user) is_new_schedule = not ScheduleLists.query.filter_by( user_id=user_id, yyyymm=yyyy + mm ).all() if is_new_schedule: schedule_list = ScheduleLists(user_id=user_id, yyyymm=yyyy + mm) db.session.add(schedule_list) db.session.commit() schedulelist_id = ( ScheduleLists.query.filter_by(user_id=user_id, yyyymm=yyyy + mm) .group_by("id") .first() ) print(schedulelist_id.id) for row in solution_df.itertuples(): if not is_new_schedule: print(datetime.strptime(row[0], "%Y/%m/%d")) old_schedule = Schedules.query.filter_by( schedulelist_id=schedulelist_id.id, date=datetime.strptime(row[0], "%Y/%m/%d"), ).first() print(old_schedule) if old_schedule: old_schedule.k_members = row[1] old_schedule.g_members = row[2] db.session.add(old_schedule) db.session.commit() else: schedule = Schedules( schedulelist_id=schedulelist_id.id, date=datetime.strptime(row[0], "%Y/%m/%d"), k_members=row[1], g_members=row[2], ) db.session.add(schedule) db.session.commit() # 後処理(最適化結果をHTMLに表示できる形式にする) solution_html = postprocess(solution_df) return render_template( "scheduler/schedule_decision.html", solution_html=solution_html, solution_df=solution_df, L_gomisute_members=" ".join(L_gomisute_members), )
6f259961d027b6e4a3dc88289a5ba62b162705f6
12,464
def infection_rate_asymptomatic_30x40(): """ Real Name: b'infection rate asymptomatic 30x40' Original Eqn: b'contact infectivity asymptomatic 30x40*(social distancing policy SWITCH self 40*social distancing policy 40\\\\ +(1-social distancing policy SWITCH self 40))*Infected asymptomatic 30x40*Susceptible 40\\\\ /non controlled pop 30x40' Units: b'person/Day' Limits: (None, None) Type: component b'' """ return contact_infectivity_asymptomatic_30x40() * ( social_distancing_policy_switch_self_40() * social_distancing_policy_40() + (1 - social_distancing_policy_switch_self_40()) ) * infected_asymptomatic_30x40() * susceptible_40() / non_controlled_pop_30x40()
16aebdca2259933dcdab1a00ed8d37b10d5b8714
12,465
def slug(hans, style=Style.NORMAL, heteronym=False, separator='-', errors='default', strict=True): """将汉字转换为拼音,然后生成 slug 字符串. :param hans: 汉字字符串( ``'你好吗'`` )或列表( ``['你好', '吗']`` ). 可以使用自己喜爱的分词模块对字符串进行分词处理, 只需将经过分词处理的字符串列表传进来就可以了。 :type hans: unicode 字符串或字符串列表 :param style: 指定拼音风格,默认是 :py:attr:`~pypinyin.Style.NORMAL` 风格。 更多拼音风格详见 :class:`~pypinyin.Style` :param heteronym: 是否启用多音字 :param separator: 两个拼音间的分隔符/连接符 :param errors: 指定如何处理没有拼音的字符,详情请参考 :py:func:`~pypinyin.pinyin` :param strict: 只获取声母或只获取韵母相关拼音风格的返回结果 是否严格遵照《汉语拼音方案》来处理声母和韵母, 详见 :ref:`strict` :return: slug 字符串. :raise AssertionError: 当传入的字符串不是 unicode 字符时会抛出这个异常 :: >>> import pypinyin >>> from pypinyin import Style >>> pypinyin.slug('中国人') 'zhong-guo-ren' >>> pypinyin.slug('中国人', separator=' ') 'zhong guo ren' >>> pypinyin.slug('中国人', style=Style.FIRST_LETTER) 'z-g-r' >>> pypinyin.slug('中国人', style=Style.CYRILLIC) 'чжун1-го2-жэнь2' """ return separator.join( chain( *_default_pinyin.pinyin( hans, style=style, heteronym=heteronym, errors=errors, strict=strict ) ) )
124431e3ea8747dfdc024f93e88f692746797013
12,466
def A_weight(signal, fs): """ Return the given signal after passing through an A-weighting filter signal : array_like Input signal fs : float Sampling frequency """ b, a = A_weighting(fs) return lfilter(b, a, signal)
1c6abdd90b85762db4383972de7508d00b561065
12,467
import argparse from pathlib import Path def getCommandLine() -> argparse.ArgumentParser: """Получить агрументы коммандной строки Returns: argparse.ArgumentParser: _description_ """ parser = argparse.ArgumentParser(description='Конвертация тестов с TFS в xml формат Testrail/TestIT') action = parser.add_subparsers(dest='action', required=True) subparser = action.add_parser('to-xml',help='Скачивание и конвертация тестов с TFS в xml',add_help=False) subparser.add_argument('-i','--id',type=int,required=True,help='ID тест плана') subparser.add_argument('-h', '--help', action='help', default=argparse.SUPPRESS, help='Показывает команды для конверта в xml') subparser.add_argument('--project','-pj',required=True, type=str,help='Название проекта в коллекции') subparser.add_argument('--collection','-ct',required=True,type=str,help='Название коллекции') subparser.add_argument('--cert','-c',required=False,type=Path,help='Сертификат для доступа к TFS',default=None) return parser.parse_args()
c0b27d2488115c059a713776dd4fc209f1db7011
12,468
def listall(context, uri=None): """ *musicpd.org, music database section:* ``listall [URI]`` Lists all songs and directories in ``URI``. """ result = [] root_path = translator.normalize_path(uri) # TODO: doesn't the dispatcher._call_handler have enough info to catch # the error this can produce, set the command and then 'raise'? try: uri = context.directory_path_to_uri(root_path) except MpdNoExistError as e: e.command = 'listall' e.message = 'Not found' raise browse_futures = [(root_path, context.core.library.browse(uri))] while browse_futures: base_path, future = browse_futures.pop() for ref in future.get(): if ref.type == Ref.DIRECTORY: path = '/'.join([base_path, ref.name.replace('/', '')]) result.append(('directory', path)) browse_futures.append( (path, context.core.library.browse(ref.uri))) elif ref.type == Ref.TRACK: result.append(('file', ref.uri)) if not result: raise MpdNoExistError('Not found') return [('directory', root_path)] + result
f9d2be6b8155b3110aa085ac2664665ee8393c23
12,469
from typing import Tuple from typing import Union import traceback def send_task_to_executor(task_tuple: TaskInstanceInCelery) \ -> Tuple[TaskInstanceKey, CommandType, Union[AsyncResult, ExceptionWithTraceback]]: """Sends task to executor.""" key, _, command, queue, task_to_run = task_tuple try: with timeout(seconds=OPERATION_TIMEOUT): result = task_to_run.apply_async(args=[command], queue=queue) except Exception as e: # pylint: disable=broad-except exception_traceback = "Celery Task ID: {}\n{}".format(key, traceback.format_exc()) result = ExceptionWithTraceback(e, exception_traceback) return key, command, result
cbc93ac3a3c146b748c0ec88eaa9cb2cd631ac85
12,470
import pathlib import os def createPyarchFilePath(filePath): """ This method translates from an ESRF "visitor" path to a "pyarch" path: /data/visitor/mx415/id14eh1/20100209 -> /data/pyarch/2010/id14eh1/mx415/20100209 """ pyarchFilePath = None if isinstance(filePath, str): filePath = pathlib.Path(filePath) listOfDirectories = filePath.parts if UtilsConfig.isEMBL(): if 'p13' in listOfDirectories[0:3] or 'P13' in listOfDirectories[0:3]: pyarchFilePath = os.path.join('/data/ispyb/p13', *listOfDirectories[4:]) else: pyarchFilePath = os.path.join('/data/ispyb/p14', *listOfDirectories[4:]) return pyarchFilePath listBeamlines = ['bm30a', 'id14eh1', 'id14eh2', 'id14eh3', 'id14eh4', 'id23eh1', 'id23eh2', 'id29', 'id30a1', 'id30a2', 'id30a3', 'id30b'] # Check that we have at least four levels of directories: if len(listOfDirectories) > 5: dataDirectory = listOfDirectories[1] secondDirectory = listOfDirectories[2] thirdDirectory = listOfDirectories[3] fourthDirectory = listOfDirectories[4] fifthDirectory = listOfDirectories[5] year = fifthDirectory[0:4] proposal = None beamline = None if dataDirectory == 'data' and secondDirectory == 'gz': if thirdDirectory == 'visitor': proposal = fourthDirectory beamline = fifthDirectory elif fourthDirectory == 'inhouse': proposal = fifthDirectory beamline = thirdDirectory else: raise RuntimeError( 'Illegal path for UtilsPath.createPyarchFilePath: ' + '{0}'.format(filePath)) listOfRemainingDirectories = listOfDirectories[6:] elif dataDirectory == 'data' and secondDirectory == 'visitor': proposal = listOfDirectories[3] beamline = listOfDirectories[4] listOfRemainingDirectories = listOfDirectories[5:] elif dataDirectory == 'data' and secondDirectory in listBeamlines: beamline = secondDirectory proposal = listOfDirectories[4] listOfRemainingDirectories = listOfDirectories[5:] if proposal is not None and beamline is not None: pyarchFilePath = pathlib.Path('/data/pyarch') / year / beamline pyarchFilePath = pyarchFilePath / proposal for directory in listOfRemainingDirectories: pyarchFilePath = pyarchFilePath / directory if pyarchFilePath is None: logger.warning( 'UtilsPath.createPyarchFilePath: path not converted for' + ' pyarch: %s ' % filePath) else: pyarchFilePath = pyarchFilePath.as_posix() return pyarchFilePath
daf7cf23126ae51cd30492981dbcae9fe0431afd
12,471
def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed
b4c280e10df338633b69cf4b3c65967c1f80b9c5
12,472
def geometries_from_bbox(north, south, east, west, tags): """ Create a GeoDataFrame of OSM entities within a N, S, E, W bounding box. Parameters ---------- north : float northern latitude of bounding box south : float southern latitude of bounding box east : float eastern longitude of bounding box west : float western longitude of bounding box tags : dict Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. Returns ------- gdf : geopandas.GeoDataFrame Notes ----- You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config(). """ # convert bounding box to a polygon polygon = utils_geo.bbox_to_poly(north, south, east, west) # create GeoDataFrame of geometries within this polygon gdf = geometries_from_polygon(polygon, tags) return gdf
32aeebe7f644df00b613ef6e0d4f30baef1a5743
12,473
def dBzdtAnalCircT(a, t, sigma): """ Hz component of analytic solution for half-space (Circular-loop source) Src and Rx are on the surface and receiver is located at the center of the loop. Src waveform here is step-off. .. math:: \\frac{\partial h_z}{\partial t} = -\\frac{I}{\mu_0\sigma a^3} \ \left( 3erf(\\theta a) - \\frac{2}{\sqrt{\pi}}\\theta a (3+2\\theta^2 a^2) e^{-\\theta^2a^2}\\right) .. math:: \\theta = \sqrt{\\frac{\sigma\mu}{4t}} """ theta = np.sqrt((sigma*mu_0)/(4*t)) const = -1/(mu_0*sigma*a**3) ta = theta*a eta = erf(ta) t1 = 3*eta t2 = -2/(np.pi**0.5)*ta*(3+2*ta**2)*np.exp(-ta**2) dhzdt = const*(t1+t2) return mu_0*dhzdt
18b9428528ed11a121ad01578d2bfc35faceae21
12,474
def count_increasing(ratings, n): """ Only considering the increasing case """ arr = [1] * n cnt = 1 for i in range(1, n): cnt = cnt + 1 if ratings[i - 1] < ratings[i] else 1 arr[i] = cnt return arr
9fe274527fbba505467a195bf555c77d2f3e6aed
12,475
import copy def load_train_data_frame(train_small, target, keras_options, model_options, verbose=0): """ ### CAUTION: TF2.4 Still cannot load a DataFrame with Nulls in string or categoricals! ############################################################################ #### TF 2.4 still cannot load tensor_slices into ds if an object or string column #### that has nulls in it! So we need to find other ways to load tensor_slices by #### first filling dataframe with pandas fillna() function! ############################################################################# """ train_small = copy.deepcopy(train_small) DS_LEN = model_options['DS_LEN'] #### do this for dataframes ################## try: batch_size = keras_options["batchsize"] if isinstance(keras_options["batchsize"], str): batch_size = find_batch_size(DS_LEN) except: #### If it is not given find it here #### batch_size = find_batch_size(DS_LEN) ######### Modify or Convert column names to fit tensorflow rules of no space in names! sel_preds = ["_".join(x.split(" ")) for x in list(train_small) ] #### This can also be a problem with other special characters ### sel_preds = ["_".join(x.split("(")) for x in sel_preds ] sel_preds = ["_".join(x.split(")")) for x in sel_preds ] sel_preds = ["_".join(x.split("/")) for x in sel_preds ] sel_preds = ["_".join(x.split("\\")) for x in sel_preds ] sel_preds = ["_".join(x.split("?")) for x in sel_preds ] sel_preds = [x.lower() for x in sel_preds ] if isinstance(target, str): target = "_".join(target.split(" ")) target = "_".join(target.split("(")) target = "_".join(target.split(")")) target = "_".join(target.split("/")) target = "_".join(target.split("\\")) target = "_".join(target.split("?")) target = target.lower() model_label = 'Single_Label' else: target = ["_".join(x.split(" ")) for x in target ] target = ["_".join(x.split("(")) for x in target ] target = ["_".join(x.split(")")) for x in target ] target = ["_".join(x.split("/")) for x in target ] target = ["_".join(x.split("\\")) for x in target ] target = ["_".join(x.split("?")) for x in target ] target = [x.lower() for x in target ] model_label = 'Multi_Label' train_small.columns = sel_preds print('Alert! Modified column names to satisfy rules for column names in Tensorflow...') #### if target is changed you must send that modified target back to other processes ###### ### usecols is basically target in a list format. Very handy to know when target is a list. try: modeltype = model_options["modeltype"] if model_options["modeltype"] == '': ### usecols is basically target in a list format. Very handy to know when target is a list. modeltype, model_label, usecols = find_problem_type(train_small, target, model_options, verbose) else: if isinstance(target, str): usecols = [target] else: usecols = copy.deepcopy(target) except: ### if modeltype is given, then do not find the model type using this function modeltype, model_label, usecols = find_problem_type(train_small, target, model_options, verbose) ### Cat_Vocab_Dict contains all info about vocabulary in each variable and their size print(' Classifying variables using data sample in pandas...') train_small, var_df, cat_vocab_dict = classify_features_using_pandas(train_small, target, model_options, verbose=verbose) ########## Just transfer all the values from var_df to cat_vocab_dict ################################## for each_key in var_df: cat_vocab_dict[each_key] = var_df[each_key] ############################################################################################################ model_options['modeltype'] = modeltype model_options['model_label'] = model_label cat_vocab_dict['target_variables'] = usecols cat_vocab_dict['modeltype'] = modeltype model_options['batch_size'] = batch_size ########## Find small details about the data to help create the right model ### target_transformed = False if modeltype != 'Regression': if isinstance(target, str): #### This is for Single Label Problems ###### if train_small[target].dtype == 'object' or str(train_small[target].dtype).lower() == 'category': target_transformed = True target_vocab = train_small[target].unique() num_classes = len(target_vocab) else: if 0 not in np.unique(train_small[target]): target_transformed = True ### label encoding must be done since no zero class! target_vocab = train_small[target].unique() num_classes = len(train_small[target].value_counts()) elif isinstance(target, list): #### This is for Multi-Label Problems ####### copy_target = copy.deepcopy(target) num_classes = [] for each_target in copy_target: if train_small[target[0]].dtype == 'object' or str(train_small[target[0]].dtype).lower() == 'category': target_transformed = True target_vocab = train_small[target].unique().tolist() num_classes_each = len(target_vocab) else: if 0 not in np.unique(train_small[target[0]]): target_transformed = True ### label encoding must be done since no zero class! target_vocab = train_small[target[0]].unique() num_classes_each = train_small[target].apply(np.unique).apply(len).max() num_classes.append(int(num_classes_each)) else: num_classes = 1 target_vocab = [] ########### find the number of labels in data #### if isinstance(target, str): num_labels = 1 elif isinstance(target, list): if len(target) == 1: num_labels = 1 else: num_labels = len(target) #### This is where we set the model_options for num_classes and num_labels ######### model_options['num_labels'] = num_labels model_options['num_classes'] = num_classes cat_vocab_dict['num_labels'] = num_labels cat_vocab_dict['num_classes'] = num_classes cat_vocab_dict["target_transformed"] = target_transformed #### fill missing values using this function ############## train_small = fill_missing_values_for_TF2(train_small, cat_vocab_dict) ##### Do the deletion of cols after filling with missing values since otherwise fill errors! drop_cols = var_df['cols_delete'] cat_vocab_dict['columns_deleted'] = drop_cols if len(drop_cols) > 0: ### drop cols that have been identified for deletion ### print(' Dropping %s columns marked for deletion...' %drop_cols) train_small.drop(drop_cols,axis=1,inplace=True) ######### Now load the train Dataframe into a tf.data.dataset ############# if target_transformed: ####################### T R A N S F O R M I N G T A R G E T ######################## train_small[target], cat_vocab_dict = transform_train_target(train_small, target, modeltype, model_label, cat_vocab_dict) if isinstance(target, str): #### For single label do this: labels can be without names since there is only one label if target != '': labels = train_small[target] features = train_small.drop(target, axis=1) ds = tf.data.Dataset.from_tensor_slices((dict(features), labels)) else: print('target variable is blank - please fix input and try again') return elif isinstance(target, list): #### For multi label do this: labels must be dict and hence with names since there are many targets labels = train_small[target] features = train_small.drop(target, axis=1) ds = tf.data.Dataset.from_tensor_slices((dict(features), dict(labels))) else: ds = tf.data.Dataset.from_tensor_slices(dict(train_small)) ###### Now save some defaults in cat_vocab_dict ########################## try: keras_options["batchsize"] = batch_size cat_vocab_dict['batch_size'] = batch_size except: batch_size = find_batch_size(DS_LEN) keras_options["batchsize"] = batch_size cat_vocab_dict['batch_size'] = batch_size ########################################################################## #### C H E C K F O R I N F I N I T E V A L U E S H E R E ########## ########################################################################## cols_with_infinity = find_columns_with_infinity(train_small) if cols_with_infinity: train_small = drop_rows_with_infinity(train_small, cols_with_infinity, fill_value=True) return train_small, ds, var_df, cat_vocab_dict, keras_options, model_options
85c496b485bbc26afbadf181a2231e3f5bd93706
12,476
def stat_float_times(space, newval=-1): """stat_float_times([newval]) -> oldval Determine whether os.[lf]stat represents time stamps as float objects. If newval is True, future calls to stat() return floats, if it is False, future calls return ints. If newval is omitted, return the current setting. """ state = space.fromcache(StatState) if newval == -1: return space.newbool(state.stat_float_times) else: state.stat_float_times = (newval != 0)
e183f0cc2ce56bc7b4ac6ce95d8cb671a963422f
12,477
def decorate(rvecs): """Output range vectors into some desired string format""" return ', '.join(['{%s}' % ','.join([str(x) for x in rvec]) for rvec in rvecs])
31a3d4414b0b88ffd92a5ddd8eb09aaf90ef3742
12,478
def update_topic_collection_items(request_ctx, collection_item_id, topic_id, **request_kwargs): """ Accepts the same parameters as create :param request_ctx: The request context :type request_ctx: :class:RequestContext :param collection_item_id: (required) ID :type collection_item_id: string :param topic_id: (required) ID :type topic_id: string :return: Update a topic :rtype: requests.Response (with void data) """ path = '/v1/collection_items/{collection_item_id}/discussion_topics/{topic_id}' url = request_ctx.base_api_url + path.format(collection_item_id=collection_item_id, topic_id=topic_id) response = client.put(request_ctx, url, **request_kwargs) return response
06b0709f5fa4acf189baef8f2665bee81b3c4993
12,479
def upsample(inputs, factor=(2, 2), interpolation='nearest'): """ Upsampling layer by factor Parameters ---------- inputs: Input tensor factor: The upsampling factors for (height, width). One integer or tuple of two integers interpolation: A string, one of [`nearest`, `bilinear`, 'bicubic', 'area']. """ # get new_size _, height, width, _ = inputs.get_shape().as_list() factor = _make_pair(factor) new_height = height * factor[0] new_width = width * factor[1] new_size = (new_height, new_width) # get interpolation type interp_types = { 'nearest': tf.image.ResizeMethod.NEAREST_NEIGHBOR, 'bilinear': tf.image.ResizeMethod.BILINEAR, 'bicubic': tf.image.ResizeMethod.BICUBIC, 'area': tf.image.ResizeMethod.AREA, } if interpolation not in interp_types.keys(): raise ValueError("interpolation must be one of " "['nearest', 'bilinear', 'bicubic', 'area']") interp_type = interp_types.get(interpolation) return tf.image.resize_images(inputs, size=new_size, method=interp_type)
dfbd42871e63cb685f9cfbf9185da38839a9ee4e
12,480
def root_mean_squared_error(*args, **kwargs): """ Returns the square-root of ``scikit-learn``'s ``mean_squared_error`` metric. All arguments are forwarded to that function. """ return np.sqrt(mean_squared_error(*args, **kwargs))
51084b2ec55d14657fa128f0df2bd3f438c2367b
12,481
def idwt2(Wimg, level=4): """ inverse 2d wavelet transform :param Wimg: 2d array wavelet coefficients :param level: int level of wavelet transform - image shape has to be multiples of 2**level :return: 2d array image """ coeffs = _from_img_to_coeffs(Wimg, levels=level) return pywt.waverec2(coeffs, wavelet='db4', mode='per')
521ceca879b0961730b1efd6dac54772a2b41ca3
12,482
def get_color(card): """Returns the card's color Args: card (webelement): a visible card Returns: str: card's color """ color = card.find_element_by_xpath(".//div/*[name()='svg']/*[name()='use'][2]").get_attribute("stroke") # both light and dark theme if (color == "#ff0101" or color == "#ffb047"): color = "red" elif (color == "#800080" or color == "#ff47ff"): color = "purple" else: color = "green" return color
452266b81d70973149fed4ab2e6cbc9c93591180
12,483
from typing import Dict from typing import Any def is_valid_path(parameters: Dict[str, Any]) -> bool: """Single "." chars and empty strings "" are excluded from path by urllib3. A path containing to "/" or "%2F" will lead to ambiguous path resolution in many frameworks and libraries, such behaviour have been observed in both WSGI and ASGI applications. In this case one variable in the path template will be empty, which will lead to 404 in most of the cases. Because of it this case doesn't bring much value and might lead to false positives results of Schemathesis runs. """ path_parameter_blacklist = (".", SLASH, "") return not any( (value in path_parameter_blacklist or is_illegal_surrogate(value) or isinstance(value, str) and SLASH in value) for value in parameters.values() )
5f80ff76c535b3913efc7ba83e04c4c049a9e50b
12,484
import torch def to_tensor(x): """ Arguments: x: an instance of PIL image. Returns: a float tensor with shape [3, h, w], it represents a RGB image with pixel values in [0, 1] range. """ x = np.array(x) x = torch.FloatTensor(x) return x.permute(2, 0, 1).unsqueeze(0).div(255.0)
6ff19bd7549a4fce455f03559420216020658c44
12,485
import tqdm import os def load_messier_catalog_images(path, img_size=None, disable_tqdm=False): """ Data loader for Messier catalog images. The images are available in `messier-catalog-images` repository of MiraPy organisation. :param path: String. Directory path. :param img_size: Final dimensions of the image. :param disable_tqdm: Boolean. Set True to disable progress bar. :return: Array of images. """ images = [] for filename in tqdm(os.listdir(path), disable=disable_tqdm): filepath = os.path.join(path, filename) img = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE) img = img/img.max() img = img * 255. if img_size: img = cv2.resize(img, img_size) images.append(np.array(img)) return np.array(images)
2a0df9e99ff0c442df9bf78776af59a2659cdc46
12,486
import os def load_stl10(data_dir, flatten=False, one_hot=True, normalize_range=False, whiten_pixels=True, border_pad_size=0): """ Large part of this loader and the associated functions has been inspired from, https://github.com/mttk/STL10/blob/master/stl10_input.py """ # path to the binary train file with image data train_img_path = os.path.join(data_dir,'stl10_binary','train_X.bin') # path to the binary train file with labels train_label_path = os.path.join(data_dir,'stl10_binary','train_y.bin') # path to the binary test file with image data test_img_path = os.path.join(data_dir,'stl10_binary','test_X.bin') # path to the binary test file with labels test_label_path = os.path.join(data_dir,'stl10_binary','test_y.bin') download_and_extract(data_dir) # test to check if the whole dataset is read correctly images_train = read_all_images(train_img_path) print("Training images",images_train.shape) labels_train = read_labels(train_label_path) print("Training labels",labels_train.shape) images_test = read_all_images(test_img_path) print("Test images",images_test.shape) labels_test = read_labels(test_label_path) print("Test labels",labels_test.shape) Xtrain = images_train.astype(np.float32) / 255.0 ytrain = labels_train for i in range(len(ytrain)) : ytrain[i] -= 1 split = int(np.floor(0.9 * Xtrain.shape[0])) Xval = Xtrain[split:Xtrain.shape[0]] yval = ytrain[split:Xtrain.shape[0]] Xtrain = Xtrain[:split] ytrain = ytrain[:split] Xtest, ytest = images_test.astype(np.float32) / 255.0, labels_test for i in range(len(ytest)) : ytest[i] -= 1 if flatten : print("Flatten Not Supported") if normalize_range : print("Normalize Range Not Supported") if one_hot: print("Train Shapes before one hot encoding ",Xtrain.shape, ytrain.shape) ytest = idx_to_onehot(ytest, 10).astype(np.float32) ytrain = idx_to_onehot(ytrain, 10).astype(np.float32) yval = idx_to_onehot(yval, 10).astype(np.float32) print("Train Shapes after one hot encoding",Xtrain.shape, ytrain.shape) if whiten_pixels: mean = Xtrain.mean(axis=0)[None, :] std = Xtrain.std(axis=0)[None, :] print("Other mean/std", mean.shape, std.shape) Xtrain = (Xtrain - mean) / std Xval = (Xval - mean) / std Xtest = (Xtest - mean) / std # NOTE: the zero padding is done after the potential whitening if border_pad_size > 0: Xtrain = zero_pad_border(Xtrain, border_pad_size) Xval = zero_pad_border(Xval, border_pad_size) Xtest = zero_pad_border(Xtest, border_pad_size) return (Xtrain, ytrain, Xval, yval, Xtest, ytest)
d72f033175c8377442215fbab3f43b53705dfa03
12,487
def fetch_data(fold_path): """Fetch data saving in fold path. Convert data into suitable format, using csv files in fold path. :param fold_path: String. The fold in which data files are saved. :return: training_data: Dataframe. Combined dataframe to create training data. testing_data: Dataframe. Combined dataframe to create testing data. """ # Read all the data from target fold path. pokemon = pd.read_csv(fold_path+'/pokemon.csv') combats = pd.read_csv(fold_path+'/combats.csv') test_data = pd.read_csv(fold_path+'/tests.csv') # Convert data into suitable format for training and testing. training_data = convert_data(combats, pokemon, win_column='Winner') testing_data = convert_data(test_data, pokemon) return training_data, testing_data
42ea9ea6d1d9d597acc4ed1a14099711642608f4
12,488
def add_chr_prefix(band): """ Return the band string with chr prefixed """ return ''.join(['chr', band])
08a99220023f10d79bdacdb062a27efcb51086ce
12,489
def disable_text_recog_aug_test(cfg, set_types=None): """Remove aug_test from test pipeline of text recognition. Args: cfg (mmcv.Config): Input config. set_types (list[str]): Type of dataset source. Should be None or sublist of ['test', 'val'] Returns: cfg (mmcv.Config): Output config removing `MultiRotateAugOCR` in test pipeline. """ assert set_types is None or isinstance(set_types, list) if set_types is None: set_types = ['val', 'test'] for set_type in set_types: if cfg.data[set_type].pipeline[1].type == 'MultiRotateAugOCR': cfg.data[set_type].pipeline = [ cfg.data[set_type].pipeline[0], *cfg.data[set_type].pipeline[1].transforms ] return cfg
bda3a5420d32d55062b23a6af27cee3e203b878c
12,490
def layer_svg(svg_bottom, svg_top, offset: list = [0.0, 0.0]): """ Adds one SVG over another. Modifies the bottom SVG in place. :param svg_bottom: The bottom SVG, in in xml.etree.ElementTree form :param svg_top: The top SVG, in in xml.etree.ElementTree form :param offset: How far to offset the top SVG elements """ if svg_top is None: return # print(svg_top.tag) for child in list(svg_top): apply_offset(child, offset, offset_children=True) svg_bottom.append(child) return svg_bottom
6c6a8151d17f4aff9f1491d1ed71772d9434ae4c
12,491
import os def get_data_home(data_home=None): """Return a path to the cache directory for example datasets. This directory is then used by :func:`load_dataset`. If the ``data_home`` argument is not specified, it tries to read from the ``CF_DATA`` environment variable and defaults to ``~/cf-data``. """ if data_home is None: data_home = os.environ.get("CF_DATA", os.path.join("~", "cf-data")) data_home = os.path.expanduser(data_home) if not os.path.exists(data_home): os.makedirs(data_home) return data_home
8e530b44db3387cb07da78dfbf3bc43f4855e9e0
12,492
def utxo_cmd(ctx, dry_run): """Get the node's current UTxO with the option of filtering by address(es)""" try: CardanoCli.execute(cmd=["cardano-cli", "query", "utxo"], dry_run=dry_run, include_network=True) except CardanoPyError as cpe: ctx.fail(cpe.message) return cpe.return_code
52807294a445fc2f641c1b921807bba898ad8c34
12,493
def delta_in_ms(delta): """ Convert a timedelta object to milliseconds. """ return delta.seconds*1000.0+delta.microseconds/1000.0
4ed048155daf4a4891488e28c674e905e1bbe947
12,494
import slicer, collections, fnmatch def getNodes(pattern="*", scene=None, useLists=False): """Return a dictionary of nodes where the name or id matches the ``pattern``. By default, ``pattern`` is a wildcard and it returns all nodes associated with ``slicer.mrmlScene``. If multiple node share the same name, using ``useLists=False`` (default behavior) returns only the last node with that name. If ``useLists=True``, it returns a dictionary of lists of nodes. """ nodes = collections.OrderedDict() if scene is None: scene = slicer.mrmlScene count = scene.GetNumberOfNodes() for idx in range(count): node = scene.GetNthNode(idx) name = node.GetName() id = node.GetID() if (fnmatch.fnmatchcase(name, pattern) or fnmatch.fnmatchcase(id, pattern)): if useLists: nodes.setdefault(node.GetName(), []).append(node) else: nodes[node.GetName()] = node return nodes
6d6c44987a800f361d45f4538167acb65e738418
12,495
from typing import Union from typing import Type from re import X from typing import Mapping from typing import Optional def get_cls( query: Union[None, str, Type[X]], base: Type[X], lookup_dict: Mapping[str, Type[X]], lookup_dict_synonyms: Optional[Mapping[str, Type[X]]] = None, default: Optional[Type[X]] = None, suffix: Optional[str] = None, ) -> Type[X]: """Get a class by string, default, or implementation.""" if query is None: if default is None: raise ValueError(f'No default {base.__name__} set') return default elif not isinstance(query, (str, type)): raise TypeError(f'Invalid {base.__name__} type: {type(query)} - {query}') elif isinstance(query, str): key = normalize_string(query, suffix=suffix) if key in lookup_dict: return lookup_dict[key] if lookup_dict_synonyms is not None and key in lookup_dict_synonyms: return lookup_dict_synonyms[key] raise ValueError(f'Invalid {base.__name__} name: {query}') elif issubclass(query, base): return query raise TypeError(f'Not subclass of {base.__name__}: {query}')
e5f805df5ef19de9939344beee21834e3f2556ab
12,496
def selection_sort(data): """Sort a list of unique numbers in ascending order using selection sort. O(n^2). The process includes repeatedly iterating through a list, finding the smallest element, and sorting that element. Args: data: data to sort (list of int) Returns: sorted list """ sorted_data = data[:] for i, value in enumerate(sorted_data): # find smallest value in unsorted subset min_value = min(sorted_data[i:]) index_min = sorted_data.index(min_value) # place smallest value at start of unsorted subset sorted_data[i], sorted_data[index_min] = min_value, value return sorted_data
8b745be41c857669aedecb25b3006bbdc1ef04eb
12,497
def _conv(args, filter_size, num_features, bias, reuse, w_init=None, b_init=0.0, scope='_conv'): """convolution: Args: args: a Tensor or a list of Tensors of dimension 3D, 4D or 5D batch x n, Tensors. filter_size: int tuple of filter height and width. reuse: None/True, whether to reuse variables w_init: weights initializer object b_init: a `int`, bias initializer value num_features: int, number of features. bias_start: starting value to initialize the bias; 0 by default. Returns: A 3D, 4D, or 5D Tensor with shape [batch ... num_features] Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ # Calculate the total size of arguments on dimension 1. total_arg_size_depth = 0 shapes = [a.get_shape().as_list() for a in args] shape_length = len(shapes[0]) for shape in shapes: if len(shape) not in [3, 4, 5]: raise ValueError("Conv Linear expects 3D, 4D or 5D arguments: %s" % str(shapes)) if len(shape) != len(shapes[0]): raise ValueError("Conv Linear expects all args to be of same Dimensiton: %s" % str(shapes)) else: total_arg_size_depth += shape[-1] dtype = [a.dtype for a in args][0] # determine correct conv operation if shape_length == 3: conv_op = tf.nn.conv1d strides = 1 elif shape_length == 4: conv_op = tf.nn.conv2d strides = shape_length * [1] elif shape_length == 5: conv_op = tf.nn.conv3d strides = shape_length * [1] # Now the computation. with tf.variable_scope(scope, reuse=reuse): kernel = tf.get_variable( "W", filter_size + [total_arg_size_depth, num_features], dtype=dtype, initializer=w_init) if len(args) == 1: res = conv_op(args[0], kernel, strides, padding='SAME') else: res = conv_op(tf.concat(axis=shape_length - 1, values=args), kernel, strides, padding='SAME') if not bias: return res bias_term = tf.get_variable( "biases", [num_features], dtype=dtype, initializer=tf.constant_initializer(b_init, dtype=dtype)) return res + bias_term
104d91623949e4506c4b72001c23b6ab7fb312ca
12,498
import time import os def make_bright_star_mask_in_hp(nside, pixnum, verbose=True, gaiaepoch=2015.5, maglim=12., matchrad=1., maskepoch=2023.0): """Make a bright star mask in a HEALPixel using Tycho, Gaia and URAT. Parameters ---------- nside : :class:`int` (NESTED) HEALPixel nside. pixnum : :class:`int` A single HEALPixel number. verbose : :class:`bool` If ``True`` then log informational messages. Returns ------- :class:`recarray` The bright star mask in the form of `maskdatamodel.dtype`. Notes ----- - Runs in a a minute or so for a typical nside=4 pixel. - See :func:`~desitarget.brightmask.make_bright_star_mask` for descriptions of the output mask and the other input parameters. """ # ADM start the clock. t0 = time() # ADM read in the Tycho files. tychofns = find_tycho_files_hp(nside, pixnum, neighbors=False) tychoobjs = [] for fn in tychofns: tychoobjs.append(fitsio.read(fn, ext='TYCHOHPX')) tychoobjs = np.concatenate(tychoobjs) # ADM create the Tycho reference magnitude, which is VT then HP # ADM then BT in order of preference. tychomag = tychoobjs["MAG_VT"].copy() tychomag[tychomag == 0] = tychoobjs["MAG_HP"][tychomag == 0] tychomag[tychomag == 0] = tychoobjs["MAG_BT"][tychomag == 0] # ADM discard any Tycho objects below the input magnitude limit # ADM and outside of the HEALPixels of interest. theta, phi = np.radians(90-tychoobjs["DEC"]), np.radians(tychoobjs["RA"]) tychohpx = hp.ang2pix(nside, theta, phi, nest=True) ii = (tychohpx == pixnum) & (tychomag < maglim) tychomag, tychoobjs = tychomag[ii], tychoobjs[ii] if verbose: log.info('Read {} (mag < {}) Tycho objects (pix={})...t={:.1f} mins'. format(np.sum(ii), maglim, pixnum, (time()-t0)/60)) # ADM read in the associated Gaia files. Also grab # ADM neighboring pixels to prevent edge effects. gaiafns = find_gaia_files(tychoobjs, neighbors=True) gaiaobjs = [] cols = 'SOURCE_ID', 'RA', 'DEC', 'PHOT_G_MEAN_MAG', 'PMRA', 'PMDEC' for fn in gaiafns: if os.path.exists(fn): gaiaobjs.append(fitsio.read(fn, ext='GAIAHPX', columns=cols)) gaiaobjs = np.concatenate(gaiaobjs) gaiaobjs = rfn.rename_fields(gaiaobjs, {"SOURCE_ID": "REF_ID"}) # ADM limit Gaia objects to 3 magnitudes fainter than the passed # ADM limit. This leaves some (!) leeway when matching to Tycho. gaiaobjs = gaiaobjs[gaiaobjs['PHOT_G_MEAN_MAG'] < maglim + 3] if verbose: log.info('Read {} (G < {}) Gaia sources (pix={})...t={:.1f} mins'.format( len(gaiaobjs), maglim+3, pixnum, (time()-t0)/60)) # ADM substitute URAT where Gaia proper motions don't exist. ii = ((np.isnan(gaiaobjs["PMRA"]) | (gaiaobjs["PMRA"] == 0)) & (np.isnan(gaiaobjs["PMDEC"]) | (gaiaobjs["PMDEC"] == 0))) if verbose: log.info('Add URAT for {} Gaia objs with no PMs (pix={})...t={:.1f} mins' .format(np.sum(ii), pixnum, (time()-t0)/60)) urat = add_urat_pms(gaiaobjs[ii], numproc=1) if verbose: log.info('Found an additional {} URAT objects (pix={})...t={:.1f} mins' .format(np.sum(urat["URAT_ID"] != -1), pixnum, (time()-t0)/60)) for col in "PMRA", "PMDEC": gaiaobjs[col][ii] = urat[col] # ADM need to track the URATID to track which objects have # ADM substituted proper motions. uratid = np.zeros_like(gaiaobjs["REF_ID"])-1 uratid[ii] = urat["URAT_ID"] # ADM match to remove Tycho objects already in Gaia. Prefer the more # ADM accurate Gaia proper motions. Note, however, that Tycho epochs # ADM can differ from the mean (1991.5) by as as much as 0.86 years, # ADM so a star with a proper motion as large as Barnard's Star # ADM (10.3 arcsec) can be off by a significant margin (~10"). margin = 10. ra, dec = rewind_coords(gaiaobjs["RA"], gaiaobjs["DEC"], gaiaobjs["PMRA"], gaiaobjs["PMDEC"], epochnow=gaiaepoch) # ADM match Gaia to Tycho with a suitable margin. if verbose: log.info('Match Gaia to Tycho with margin={}" (pix={})...t={:.1f} mins' .format(margin, pixnum, (time()-t0)/60)) igaia, itycho = radec_match_to([ra, dec], [tychoobjs["RA"], tychoobjs["DEC"]], sep=margin, radec=True) if verbose: log.info('{} matches. Refining at 1" (pix={})...t={:.1f} mins'.format( len(itycho), pixnum, (time()-t0)/60)) # ADM match Gaia to Tycho at the more exact reference epoch. epoch_ra = tychoobjs[itycho]["EPOCH_RA"] epoch_dec = tychoobjs[itycho]["EPOCH_DEC"] # ADM some of the Tycho epochs aren't populated. epoch_ra[epoch_ra == 0], epoch_dec[epoch_dec == 0] = 1991.5, 1991.5 ra, dec = rewind_coords(gaiaobjs["RA"][igaia], gaiaobjs["DEC"][igaia], gaiaobjs["PMRA"][igaia], gaiaobjs["PMDEC"][igaia], epochnow=gaiaepoch, epochpast=epoch_ra, epochpastdec=epoch_dec) # ADM catch the corner case where there are no initial matches. if ra.size > 0: _, refined = radec_match_to([ra, dec], [tychoobjs["RA"][itycho], tychoobjs["DEC"][itycho]], radec=True) else: refined = np.array([], dtype='int') # ADM retain Tycho objects that DON'T match Gaia. keep = np.ones(len(tychoobjs), dtype='bool') keep[itycho[refined]] = False tychokeep, tychomag = tychoobjs[keep], tychomag[keep] if verbose: log.info('Kept {} Tychos with no Gaia match (pix={})...t={:.1f} mins' .format(len(tychokeep), pixnum, (time()-t0)/60)) # ADM now we're done matching to Gaia, limit Gaia to the passed # ADM magnitude limit and to the HEALPixel boundary of interest. theta, phi = np.radians(90-gaiaobjs["DEC"]), np.radians(gaiaobjs["RA"]) gaiahpx = hp.ang2pix(nside, theta, phi, nest=True) ii = (gaiahpx == pixnum) & (gaiaobjs['PHOT_G_MEAN_MAG'] < maglim) gaiakeep, uratid = gaiaobjs[ii], uratid[ii] if verbose: log.info('Mask also comprises {} Gaia sources (pix={})...t={:.1f} mins' .format(len(gaiakeep), pixnum, (time()-t0)/60)) # ADM move the coordinates forwards to the input mask epoch. epoch_ra, epoch_dec = tychokeep["EPOCH_RA"], tychokeep["EPOCH_DEC"] # ADM some of the Tycho epochs aren't populated. epoch_ra[epoch_ra == 0], epoch_dec[epoch_dec == 0] = 1991.5, 1991.5 ra, dec = rewind_coords( tychokeep["RA"], tychokeep["DEC"], tychokeep["PM_RA"], tychokeep["PM_DEC"], epochnow=epoch_ra, epochnowdec=epoch_dec, epochpast=maskepoch) tychokeep["RA"], tychokeep["DEC"] = ra, dec ra, dec = rewind_coords( gaiakeep["RA"], gaiakeep["DEC"], gaiakeep["PMRA"], gaiakeep["PMDEC"], epochnow=gaiaepoch, epochpast=maskepoch) gaiakeep["RA"], gaiakeep["DEC"] = ra, dec # ADM finally, format according to the mask data model... gaiamask = np.zeros(len(gaiakeep), dtype=maskdatamodel.dtype) tychomask = np.zeros(len(tychokeep), dtype=maskdatamodel.dtype) for col in "RA", "DEC": gaiamask[col] = gaiakeep[col] gaiamask["PM"+col] = gaiakeep["PM"+col] tychomask[col] = tychokeep[col] tychomask["PM"+col] = tychokeep["PM_"+col] gaiamask["REF_ID"] = gaiakeep["REF_ID"] # ADM take care to rigorously convert to int64 for Tycho. tychomask["REF_ID"] = tychokeep["TYC1"].astype('int64')*int(1e6) + \ tychokeep["TYC2"].astype('int64')*10 + tychokeep["TYC3"] gaiamask["REF_CAT"], tychomask["REF_CAT"] = 'G2', 'T2' gaiamask["REF_MAG"] = gaiakeep['PHOT_G_MEAN_MAG'] tychomask["REF_MAG"] = tychomag gaiamask["URAT_ID"], tychomask["URAT_ID"] = uratid, -1 gaiamask["TYPE"], tychomask["TYPE"] = 'PSF', 'PSF' mask = np.concatenate([gaiamask, tychomask]) # ADM ...and add the mask radii. mask["IN_RADIUS"], mask["NEAR_RADIUS"] = radii(mask["REF_MAG"]) if verbose: log.info("Done making mask...(pix={})...t={:.1f} mins".format( pixnum, (time()-t0)/60.)) return mask
c82768cd652feca5f07f857f6225a96931669d07
12,499