content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def _feature_normalization(features, method, feature_type): """Normalize the given feature vector `y`, with the stated normalization `method`. Args: features (np.ndarray): The signal array method (str): Normalization method. 'global': Uses global mean and standard deviation values from `train.txt`. The normalization is being applied element wise. ([sample] - [mean]^T) / [std]^T Where brackets denote matrices or vectors. 'local': Use local (in sample) mean and standard deviation values, and apply the normalization element wise, like in `global`. 'local_scalar': Uses only the mean and standard deviation of the current sample. The normalization is being applied by ([sample] - mean_scalar) / std_scalar 'none': No normalization is being applied. feature_type (str): Feature type, see `load_sample` for details. Returns: np.ndarray: The normalized feature vector. """ if method == 'none': return features elif method == 'global': # Option 'global' is applied element wise. if feature_type == 'mel': global_mean = __global_mean_mel global_std = __global_std_mel elif feature_type == 'mfcc': global_mean = __global_mean_mfcc global_std = __global_std_mfcc else: raise ValueError('Unsupported global feature type: {}'.format(feature_type)) return (features - global_mean) / global_std elif method == 'local': return (features - np.mean(features, axis=0)) / np.std(features, axis=0) elif method == 'local_scalar': # Option 'local' uses scalar values. return (features - np.mean(features)) / np.std(features) else: raise ValueError('Invalid normalization method: {}'.format(method))
0479363651a4bcf1622e7bdb0906b55e3adb1cce
12,500
def get_constraint(name): """ Lookup table of default weight constraint functions. Parameters ---------- name : Constraint, None, str Constraint to look up. Must be one of: - 'l1' : L1 weight-decay. - 'l2' : L2 weight-decay. - 'l1-l2' : Combined L1-L2 weight-decay. - Constraint : A custom implementation. - None : Return None. Custom Constraint must implement `constrain` function. Returns ------- constraint : Constraint or None The constraint function. """ if name == 'unit' : return UnitNorm elif name == 'maxnorm' : return MaxNorm elif name == 'minmax' : return MinMaxNorm elif isinstance(name, (None, Constraint)) : return name else : raise ValueError("Invalid regularizer")
09927531f4c6770e86ad603063e4edb0b0c4ff48
12,501
def player_count(conn, team_id): """Returns the number of players associated with a particular team""" c = conn.cursor() c.execute("SELECT id FROM players WHERE team_id=?", (team_id,)) return len(c.fetchall())
cfced6da6c8927db2ccf331dca7d23bba0ce67e5
12,502
def _RedisClient(address): """ Return a connection object connected to the socket given by `address` """ h1, h2 = get_handle_pair(conn_type=REDIS_LIST_CONN) c = _RedisConnection(h1) #redis_client = util.get_redis_client() redis_client = util.get_cache_client() ip, port = address chan = '{}:{}'.format(ip, port) redis_client.publish(chan, bytes(h2, 'utf-8')) ack = c.recv() assert ack == 'OK' return c
fc8bab786bb521fbd0715da3ab690575d1df865e
12,503
import math def format_timedelta(value, time_format="{days} days, {hours2}:{minutes2}:{seconds2}"): """Format a datetie.timedelta. See """ if hasattr(value, 'seconds'): seconds = value.seconds + value.days * 24 * 3600 else: seconds = int(value) seconds_total = seconds minutes = int(math.floor(seconds / 60)) minutes_total = minutes seconds -= minutes * 60 hours = int(math.floor(minutes / 60)) hours_total = hours minutes -= hours * 60 days = int(math.floor(hours / 24)) days_total = days hours -= days * 24 years = int(math.floor(days / 365)) years_total = years days -= years * 365 return time_format.format( **{ 'seconds': seconds, 'seconds2': str(seconds).zfill(2), 'minutes': minutes, 'minutes2': str(minutes).zfill(2), 'hours': hours, 'hours2': str(hours).zfill(2), 'days': days, 'years': years, 'seconds_total': seconds_total, 'minutes_total': minutes_total, 'hours_total': hours_total, 'days_total': days_total, 'years_total': years_total, })
19dc2b175beb1d030f14ae7fe96cb16d66f6c219
12,504
def random_account_user(account): """Get a random user for an account.""" account_user = AccountUser.objects.filter(account=account).order_by("?").first() return account_user.user if account_user else None
5fe918af67710d0d1519f56eee15811430a0e139
12,505
def overwrite(main_config_obj, args): """ Overwrites parameters with input flags Args: main_config_obj (ConfigClass): config instance args (dict): arguments used to overwrite Returns: ConfigClass: config instance """ # Sort on nested level to override shallow items first args = dict(sorted(args.items(), key=lambda item: item[0].count('.'))) for argument_key, val in args.items(): # Seperate nested keys into outer and inner outer_keys = argument_key.split('.') inner_key = outer_keys.pop(-1) base_err_msg = f"Can't set '{argument_key} = {val}'" # Check that the nested config has the attribute and is a config class config_obj = main_config_obj config_class = type(config_obj).__name__ for key_idx, key_part in enumerate(argument_key.split('.')): err_msg = f"{base_err_msg}. '{key_part}' isn't an attribute in '{config_class}'" assert hasattr(config_obj, key_part), err_msg # Check if the config allows the argument figutils.check_allowed_input_argument(config_obj, key_part, argument_key) # Check if the outer attributes are config classes if key_idx < len(outer_keys): config_obj = getattr(config_obj, key_part) config_class = type(config_obj).__name__ err_msg = f"{base_err_msg}. '{'.'.join(outer_keys)}' isn't a registered Anyfig config class" assert figutils.is_config_class(config_obj), err_msg value_class = type(getattr(config_obj, inner_key)) base_err_msg = f"Input argument '{argument_key}' with value {val} can't create an object of the expected type" # Create new anyfig class object if figutils.is_config_class(value_class): value_obj = create_config(val) # Create new object that follows the InterfaceField's rules elif issubclass(value_class, fields.InterfaceField): field = getattr(config_obj, inner_key) if isinstance(value_class, fields.InputField): value_class = field.type_pattern else: value_class = type(field.value) try: val = value_class(val) except Exception as e: err_msg = f"{base_err_msg} {field.type_pattern}. {e}" raise RuntimeError(err_msg) from None field = field.update_value(inner_key, val, config_class) value_obj = field.finish_wrapping_phase(inner_key, config_class) # Create new object of previous value type with new value else: try: if isinstance(val, dict): # Keyword specified cli-arguments value_obj = value_class(**val) else: value_obj = value_class(val) except Exception as e: err_msg = f"{base_err_msg} {value_class}. {e}" raise RuntimeError(err_msg) from None # Overwrite old value setattr(config_obj, inner_key, value_obj) return main_config_obj
98ee9cf034a9b714ae18e737761b06bfd669bfa4
12,506
def max_delta(model, new_model): """Return the largest difference between any two corresponding values in the models""" return max( [(abs(model[i] - new_model[i])).max() for i in range(len(model))] )
faf4a9fb2b24f7e7b4f357eef195e435950ea218
12,507
def wiener_khinchin_transform(power_spectrum, frequency, time): """ A function to transform the power spectrum to a correlation function by the Wiener Khinchin transformation ** Input:** * **power_spectrum** (`list or numpy.array`): The power spectrum of the signal. * **frequency** (`list or numpy.array`): The frequency discretizations of the power spectrum. * **time** (`list or numpy.array`): The time discretizations of the signal. **Output/Returns:** * **correlation_function** (`list or numpy.array`): The correlation function of the signal. """ frequency_interval = frequency[1] - frequency[0] fac = np.ones(len(frequency)) fac[1: len(frequency) - 1: 2] = 4 fac[2: len(frequency) - 2: 2] = 2 fac = fac * frequency_interval / 3 correlation_function = np.zeros(len(time)) for i in range(len(time)): correlation_function[i] = 2 * np.dot(fac, power_spectrum * np.cos(frequency * time[i])) return correlation_function
3cf8916c75632e3a0db52f907ce180eb766f9f2e
12,508
def child_is_flat(children, level=1): """ Check if all children in section is in same level. children - list of section children. level - integer, current level of depth. Returns True if all children in the same level, False otherwise. """ return all( len(child) <= level + 1 or child[(level + 1) :][0].isalpha() for child in children )
e14f9210a90b40b419d21fffa1542212429d80be
12,509
from pathlib import Path def load_dataset(name, other_paths=[]): """Load a dataset with given (file) name.""" if isinstance(name, Dataset): return name path = Path(name) # First, try if you have passed a fully formed dataset path if path.is_file(): return _from_npy(name, classes=classes) # Go through the dataset paths, return the first dataset found all_paths = dataset_path + other_paths for p in all_paths: try: file = p / path return _from_npy(file, classes=classes) except FileNotFoundError: pass raise FileNotFoundError( "Could not find dataset {} in paths {}".format(name, all_paths) )
3f3d2e7e7ec577098e1a1599c74638ced5d3c103
12,510
def isqrtcovresnet101b(**kwargs): """ iSQRT-COV-ResNet-101 model with stride at the second convolution in bottleneck block from 'Towards Faster Training of Global Covariance Pooling Networks by Iterative Matrix Square Root Normalization,' https://arxiv.org/abs/1712.01034. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_isqrtcovresnet(blocks=101, conv1_stride=False, model_name="isqrtcovresnet101b", **kwargs)
fdf166fa3ce9e893e8e97d1057dac89d084d2217
12,511
def get_data(name: str, level: int, max_level: int) -> str: """從維基頁面爬取資料 參數: name: 程式或節點名稱 level: 欲查詢的等級 回傳: 爬到的資料 """ reply_msg = [] for dataframe in read_html(generate_url(name)): if (max_level < dataframe.shape[0] < max_level + 3 and dataframe.iloc[level, 0].isdigit() and level == int(dataframe.iloc[level, 0])): reply_msg.append(zip(*dataframe.iloc[[0, level], 1:].values)) return '\n'.join(':'.join(pair) for data in reply_msg for pair in data)
4e0f11a33c81993132d45f3fdad5f42c1288bbe5
12,512
import os def is_processable(path: str, should_match_extension: str): """ Process scandir entries, copying the file if necessary """ if not os.path.isfile(path): return False filename = os.path.basename(path) _, extension = os.path.splitext(filename) if extension.lower() != should_match_extension.lower(): return False return True
5d99b821d3653ff452acac1e5fe48cab559c509e
12,513
def insert_data(context, data_dict): """ :raises InvalidDataError: if there is an invalid value in the given data """ data_dict['method'] = _INSERT result = upsert_data(context, data_dict) return result
c631016be36f1988bfa9c98cea42a7f63fddc276
12,514
import time def timestamp(): """Get the unix timestamp now and retuen it. Attention: It's a floating point number.""" timestamp = time.time() return timestamp
8e56a61659da657da9d5dda364d4d9e8f3d58ed2
12,515
from datetime import datetime def _n64_to_datetime(n64): """Convert Numpy 64 bit timestamps to datetime objects. Units in seconds""" return datetime.utcfromtimestamp(n64.tolist() / 1e9)
a25327f2cd0093635f86f3145f5674cc1945d3f8
12,516
import itertools def cycle(iterable): """Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is exhausted, return elements from the saved copy. Repeats indefinitely. This function uses single dispatch. .. seealso:: :func:`itertools.cycle` """ return itertools.cycle(iterable)
13f479fca709dffa77eeca3d32ff7265c81588bf
12,517
def get_availability_zone(name=None,state=None,zone_id=None,opts=None): """ `.getAvailabilityZone` provides details about a specific availability zone (AZ) in the current region. This can be used both to validate an availability zone given in a variable and to split the AZ name into its component parts of an AWS region and an AZ identifier letter. The latter may be useful e.g. for implementing a consistent subnet numbering scheme across several regions by mapping both the region and the subnet letter to network numbers. This is different from the `.getAvailabilityZones` (plural) data source, which provides a list of the available zones. :param str name: The full name of the availability zone to select. :param str state: A specific availability zone state to require. May be any of `"available"`, `"information"` or `"impaired"`. :param str zone_id: The zone ID of the availability zone to select. > This content is derived from https://github.com/terraform-providers/terraform-provider-aws/blob/master/website/docs/d/availability_zone.html.markdown. """ __args__ = dict() __args__['name'] = name __args__['state'] = state __args__['zoneId'] = zone_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:index/getAvailabilityZone:getAvailabilityZone', __args__, opts=opts).value return AwaitableGetAvailabilityZoneResult( name=__ret__.get('name'), name_suffix=__ret__.get('nameSuffix'), region=__ret__.get('region'), state=__ret__.get('state'), zone_id=__ret__.get('zoneId'), id=__ret__.get('id'))
6cb20524c1e0a2539e221711f1153949ab72f8e1
12,518
def _add_u_eq(blk, uex=0.8): """Add heat transfer coefficent adjustment for feed water flow rate. This is based on knowing the heat transfer coefficent at a particular flow and assuming the heat transfer coefficent is porportial to feed water flow rate raised to certain power (typically 0.8) Args: blk: Heat exchanger block to add correlation to uex: Correlation parameter value (defalut 0.8) Returns: None """ ti = blk.flowsheet().time blk.U0 = pyo.Var(ti) blk.f0 = pyo.Var(ti) blk.uex = pyo.Var(ti, initialize=uex) for t in ti: blk.U0[t].value = blk.overall_heat_transfer_coefficient[t].value blk.f0[t].value = blk.tube.properties_in[t].flow_mol.value blk.overall_heat_transfer_coefficient.unfix() blk.U0.fix() blk.uex.fix() blk.f0.fix() @blk.Constraint(ti) def U_eq(b, t): return ( b.overall_heat_transfer_coefficient[t] == b.U0[t]*(b.tube.properties_in[t].flow_mol/b.f0[t])**b.uex[t] )
f6b34a8e75367b43dbe759d273aa4be7dc371c12
12,519
def find_process_in_list( proclist, pid ): """ Searches for the given 'pid' in 'proclist' (which should be the output from get_process_list(). If not found, None is returned. Otherwise a list [ user, pid, ppid ] """ for L in proclist: if pid == L[1]: return L return None
19eab54b4d04b40a54a39a44e50ae28fbff9457c
12,520
def solution(s, start_pos, end_pos): """ Find the minimal nucleotide from a range of sequence DNA. :param s: String consisting of the letters A, C, G and T, which correspond to the types of successive nucleotides in the sequence :param start_pos: array with the start indexes for the intervals to check :param end_pos: array with the end indexes for the intervals to check :return: a list with the minimal nucleotide for each interval defined by start_pos and end_pos """ highest_class = 'T' highest_class_value = 4 # The array below must be in ascending order regarding the value assigned to the classes in the challenge description # (not necessarily in alphabetic order) other_classes = ['A', 'C', 'G'] other_classes_values = [1, 2, 3] # We create a prefix_sum list for each class, so we can identify when a range has that specific class prefix_sums = __class_based_prefix_sums(s, other_classes) result = [] for i in range(len(start_pos)): # We don't need to create a prefix_sum list for the class with highest value, # because we can always use it as a fallback current_result = highest_class_value for j in range(len(other_classes)): if __class_is_present(prefix_sums, j, start_pos[i], end_pos[i]): current_result = other_classes_values[j] break result.append(current_result) return result
25ef2f7e9b009de0534f8dde132c0eb44e3fe374
12,521
def validate_address(value: str, context: dict = {}) -> str: """ Default address validator function. Can be overriden by providing a dotted path to a function in ``SALESMAN_ADDRESS_VALIDATOR`` setting. Args: value (str): Address text to be validated context (dict, optional): Validator context data. Raises: ValidationError: In case address is not valid Returns: str: Validated value """ if not value: raise ValidationError(_("Address is required.")) return value
65e04a4780432608aa049687da98bd05a527fbad
12,522
import os import random def select_images(img_dir, sample_size=150, random_seed=42): """Selects a random sample of image paths.""" img_paths = [] for file in os.listdir(img_dir): if file.lower().endswith('.jpeg'): img_paths.append(os.path.join(img_dir, file)) if sample_size is not None: if random_seed is not None: random.seed(a=random_seed) img_paths = random.sample(img_paths, sample_size) return img_paths
999bf71eb6b8072bd91cbb98d9fe1b50d5e9b8ac
12,523
import os import json def load_period_data(period): """ Load period data JSON file If the file does not exist and empty dictionary is returned. """ filename = os.path.join(PROTOCOL_DIR, PERIOD_FILE_TEMPLATE % period) if not os.path.exists(filename): return {} with open(filename, 'r', encoding='utf-8') as f: return json.load(f)
c6c4c7121c55e1fd54d47a964054520f1f2fde97
12,524
from pathlib import Path def _get_hg_repo(path_dir): """Parse `hg paths` command to find remote path.""" if path_dir == "": return "" hgrc = Path(path_dir) / ".hg" / "hgrc" if hgrc.exists(): config = ConfigParser() config.read(str(hgrc)) if "paths" in config: return config["paths"].get("default", "hgrc: no default path?") else: return "hgrc: no [paths] section?" else: return "not a hg repo"
773ab4b45ba6883446c8e4a7725b7ac9d707440f
12,525
def array_to_string(array, col_delim=' ', row_delim='\n', digits=8, value_format='{}'): """ Convert a 1 or 2D array into a string with a specified number of digits and delimiter. The reason this exists is that the basic numpy array to string conversions are surprisingly bad. Parameters ------------ array : (n,) or (n, d) float or int Data to be converted If shape is (n,) only column delimiter will be used col_delim : str What string should separate values in a column row_delim : str What string should separate values in a row digits : int How many digits should floating point numbers include value_format : str Format string for each value or sequence of values If multiple values per value_format it must divide into array evenly. Returns ---------- formatted : str String representation of original array """ # convert inputs to correct types array = np.asanyarray(array) digits = int(digits) row_delim = str(row_delim) col_delim = str(col_delim) value_format = str(value_format) # abort for non-flat arrays if len(array.shape) > 2: raise ValueError('conversion only works on 1D/2D arrays not %s!', str(array.shape)) # allow a value to be repeated in a value format repeats = value_format.count('{}') if array.dtype.kind == 'i': # integer types don't need a specified precision format_str = value_format + col_delim elif array.dtype.kind == 'f': # add the digits formatting to floats format_str = value_format.replace( '{}', '{:.' + str(digits) + 'f}') + col_delim else: raise ValueError('dtype %s not convertible!', array.dtype.name) # length of extra delimiters at the end end_junk = len(col_delim) # if we have a 2D array add a row delimiter if len(array.shape) == 2: format_str *= array.shape[1] # cut off the last column delimiter and add a row delimiter format_str = format_str[:-len(col_delim)] + row_delim end_junk = len(row_delim) # expand format string to whole array format_str *= len(array) # if an array is repeated in the value format # do the shaping here so we don't need to specify indexes shaped = np.tile(array.reshape((-1, 1)), (1, repeats)).reshape(-1) # run the format operation and remove the extra delimiters formatted = format_str.format(*shaped)[:-end_junk] return formatted
9e7f189049b1ad3eff3679568a84e7151e2c643c
12,526
def get_dp_logs(logs): """Get only the list of data point logs, filter out the rest.""" filtered = [] compute_bias_for_types = [ "mouseout", "add_to_list_via_card_click", "add_to_list_via_scatterplot_click", "select_from_list", "remove_from_list", ] for log in logs: if log["type"] in compute_bias_for_types: filtered.append(log) return filtered
e0a7c579fa9218edbf942afdbdb8e6cf940d1a0c
12,527
from typing import List from typing import Dict def assign_reports_to_watchlist(cb: CbThreatHunterAPI, watchlist_id: str, reports: List[Dict]) -> Dict: """Set a watchlist report IDs attribute to the passed reports. Args: cb: Cb PSC object watchlist_id: The Watchlist ID to update. reports: The Intel Reports. Returns: The Watchlist in dict form. """ watchlist_data = get_watchlist(cb, watchlist_id) if not watchlist_data: return None watchlist_data["report_ids"] = [r["id"] for r in reports] watchlist_data = update_watchlist(cb, watchlist_data) if not watchlist_data: LOGGER.error(f"unexpected problem updating watchlist with report IDs.") return False return watchlist_data
92bb0369211c1720fa4d9baa7a4e3965851339f2
12,528
def visualize_filter( image, model, layer, filter_index, optimization_parameters, transformation=None, regularization=None, threshold=None, ): """Create a feature visualization for a filter in a layer of the model. Args: image (array): the image to be modified by the feature vis process. model (object): the model to be used for the feature visualization. layer (string): the name of the layer to be used in the visualization. filter_index (number): the index of the filter to be visualized. optimization_parameters (OptimizationParameters): the optimizer class to be applied. transformations (function): a function defining the transformations to be perfromed. regularization (function): customized regularizers to be applied. Defaults to None. threshold (list): Intermediate steps for visualization. Defaults to None. Returns: tuple: activation and result image for the process. """ image = tf.Variable(image) feature_extractor = get_feature_extractor(model, layer) _threshold_figures = figure(figsize=(15, 10), dpi=200) print("Starting Feature Vis Process") for iteration in range(optimization_parameters.iterations): pctg = int(iteration / optimization_parameters.iterations * 100) if transformation: if not callable(transformation): raise ValueError("The transformations need to be a function.") image = transformation(image) else: image = trans.standard_transformation(image) activation, image = gradient_ascent_step( image, feature_extractor, filter_index, regularization, optimization_parameters ) print('>>', pctg, '%', end="\r", flush=True) # Routine for creating a threshold image for Jupyter Notebooks if isinstance(threshold, list) and (iteration in threshold): threshold_image = _threshold_figures.add_subplot( 1, len(threshold), threshold.index(iteration) + 1 ) threshold_image.title.set_text(f"Step {iteration}") threshold_view(image) print('>> 100 %') if image.shape[1] < 299 or image.shape[2] < 299: image = tf.image.resize(image, [299, 299]) # Decode the resulting input image image = imgs.deprocess_image(image[0].numpy()) return activation, image
09940c0484361240929f61f04c9a96771b440033
12,529
def subtraction(x, y): """ Subtraction x and y >>> subtraction(-20, 80) -100 """ assert isinstance(x, (int, float)), "The x value must be an int or float" assert isinstance(y, (int, float)), "The y value must be an int or float" return x - y
203233897d31cb5bc79fca0f8c911b03d7deb5ba
12,530
import aiohttp async def paste(text: str) -> str: """Return an online bin of given text.""" session = aiohttp.ClientSession() async with session.post("https://hasteb.in/documents", data=text) as post: if post.status == 200: response = await post.text() return f"https://hasteb.in/{response[8:-2]}" post = await session.post("https://bin.drlazor.be", data={"val": text}) if post.status == 200: return post.url
d204f6f1db3aa33c98c4ebeae9888acc438f7dc3
12,531
def lr_step(base_lr, curr_iter, decay_iters, warmup_iter=0): """Stepwise exponential-decay learning rate policy. Args: base_lr: A scalar indicates initial learning rate. curr_iter: A scalar indicates current iteration. decay_iter: A list of scalars indicates the numbers of iteration when the learning rate is decayed. warmup_iter: A scalar indicates the number of iteration before which the learning rate is not adjusted. Return: A scalar indicates the current adjusted learning rate. """ if curr_iter < warmup_iter: alpha = curr_iter / warmup_iter return base_lr * (1 / 10.0 * (1 - alpha) + alpha) else: return base_lr * (0.1 ** get_step_index(curr_iter, decay_iters))
b8cfe670aba0bed1f84ae09c6271e681fad42864
12,532
def apo(coalg): """ Extending an anamorphism with the ability to halt. In this version, a boolean is paired with the value that indicates halting. """ def run(a): stop, fa = coalg(a) return fa if stop else fa.map(run) return run
a1e64d9ed49a8641095c8a8c20ae08c1cc6e9c19
12,533
def cat_sample(ps): """ sample from categorical distribution ps is a 2D array whose rows are vectors of probabilities """ r = nr.rand(len(ps)) out = np.zeros(len(ps),dtype='i4') cumsums = np.cumsum(ps, axis=1) for (irow,csrow) in enumerate(cumsums): for (icol, csel) in enumerate(csrow): if csel > r[irow]: out[irow] = icol break return out
30009b31dba0eff23010bfe6d531e8c55e46873c
12,534
def download_network(region, network_type): """Download network from OSM representing the region. Arguments: region {string} -- Location. E.g., "Manhattan Island, New York City, New York, USA" network_type {string} -- Options: drive, drive_service, walk, bike, all, all_private Returns: networkx -- downloaded networkx """ # Download graph G = ox.graph_from_place(region, network_type=network_type) return G
d77c9464641c90cc029adc0649739b499298d173
12,535
def extract_text(text): """ """ l = [] res = [] i = 0 while i < len(text) - 2: h, i, _ = next_token(text, i) obj = text[h:i] l.append(obj) for j, tok in enumerate(l): if tok == b'Tf': font = l[j-2] fsize = float(l[j-1]) elif tok == b'Td': x = float(l[j-2]) y = float(l[j-1]) elif tok == b'Tj': text = l[j-1] res.append((x, y, font, fsize, text[1:-1])) return res
9b0746be6f6fa39548fd34f3bffda7e8baf4a6ef
12,536
def add_pruning_arguments_to_parser(parser): """Add pruning arguments to existing argparse parser""" parser.add_argument('--do_prune', action='store_true', help="Perform pruning when training a model") parser.add_argument('--pruning_config', type=str, default='', help="Path to a pruning config") parser.add_argument('--pruning_override', type=str, nargs='*', action=ConcatenateStringAction, default='', help="JSON string to override pruning configuration file") return parser
2a94e0986564f4af8fe580ca3500f06c04598f14
12,537
import itertools from functools import reduce import copy def invokeRule(priorAnswers, bodyLiteralIterator, sip, otherargs, priorBooleanGoalSuccess=False, step=None, debug=False, buildProof=False): """ Continue invokation of rule using (given) prior answers and list of remaining body literals (& rule sip). If prior answers is a list, computation is split disjunctively [..] By combining the answers to all these subqueries, we generate answers for the original query involving the rule head Can also takes a PML step and updates it as it navigates the top-down proof tree (passing it on and updating it where necessary) """ assert not buildProof or step is not None proofLevel, memoizeMemory, sipCollection, \ factGraph, derivedPreds, processedRules = otherargs remainingBodyList = [i for i in bodyLiteralIterator] lazyGenerator = lazyGeneratorPeek(priorAnswers, 2) if lazyGenerator.successful: # There are multiple answers in this step, we need to call invokeRule # recursively for each answer, returning the first positive attempt success = False rt = None _step = None ansNo = 0 for priorAns in lazyGenerator: ansNo += 1 try: if buildProof: newStep = InferenceStep(step.parent, step.rule, source=step.source) newStep.antecedents = [ant for ant in step.antecedents] else: newStep = None for rt, _step in\ invokeRule([priorAns], iter([i for i in remainingBodyList]), sip, otherargs, priorBooleanGoalSuccess, newStep, debug=debug, buildProof=buildProof): if rt: yield rt, _step except RuleFailure: pass if not success: # None of prior answers were successful # indicate termination of rule processing raise RuleFailure( "Unable to solve either of %s against remainder of rule: %s" % ( ansNo, remainingBodyList)) # yield False, _InferenceStep(step.parent, step.rule, source=step.source) else: lazyGenerator = lazyGeneratorPeek(lazyGenerator) projectedBindings = lazyGenerator.successful and first(lazyGenerator) or {} # First we check if we can combine a large group of subsequent body literals # into a single query # if we have a template map then we use it to further # distinguish which builtins can be solved via # cumulative SPARQl query - else we solve # builtins one at a time def sparqlResolvable(literal): if isinstance(literal, Uniterm): return not literal.naf and GetOp(literal) not in derivedPreds else: return isinstance(literal, N3Builtin) and \ literal.uri in factGraph.templateMap def sparqlResolvableNoTemplates(literal): if isinstance(literal, Uniterm): return not literal.naf and GetOp(literal) not in derivedPreds else: return False conjGroundLiterals = list( itertools.takewhile( hasattr(factGraph, 'templateMap') and sparqlResolvable or \ sparqlResolvableNoTemplates, remainingBodyList)) bodyLiteralIterator = iter(remainingBodyList) if len(conjGroundLiterals) > 1: # If there are literals to combine *and* a mapping from rule # builtins to SPARQL FILTER templates .. basePredicateVars = set( reduce(lambda x, y: x + y, [list(GetVariables(arg, secondOrder=True)) for arg in conjGroundLiterals])) if projectedBindings: openVars = basePredicateVars.intersection(projectedBindings) else: # We don't have any given bindings, so we need to treat # the body as an open query openVars = basePredicateVars queryConj = EDBQuery([copy.deepcopy(lit) for lit in conjGroundLiterals], factGraph, openVars, projectedBindings) query, answers = queryConj.evaluate(debug) if isinstance(answers, bool): combinedAnswers = {} rtCheck = answers else: if projectedBindings: combinedAnswers = (mergeMappings1To2(ans, projectedBindings, makeImmutable=True) for ans in answers) else: combinedAnswers = (MakeImmutableDict(ans) for ans in answers) combinedAnsLazyGenerator = lazyGeneratorPeek(combinedAnswers) rtCheck = combinedAnsLazyGenerator.successful if not rtCheck: raise RuleFailure("No answers for combined SPARQL query: %s" % query) else: # We have solved the previous N body literals with a single # conjunctive query, now we need to make each of the literals # an antecedent to a 'query' step. if buildProof: queryStep = InferenceStep(None, source='some RDF graph') queryStep.groundQuery = subquery queryStep.bindings = {} # combinedAnswers[-1] queryHash = URIRef( "tag:[email protected]:Queries#" + \ makeMD5Digest(subquery)) queryStep.identifier = queryHash for subGoal in conjGroundLiterals: subNs = NodeSet(subGoal.toRDFTuple(), identifier=BNode()) subNs.steps.append(queryStep) step.antecedents.append(subNs) queryStep.parent = subNs for rt, _step in invokeRule( isinstance(answers, bool) and [projectedBindings] or combinedAnsLazyGenerator, iter(remainingBodyList[len(conjGroundLiterals):]), sip, otherargs, isinstance(answers, bool), step, debug=debug, buildProof=buildProof): yield rt, _step else: # Continue processing rule body condition # one literal at a time try: bodyLiteral = next(bodyLiteralIterator) if py3compat.PY3 else bodyLiteralIterator.next() # if a N3 builtin, execute it using given bindings for boolean answer # builtins are moved to end of rule when evaluating rules via sip if isinstance(bodyLiteral, N3Builtin): lhs = bodyLiteral.argument rhs = bodyLiteral.result lhs = isinstance(lhs, Variable) and projectedBindings[lhs] or lhs rhs = isinstance(rhs, Variable) and projectedBindings[rhs] or rhs assert lhs is not None and rhs is not None if bodyLiteral.func(lhs, rhs): if debug: print("Invoked %s(%s, %s) -> True" % ( bodyLiteral.uri, lhs, rhs)) # positive answer means we can continue processing the rule body if buildProof: ns = NodeSet(bodyLiteral.toRDFTuple(), identifier=BNode()) step.antecedents.append(ns) for rt, _step in invokeRule( [projectedBindings], bodyLiteralIterator, sip, otherargs, step, priorBooleanGoalSuccess, debug=debug, buildProof=buildProof): yield rt, _step else: if debug: print("Successfully invoked %s(%s, %s) -> False" % ( bodyLiteral.uri, lhs, rhs)) raise RuleFailure("Failed builtin invokation %s(%s, %s)" % (bodyLiteral.uri, lhs, rhs)) else: # For every body literal, subqueries are generated according # to the sip sipArcPred = URIRef(GetOp(bodyLiteral) + \ '_' + '_'.join(GetArgs(bodyLiteral))) assert len(list(IncomingSIPArcs(sip, sipArcPred))) < 2 subquery = copy.deepcopy(bodyLiteral) subquery.ground(projectedBindings) for N, x in IncomingSIPArcs(sip, sipArcPred): #That is, each subquery contains values for the bound arguments #that are passed through the sip arcs entering the node #corresponding to that literal #Create query out of body literal and apply sip-provided bindings subquery = copy.deepcopy(bodyLiteral) subquery.ground(projectedBindings) if literalIsGround(subquery): #subquery is ground, so there will only be boolean answers #we return the conjunction of the answers for the current #subquery answer = False ns = None answers = first( itertools.dropwhile( lambda item: not item[0], SipStrategy( subquery.toRDFTuple(), sipCollection, factGraph, derivedPreds, MakeImmutableDict(projectedBindings), processedRules, network=step is not None and \ step.parent.network or None, debug=debug, buildProof=buildProof, memoizeMemory=memoizeMemory, proofLevel=proofLevel))) if answers: answer, ns = answers if not answer and not bodyLiteral.naf or \ (answer and bodyLiteral.naf): #negative answer means the invokation of the rule fails #either because we have a positive literal and there #is no answer for the subgoal or the literal is #negative and there is an answer for the subgoal raise RuleFailure( "No solutions solving ground query %s" % subquery) else: if buildProof: if not answer and bodyLiteral.naf: ns.naf = True step.antecedents.append(ns) #positive answer means we can continue processing the rule body #either because we have a positive literal and answers #for subgoal or a negative literal and no answers for the #the goal for rt, _step in invokeRule( [projectedBindings], bodyLiteralIterator, sip, otherargs, True, step, debug=debug): yield rt, _step else: _answers = \ SipStrategy(subquery.toRDFTuple(), sipCollection, factGraph, derivedPreds, MakeImmutableDict(projectedBindings), processedRules, network=step is not None and \ step.parent.network or None, debug=debug, buildProof=buildProof, memoizeMemory=memoizeMemory, proofLevel=proofLevel) # solve (non-ground) subgoal def collectAnswers(_ans): for ans, ns in _ans: if isinstance(ans, dict): try: map = mergeMappings1To2( ans, projectedBindings, makeImmutable=True) yield map except: pass combinedAnswers = collectAnswers(_answers) answers = lazyGeneratorPeek(combinedAnswers) if not answers.successful \ and not bodyLiteral.naf \ or (bodyLiteral.naf and answers.successful): raise RuleFailure( "No solutions solving ground query %s" % subquery) else: # Either we have a positive subgoal and answers # or a negative subgoal and no answers if buildProof: if answers.successful: goals = set([g for a, g in answers]) assert len(goals) == 1 step.antecedents.append(goals.pop()) else: newNs = NodeSet( bodyLiteral.toRDFTuple(), network=step.parent.network, identifier=BNode(), naf=True) step.antecedents.append(newNs) for rt, _step in invokeRule( answers, bodyLiteralIterator, sip, otherargs, priorBooleanGoalSuccess, step, debug=debug, buildProof=buildProof): yield rt, _step except StopIteration: #Finished processing rule if priorBooleanGoalSuccess: yield projectedBindings and projectedBindings or True, step elif projectedBindings: #Return the most recent (cumulative) answers and the given step yield projectedBindings, step else: raise RuleFailure("Finished processing rule unsuccessfully")
66be56a818a620c5c47a7537b612e91341c7d334
12,538
def read_ult_meta(filebase): """Convenience fcn for output of targeted metadata.""" meta = _parse_ult_meta(filebase) return (meta["NumVectors"], meta["PixPerVector"], meta["ZeroOffset"], meta["Angle"], meta["PixelsPerMm"], meta["FramesPerSec"], meta["TimeInSecsOfFirstFrame"])
b2237a2dab9faf98179f69de9e9a5f1dc7289f78
12,539
from typing import Iterable from typing import List def safe_identifiers_iterable(val_list: Iterable[str]) -> List[str]: """ Returns new list, all with safe identifiers. """ return [safe_identifier(val) for val in val_list]
6b80d90cfac2ea527ace38cc6550571b5f120a7f
12,540
def encode_varint(value, write): """ Encode an integer to a varint presentation. See https://developers.google.com/protocol-buffers/docs/encoding?csw=1#varints on how those can be produced. Arguments: value (int): Value to encode write (function): Called per byte that needs to be writen Returns: int: Number of bytes written """ value = (value << 1) ^ (value >> 63) if value <= 0x7f: # 1 byte write(value) return 1 if value <= 0x3fff: # 2 bytes write(0x80 | (value & 0x7f)) write(value >> 7) return 2 if value <= 0x1fffff: # 3 bytes write(0x80 | (value & 0x7f)) write(0x80 | ((value >> 7) & 0x7f)) write(value >> 14) return 3 if value <= 0xfffffff: # 4 bytes write(0x80 | (value & 0x7f)) write(0x80 | ((value >> 7) & 0x7f)) write(0x80 | ((value >> 14) & 0x7f)) write(value >> 21) return 4 if value <= 0x7ffffffff: # 5 bytes write(0x80 | (value & 0x7f)) write(0x80 | ((value >> 7) & 0x7f)) write(0x80 | ((value >> 14) & 0x7f)) write(0x80 | ((value >> 21) & 0x7f)) write(value >> 28) return 5 else: # Return to general algorithm bits = value & 0x7f value >>= 7 i = 0 while value: write(0x80 | bits) bits = value & 0x7f value >>= 7 i += 1 write(bits) return i
075286208008a0b7507eafe19158eebdb2af66b7
12,541
def heap_sort(li): """ [list of int] => [list of int] Heap sort: divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element from it and inserting it into the sorted region. It does not waste time with a linear-time scan of the unsorted region; rather, heap sort maintains the unsorted region in a heap data structure to more quickly find the largest element in each step. To implement a heap using arrays, we will use the rule li[k] >= li[2*k+1] and li[k] >= li[2*k+2] (left child and right child respectively). More generally, the array must satisfy the heap quality: For any given node C, if P is a parent node of C, then the value of P is greater than or equal to the key of C (for max heaps) Graphically, this would look like: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 """ def heapify(lst, heap_size, root): """ ([list of int], int, int) => [list of int] Rearranges the list to satisfy the heap quality. Root is index of the largest element in the lst. """ # the largest node largest = root left_child = 2 * largest + 1 right_child = 2 * largest + 2 # check if left_child and root need to be swapped if left_child < heap_size and lst[largest] < lst[left_child]: largest = left_child # check if right_child and root need to be swapped if right_child < heap_size and lst[largest] < lst[right_child]: largest = right_child # change root, if needed if largest != root: lst[root], lst[largest] = lst[largest], lst[root] # continue to heapify the root heapify(lst, heap_size, largest) # Build a maxheap by iterating through the list backwards for i in range(len(li), -1, -1): heapify(li, len(li), i) print(li) # extract elements one by one for i in range(len(li) - 1, 0, -1): """remember, heap sort differs from insertion sort in that # it searches for the maximum, rather than minimum, element. li[0:end] is a heap (like a tree, but elements are not guaranteed to be sorted) and li[end:len(li)] is in sorted order.""" li[i], li[0] = li[0], li[i] # return to heap, since the heap was messed up by swapping heapify(li, i, 0) return li
a72be31e5256c880c157636aa7a15df013ce651d
12,542
def vector_field(v, t, inf_mat, state_meta): """vector_field returns the temporal derivative of a flatten state vector :param v: array of shape (1,mmax+1+(nmax+1)**2) for the flatten state vector :param t: float for time (unused) :param inf_mat: array of shape (nmax+1,nmax+1) representing the infection rate :param state_meta: tuple of arrays encoding information of the structure. :returns vec_field: array of shape (1,(nmax+1)**2) for the flatten vector field. """ mmax = state_meta[0] nmax = state_meta[1] m = state_meta[2] gm = state_meta[3] pn = state_meta[4] imat = state_meta[5] nmat = state_meta[6] pnmat = state_meta[7] sm = v[:mmax+1] fni = v[mmax+1:].reshape(nmax+1,nmax+1) fni_field = np.zeros(fni.shape) #matrix field sm_field = np.zeros(sm.shape) #calculate mean-field quantities r = np.sum(inf_mat[2:,:]*(nmat[2:,:]-imat[2:,:])*fni[2:,:]*pnmat[2:,:]) r /= np.sum((nmat[2:,:]-imat[2:,:])*fni[2:,:]*pnmat[2:,:]) rho = r*excess_susceptible_membership(m,gm,sm) #contribution for nodes #------------------------ sm_field = 1 - sm - sm*m*r #contribution for groups #------------------------ #contribution from above fni_field[2:,:nmax] += imat[2:,1:]*fni[2:,1:] #contribution from equal fni_field[2:,:] += (-imat[2:,:] -(nmat[2:,:] - imat[2:,:]) *(inf_mat[2:,:] + rho))*fni[2:,:] #contribution from below fni_field[2:,1:nmax+1] += ((nmat[2:,:nmax] - imat[2:,:nmax]) *(inf_mat[2:,:nmax] + rho))*fni[2:,:nmax] return np.concatenate((sm_field,fni_field.reshape((nmax+1)**2)))
31c8023966fd3e5c35b734759a3747f0d2752390
12,543
def newton(start, loss_fn, *args, lower=0, upper=None, epsilon=1e-9): """ Newton's Method! """ theta, origin, destination = args[0], args[1], args[2] if upper is None: upper = 1 start = lower while True: if loss_fn(start, theta, origin, destination) > 0: start = (upper+start)/2 else: start = (lower+start)/2 # print("START", start) x_cur = start x_prev = -1 try: while np.abs(x_cur-x_prev) >= epsilon: # print(x) x_prev = x_cur x_cur = newton_single(x_cur, loss_fn, theta, origin, destination) # print(x, x-x_prev, np.abs(x-x_prev)>=epsilon) if np.isnan(x_cur): continue return x_cur except ZeroDivisionError: print(start, x_cur)
bbd04297639fbc964c55a8c964e5bd5fb24d6e22
12,544
import torch def eval_det_cls(pred, gt, iou_thr=None): """Generic functions to compute precision/recall for object detection for a single class. Args: pred (dict): Predictions mapping from image id to bounding boxes \ and scores. gt (dict): Ground truths mapping from image id to bounding boxes. iou_thr (list[float]): A list of iou thresholds. Return: tuple (np.ndarray, np.ndarray, float): Recalls, precisions and \ average precision. """ # {img_id: {'bbox': box structure, 'det': matched list}} class_recs = {} npos = 0 img_id_npos = {} for img_id in gt.keys(): cur_gt_num = len(gt[img_id]) if cur_gt_num != 0: gt_cur = torch.zeros([cur_gt_num, 7], dtype=torch.float32) for i in range(cur_gt_num): gt_cur[i] = gt[img_id][i].tensor bbox = gt[img_id][0].new_box(gt_cur) else: bbox = gt[img_id] det = [[False] * len(bbox) for i in iou_thr] npos += len(bbox) img_id_npos[img_id] = img_id_npos.get(img_id, 0) + len(bbox) class_recs[img_id] = {'bbox': bbox, 'det': det} # construct dets image_ids = [] confidence = [] ious = [] for img_id in pred.keys(): cur_num = len(pred[img_id]) if cur_num == 0: continue pred_cur = torch.zeros((cur_num, 7), dtype=torch.float32) box_idx = 0 for box, score in pred[img_id]: image_ids.append(img_id) confidence.append(score) pred_cur[box_idx] = box.tensor box_idx += 1 pred_cur = box.new_box(pred_cur) gt_cur = class_recs[img_id]['bbox'] if len(gt_cur) > 0: # calculate iou in each image iou_cur = pred_cur.overlaps(pred_cur, gt_cur) for i in range(cur_num): ious.append(iou_cur[i]) else: for i in range(cur_num): ious.append(np.zeros(1)) confidence = np.array(confidence) # sort by confidence sorted_ind = np.argsort(-confidence) image_ids = [image_ids[x] for x in sorted_ind] ious = [ious[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp_thr = [np.zeros(nd) for i in iou_thr] fp_thr = [np.zeros(nd) for i in iou_thr] for d in range(nd): R = class_recs[image_ids[d]] iou_max = -np.inf BBGT = R['bbox'] cur_iou = ious[d] if len(BBGT) > 0: # compute overlaps for j in range(len(BBGT)): # iou = get_iou_main(get_iou_func, (bb, BBGT[j,...])) iou = cur_iou[j] if iou > iou_max: iou_max = iou jmax = j for iou_idx, thresh in enumerate(iou_thr): if iou_max > thresh: if not R['det'][iou_idx][jmax]: tp_thr[iou_idx][d] = 1. R['det'][iou_idx][jmax] = 1 else: fp_thr[iou_idx][d] = 1. else: fp_thr[iou_idx][d] = 1. ret = [] # Return additional information for custom metrics. new_ret = {} new_ret["image_ids"] = image_ids new_ret["iou_thr"] = iou_thr new_ret["ious"] = [max(x.tolist()) for x in ious] new_ret["fp_thr"] = [x.tolist() for x in fp_thr] new_ret["tp_thr"] = [x.tolist() for x in tp_thr] new_ret["img_id_npos"] = img_id_npos for iou_idx, thresh in enumerate(iou_thr): # compute precision recall fp = np.cumsum(fp_thr[iou_idx]) tp = np.cumsum(tp_thr[iou_idx]) recall = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth precision = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = average_precision(recall, precision) ret.append((recall, precision, ap)) return ret, new_ret
762f70d95261509778a1b015af30eab68f951b15
12,545
import pathlib from typing import List from typing import Dict import tqdm def parse_g2o(path: pathlib.Path, pose_count_limit: int = 100000) -> G2OData: """Parse a G2O file. Creates a list of factors and dictionary of initial poses.""" with open(path) as file: lines = [line.strip() for line in file.readlines()] pose_variables: List[jaxfg.geometry.LieVariableBase] = [] initial_poses: Dict[jaxfg.geometry.LieVariableBase, jaxlie.MatrixLieGroup] = {} factors: List[jaxfg.core.FactorBase] = [] for line in tqdm(lines): parts = [part for part in line.split(" ") if part != ""] variable: jaxfg.geometry.LieVariableBase between: jaxlie.MatrixLieGroup if parts[0] == "VERTEX_SE2": if len(pose_variables) > pose_count_limit: continue # Create SE(2) variable _, index, x, y, theta = parts index = int(index) x, y, theta = map(float, [x, y, theta]) assert len(initial_poses) == index variable = jaxfg.geometry.SE2Variable() initial_poses[variable] = jaxlie.SE2.from_xy_theta(x, y, theta) pose_variables.append(variable) elif parts[0] == "EDGE_SE2": # Create relative offset between pair of SE(2) variables before_index = int(parts[1]) after_index = int(parts[2]) if before_index > pose_count_limit or after_index > pose_count_limit: continue between = jaxlie.SE2.from_xy_theta(*(float(p) for p in parts[3:6])) precision_matrix_components = onp.array(list(map(float, parts[6:]))) precision_matrix = onp.zeros((3, 3)) precision_matrix[onp.triu_indices(3)] = precision_matrix_components precision_matrix = precision_matrix.T precision_matrix[onp.triu_indices(3)] = precision_matrix_components sqrt_precision_matrix = onp.linalg.cholesky(precision_matrix).T factors.append( jaxfg.geometry.BetweenFactor.make( variable_T_world_a=pose_variables[before_index], variable_T_world_b=pose_variables[after_index], T_a_b=between, noise_model=jaxfg.noises.Gaussian( sqrt_precision_matrix=sqrt_precision_matrix ), ) ) elif parts[0] == "VERTEX_SE3:QUAT": # Create SE(3) variable _, index, x, y, z, qx, qy, qz, qw = parts index = int(index) assert len(initial_poses) == index variable = jaxfg.geometry.SE3Variable() initial_poses[variable] = jaxlie.SE3( wxyz_xyz=onp.array(list(map(float, [qw, qx, qy, qz, x, y, z]))) ) pose_variables.append(variable) elif parts[0] == "EDGE_SE3:QUAT": # Create relative offset between pair of SE(3) variables before_index = int(parts[1]) after_index = int(parts[2]) numerical_parts = list(map(float, parts[3:])) assert len(numerical_parts) == 7 + 21 # between = jaxlie.SE3.from_xy_theta(*(float(p) for p in parts[3:6])) xyz = numerical_parts[0:3] quaternion = numerical_parts[3:7] between = jaxlie.SE3.from_rotation_and_translation( rotation=jaxlie.SO3.from_quaternion_xyzw(onp.array(quaternion)), translation=onp.array(xyz), ) precision_matrix = onp.zeros((6, 6)) precision_matrix[onp.triu_indices(6)] = numerical_parts[7:] precision_matrix = precision_matrix.T precision_matrix[onp.triu_indices(6)] = numerical_parts[7:] sqrt_precision_matrix = onp.linalg.cholesky(precision_matrix).T factors.append( jaxfg.geometry.BetweenFactor.make( variable_T_world_a=pose_variables[before_index], variable_T_world_b=pose_variables[after_index], T_a_b=between, noise_model=jaxfg.noises.Gaussian( sqrt_precision_matrix=sqrt_precision_matrix ), ) ) else: assert False, f"Unexpected line type: {parts[0]}" # Anchor start pose factors.append( jaxfg.geometry.PriorFactor.make( variable=pose_variables[0], mu=initial_poses[pose_variables[0]], noise_model=jaxfg.noises.DiagonalGaussian( jnp.ones(pose_variables[0].get_local_parameter_dim()) * 100.0 ), ) ) return G2OData(factors=factors, initial_poses=initial_poses)
6c766401220849e337279e8b465f9d67477a1599
12,546
def _som_actor(env): """ Construct the actor part of the model and return it. """ nactions = np.product(env.action_shape) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=(1,) + env.observation_space.shape)) model.add(keras.layers.Dense(400)) model.add(keras.layers.Activation('relu')) model.add(keras.layers.Dense(200)) model.add(keras.layers.Activation('relu')) model.add(keras.layers.Dense(nactions)) model.add(keras.layers.Activation('sigmoid')) return model
e3bc1f675b16b2d728b1c070324139f0d99071a7
12,547
def sendEmail(): """email sender""" send_email('Registration ATS', ['[email protected]'], 'Thanks for registering ATS!', '<h3>Thanks for registering with ATS!</h3>') return "email sent to [email protected]"
e9125c32adac8267aaa550e59e27db4a10746ace
12,548
import scipy def Pvalue(chi2, df): """Returns the p-value of getting chi2 from a chi-squared distribution. chi2: observed chi-squared statistic df: degrees of freedom """ return 1 - scipy.stats.chi2.cdf(chi2, df)
1a2198e5d47396fc785a627d96513ded1d6894e0
12,549
def template(template_lookup_key: str) -> str: """Return template as string.""" with open(template_path(template_lookup_key), "r") as filepath: template = filepath.read() return template
d03bbc2baa8cb18174a468579bdea1da906de09d
12,550
def filter_rows(df, condition, reason): """ :param reason: :param df: :param condition: boolean, true for row to keep :return: filter country_city_codes df """ n_dropped = (condition == False).sum() print( f"\nexcluding {n_dropped} locations ({n_dropped / df.shape[0]:.1%}) due to {reason}" ) return df[condition]
7e5e6925bfb7d90bc90b42fda202d80e8ef5e3f6
12,551
def parse_projected_dos(f): """Parse `projected_dos.dat` output file.""" data = np.loadtxt(f) projected_dos = {"frequency_points": data[:, 0], "projected_dos": data[:, 1:].T} pdos = orm.XyData() pdos_list = [pd for pd in projected_dos["projected_dos"]] pdos.set_x(projected_dos["frequency_points"], "Frequency", "THz") pdos.set_y( pdos_list, [ "Projected DOS", ] * len(pdos_list), [ "1/THz", ] * len(pdos_list), ) pdos.label = "Projected DOS" return pdos
89c280e92c7598e3947d8ccda20b921c601c9b10
12,552
def get_from_parameters(a, b, c, alpha, beta, gamma): """ Create a Lattice using unit cell lengths and angles (in degrees). This code is modified from the pymatgen source code [1]_. Parameters ---------- a : :class:`float`: *a* lattice parameter. b : :class:`float`: *b* lattice parameter. c : :class:`float`: *c* lattice parameter. alpha : :class:`float`: *alpha* angle in degrees. beta : :class:`float`: *beta* angle in degrees. gamma : :class:`float`: *gamma* angle in degrees. Returns ------- :class:`tuple` of three :class:`numpy.ndarray` Tuple of cell lattice vectors of shape (3, ) in Angstrom. """ angles_r = np.radians([alpha, beta, gamma]) cos_alpha, cos_beta, cos_gamma = np.cos(angles_r) sin_alpha, sin_beta, sin_gamma = np.sin(angles_r) val = (cos_alpha * cos_beta - cos_gamma) / (sin_alpha * sin_beta) # Sometimes rounding errors result in values slightly > 1. val = cap_absolute_value(val) gamma_star = np.arccos(val) vector_a = np.array([a * sin_beta, 0.0, a * cos_beta]) vector_b = np.array([ -b * sin_alpha * np.cos(gamma_star), b * sin_alpha * np.sin(gamma_star), b * cos_alpha, ]) vector_c = np.array([0.0, 0.0, float(c)]) return tuple([vector_a, vector_b, vector_c])
076763f30da86b12747ede930993d99fc3b742d8
12,553
import random def random_chinese_name(): """生成随机中文名字 包括的名字格式:2个字名字**,3个字名字***,4个字名字**** :return: """ name_len = random.choice([i for i in range(4)]) if name_len == 0: name = random_two_name() elif name_len == 1: name = random_three_name() elif name_len == 2: name = random_three_names() else: name = random_four_name() return name
c86232cb81c492e2301837f5e330e6140ee503f3
12,554
def power_list(lists: [list]) -> list: """ power set across the options of all lists """ if len(lists) == 1: return [[v] for v in lists[0]] grids = power_list(lists[:-1]) new_grids = [] for v in lists[-1]: for g in grids: new_grids.append(g + [v]) return new_grids
135e3cde20388d999456e2e8a2fed4d98fac581d
12,555
import time def send_email(from_email, to, subject, message, html=True): """ Send emails to the given recipients :param from_email: :param to: :param subject: :param message: :param html: :return: Boolean value """ try: email = EmailMessage(subject, message, from_email, to) print("Sending email..") if html: email.content_subtype = 'html' email.send() return True except Exception as e: print("Error in sending email: {0}".format(str(e))) if 'rate exceeded' in str(e): time.sleep(2) send_email(from_email, to, subject, message) return False
28751bc30f51148c0389d4127229e6352a18cacb
12,556
import random def attack(health, power, percent_to_hit): """Calculates health from percent to hit and power of hit Parameters: health - integer defining health of attackee power - integer defining damage of attacker percent to hit - float defining percent chance to hit of attacker Returns: new health """ random_number = random.random() # number between 0.0 and 1.0 # if our random number falls between 0 and percent to hit if random_number <= percent_to_hit: # then a hit occurred so we reduce health by power health = health - power # return the new health value return health
83a74908f76f389c798b28c5d3f9035d2d8aff6a
12,557
def signal_requests_mock_factory(requests_mock: Mocker) -> Mocker: """Create signal service mock from factory.""" def _signal_requests_mock_factory( success_send_result: bool = True, content_length_header: str = None ) -> Mocker: requests_mock.register_uri( "GET", "http://127.0.0.1:8080/v1/about", status_code=HTTPStatus.OK, json={"versions": ["v1", "v2"]}, ) if success_send_result: requests_mock.register_uri( "POST", "http://127.0.0.1:8080" + SIGNAL_SEND_PATH_SUFIX, status_code=HTTPStatus.CREATED, ) else: requests_mock.register_uri( "POST", "http://127.0.0.1:8080" + SIGNAL_SEND_PATH_SUFIX, status_code=HTTPStatus.BAD_REQUEST, ) if content_length_header is not None: requests_mock.register_uri( "GET", URL_ATTACHMENT, status_code=HTTPStatus.OK, content=CONTENT, headers={"Content-Length": content_length_header}, ) else: requests_mock.register_uri( "GET", URL_ATTACHMENT, status_code=HTTPStatus.OK, content=CONTENT, ) return requests_mock return _signal_requests_mock_factory
543f73ec004911c87e9986cbd940a733f03287bf
12,558
def test_dwt_denoise_trace(): """ Check that sample data fed into dwt_denoise_trace() can be processed and that the returned signal is reasonable (for just one trace)""" # Loma Prieta test station (nc216859) data_files, origin = read_data_dir('geonet', 'us1000778i', '*.V1A') trace = [] trace = read_data(data_files[0]) dataOut = dwt.denoise_trace(tr=trace) # Look at frequency content? Samples? return dataOut
4c526e7e76c8672322bec0323974ca2ee20e25dd
12,559
def get_networks(project_id=None, auth_token=None): """ Get a list of all routed networks """ url = CATALOG_HOST + "/routednetwork" try: response_body = _api_request(url=url, http_method="GET", project_id=project_id, auth_token=auth_token) except CommandExecutionError as e: log.exception(e) return None networks = [ network for network in response_body if network['internalDeploymentStatus']['phase'] in list(map(str, POSITIVE_PHASES)) ] return networks
c2c9bfe05cfa416c9e37d04aefcc640d5d2250f7
12,560
def feature_registration(source,target, MIN_MATCH_COUNT = 12): """ Obtain the rigid transformation from source to target first find correspondence of color images by performing fast registration using SIFT features on color images. The corresponding depth values of the matching keypoints is then used to obtain rigid transformation through a ransac process. Parameters ---------- source : ((n,m) uint8, (n,m) float) The source color image and the corresponding 3d pointcloud combined in a list target : ((n,m) uint8, (n,m) float) The target color image and the corresponding 3d pointcloud combined in a list MIN_MATCH_COUNT : int The minimum number of good corresponding feature points for the algorithm to trust the pairwise registration result with feature matching only Returns ---------- transform: (4,4) float or None The homogeneous rigid transformation that transforms source to the target's frame if None, registration result using feature matching only cannot be trusted either due to no enough good matching feature points are found, or the ransac process does not return a solution """ cad_src, depth_src = source cad_des, depth_des = target # Initiate SIFT detector sift = cv2.xfeatures2d.SIFT_create() # find the keypoints and descripto rs with SIFT kp1, des1 = sift.detectAndCompute(cad_src,None) kp2, des2 = sift.detectAndCompute(cad_des,None) # find good mathces bf = cv2.BFMatcher() matches = bf.knnMatch(des1,des2, k=2) good = [] for m,n in matches: if m.distance < 0.7*n.distance: good.append(m) # if number of good matching feature point is greater than the MIN_MATCH_COUNT if len(good)>MIN_MATCH_COUNT: src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) matchesMask = mask.ravel().tolist() bad_match_index = np.where(np.array(matchesMask) == 0) src_index=np.vstack(src_pts).squeeze() src_index = np.delete(src_index, tuple(bad_match_index[0]), axis=0) src_index[:,[0, 1]] = src_index[:,[1, 0]] src_index = tuple(src_index.T.astype(np.int32)) src_depths = depth_src[src_index] dst_index=np.vstack(dst_pts).squeeze() dst_index = np.delete(dst_index, tuple(bad_match_index[0]), axis=0) dst_index[:,[0, 1]] = dst_index[:,[1, 0]] dst_index = tuple(dst_index.T.astype(np.int32)) dst_depths = depth_des[dst_index] dst_good=[] src_good=[] dst_depths=dst_depths[matchesMask>0][0] src_depths=src_depths[matchesMask>0][0] for i in xrange(len(dst_depths)): if np.sum(dst_depths[i])!=0 and np.sum(src_depths[i])!=0: dst_good.append(dst_depths[i].tolist()) src_good.append(src_depths[i].tolist()) # get rigid transforms between 2 set of feature points through ransac transform = match_ransac(np.asarray(src_good),np.asarray(dst_good)) return transform else: return None
d5839ef3586acd84c57341f19700de38660f9a9f
12,561
def set_metadata(testbench_config, testbench): """ Perform the direct substitutions from the sonar testbench metadata into the the testbench Args: testbench_config (Testbench): Sonar testbench description testbench (str): The testbench template """ for key, value in testbench_config.metadata.items(): if value is None: replace_str = "" else: replace_str = str(value) search_str = "SONAR_" + key.upper() testbench = replace_in_testbenches(testbench, search_str, replace_str) return testbench
375712b92f7467ee4d49e5d9e91250464c81337d
12,562
def index(a, x): """Locate the leftmost value exactly equal to x""" i = bisect_left(a, x) if i != len(a) and a[i] == x: return i raise ValueError
f77aed5c55750b848fdf51b66b38f3774c812e23
12,563
def convert_secondary_type_list(obj): """ :type obj: :class:`[mbdata.models.ReleaseGroupSecondaryType]` """ type_list = models.secondary_type_list() [type_list.add_secondary_type(convert_secondary_type(t)) for t in obj] return type_list
d84d20f6d82b462bda5bf04f6784effea47a0265
12,564
import matplotlib.pyplot as plt def run(inputs, parameters = None): """Function to be callled by DOE and optimization. Design Variables are the only inputs. :param inputs: {'sma', 'linear', 'sigma_o'}""" def thickness(x, t, chord): y = af.Naca00XX(chord, t, [x], return_dict = 'y') thickness_at_x = y['u'] - y['l'] return thickness_at_x if parameters != None: eng = parameters[0] import_matlab = False else: eng = None import_matlab = True sma = inputs['sma'] linear = inputs['linear'] R = inputs['R'] sigma_o = 100e6 airfoil = "naca0012" chord = 1.#0.6175 J = {'x':0.75, 'y':0.} #Adding the area key to the dictionaries sma['area'] = math.pi*(0.000381/2.)**2 linear['area'] = 0.001 # Design constants #arm length to center of gravity r_w = 0.10 #Aicraft weight (mass times gravity) W = 0.0523*9.8 #0.06*9.8 alpha = 0. V = 10 #m/s altitude = 10000. #feet # Temperature T_0 = 273.15 + 30. T_final = 273.15 + 140. #Initial martensitic volume fraction MVF_init = 1. # Number of steps and cycles n = 200 n_cycles = 0 #~~~~~~~~~~~~~~~~~~~~~bb~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Parameters to select how to output stuff all_outputs = True save_data = True #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if all_outputs: eps_s, eps_l, theta, sigma, MVF, T, eps_t, theta, F_l, k, L_s = flap(airfoil, chord, J, sma, linear, sigma_o, W, r_w, V, altitude, alpha, T_0, T_final, MVF_init, n, R, all_outputs = True, import_matlab = import_matlab, eng=eng, n_cycles = n_cycles) plt.figure() plt.plot(np.rad2deg(theta), eps_s, lw=2., label = "$\epsilon_s$") plt.plot(np.rad2deg(theta), eps_l, 'b--',lw=2, label = "$\epsilon_l$") # plt.scatter(theta, eps_s, c = 'b') # plt.scatter(theta, eps_l, c = 'b') plt.ylabel('$\epsilon$', fontsize=24) plt.xlabel(r'$\theta ({}^{\circ})$', fontsize=20) plt.legend(loc = 'best', fontsize = 'x-large') plt.grid() print len(T), len(eps_s), len(eps_l), len(theta), len(eps_t) plt.figure() plt.plot(np.rad2deg(theta), eps_t, lw=2.) # plt.scatter(theta, eps_t, c = 'b') plt.ylabel('$\epsilon_t$', fontsize=24) plt.xlabel(r'$\theta ({}^{\circ})$', fontsize=20) plt.legend(loc = 'best', fontsize = 'x-large') plt.grid() plt.figure() plt.plot(np.rad2deg(theta), MVF, lw=2.) # plt.scatter(theta, MVF, c = 'b') plt.ylabel('$MVF$', fontsize=24) plt.xlabel(r'$\theta ({}^{\circ})$', fontsize=20) plt.legend(loc = 'best', fontsize = 'x-large') plt.grid() plt.figure() plt.plot(T, MVF, lw=2.) # plt.scatter(T, MVF, c = 'b') plt.ylabel('$MVF$', fontsize=24) plt.xlabel('$T (K)$', fontsize=20) plt.legend(loc = 'best', fontsize = 'x-large') plt.grid() plt.figure() plt.plot(T, sigma, lw=2.) # plt.scatter(T, sigma, c = 'b') plt.ylabel('$\sigma$', fontsize=24) plt.xlabel('$T (K)$', fontsize=20) plt.legend(loc = 'best', fontsize = 'x-large') plt.grid() plt.figure() plt.plot(T, eps_s, 'b', lw=2., label = "$\epsilon_s$") plt.plot(T, eps_l, 'b--',lw=2, label = "$\epsilon_l$") # plt.scatter(T, eps_s, c = 'b') # plt.scatter(T, eps_l, c = 'b') plt.xlabel('$T (K)$', fontsize=20) plt.ylabel('$\epsilon$', fontsize=24) plt.legend(loc = 'best', fontsize = 'x-large') plt.grid() plt.figure() plt.plot(T, np.rad2deg(theta), lw=2.) # plt.scatter(T, theta, c = 'b') plt.xlabel('$T (K)$', fontsize=20) plt.ylabel(r'$\theta ({}^{\circ})$', fontsize=20) plt.grid() F_s = [] for i in range(len(sigma)): F_s.append(sigma[i]*sma['area']) # sigma_MPa = [] # for sigma_i in sigma: # sigma_MPa.append(sigma_i/1e6) plt.figure() plt.plot(theta, F_s, 'b', lw=2., label = "$F_s$") plt.plot(theta, F_l, 'b--', lw=2., label = "$F_l$") # plt.scatter(theta, F_s, c = 'b') # plt.scatter(theta, F_l, c = 'b') plt.ylabel('$F (N)$', fontsize=20) plt.xlabel(r'$\theta ({}^{\circ})$', fontsize=20) plt.legend(loc = 'best', fontsize = 'x-large') plt.grid() else: theta, k= flap(airfoil, chord, J, sma, linear, sigma_o, W, r_w, V, altitude, alpha, T_0, T_final, MVF_init, n, R, all_outputs = False, import_matlab = import_matlab, eng=eng, n_cycles = n_cycles) if save_data == True: Data = {'theta': theta, 'eps_s': eps_s, 'eps_l': eps_l, 'sigma': sigma, 'xi': MVF, 'T': T, 'eps_t': eps_t, 'F_l': F_l, 'k': k, 'L_s':L_s} pickle.dump(Data, open( "data.p", "wb" ) ) return {'theta': theta, 'k': k}
65c1951fb4bbed8ab2832ce4892a6c6308439f79
12,565
import json def load_data(path): """Load JSON data.""" with open(path) as inf: return json.load(inf)
531fc2b27a6ab9588b1f047e25758f359dc21b6d
12,566
from pathlib import Path def get_extension(file_path): """ get_extension(file) Gets the extension of the given file. Parameters ---------- file_path A path to a file Returns ------- str Returns the extension of the file if it exists or None otherwise. The Returning extension contains a dot. Ex: .csv """ if exists(file_path): return Path(file_path).suffix else: return None
7b1c4ba4f20ac913bb38292d4a704869cab6937e
12,567
def rank_in_group(df, group_col, rank_col, rank_method="first"): """Ranks a column in each group which is grouped by another column Args: df (pandas.DataFrame): dataframe to rank-in-group its column group_col (str): column to be grouped by rank_col (str): column to be ranked for rank_method (str): rank method to be the "method" argument of pandas.rank() function Returns: pandas.DataFrame: dataframe after the rank-in-group operation """ df = df.copy() df_slice = df[[group_col, rank_col]].drop_duplicates() df_slice["ranked_{}".format(rank_col)] = df_slice[rank_column].rank( method=rank_method ) df = pd.merge( df, df_slice[[group_col, "ranked_{}".format(rank_col)]], how="left", on=group_col, ) return df
f2ae45641339bf4bc71bc48a415a28602ccf8da3
12,568
import six def get_layer_options(layer_options, local_options): """ Get parameters belonging to a certain type of layer. Parameters ---------- layer_options : list of String Specifies parameters of the layer. local_options : list of dictionary Specifies local parameters in a model function. """ layer_options_dict = {} for key, value in six.iteritems(local_options): if key in layer_options: layer_options_dict[key] = value return layer_options_dict
e40945395c4a96c0a0b9447eeb1d0b50cf661bd7
12,569
def expr(term:Vn,add:Vt,expr:Vn)->Vn: """ expr -> term + expr """ return {"add":[term,expr]}
f66475ecbd255ac4c4a04b0d705f1c052c4ee123
12,570
import json def gene_box(cohort, order='median', percentage=False): """Box plot with counts of filtered mutations by gene. percentage computes fitness as the increase with respect to the self-renewing replication rate lambda=1.3. Color allows you to use a dictionary of colors by gene. Returns a figure.""" # Load gene color dictionary with open('../Resources/gene_color_dict.json') as json_file: color_dict = json.load(json_file) # Create a dictionary with all filtered genes gene_list = [] for traj in cohort: gene_list.append(traj.gene) gene_dict = {element: [] for element in set(gene_list)} # update the counts for each gene if percentage is False: y_label = 'Fitness' for traj in cohort: fitness = traj.fitness gene_dict[traj.gene].append(fitness) if percentage is True: y_label = 'fitness_percentage' for traj in cohort: fitness = traj.fitness_percentage gene_dict[traj.gene].append(fitness) # sort dictionary in descending order if order == 'mean': gene_dict = dict(sorted(gene_dict.items(), key=lambda item: np.mean(item[1]), reverse=True)) if order == 'median': gene_dict = dict(sorted(gene_dict.items(), key=lambda item: np.median(item[1]), reverse=True)) if order == 'max': gene_dict = dict(sorted(gene_dict.items(), key=lambda item: np.max(item[1]), reverse=True)) # Bar plot fig = go.Figure() # color_dict = dict() # if isinstance(color, dict): # color_dict = color for i, key in enumerate(gene_dict): fig.add_trace( go.Box(y=gene_dict[key], marker_color=color_dict[key], name=key, boxpoints='all', showlegend=False)) fig.update_layout(title='Gene distribution of filtered mutations', yaxis_title=y_label, template="simple_white") fig.update_xaxes(linewidth=2) fig.update_yaxes(linewidth=2) if percentage is False: fig.update_yaxes(type='log', tickvals=[0.05, 0.1, 0.2, 0.4]) fig.update_layout(xaxis_tickangle=-45) return fig, gene_dict
851c166246144b14d51863b4c775baa88ab87205
12,571
from typing import Union from typing import List def _clip_and_count( adata: AnnData, target_col: str, *, groupby: Union[str, None, List[str]] = None, clip_at: int = 3, inplace: bool = True, key_added: Union[str, None] = None, fraction: bool = True, ) -> Union[None, np.ndarray]: """Counts the number of identical entries in `target_col` for each group in `group_by`. """ if target_col not in adata.obs.columns: raise ValueError("`target_col` not found in obs.") groupby = [groupby] if isinstance(groupby, str) else groupby groupby_cols = [target_col] if groupby is None else groupby + [target_col] clonotype_counts = ( adata.obs.groupby(groupby_cols, observed=True) .size() .reset_index(name="tmp_count") .assign( tmp_count=lambda X: [ ">= {}".format(min(n, clip_at)) if n >= clip_at else str(n) for n in X["tmp_count"].values ] ) ) clipped_count = adata.obs.merge(clonotype_counts, how="left", on=groupby_cols)[ "tmp_count" ].values if inplace: key_added = ( "{}_clipped_count".format(target_col) if key_added is None else key_added ) adata.obs[key_added] = clipped_count else: return clipped_count
20673965557afdcf75b3201cf743fff100981ec3
12,572
def create_training_patches(images, patch_size, patches_per_image=1, patch_stride=None): """ Returns a batch of image patches, given a batch of images. Args: images (list, numpy.array): Batch of images. patch_size (tuple, list): The (width, height) of the patch to return. patches_per_image (int): Number of random patches to generate from each image in the input batch. Default is 1. patch_stride (int): Stride to use in strided patching. Default is None, which does not use strided patching. If integer is passed then strided patching will be used regardless of what is passed to 'patches_per_image'. Returns: (numpy.array): Batch of image patches. """ image_patches = [] for im in images: if patch_stride is None: for i in range(patches_per_image): image_patches.append(get_random_patch(im, patch_size)) else: image_patches += list(get_stride_patches(im, patch_size, patch_stride, 2)) return np.array(image_patches)
5fce19d2d13f790500e0cbd42934dd6e83c6b084
12,573
import time def get_prover_options(prover_round_tag='manual', prover_round=-1) -> deephol_pb2.ProverOptions: """Returns a ProverOptions proto based on FLAGS.""" if not FLAGS.prover_options: tf.logging.fatal('Mandatory flag --prover_options is not specified.') if not tf.gfile.Exists(FLAGS.prover_options): tf.logging.fatal('Required prover options file "%s" does not exist.', FLAGS.prover_options) prover_options = deephol_pb2.ProverOptions() if FLAGS.max_theorem_parameters is not None: tf.logging.warning( 'Overring max_theorem_parameters in prover options to %d.', FLAGS.max_theorem_parameters) prover_options.action_generator_options.max_theorem_parameters = ( FLAGS.max_theorem_parameters) with tf.gfile.Open(FLAGS.prover_options) as f: text_format.MergeLines(f, prover_options) if prover_options.builtin_library: tf.logging.warning('builtin_library is deprecated. Do not provide.') if str(prover_options.builtin_library) not in ['core']: tf.logging.fatal('Unsupported built in library: %s', prover_options.builtin_library) if FLAGS.timeout_seconds is not None: prover_options.timeout_seconds = FLAGS.timeout_seconds if not FLAGS.output: tf.logging.fatal('Missing flag --output [recordio_pattern]') prover_options.prover_round = deephol_pb2.ProverRound( start_seconds=int(round(time.time())), tag=prover_round_tag, round=prover_round) _verify_prover_options(prover_options) # Log prover options. tf.logging.info('Using prover_options:\n %s', str(prover_options)) return prover_options
ee1ee9fb7ce573c543f0750d6b8fd1eed98deec9
12,574
def bracketpy(pystring): """Find CEDICT-style pinyin in square brackets and correct pinyin. Looks for square brackets in the string and tries to convert its contents to correct pinyin. It is assumed anything in square brackets is CC-CEDICT-format pinyin. e.g.: "拼音[pin1 yin1]" will be converted into "拼音 pīnyīn". """ if len(findall("(\[.+?\])", pystring)) >= 1: cedpylist = findall("(\[.+?\])", pystring) for item in cedpylist: pystring = pystring.replace(item, " " + pyjoin(item[1:-1])) return pystring if len(findall("(\[.+?\])", pystring)) < 1: return pystring else: return None
0499047ec45e6b9c66c27dd89663667b13ddbfb1
12,575
import psutil def get_ram_usage_bytes(size_format: str = 'M'): """ Size formats include K = Kilobyte, M = Megabyte, G = Gigabyte """ total = psutil.virtual_memory().total available = psutil.virtual_memory().available used = total - available # Apply size if size_format == 'K': used = used / 1024 if size_format == 'M': used = used / 1024 / 1024 if size_format == 'G': used = used / 1024 / 1024 / 1024 return int(used)
990987078b0ad3c2ac2ee76dcf96b7cdf01f0354
12,576
def weighted_crossentropy(weights, name='anonymous'): """A weighted version of tensorflow.keras.objectives.categorical_crossentropy Arguments: weights = np.array([0.5,2,10]) # Class one at 0.5, class 2 twice the normal weights, class 3 10x. name: string identifying the loss to differentiate when models have multiple losses Returns: keras loss function named name+'_weighted_loss' """ string_globe = 'global ' + name + '_weights\n' string_globe += 'global ' + name + '_kweights\n' string_globe += name + '_weights = np.array(weights)\n' string_globe += name + '_kweights = K.variable('+name+'_weights)\n' exec(string_globe, globals(), locals()) fxn_postfix = '_weighted_loss' string_fxn = 'def ' + name + fxn_postfix + '(y_true, y_pred):\n' string_fxn += '\ty_pred /= K.sum(y_pred, axis=-1, keepdims=True)\n' string_fxn += '\ty_pred = K.clip(y_pred, K.epsilon(), 1 - K.epsilon())\n' string_fxn += '\tloss = y_true * K.log(y_pred) * ' + name + '_kweights\n' string_fxn += '\tloss = -K.sum(loss, -1)\n' string_fxn += '\treturn loss\n' exec(string_fxn, globals(), locals()) loss_fxn = eval(name + fxn_postfix, globals(), locals()) return loss_fxn
071ab00a723d54194b4b27c889c638debe82f10a
12,577
def _get_package_type(id): """ Given the id of a package this method will return the type of the package, or 'dataset' if no type is currently set """ pkg = model.Package.get(id) if pkg: return pkg.type or u'dataset' return None
c84e137e2b0adaf8719d757f178aa47d4a63c46a
12,578
def _find_protruding_dimensions(f, care, fol): """Return variables along which `f` violates `care`.""" vrs = joint_support([f, care], fol) dims = set() for var in vrs: other_vars = vrs - {var} f_proj = fol.exist(other_vars, f) care_proj = fol.exist(other_vars, care) if (care_proj | ~ f_proj) != fol.true: dims.add(var) return dims
02da5718645652288c9fa6fcedc07198afe49a58
12,579
import os import glob def prepare_data(train_mode, dataset="Train"): """ Args: dataset: choose train dataset or test dataset For train dataset, output data would be ['.../t1.bmp', '.../t2.bmp',..., 't99.bmp'] """ # Defines list of data path lists for different folders of training data dataPaths = [] # If mode is train, dataPaths from each folder in Train directory are # stored into a list which is then appended to dataPaths # Join the Train dir to current directory if dataset == "Train": data_dir = os.path.join(os.getcwd(), dataset) for root, dirs, files in os.walk(data_dir): if dirs != []: for folder in dirs: dataFolderDir = os.path.join(data_dir, folder) # make set of all dataset file path data = glob.glob(os.path.join(dataFolderDir, "*.png")) # Sorts by number in file name data.sort(key=lambda f: int(''.join(filter(str.isdigit, os.path.basename(f))))) dataPaths.append(data) else: if train_mode == 0: data_dir = os.path.join(os.path.join(os.getcwd(), dataset), "Mode0") # make set of all dataset file path data = glob.glob(os.path.join(data_dir, "*.png")) # Sorts by number in file name data.sort(key=lambda f: int(''.join(filter(str.isdigit, os.path.basename(f))))) dataPaths.append(data) elif train_mode == 1: data_dir = os.path.join(os.path.join(os.getcwd(), dataset), "Mode1") # make set of all dataset file path data = glob.glob(os.path.join(data_dir, "*.png")) # Sorts by number in file name data.sort(key=lambda f: int(''.join(filter(str.isdigit, os.path.basename(f))))) dataPaths.append(data) elif train_mode == 3: data_dir = os.path.join(os.path.join(os.getcwd(), dataset), "Mode3") # make set of all dataset file path data = glob.glob(os.path.join(data_dir, "*.png")) # Sorts by number in file name data.sort(key=lambda f: int(''.join(filter(str.isdigit, os.path.basename(f))))) dataPaths.append(data) elif train_mode == 2: data_dir = os.path.join(os.path.join(os.getcwd(), dataset), "Mode2") # make set of all dataset file path data = glob.glob(os.path.join(data_dir, "*.png")) # Sorts by number in file name data.sort(key=lambda f: int(''.join(filter(str.isdigit, os.path.basename(f))))) dataPaths.append(data) elif train_mode == 4: data_dir = os.path.join(os.path.join(os.getcwd(), dataset), "Mode4") # make set of all dataset file path data = glob.glob(os.path.join(data_dir, "*.png")) # Sorts by number in file name data.sort(key=lambda f: int(''.join(filter(str.isdigit, os.path.basename(f))))) dataPaths.append(data) elif train_mode == 5: # Prepares testing data paths for mode 5 data_dir = os.path.join(os.path.join(os.getcwd(), dataset), "Mode5") for root, dirs, files in os.walk(data_dir): if dirs != []: for folder in dirs: dataFolderDir = os.path.join(data_dir, folder) # make set of all dataset file path data = glob.glob(os.path.join(dataFolderDir, "*.png")) # Sorts by number in file name data.sort(key=lambda f: int(''.join(filter(str.isdigit, os.path.basename(f))))) dataPaths.append(data) elif train_mode == 6: data_dir = os.path.join(os.path.join(os.getcwd(), dataset), "Mode6") for root, dirs, files in os.walk(data_dir): if dirs != []: for folder in dirs: dataFolderDir = os.path.join(data_dir, folder) # make set of all dataset file path data = glob.glob(os.path.join(dataFolderDir, "*.png")) # Sorts by number in file name data.sort(key=lambda f: int(''.join(filter(str.isdigit, os.path.basename(f))))) dataPaths.append(data) print(dataPaths) return dataPaths
08a17868b36b20c495253e366fcb00a1d105cfa0
12,580
import random def simulate_relatedness(genotypes, relatedness=.5, n_iter=1000, copy=True): """ Simulate relatedness by randomly copying genotypes between individuals. Parameters ---------- genotypes : array_like An array of shape (n_variants, n_samples, ploidy) where each element of the array is an integer corresponding to an allele index (-1 = missing, 0 = reference allele, 1 = first alternate allele, 2 = second alternate allele, etc.). relatedness : float, optional Fraction of variants to copy genotypes for. n_iter : int, optional Number of times to randomly copy genotypes between individuals. copy : bool, optional If False, modify `genotypes` in place. Returns ------- genotypes : ndarray, shape (n_variants, n_samples, ploidy) The input genotype array but with relatedness simulated. """ # check genotypes array genotypes = np.asarray(genotypes) assert genotypes.ndim >= 2 n_variants = genotypes.shape[0] n_samples = genotypes.shape[1] # copy input array if copy: genotypes = genotypes.copy() else: # modify in place pass # determine the number of variants to copy genotypes for n_copy = int(relatedness * n_variants) # iteratively introduce relatedness for i in range(n_iter): # randomly choose donor and recipient donor_index = random.randint(0, n_samples-1) donor = genotypes[:, donor_index] recip_index = random.randint(0, n_samples-1) recip = genotypes[:, recip_index] # randomly pick a set of variants to copy variant_indices = random.sample(range(n_variants), n_copy) # copy across genotypes recip[variant_indices] = donor[variant_indices] return genotypes
e319f4e15c4c08eb90260b77efc25ea330aac4c9
12,581
def pages_substitute(content): """ Substitute tags in pages source. """ if TAG_USERGROUPS in content: usergroups = UserGroup.objects.filter(is_active=True).order_by('name') replacement = ", ".join(f"[{u.name}]({u.webpage_url})" for u in usergroups) content = content.replace(TAG_USERGROUPS, replacement) return content
13c2138256a0e1afa0ad376994849f2716020540
12,582
def vcfanno(vcf, out_file, conf_fns, data, basepath=None, lua_fns=None): """ annotate a VCF file using vcfanno (https://github.com/brentp/vcfanno) """ if utils.file_exists(out_file): return out_file if lua_fns is None: lua_fns = [] vcfanno = config_utils.get_program("vcfanno", data) with file_transaction(out_file) as tx_out_file: conffn = _combine_files(conf_fns, tx_out_file) luafn = _combine_files(lua_fns, tx_out_file) luaflag = "-lua {0}".format(luafn) if luafn and utils.file_exists(luafn) else "" basepathflag = "-base-path {0}".format(basepath) if basepath else "" cores = dd.get_num_cores(data) cmd = "{vcfanno} -p {cores} {luaflag} {basepathflag} {conffn} {vcf} | sed -e 's/Number=A/Number=1/g' | bgzip -c > {tx_out_file}" message = "Annotating {vcf} with vcfanno, using {conffn}".format(**locals()) do.run(cmd.format(**locals()), message) return out_file
808488bd07c56b541694715193df4ae1cb51869c
12,583
def clean(params: dict) -> str: """ Build clean rules for Makefile """ clean = "\t@$(RM) -rf $(BUILDDIR)\n" if params["library_libft"]: clean += "\t@make $@ -C " + params["folder_libft"] + "\n" if params["library_mlx"] and params["compile_mlx"]: clean += "\t@make $@ -C " + params["folder_mlx"] + "\n" return clean
fb7dd0e7a2fbb080dd8b0d5d4489e9c5ef1367ec
12,584
import re def mathematica(quero: str, meta: str = '') -> bool: """mathematica Rudimentar mathematical operations (boolean result) Args: quero (_type_, optional): _description_. Defaults to str. Returns: bool: True if evaluate to True. """ # neo_quero = quero.replace(' ', '').replace('(', '').replace(')', '') neo_quero = quero.replace(' ', '') if quero == 'True': return True if quero == 'False': return False if neo_quero.find('&&') > -1: parts = neo_quero.split('&&') # print(parts) # return bool(parts[0]) and bool(parts[1]) return logicum(parts[0]) and logicum(parts[1]) if neo_quero.find('||') > -1: parts = neo_quero.split('||') # return bool(parts[0]) or bool(parts[1]) return logicum(parts[0]) or logicum(parts[1]) # regula = r"(\d*)(.{1,2})(\d*)" regula = r"(?P<n1>(\d*))(?P<op>(\D{1,2}))(?P<n2>(\d*))" r1 = re.match(regula, neo_quero) if r1.group('op') == '==': return int(r1.group('n1')) == int(r1.group('n2')) if r1.group('op') == '!=': return int(r1.group('n1')) != int(r1.group('n2')) if r1.group('op') == '<=': return int(r1.group('n1')) <= int(r1.group('n2')) if r1.group('op') == '>=': return int(r1.group('n1')) >= int(r1.group('n2')) if r1.group('op') == '<': return int(r1.group('n1')) < int(r1.group('n2')) if r1.group('op') == '>': return int(r1.group('n1')) > int(r1.group('n2')) raise ValueError( 'mathematica: <quaero> [{1}] <op>? [{0}]'.format(str(quero), meta))
b05777e880688d8f3fc90ba9d54098f341054bd7
12,585
import sys def fasta2vcf(f): """convert fasta to vcf dataframe Input ----- Fasta file, _ref is recognized as ref and _alt is used as alt, these are two keywords Output ------ vcf dataframe: chr, pos, name, ref, alt, reference sequence """ my_dict = {} for r in SeqIO.parse(f, "fasta"): my_dict[r.id] = str(r.seq).upper() print (my_dict) vcf = pd.DataFrame() index_list = [] chr_list = [] pos_list = [] ref_list = [] alt_list = [] seq_list = [] for k in my_dict: if not "_ref" in k: continue name = k.replace("_ref","") if not name+"_alt" in my_dict: print (k,"alt sequence not found. Please use _ref and _alt keywords. Skip...") continue ref_seq,alt_seq = my_dict[k],my_dict[name+"_alt"] if len(ref_seq) < 30: print (k,"Please input sequence length at least 30bp. Skip...") continue if ref_seq == alt_seq: print (k,"Ref and Alt sequence is the same. Please check. Skip...") continue pos,ref,alt = find_pos_ref_alt(ref_seq,alt_seq) index_list.append(name) chr_list.append(k) seq_list.append(ref_seq) pos_list.append(pos) ref_list.append(ref) alt_list.append(alt) vcf[0] = chr_list vcf[1] = pos_list vcf[2] = index_list vcf[3] = ref_list vcf[4] = alt_list vcf[5] = seq_list vcf = vcf[vcf[1]!=-1] if vcf.shape[0] == 0: print ("no valid sequences in:",f) print ("Exit...") sys.exit(1) return vcf
673e69e644b6caf68f0738cfaa8204b80877a412
12,586
def time_pet(power,energy): """Usage: time_pet(power,energy)""" return energy/power
11e9c82b8c1be84995f9517e04ed5e1270801e27
12,587
def compute_sigma0( T, S, **kwargs, ): """ compute the density anomaly referenced to the surface """ return compute_rho(T, S, 0, **kwargs) - 1000
300d5552c70e6fd6d8708345aa3eed53795309cf
12,588
def get_neighbors_radius(nelx, nely, coord, connect, radius): """ Check neighboring elements that have the centroid within the predetermined radius. Args: nelx (:obj:`int`): Number of elements on the x axis. nely (:obj:`int`): Number of elements on the x axis coord (:obj:`numpy.array`): Coordinates of the element. connect (:obj:`numpy.array`): Element connectivity. radius (:obj:`float`): Radius to get elements in the vicinity of each element. Returns: neighbors, H, centroids """ el_number = nelx * nely centroids = np.empty((el_number, 2)) idx = connect[:, 1:] - 1 centroids[:, 0] = np.sum(coord[idx, 1], axis = 1)/4 centroids[:, 1] = np.sum(coord[idx, 2], axis = 1)/4 ind_rows = [] ind_cols = [] data = [] cols = 0 neighbors = [] for el in range(el_number): distance = np.sqrt(np.sum((centroids[el] - centroids)**2, axis=1)) mask = distance <= radius neighbor = mask.nonzero()[0] + 1 neighbors.extend(neighbor - 1) hi = radius - distance hi_max = np.maximum(0, hi) data.extend(hi_max[mask]) aux = len(hi_max[mask]) rows = np.repeat(el, aux) #.tolist() columns = np.arange(0, aux) ind_rows.extend(rows) ind_cols.extend(columns) if aux > cols: cols = aux H = csc_matrix((data, (ind_rows, ind_cols)), shape=(nelx*nely, cols)).toarray() neighbors = csc_matrix((neighbors, (ind_rows, ind_cols)), shape=(nelx*nely, cols), dtype='int').toarray() return neighbors, H, centroids
669e11d3a2890f1485e33e021b2671ff6f197c03
12,589
import copy def merge_with(obj, *sources, **kwargs): """ This method is like :func:`merge` except that it accepts customizer which is invoked to produce the merged values of the destination and source properties. If customizer returns ``None``, merging is handled by this method instead. The customizer is invoked with five arguments: ``(obj_value, src_value, key, obj, source)``. Args: obj (dict): Destination object to merge source(s) into. sources (dict): Source objects to merge from. subsequent sources overwrite previous ones. Keyword Args: iteratee (callable, optional): Iteratee function to handle merging (must be passed in as keyword argument). Returns: dict: Merged object. Warning: `obj` is modified in place. Example: >>> cbk = lambda obj_val, src_val: obj_val + src_val >>> obj1 = {'a': [1], 'b': [2]} >>> obj2 = {'a': [3], 'b': [4]} >>> res = merge_with(obj1, obj2, cbk) >>> obj1 == {'a': [1, 3], 'b': [2, 4]} True .. versionadded:: 4.0.0 .. versionchanged:: 4.9.3 Fixed regression in v4.8.0 that caused exception when `obj` was ``None``. """ if obj is None: return None sources = list(sources) iteratee = kwargs.pop("iteratee", None) if iteratee is None and sources and callable(sources[-1]): iteratee = sources.pop() sources = [copy.deepcopy(source) for source in sources] if callable(iteratee): iteratee = partial(callit, iteratee, argcount=getargcount(iteratee, maxargs=5)) else: iteratee = None return _merge_with(obj, *sources, iteratee=iteratee, **kwargs)
94a16ae7d3f3e73ef8e27b32cd38a09c61ad1b2b
12,590
def count_class_nbr_patent_cnt(base_data_list, calculate_type): """ 统计在所有数据中不同分类号对应的专利数量 :param base_data_list: :return: """ class_number_patent_cnt_dict = dict() for base_data in base_data_list: class_number_value = base_data[const.CLASS_NBR] calculate_class_number_patent_count_dict(class_number_value, class_number_patent_cnt_dict, calculate_type) return class_number_patent_cnt_dict
6dfe06c2233fbfafc8083dc968d32520564319f8
12,591
def plot_pta_L(df): """ INPUTS -df: pandas dataframe containing the data to plot OUTPUTS -saves pta graphs in .html """ title = generate_title_run_PTA(df, "Left Ear", df.index[0]) labels = {"title": title, "x": "Frequency (Hz)", "y": "Hearing Threshold (dB HL)"} fig = go.Figure() fig.update_layout(title=labels["title"], xaxis_title=labels["x"], yaxis_title=labels["y"], xaxis_type="log", xaxis_range=[np.log10(100), np.log10(20000)], yaxis_range=[80, -20], yaxis_dtick=10, xaxis_showline=True, xaxis_linecolor="black", yaxis_showline=True, yaxis_linecolor="black", yaxis_zeroline=True, yaxis_zerolinewidth=1, yaxis_zerolinecolor="black") x, y = data_to_plot_PTA(df, "LE_") fig.add_trace(go.Scatter(x=x, y=y, line_color="blue", mode='lines+markers', name=labels["title"], hovertemplate="%{x:1.0f} Hz<br>" + "%{y:1.0f} dB HL")) completed = save_graph_PTA(fig, df, "Left Ear") if completed is True: return True else: return False
ec82b58a6a476bee5e864b8678bb90d2998d4a02
12,592
def create_graph(edge_num: int, edge_list: list) -> dict: """ Create a graph expressed with adjacency list :dict_key : int (a vertex) :dict_value : set (consisted of vertices adjacent to key vertex) """ a_graph = {i: set() for i in range(edge_num)} for a, b in edge_list: a_graph[a - 1].add(b - 1) # All graphs always need this line a_graph[b - 1].add(a - 1) # Only undirected graph needs this line return a_graph
6ec1a71cf82a3a669090df42ac7d53e1286fda2d
12,593
from typing import Optional from typing import Callable from typing import Any from typing import List import inspect def multikey_fkg_allowing_type_hints( namespace: Optional[str], fn: Callable, to_str: Callable[[Any], str] = repr) -> Callable[[Any], List[str]]: """ Equivalent of :func:`dogpile.cache.util.function_multi_key_generator`, but using :func:`inspect.signature` instead. Also modified to make the cached function unique per INSTANCE for normal methods of a class. """ namespace = get_namespace(fn, namespace) sig = inspect.signature(fn) argnames = [p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD] has_self = bool(argnames and argnames[0] in ('self', 'cls')) def generate_keys(*args: Any, **kw: Any) -> List[str]: if kw: raise ValueError("This dogpile.cache key function generator, " "multikey_fkg_allowing_type_hints, " "does not accept keyword arguments.") if has_self: # Unlike dogpile's default, make it instance- (or class-) specific # by including a representation of the "self" or "cls" argument: args = [hex(id(args[0]))] + list(args[1:]) keys = [namespace + "|" + key for key in map(to_str, args)] if DEBUG_INTERNALS: log.debug( "multikey_fkg_allowing_type_hints.generate_keys() -> {!r}", keys) return keys return generate_keys
33e04169618bae3e5d7239e5256afaa9f65355f6
12,594
def get_current_version() -> str: """Read the version of the package. See https://packaging.python.org/guides/single-sourcing-package-version """ version_exports = {} with open(VERSION_FILE) as file: exec(file.read(), version_exports) # pylint: disable=exec-used return version_exports["VERSION"]
c283d58881aa381503bb3500bd7d745f25df0f7e
12,595
import random def seed_story(text_dict): """Generate random seed for story.""" story_seed = random.choice(list(text_dict.keys())) return story_seed
0c0f41186f6eaab84a1d197e9335b4c28fd83785
12,596
from pathlib import Path import sys def detect_conda_env(): """Inspect whether `sys.executable` is within a conda environment and if it is, return the environment name and Path of its prefix. Otherwise return None, None""" prefix = Path(sys.prefix) if not (prefix / 'conda-meta').is_dir(): # Not a conda env return None, None if (prefix / 'envs').is_dir(): # It's the base conda env: return 'base', prefix # Not the base env: its name is the directory basename: return prefix.name, prefix
2cb88ebfbb8a2919300e1d0072540e448dcf35ad
12,597
def _get_rel_att_inputs(d_model, n_heads): # pylint: disable=invalid-name """Global relative attentions bias initialization shared across the layers.""" assert d_model % n_heads == 0 and d_model % 2 == 0 d_head = d_model // n_heads bias_initializer = init.RandomNormalInitializer(1e-6) context_bias_layer = core.Weights(bias_initializer, shape=(1, n_heads, 1, d_head)) location_bias_layer = core.Weights(bias_initializer, shape=(1, n_heads, 1, d_head)) return context_bias_layer, location_bias_layer
57f58f29a586571f1cc8fa1fc69956a4168cbf16
12,598
def two_time_pad(): """A one-time pad simply involves the xor of a message with a key to produce a ciphertext: c = m ^ k. It is essential that the key be as long as the message, or in other words that the key not be repeated for two distinct message blocks. Your task: In this problem you will break a cipher when the one-time pad is re-used. c_1 = 3801025f45561a49131a1e180702 c_2 = 07010051455001060e551c571106 These are two hex-encoded ciphertexts that were formed by applying a “one-time pad” to two different messages with the same key. Find the two corresponding messages m_1 and m_2. Okay, to make your search simpler, let me lay out a few ground rules. First, every character in the text is either a lowercase letter or a space, aside from perhaps the first character in the first message which might be capitalized. As a consequence, no punctuation appears in the messages. Second, the messages consist of English words in ASCII. Finally, all of the words within each message is guaranteed to come from the set of the 100 most common English words: https://en.wikipedia.org/wiki/Most_common_words_in_English. Returns: Output the concatenation of strings m_1 and m_2. (Don't worry if words get smashed together as a result.) """ c_1 = '3801025f45561a49131a1e180702' c_2 = '07010051455001060e551c571106' # converting the hexadecimal representaiton to integers for every 2 bytes since it xor operations become on integers c_1_int = [int(c_1[i] + c_1[i+1], 16) for i in range(0, len(c_1), 2)] c_2_int = [int(c_2[i] + c_2[i+1], 16) for i in range(0, len(c_1), 2)] xord = [c_1_int[i] ^ c_2_int[i] for i in range(len(c_1_int))] #xor of the two lists which are integer representations result = construct('',xord) if result == None: return None else: print(result) new_string = ''.join([chr(ord(result[i]) ^ xord[i]) for i in range(len(result))]) return new_string + result
d4c45312f32b372a065365c78a991969e2bc53be
12,599