content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def same_datatypes(lst): """ Überprüft für eine Liste, ob sie nur Daten vom selben Typ enthält. Dabei spielen Keys, Länge der Objekte etc. eine Rolle :param lst: Liste, die überprüft werden soll :type lst: list :return: Boolean, je nach Ausgang der Überprüfung """ datatype = type(lst[0]).__name__ for item in lst: if type(item).__name__ != datatype: # return False, wenn die Liste verschiedene Datentypen enthält return False # Datentypen sind gleich, aber sind deren Strukturen auch gleich? (für komplexe Datentypen) if datatype == "dict": keys = lst[0].keys() for item in lst: if item.keys() != keys: # return False, wenn die Keys der Dictionaries verschieden sind return False elif datatype == "list": if sum([len(x) for x in lst]) / len(lst) != len(lst[0]): # return False, falls die Listen in der Liste verschiedene Längen haben return False datatypes = list(map(lambda x: type(x).__name__, lst[0])) for item in lst: if list(map(lambda x: type(x).__name__, item)) != datatypes: # return False, falls die Elemente der inneren Listen verschiedene Datenytpen haben return False return True
9c49376ec34ed0970171597f77de4c4c224350b4
12,600
def _show_stat_wrapper_Progress(count, last_count, start_time, max_count, speed_calc_cycles, width, q, last_speed, prepend, show_stat_function, add_args, i, lock): """ calculate """ count_value, max_count_value, speed, tet, ttg, = Progress._calc(count, last_count, start_time, max_count, speed_calc_cycles, q, last_speed, lock) return show_stat_function(count_value, max_count_value, prepend, speed, tet, ttg, width, i, **add_args)
3c98f44acc8de94573ba37a7785df18fc8e72966
12,601
def _to_base58_string(prefixed_key: bytes): """ Convert prefixed_key bytes into Es/EC strings with a checksum :param prefixed_key: the EC private key or EC address prefixed with the appropriate bytes :return: a EC private key string or EC address """ prefix = prefixed_key[:PREFIX_LENGTH] assert prefix == ECAddress.PREFIX or prefix == ECPrivateKey.PREFIX, 'Invalid key prefix.' temp_hash = sha256(prefixed_key[:BODY_LENGTH]).digest() checksum = sha256(temp_hash).digest()[:CHECKSUM_LENGTH] return base58.encode(prefixed_key + checksum)
326580e714d6489a193347498c68ef9d90f6f651
12,602
def round_int(n, d): """Round a number (float/int) to the closest multiple of a divisor (int).""" return round(n / float(d)) * d
372c0f8845994aaa03f99ebb2f65243e6490b341
12,603
def merge_array_list(arg): """ Merge multiple arrays into a single array :param arg: lists :type arg: list :return: The final array :rtype: list """ # Check if arg is a list if type(arg) != list: raise errors.AnsibleFilterError('Invalid value type, should be array') final_list = [] for cur_list in arg: final_list += cur_list return final_list
649412488655542f27a1e7d377252c060107b57e
12,604
def load_callbacks(boot, bootstrap, jacknife, out, keras_verbose, patience): """ Specifies Keras callbacks, including checkpoints, early stopping, and reducing learning rate. Parameters ---------- boot bootstrap jacknife out keras_verbose patience batch_size Returns ------- checkpointer earlystop reducelr """ if bootstrap or jacknife: checkpointer = tf.keras.callbacks.ModelCheckpoint( filepath=out + "_boot" + str(boot) + "_weights.hdf5", verbose=keras_verbose, save_best_only=True, save_weights_only=True, monitor="val_loss", save_freq="epoch", ) else: checkpointer = tf.keras.callbacks.ModelCheckpoint( filepath=out + "_weights.hdf5", verbose=keras_verbose, save_best_only=True, save_weights_only=True, monitor="val_loss", save_freq="epoch", ) earlystop = tf.keras.callbacks.EarlyStopping( monitor="val_loss", min_delta=0, patience=patience ) reducelr = tf.keras.callbacks.ReduceLROnPlateau( monitor="val_loss", factor=0.5, patience=int(patience / 6), verbose=keras_verbose, mode="auto", min_delta=0, cooldown=0, min_lr=0, ) return checkpointer, earlystop, reducelr
0ca09ccaca4424c1a546caade3d809b7f69cbb5e
12,605
def build_sentence_model(cls, vocab_size, seq_length, tokens, transitions, num_classes, training_mode, ground_truth_transitions_visible, vs, initial_embeddings=None, project_embeddings=False, ss_mask_gen=None, ss_prob=0.0): """ Construct a classifier which makes use of some hard-stack model. Args: cls: Hard stack class to use (from e.g. `spinn.fat_stack`) vocab_size: seq_length: Length of each sequence provided to the stack model tokens: Theano batch (integer matrix), `batch_size * seq_length` transitions: Theano batch (integer matrix), `batch_size * seq_length` num_classes: Number of output classes training_mode: A Theano scalar indicating whether to act as a training model with dropout (1.0) or to act as an eval model with rescaling (0.0). ground_truth_transitions_visible: A Theano scalar. If set (1.0), allow the model access to ground truth transitions. This can be disabled at evaluation time to force Model 1 (or 2S) to evaluate in the Model 2 style with predicted transitions. Has no effect on Model 0. vs: Variable store. """ # Prepare layer which performs stack element composition. if cls is spinn.plain_rnn.RNN: if FLAGS.use_gru: compose_network = partial(util.GRULayer, initializer=util.HeKaimingInitializer()) else: compose_network = partial(util.LSTMLayer, initializer=util.HeKaimingInitializer()) embedding_projection_network = None elif cls is spinn.cbow.CBOW: compose_network = None embedding_projection_network = None else: if FLAGS.lstm_composition: if FLAGS.use_gru: compose_network = partial(util.TreeGRULayer, initializer=util.HeKaimingInitializer()) else: compose_network = partial(util.TreeLSTMLayer, initializer=util.HeKaimingInitializer()) else: assert not FLAGS.connect_tracking_comp, "Can only connect tracking and composition unit while using TreeLSTM" compose_network = partial(util.ReLULayer, initializer=util.HeKaimingInitializer()) if project_embeddings: embedding_projection_network = util.Linear else: assert FLAGS.word_embedding_dim == FLAGS.model_dim, \ "word_embedding_dim must equal model_dim unless a projection layer is used." embedding_projection_network = util.IdentityLayer # Build hard stack which scans over input sequence. sentence_model = cls( FLAGS.model_dim, FLAGS.word_embedding_dim, vocab_size, seq_length, compose_network, embedding_projection_network, training_mode, ground_truth_transitions_visible, vs, predict_use_cell=FLAGS.predict_use_cell, use_tracking_lstm=FLAGS.use_tracking_lstm, tracking_lstm_hidden_dim=FLAGS.tracking_lstm_hidden_dim, X=tokens, transitions=transitions, initial_embeddings=initial_embeddings, embedding_dropout_keep_rate=FLAGS.embedding_keep_rate, ss_mask_gen=ss_mask_gen, ss_prob=ss_prob, connect_tracking_comp=FLAGS.connect_tracking_comp, context_sensitive_shift=FLAGS.context_sensitive_shift, context_sensitive_use_relu=FLAGS.context_sensitive_use_relu, use_input_batch_norm=False) # Extract top element of final stack timestep. if FLAGS.lstm_composition or cls is spinn.plain_rnn.RNN: sentence_vector = sentence_model.final_representations[:,:FLAGS.model_dim / 2].reshape((-1, FLAGS.model_dim / 2)) sentence_vector_dim = FLAGS.model_dim / 2 else: sentence_vector = sentence_model.final_representations.reshape((-1, FLAGS.model_dim)) sentence_vector_dim = FLAGS.model_dim sentence_vector = util.BatchNorm(sentence_vector, sentence_vector_dim, vs, "sentence_vector", training_mode) sentence_vector = util.Dropout(sentence_vector, FLAGS.semantic_classifier_keep_rate, training_mode) # Feed forward through a single output layer logits = util.Linear( sentence_vector, sentence_vector_dim, num_classes, vs, name="semantic_classifier", use_bias=True) return sentence_model.transitions_pred, logits
085d6a0538bfa06a34c543c27efd651c4c46168a
12,606
def read_xls_as_dict(filename, header="top"): """ Read a xls file as dictionary. @param filename File name (*.xls or *.xlsx) @param header Header position. Options: "top", "left" @return Dictionary with header as key """ table = read_xls(filename) if (header == "top"): return read_table_header_top(table) elif (header == "left"): return read_table_header_left(table) else: return {}
9ed410e42a11ee898466bb2f36b6d02e051b21ec
12,607
def check_hostgroup(zapi, region_name, cluster_id): """check hostgroup from region name if exists :region_name: region name of hostgroup :returns: true or false """ return zapi.hostgroup.exists(name="Region [%s %s]" % (region_name, cluster_id))
b237b544ac59331ce94dd1ac471187a60d527a1b
12,608
import tempfile def matlab_to_tt(ttemps, eng, is_orth=True, backend="numpy", mode="l"): """Load matlab.object representing TTeMPS into Python as TT""" _, f = tempfile.mkstemp(suffix=".mat") eng.TTeMPS_to_Py(f, ttemps, nargout=0) tt = load_matlab_tt(f, is_orth=is_orth, mode=mode, backend=backend) return tt
e21087e2587368a55ece7a50f576573c5284373a
12,609
def encode_mecab(tagger, string): """ string을 mecab을 이용해서 형태소 분석 :param tagger: 형태소 분석기 객체 :param string: input text :return tokens: 형태소 분석 결과 :return indexs: 띄어쓰기 위치 """ string = string.strip() if len(string) == 0: return [], [] words = string.split() nodes = tagger.pos(" ".join(words)) tokens = [] for node in nodes: surface = node[0].strip() if 0 < len(surface): for s in surface.split(): # mecab 출력 중 '영치기 영차' 처리 tokens.append(s) indexs = [] index, start, end = -1, 0, 100000 for i, token in enumerate(tokens): # 분류가 잘 되었는지 검증 if end < len(words[index]): start = end end += len(token) else: index += 1 start = 0 end = len(token) indexs.append(i) # values 중 실제 시작 위치 기록 assert words[index][start:end] == token, f"{words[index][start:end]} != {token}" return tokens, indexs
847278728ebe7790d8aef2a125a420d5779adc6b
12,610
def nutrient_limited_growth(X,idx_A,idx_B,growth_rate,half_saturation): """ non-linear response with respect to *destination/predator* compartment Similar to holling_type_II and is a reparameterization of holling II. The response with respect to the origin compartment 'B' is approximately linear for small 'B' and converges towards an upper limit governed by the 'growth_rate' for large 'B'. For examples see: `Examples <https://gist.github.com/465b/cce390f58d64d70613a593c8038d4dc6>`_ Parameters ---------- X : np.array containing the current state of the contained quantity of each compartment idx_A : integer index of the element representing the destination/predator compartment idx_B : integer index of the element representing the origin/pray compartment growth_rate : float first parameter of the interaction. governs the upper limit of the response. half_saturation : float second parameter of the interaction. governs the slope of the response. Returns ------- df : float change in the origin and destitnation compartment. Calculated by consumption_rate = ((hunting_rate * origin_compartment) / (1 + hunting_rate * food_processing_time * origin_compartment)) * destination_compartment """ A = X[idx_A] # quantity of compartment A (predator/consumer) B = X[idx_B] # quantity of compartment B (prey/nutrient) df = growth_rate*(B/(half_saturation+B))*A return df
05e66a0e426a404a5356f04f8568ab23548b6dbe
12,611
def aes128_decrypt(AES_KEY, _data): """ AES 128 位解密 :param requestData: :return: """ # 秘钥实例 newAes = getAesByKey(AES_KEY) # 解密 data = newAes.decrypt(_data) rawDataLength = len(data) # 剔除掉数据后面的补齐位 paddingNum = ord(data[rawDataLength - 1]) if paddingNum > 0 and paddingNum <= 16: data = data[0:(rawDataLength - paddingNum)] return data
520c03a509f63807a62ccb0385e99bc9b674fd67
12,612
def human_readable_size(size, decimals=1): """Transform size in bytes into human readable text.""" for unit in ["B", "KB", "MB", "GB", "TB"]: if size < 1000: break size /= 1000 return f"{size:.{decimals}f} {unit}"
5fb0dc79162d0bc0a945061aa0889735b24fff7b
12,613
def generichash_blake2b_final(statebuf, digest_size): """Finalize the blake2b hash state and return the digest. :param statebuf: :type statebuf: bytes :param digest_size: :type digest_size: int :return: the blake2 digest of the passed-in data stream :rtype: bytes """ _digest = ffi.new("unsigned char[]", crypto_generichash_BYTES_MAX) rc = lib.crypto_generichash_blake2b_final(statebuf, _digest, digest_size) ensure(rc == 0, 'Unexpected failure', raising=exc.RuntimeError) return ffi.buffer(_digest, digest_size)[:]
a81da8346bafb2f7d8fd40b0d9ff204689d002f8
12,614
def walker_input_formatter(t, obs): """ This function formats the data to give as input to the controller :param t: :param obs: :return: None """ return obs
651038cd4dc0e8c8ccb89a10a5b20f6031e17ba8
12,615
def build_url_base(url): """Normalize and build the final url :param url: The given url :type url: str :return: The final url :rtype: str """ normalize = normalize_url(url=url) final_url = "{url}/api".format(url=normalize) return final_url
a500a6d96ab637182abab966817209324ddc670a
12,616
from typing import Tuple from typing import List def build_decoder( latent_dim: int, input_shape: Tuple, encoder_shape: Tuple, filters: List[int], kernels: List[Tuple[int, int]], strides: List[int] ) -> Model: """Return decoder model. Parameters ---------- latent_dim:int, Size of the latent vector. encoder_shape:Tuple, Output shape of the last convolutional layer of the encoder model. filters:List[int], List of filters for the convolutional layer. kernels:List[Tuple[int, int]], List of kernel sizes for the convolutional layer. strides:List[int] List of strides for the convolutional layer. """ decoder_input = Input( shape=(latent_dim,), name='decoder_input' ) x = Dense(np.prod(encoder_shape))(decoder_input) x = Reshape(encoder_shape)(x) x = decoder_blocks( x, reversed(filters), reversed(kernels), reversed(strides) ) decoder_output = Conv2DTranspose( filters=1, kernel_size=kernels[0], activation=axis_softmax, padding='same', name='decoder_output' )(x) reshape = Reshape(input_shape)(decoder_output) # Instantiate Decoder Model return Model( decoder_input, reshape, name='decoder' )
efdac0fa9df81249e531b2568cd8f91816c209a6
12,617
def execute_with_python_values(executable, arguments=(), backend=None): """Execute on one replica with Python values as arguments and output.""" backend = backend or get_local_backend() def put(arg): return Buffer.from_pyval( arg, device=executable.DeviceOrdinals()[0], backend=backend) arguments = [put(arg) for arg in arguments] return executable.Execute(arguments).to_py()
26c9352feb2e5c7e6fb46702105245f582218e91
12,618
import subprocess def run_cmd(cmd, cwd=None): """ Runs the given command and return the output decoded as UTF-8. """ return subprocess.check_output(cmd, cwd=cwd, encoding="utf-8", errors="ignore")
5d2f5b85878291efaa16dcb4bb8a8c72b3d22230
12,619
def _get_label_members(X, labels, cluster): """ Helper function to get samples of a specified cluster. Args: X (np.ndarray): ndarray with dimensions [n_samples, n_features] data to check validity of clustering labels (np.array): clustering assignments for data X cluster (int): cluster of interest Returns: members (np.ndarray) array of dimensions (n_samples, n_features) of samples of the specified cluster. """ indices = np.where(labels == cluster)[0] members = X[indices] return members
18c213f88816108f93ddd38cdd2c934f431ea35a
12,620
from typing import Tuple def get_spectrum_by_close_values( mz: list, it: list, left_border: float, right_border: float, *, eps: float = 0.0 ) -> Tuple[list, list, int, int]: """int Function to get segment of spectrum by left and right border :param mz: m/z array :param it: it intensities :param left_border: left border :param right_border: right border :param eps: epsilon to provide regulation of borders :return: closest to left and right border values of spectrum, left and right """ mz, it = mz.copy(), it.copy() left = bisect_left(mz, left_border - eps) right = bisect_right(mz, right_border + eps) return mz[left:right].copy(), it[left:right].copy(), left, right
0ec34b044b9105fe1c232baa9b51760cbb96b9d9
12,621
import subprocess import os def speak(): """API call to have BiBli speak a phrase.""" subprocess.call("amixer sset Master 100%", shell=True) data = request.get_json() lang = data["lang"] if "lang" in data and len(data["lang"]) else "en" #espeak.set_parameter(espeak.Parameter.Rate, 165) #espeak.set_parameter(espeak.Parameter.Pitch, 70) if lang == "es": # espeak.set_voice("europe/es") os.system("sudo espeak -v es '" + data["msg"] + "' -a 165 -p 70") else: os.system("sudo espeak -v en-us '" + data["msg"] + "' -a 165 -p 70") # espeak.set_voice("en-us") # espeak.synth(data["msg"]) # subprocess.call('espeak -v%s+f3 -a200 %s &' % (lang, "'\"%s\"'" % data["msg"]), shell=True) return jsonify({})
81e75e88669ca90ff8f9dc6df8a7a8a08dcaf368
12,622
def refresh_wrapper(trynum, maxtries, *args, **kwargs): """A @retry argmod_func to refresh a Wrapper, which must be the first arg. When using @retry to decorate a method which modifies a Wrapper, a common cause of retry is etag mismatch. In this case, the retry should refresh the wrapper before attempting the modifications again. This method may be passed to @retry's argmod_func argument to effect such a refresh. Note that the decorated method must be defined such that the wrapper is its first argument. """ arglist = list(args) # If we get here, we *usually* have an etag mismatch, so specifying # use_etag=False *should* be redundant. However, for scenarios where we're # retrying for some other reason, we want to guarantee a fresh fetch to # obliterate any local changes we made to the wrapper (because the retry # should be making those changes again). arglist[0] = arglist[0].refresh(use_etag=False) return arglist, kwargs
089b859964e89d54def0058abc9cc7536f5d8877
12,623
def compute_frames_per_animation( attacks_per_second: float, base_animation_length: int, speed_coefficient: float = 1.0, engine_tick_rate: int = 60, is_channeling: bool = False) -> int: """Calculates frames per animation needed to resolve a certain ability at attacks_per_second. Args: attacks_per_second: attacks per second of character base_animation_length: animation length of ability speed_coefficient: speed-up scalar of ability engine_tick_rate: server tick rate is_channeling: whether or not the ability is a channeling skill Returns: int: number of frames one casts needs to resolve for """ _coeff = engine_tick_rate / (attacks_per_second * speed_coefficient) if is_channeling: return np.floor(_coeff) else: return np.ceil((base_animation_length - 1) / base_animation_length * _coeff)
44427cf28152de21de42f0220e75f87717235275
12,624
def pad_rect(rect, move): """Returns padded rectangles given specified padding""" if rect['dx'] > 2: rect['x'] += move[0] rect['dx'] -= 1*move[0] if rect['dy'] > 2: rect['y'] += move[1] rect['dy'] -= 1*move[1] return rect
48bdbdc9d4736e372afc983ab5966fc80a221d4d
12,625
import asyncio async def yes_no(ctx: commands.Context, message: str="Are you sure? Type **yes** within 10 seconds to confirm. o.o"): """Yes no helper. Ask a confirmation message with a timeout of 10 seconds. ctx - The context in which the question is being asked. message - Optional messsage that the question should ask. """ await ctx.send(message) try: message = await ctx.bot.wait_for("message", timeout=10, check=lambda message: message.author == ctx.message.author) except asyncio.TimeoutError: await ctx.send("Timed out waiting. :<") return False if message.clean_content.lower() not in ["yes", "y"]: await ctx.send("Command cancelled. :<") return False return True
2b8ab0bfc51d4be68a42507bad6dbb945465d2e4
12,626
def __validation(size: int, it1: int, it2: int, it3: int, it4: int) -> bool: """ Проверка на корректность тура size: размер маршрута it1, it2, it3, it4: индексы городов: t1, t2i, t2i+1, t2i+2 return: корректен или нет """ return between(size, it1, it3, it4) and between(size, it4, it2, it1)
5fcb29f45c456115e8b87f0313e05f327c702849
12,627
def get_type_associations(base_type, generic_base_type): # type: (t.Type[TType], t.Type[TValue]) -> t.List[t.Tuple[t.Type[TValue], t.Type[TType]]] """Create and return a list of tuples associating generic_base_type derived types with a corresponding base_type derived type.""" return [item for item in [(get_generic_type(sc_type, generic_base_type), sc_type) for sc_type in get_subclasses(base_type)] if item[1]]
fe18bf72a96d6dfa8fad2c625732e781d54cae4d
12,628
import rpy2.robjects as robj from rpy2.robjects.packages import importr import anndata2ri def identify_empty_droplets(data, min_cells=3, **kw): """Detect empty droplets using DropletUtils """ importr("DropletUtils") adata = data.copy() col_sum = adata.X.sum(0) if hasattr(col_sum, 'A'): col_sum = col_sum.A.squeeze() keep = col_sum > min_cells adata = adata[:,keep] #adata.X = adata.X.tocsc() anndata2ri.activate() robj.globalenv["X"] = adata res = robj.r('res <- emptyDrops(assay(X))') anndata2ri.deactivate() keep = res.loc[res.FDR<0.01,:] data = data[keep.index,:] data.obs['empty_FDR'] = keep['FDR'] return data
9c2d532d75afb6044836249eb525e86c60511c9b
12,629
def catalog_category_RSS(category_id): """ Return an RSS feed containing all items in the specified category_id """ items = session.query(Item).filter_by( category_id=category_id).all() doc = jaxml.XML_document() doc.category(str(category_id)) for item in items: doc._push() doc.item() doc.id(item.id) doc.name(item.name) doc.description(item.description) doc.imagepath('"' + item.image + '"') doc.category_id(item.category_id) doc.user_id(item.user_id) doc._pop() return doc.__repr__()
13554cf1eba3a83c0fb23a6f848751721579dfea
12,630
def get_caller_name(N=0, allow_genexpr=True): """ get the name of the function that called you Args: N (int): (defaults to 0) number of levels up in the stack allow_genexpr (bool): (default = True) Returns: str: a function name CommandLine: python -m utool.util_dbg get_caller_name python -m utool get_caller_name python ~/code/utool/utool/__main__.py get_caller_name python ~/code/utool/utool/__init__.py get_caller_name python ~/code/utool/utool/util_dbg.py get_caller_name Example: >>> # ENABLE_DOCTEST >>> from utool.util_dbg import * # NOQA >>> import utool as ut >>> N = list(range(0, 13)) >>> allow_genexpr = True >>> caller_name = get_caller_name(N, allow_genexpr) >>> print(caller_name) """ if isinstance(N, (list, tuple, range)): name_list = [] for N_ in N: try: name_list.append(get_caller_name(N_)) except AssertionError: name_list.append('X') return '[' + ']['.join(name_list) + ']' parent_frame = get_stack_frame(N=N + 2) caller_name = parent_frame.f_code.co_name co_filename = parent_frame.f_code.co_filename if not allow_genexpr: count = 0 while True: count += 1 if caller_name == '<genexpr>': parent_frame = get_stack_frame(N=N + 1 + count) caller_name = parent_frame.f_code.co_name else: break #try: # if 'func' in parent_frame.f_locals: # caller_name += '(' + meta_util_six.get_funcname(parent_frame.f_locals['func']) + ')' #except Exception: # pass if caller_name == '<module>': # Make the caller name the filename caller_name = splitext(split(co_filename)[1])[0] if caller_name in {'__init__', '__main__'}: # Make the caller name the filename caller_name = basename(dirname(co_filename)) + '.' + caller_name return caller_name
6c6ce7690d1bc4bd51037056e27f5dbd73085e29
12,631
import os import tempfile def make_build_dir(prefix=""): """Creates a temporary folder with given prefix to be used as a build dir. Use this function instead of tempfile.mkdtemp to ensure any generated files will survive on the host after the FINN Docker container exits.""" try: inst_prefix = os.environ["FINN_INST_NAME"] + "/" tempfile.tempdir = get_finn_root() + "/tmp/" return tempfile.mkdtemp(prefix=inst_prefix + prefix) except KeyError: raise Exception( """Environment variable FINN_INST_NAME must be set correctly. Please ensure you have launched the Docker contaier correctly. """ )
c298ed1446412b048f632daf8797670fc3b9095c
12,632
from typing import Union import json def unblock_node_port_random(genesis_file: str, transactions: Union[str,int] = None, pause_before_synced_check: Union[str,int] = None, best_effort: bool = True, did: str = DEFAULT_CHAOS_DID, seed: str = DEFAULT_CHAOS_SEED, wallet_name: str = DEFAULT_CHAOS_WALLET_NAME, wallet_key: str = DEFAULT_CHAOS_WALLET_KEY, pool: str = DEFAULT_CHAOS_POOL, ssh_config_file: str = DEFAULT_CHAOS_SSH_CONFIG_FILE) -> bool: """ Unblock nodes randomly selected by calling block_node_port_random State file "block_node_port_random" located in the chaos temp dir (see get_chaos_temp_dir for details) is shared with the following functions block_node_port_random unblock_node_port_random unblocked_nodes_are_caught_up Because the aforementioned functions share a state file, they are intended to be used together. The typical/suggested workflow would be: 1. Block the node port on some nodes (block_node_port_random) 2. Optionally do something while node ports are blocked (i.e. generate load) 3. Unblock node port on the set of nodes selected in step 1 above. 4. Optionally do something while nodes are catching up. 5. Check if nodes unblocked in step 3 above are caught up. :param genesis_file: The relative or absolute path to a genesis file. Required. :type genesis_file: str :param transactions: Expected number of transactions on the domain ledger after catchup has completed. Optional. (Default: None) :type transactions: Union[str,int] :param pause_before_synced_check: Seconds to pause before checking if a node is synced. Optional. (Default: None) :type pause_before_synced_check: Union[str,int] :param best_effort: Attempt to unblock ports blocked when calling block_node_port_random. Do not fail if the block_node_port_random state file does not exist, if an error/exception is encountered while unblocking a node port on any of the nodes, or if fewer than expected nodes were unblocked. Optional. (Default: True) :type best_effort: bool :param did: A steward or trustee DID. A did OR a seed is required, but not both. The did will be used if both are given. Needed to get validator info. Optional. (Default: chaosindy.common.DEFAULT_CHAOS_DID) :type did: str :param seed : A steward or trustee seed. A did OR a seed is required, but not both. The did will be used if both are given. Needed to get validator info. Optional. (Default: chaosindy.common.DEFAULT_CHAOS_SEED) :type seed: str :param wallet_name: The name of the wallet to use when getting validator info. Optional. (Default: chaosindy.common.DEFAULT_CHAOS_WALLET_NAME) :type wallet_name: str :param wallet_key: The key to use when opening the wallet designated by wallet_name. Optional. (Default: chaosindy.common.DEFAULT_CHAOS_WALLET_KEY) :type wallet_key: str :param pool: The pool to connect to when getting validator info. Optional. (Default: chaosindy.common.DEFAULT_CHAOS_POOL) :type pool: str :param ssh_config_file: The relative or absolute path to the SSH config file. Optional. (Default: chaosindy.common.DEFAULT_CHAOS_SSH_CONFIG_FILE) :type ssh_config_file: str :return: bool """ # TODO: Use the traffic shaper tool Kelly is using. # http://www.uponmyshoulder.com/blog/2013/simulating-bad-network-conditions-on-linux/ # # This function assumes that block_node_port_random has been called and a # "block_node_port_random" file has been created in a temporary directory # created using rules defined by get_chaos_temp_dir() output_dir = get_chaos_temp_dir() blocked_ports = {} try: with open(join(output_dir, "block_node_port_random"), "r") as f: blocked_ports = json.load(f) except Exception as e: # Do not fail on exceptions like FileNotFoundError if best_effort is # True if best_effort: return True else: raise e selected = blocked_ports.keys() unblocked = 0 tried_to_unblock = 0 # Keep track of nodes/ports that could not be unblocked either by the # experiment's method or rollback segments and write it back to # block_node_port_random in the experiement's temp directory still_blocked_ports = {} for node in selected: logger.debug("node alias to unblock: %s", node) try: if unblock_port_by_node_name(node, str(blocked_ports[node]), ssh_config_file): unblocked += 1 else: still_blocked_ports[node] = blocked_ports[node] except Exception as e: if best_effort: pass tried_to_unblock += 1 logger.debug("unblocked: %s -- tried_to_unblock: %s -- len-aliases: %s", unblocked, tried_to_unblock, len(selected)) if not best_effort and unblocked < len(selected): return False # Only check if resurrected nodes are caught up if both a pause and number # of transactions are given. if pause_before_synced_check and transactions: logger.debug("Pausing %s seconds before checking if unblocked nodes " \ "are synced...", pause_before_synced_check) # TODO: Use a count down timer? May be nice for those who are running # experiments manually. sleep(int(pause_before_synced_check)) logger.debug("Checking if unblocked nodes are synced and report %s " \ "transactions...", transactions) return unblocked_nodes_are_caught_up(genesis_file, transactions, did, seed, wallet_name, wallet_key, pool, ssh_config_file) return True
bc15266faa6b6c78cc37fca18bfa43ac7dd752c3
12,633
from typing import Any def create_user( *, db: Session = Depends(deps.get_db), user_in: schema_in.UserCreateIn, ) -> Any: """ Create new user. """ new_user = User(**{k: v for k, v in user_in.dict().items() if k != 'password'}) new_user.hashed_password = get_password_hash(user_in.password) new_user.gid = -1 try: db.add(new_user) db.commit() except IntegrityError: db.rollback() raise HTTPException( status_code=400, detail="The user with this username already exists in the system.", ) new_role = Role(uid=new_user.uid, nickname=new_user.nickname, avatar=new_user.avatar, gid=-1) new_role.reset() db.add(new_role) db.commit() return GameEnum.OK.digest()
cd8c3036026639d3e29e6dc030335f328d11c144
12,634
import math def number_format(interp, num_args, number, decimals=0, dec_point='.', thousands_sep=','): """Format a number with grouped thousands.""" if num_args == 3: return interp.space.w_False ino = int(number) dec = abs(number - ino) rest = "" if decimals == 0 and dec >= 0.5: if number > 0: ino += 1 else: ino -= 1 elif decimals > 0: s_dec = str(dec) if decimals + 2 < len(s_dec): if ord(s_dec[decimals + 2]) >= ord('5'): dec += math.pow(10, -decimals) if dec >= 1: if number > 0: ino += 1 else: ino -= 1 rest = "0" * decimals else: s_dec = str(dec) if not rest: rest = s_dec[2:decimals + 2] else: rest = s_dec[2:] + "0" * (decimals - len(s_dec) + 2) s = str(ino) res = [] i = 0 while i < len(s): res.append(s[i]) if s[i] != '-' and i != len(s) - 1 and (len(s) - i - 1) % 3 == 0: for item in thousands_sep: res.append(item) i += 1 if decimals > 0: for item in dec_point: res.append(item) return interp.space.wrap("".join(res) + rest)
9d5ab0b9ed5dd6054ce4f356e6811c1b155e2062
12,635
from typing import Optional def _serialization_expr(value_expr: str, a_type: mapry.Type, py: mapry.Py) -> Optional[str]: """ Generate the expression of the serialization of the given value. If no serialization expression can be generated (e.g., in case of nested structures such as arrays and maps), None is returned. :param value_expr: Python expression of the value to be serialized :param a_type: the mapry type of the value :param py: Python settings :return: generated expression, or None if not possible """ result = None # type: Optional[str] if isinstance(a_type, (mapry.Boolean, mapry.Integer, mapry.Float, mapry.String)): result = value_expr elif isinstance(a_type, mapry.Path): if py.path_as == 'str': result = value_expr elif py.path_as == 'pathlib.Path': result = 'str({})'.format(value_expr) else: raise NotImplementedError( "Unhandled path_as: {}".format(py.path_as)) elif isinstance(a_type, (mapry.Date, mapry.Datetime, mapry.Time)): result = '{value_expr}.strftime({dt_format!r})'.format( value_expr=value_expr, dt_format=a_type.format) elif isinstance(a_type, mapry.TimeZone): if py.timezone_as == 'str': result = value_expr elif py.timezone_as == 'pytz.timezone': result = 'str({})'.format(value_expr) else: raise NotImplementedError( 'Unhandled timezone_as: {}'.format(py.timezone_as)) elif isinstance(a_type, mapry.Duration): result = '_duration_to_string({})'.format(value_expr) elif isinstance(a_type, mapry.Array): result = None elif isinstance(a_type, mapry.Map): result = None elif isinstance(a_type, mapry.Class): result = "{}.id".format(value_expr) elif isinstance(a_type, mapry.Embed): result = "serialize_{}({})".format( mapry.py.naming.as_variable(a_type.name), value_expr) else: raise NotImplementedError( "Unhandled serialization expression of type: {}".format(a_type)) return result
5920a4c10dabe2ff061a1f141cd9c9f10faebafa
12,636
def get_init_hash(): """ 获得一个初始、空哈希值 """ return imagehash.ImageHash(np.zeros([8, 8]).astype(bool))
cd4665e6b5cdf232883093dab660aafcc2109a44
12,637
def get_vertex_between_points(point1, point2, at_distance): """Returns vertex between point1 and point2 at a distance from point1. Args: point1: First vertex having tuple (x,y) co-ordinates. point2: Second vertex having tuple (x,y) co-ordinates. at_distance: A distance at which to locate the vertex on the line joining point1 and point2. Returns: A Point object. """ line = LineString([point1, point2]) new_point = line.interpolate(at_distance) return new_point
acb5cd76ef7dd3a16592c5fbaf74d6d777ab338c
12,638
def disable_cache(response: Response) -> Response: """Prevents cached responses""" response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate, public, max-age=0" response.headers["Expires"] = 0 response.headers["Pragma"] = "no-cache" return response
6f63c7e93a7c354c85171652dca51162e15b7137
12,639
def get_dir(src_point, rot_rad): """Rotate the point by `rot_rad` degree.""" sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result
40b36671c50a6b6b8905eca9915901cd613c2aaa
12,640
def sparse_gauss_seidel(A,b,maxiters=100,tol=1e-8): """Returns the solution to the system Ax = b using the Gauss-Seidel method. Inputs: A (array) - 2D scipy.sparse matrix b (array) - 1D NumPy array maxiters (int, optional) - maximum iterations for algorithm to perform. tol (float) - tolerance for convergence Returns: x (array) - solution to system Ax = b. x_approx (list) - list of approximations at each iteration. """ if type(A) != spar.csr_matrix: A = spar.csr_matrix(A) n = A.shape[0] x0 = np.zeros(n) x = np.ones(n) x_approx = [] for k in xrange(maxiters): x = x0.copy() diag = A.diagonal() for i in xrange(n): rowstart = A.indptr[i] rowend = A.indptr[i+1] Aix = np.dot(A.data[rowstart:rowend], x[A.indices[rowstart:rowend]]) x[i] += (b[i] - Aix)/diag[i] if np.max(np.abs(x0-x)) < tol: return x, x_approx x0 = x x_approx.append(x) print "Maxiters hit!" return x, x_approx
139fefa8e45d14f32ea9bb4dd25df03762737090
12,641
def delete_user(user_id): """Delete user from Users database and their permissions from SurveyPermissions and ReportPermissions. :Route: /api/user/<int:user_id> :Methods: DELETE :Roles: s :param user_id: user id :return dict: {"delete": user_id} """ user = database.get_user(user_id) database.delete_user(user) return {"delete": user.id}
c8f86dc20db67a5e3511e082f6308903b1acdaa2
12,642
def selectTopFive(sortedList): """ 从sortedList中选出前五,返回对应的名字与commit数量列成的列表 :param sortedList:按值从大到小进行排序的authorDict :return:size -- [commit数量] labels -- [名字] """ size = [] labels = [] for i in range(5): labels.append(sortedList[i][0]) size.append(sortedList[i][1]) return size, labels
747ad379ed73aeb6ccb48487b48dc6150350204e
12,643
def get_license(file): """Returns the license from the input file. """ # Collect the license lic = '' for line in file: if line.startswith('#include') or line.startswith('#ifndef'): break else: lic += line return lic
126fff2dd0464ef1987f3ab672f6b36b8fa962f7
12,644
def quote_query_string(chars): """ Multibyte charactor string is quoted by double quote. Because english analyzer of Elasticsearch decomposes multibyte character strings with OR expression. e.g. 神保町 -> 神 OR 保 OR 町 "神保町"-> 神保町 """ if not isinstance(chars, unicode): chars = chars.decode('utf-8') token = u'' qs = u'' in_escape = False in_quote = False in_token = False for c in chars: # backslash escape if in_escape: token += c in_escape = False continue if c == u'\\': token += c in_escape = True continue # quote if c != u'"' and in_quote: token += c continue if c == u'"' and in_quote: token += c qs += token token = u'' in_quote = False continue # otherwise: not in_quote if _is_delimiter(c) or c == u'"': if in_token: qs += _quote_token(token) token = u'' in_token = False if c == u'"': token += c in_quote = True else: qs += c continue # otherwise: not _is_delimiter(c) token += c in_token = True if token: qs += _quote_token(token) return qs
8d1888df17a617d42e6a0d1b909e08e4f84fa4c9
12,645
def copy_params(params: ParamsDict) -> ParamsDict: """copy a parameter dictionary Args: params: the parameter dictionary to copy Returns: the copied parameter dictionary Note: this copy function works recursively on all subdictionaries of the params dictionary but does NOT copy any non-dictionary values. """ validate_params(params) params = {**params} if all(isinstance(v, dict) for v in params.values()): return {k: copy_params(params[k]) for k in params} return params
8248b31698f6b51103dc34bad7b13373591b10cd
12,646
def watch_list(request): """ Get watchlist or create a watchlist, or delete from watchlist :param request: :return: """ if request.method == 'GET': watchlist = WatchList.objects.filter(user=request.user) serializer = WatchListSerializer(watchlist, many=True) return Response(data=serializer.data, status=status.HTTP_200_OK) elif request.method == 'POST': movie_id = request.data.get('movie_id') if movie_id is not None: # check if movie is in db try: movie = Movie_Collected.objects.get(pk=movie_id) watchlist = WatchList.objects.filter(user=request.user, movie=movie).exists() if watchlist: message = {"error": "Movie already in watchlist"} return Response(data=message, status=status.HTTP_400_BAD_REQUEST) else: watchlist = WatchList.objects.create(user=request.user, movie=movie) serializer = WatchListSerializer(watchlist) return Response(data=serializer.data, status=status.HTTP_201_CREATED) except Movie_Collected.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) else: message = {'error': 'Movie id is required'} return Response(data=message, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': movie_id = request.data.get('movie_id') if movie_id is not None: try: movie = Movie_Collected.objects.get(pk=movie_id) WatchList.objects.filter(user=request.user, movie=movie).delete() return Response(status=status.HTTP_204_NO_CONTENT) except Movie_Collected.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) else: message = {'error': 'Movie id is required'} return Response(data=message, status=status.HTTP_400_BAD_REQUEST)
c92d39da05546fea9330ffe44cea5dd0c30f6427
12,647
async def user_has_pl(api, room_id, mxid, pl=100): """ Determine if a user is admin in a given room. """ pls = await api.get_power_levels(room_id) users = pls["users"] user_pl = users.get(mxid, 0) return user_pl == pl
5678af17469202e0b0a0232e066e7ed5c8212ee6
12,648
import cgi from typing import Optional def get_cgi_parameter_bool_or_default(form: cgi.FieldStorage, key: str, default: bool = None) -> Optional[bool]: """ Extracts a boolean parameter from a CGI form (``"1"`` = ``True``, other string = ``False``, absent/zero-length string = default value). """ s = get_cgi_parameter_str(form, key) if s is None or len(s) == 0: return default return is_1(s)
905dfa96628414e3b076fd3345113588f3f6ef08
12,649
def loss_function_1(y_true, y_pred): """ Probabilistic output loss """ a = tf.clip_by_value(y_pred, 1e-20, 1) b = tf.clip_by_value(tf.subtract(1.0, y_pred), 1e-20, 1) cross_entropy = - tf.multiply(y_true, tf.log(a)) - tf.multiply(tf.subtract(1.0, y_true), tf.log(b)) cross_entropy = tf.reduce_mean(cross_entropy, 0) loss = tf.reduce_mean(cross_entropy) return loss
8426ef13bd56fa3ff11226556d37bf738333a165
12,650
def sanitize_for_json(tag): """eugh the tags text is in comment strings""" return tag.text.replace('<!--', '').replace('-->', '')
211c07864af825ad29dfc806844927db977e6ce0
12,651
def load_data_and_labels(dataset_name): """ Loads MR polarity data from files, splits the data into words and generates labels. Returns split sentences and labels. """ for i in [1]: # Load data from files positive_examples = list(open('data/'+str(dataset_name)+'/'+str(dataset_name)+'.pos',encoding="utf-8").readlines()) # positive_examples = positive_examples[0:1000] positive_examples = [s.strip() for s in positive_examples] negative_examples = list(open('data/'+str(dataset_name)+'/'+str(dataset_name)+'.neg',encoding="utf-8").readlines()) # negative_examples = negative_examples[0:1000] negative_examples = [s.strip() for s in negative_examples] # Split by words x_text = positive_examples + negative_examples x_text = [clean_str(sent) for sent in x_text] x_text = [s.split(" ") for s in x_text] # Generate labels positive_labels = [[0, 1] for _ in positive_examples] negative_labels = [[1, 0] for _ in negative_examples] y = np.concatenate([positive_labels, negative_labels], 0) return [x_text, y]
d753494f3a614850c07f40230c3373eab13b0c6b
12,652
def tileswrap(ihtORsize, numtilings, floats, wrapwidths, ints=[], readonly=False): """Returns num-tilings tile indices corresponding to the floats and ints, wrapping some floats""" qfloats = [floor(f * numtilings) for f in floats] Tiles = [] for tiling in range(numtilings): tilingX2 = tiling * 2 coords = [tiling] b = tiling for q, width in zip_longest(qfloats, wrapwidths): c = (q + b % numtilings) // numtilings coords.append(c % width if width else c) b += tilingX2 coords.extend(ints) Tiles.append(hashcoords(coords, ihtORsize, readonly)) return Tiles
e9a9dc439307fc114c9abc939f642ea411acd26e
12,653
def coerce(data, egdata): """Coerce a python object to another type using the AE coercers""" pdata = pack(data) pegdata = pack(egdata) pdata = pdata.AECoerceDesc(pegdata.type) return unpack(pdata)
dc7499530b77a25c8b51537e2e21115d3ce3ccee
12,654
import os def distorted_inputs(data_dir, batch_size, num_train_files, train_num_examples, boardsize, num_channels): """Construct distorted input for training using the Reader ops. Args: data_dir: Path to the data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ filenames = [] for fn in os.listdir(data_dir): if 'test' not in fn and 'prop' not in fn: filenames.append(os.path.join(data_dir, fn)) print('filenames:{} in cnn_input.distorded_inputs()'.format(filenames)) #filenames = [os.path.join(data_dir, +'_%d.bin' % i) # for i in xrange(1, num_train_files + 1)] for f in filenames: if not tf.gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_data(filename_queue, boardsize, num_channels) reshaped_image = read_input.uint8image height = boardsize width = boardsize # Image processing for training the network. Note the many random # distortions applied to the image. distorted_image = tf.cast(tf.reshape(reshaped_image, [height, width, num_channels]), tf.float32) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(min(train_num_examples * min_fraction_of_examples_in_queue, 20000)) #min_queue_examples=64 print('Filling queue with %d images before starting to train. ' 'This will take a few minutes.' % min_queue_examples) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(distorted_image, read_input.label, min_queue_examples, batch_size, shuffle=True)
5a46724c30c30ce5dd846f8fbf522605c27396cc
12,655
from typing import Union from typing import List def _write_mkaero1(model: Union[BDF, OP2Geom], name: str, mkaero1s: List[MKAERO1], ncards: int, op2_file, op2_ascii, endian: bytes, nastran_format: str='nx') -> int: """writes the MKAERO1 data = (1.3, -1, -1, -1, -1, -1, -1, -1, 0.03, 0.04, 0.05, -1, -1, -1, -1, -1) """ key = (3802, 38, 271) makero1s_temp = [] makero1s_final = [] for mkaero in mkaero1s: nmachs = len(mkaero.machs) nkfreqs = len(mkaero.reduced_freqs) assert nmachs > 0, mkaero assert nkfreqs > 0, mkaero if nmachs <= 8 and nkfreqs <= 8: # no splitting required makero1s_final.append((mkaero.machs, mkaero.reduced_freqs)) elif nmachs <= 8 or nkfreqs <= 8: # one of machs or kfreqs < 8 makero1s_temp.append((mkaero.machs, mkaero.reduced_freqs)) else: # both machs and kfreqs > 8 nloops_mach = int(np.ceil(nmachs/8)) for i in range(nloops_mach): machs_temp = _makero_temp(mkaero.machs, i, nloops_mach) assert len(machs_temp) > 0, (i, nloops_mach, machs_temp) makero1s_temp.append((machs_temp, mkaero.reduced_freqs)) for (machs, reduced_freqs) in makero1s_temp: nmachs = len(machs) nkfreqs = len(reduced_freqs) assert nmachs > 0, nmachs assert nkfreqs > 0, nkfreqs if nmachs <= 8 and nkfreqs <= 8: # pragma: no cover raise RuntimeError(f'this should never happen...nmachs={nmachs} knfreqs={nkfreqs}') if nmachs <= 8: # nkfreqs > 8 nloops = int(np.ceil(nkfreqs/8)) for i in range(nloops): reduced_freqs_temp = _makero_temp(reduced_freqs, i, nloops) makero1s_final.append((machs, reduced_freqs_temp)) elif nkfreqs <= 8: # nmachs > 8 nloops = int(np.ceil(nmachs/8)) for i in range(nloops): machs_temp = _makero_temp(machs, i, nloops) assert len(machs_temp) > 0, (i, nloops_mach, machs_temp) makero1s_final.append((machs_temp, reduced_freqs)) else: # pragma: no cover raise RuntimeError(f'this should never happen...nmachs={nmachs} knfreqs={nkfreqs}') #raise RuntimeError((nmachs, nkfreqs)) ncards = len(makero1s_final) nfields = 16 nbytes = write_header(name, nfields, ncards, key, op2_file, op2_ascii) for machs, reduced_freqs in makero1s_final: data = [] nmachs = len(machs) nkfreqs = len(reduced_freqs) assert nmachs > 0, machs assert nkfreqs > 0, reduced_freqs nint_mach = 8 - nmachs nint_kfreq = 8 - nkfreqs fmt1 = b'%if' % nmachs + b'i' * nint_mach fmt2 = b'%if' % nkfreqs + b'i' * nint_kfreq spack = Struct(endian + fmt1 + fmt2) data.extend(machs.tolist()) assert nint_mach < 8, nint_mach if nint_mach: data.extend([-1]*nint_mach) data.extend(reduced_freqs.tolist()) if nint_kfreq: data.extend([-1]*nint_kfreq) op2_ascii.write(f' mkaero1 data={data}\n') op2_file.write(spack.pack(*data)) return nbytes
ad45ec25989714685a6a2b2e61d6833a9ab56a6d
12,656
def _mesh_obj_large(): """build a large, random mesh model/dataset""" n_tri, n_pts = 400, 1000 node = np.random.randn(n_pts, 2) element = np.array([np.random.permutation(n_pts)[:3] for _ in range(n_tri)]) perm = np.random.randn(n_tri) np.random.seed(0) el_pos = np.random.permutation(n_pts)[:16] return PyEITMesh(node=node, element=element, perm=perm, el_pos=el_pos, ref_node=0)
c2db6a3484dc4923d92519488d0b10d7a7cd75bb
12,657
def cursor(): """Return a database cursor.""" return util.get_dbconn("mesosite").cursor()
516cf2a1716204487dd4cff4f063397365b21fa1
12,658
def custom_field_check(issue_in, attrib, name=None): """ This method allows the user to get in the comments customfiled that are not common to all the project, in case the customfiled does not existe the method returns an empty string. """ if hasattr(issue_in.fields, attrib): value = str(eval('issue_in.fields.%s'%str(attrib))) if name != None: return str("%s : %s"%(name,value)) else: return str(value) else: return str("")
d9c051fa922f34242d3b5e94e8534b4dc8038f19
12,659
def header(text, color='black', gen_text=None): """Create an HTML header""" if gen_text: raw_html = f'<h1 style="margin-top:16px;color: {color};font-size:54px"><center>' + str( text) + '<span style="color: red">' + str(gen_text) + '</center></h1>' else: raw_html = f'<h1 style="margin-top:12px;color: {color};font-size:54px"><center>' + str( text) + '</center></h1>' return raw_html
646b0a16b35cd4350feadd75674eea6ab6da6404
12,660
def block_pose(detection, block_size=0.05): # type: (AprilTagDetection, float) -> PoseStamped """Given a tag detection (id == 0), return the block's pose. The block pose has the same orientation as the tag detection, but it's position is translated to be at the cube's center. Args: detection: The AprilTagDetection. block_size: The block's side length in meters. """ transform = tf.transformations.concatenate_matrices( tf.transformations.translation_matrix( [detection.pose.pose.position.x, detection.pose.pose.position.y, detection.pose.pose.position.z] ), tf.transformations.quaternion_matrix( [detection.pose.pose.orientation.x, detection.pose.pose.orientation.y, detection.pose.pose.orientation.z, detection.pose.pose.orientation.w] ), tf.transformations.translation_matrix( [0, 0, -block_size / 2] ) ) t = tf.transformations.translation_from_matrix(transform) q = tf.transformations.quaternion_from_matrix(transform) ps = PoseStamped() ps.header.frame_id = detection.pose.header.frame_id ps.header.stamp = detection.pose.header.stamp ps.pose.position = Point(*t) ps.pose.orientation = Quaternion(*q) return ps
da6ee3bb1bf8a071ea5859d17dcad07ecd8781a3
12,661
async def batch_omim_similarity( data: models.POST_OMIM_Batch, method: str = 'graphic', combine: str = 'funSimAvg', kind: str = 'omim' ) -> dict: """ Similarity score between one HPOSet and several OMIM Diseases """ other_sets = [] for other in data.omim_diseases: try: disease = Omim.get(other) hpos = ','.join([str(x) for x in disease.hpo]) except KeyError: hpos = '' other_sets.append( models.POST_HPOSet( set2=hpos, name=other ) ) res = await terms.batch_similarity( data=models.POST_Batch( set1=data.set1, other_sets=other_sets ), method=method, combine=combine, kind=kind ) return res
2da8dc25d867f132ec0f571b4d9dff3d7de38c21
12,662
def vector(*, unit: _Union[_cpp.Unit, str, None] = default_unit, value: _Union[_np.ndarray, list]): """Constructs a zero dimensional :class:`Variable` holding a single length-3 vector. :param value: Initial value, a list or 1-D numpy array. :param unit: Optional, unit. Default=dimensionless :returns: A scalar (zero-dimensional) Variable. :seealso: :py:func:`scipp.vectors` """ return _cpp.vectors(dims=[], unit=unit, values=value)
dda09f89ba00ffab789c7ed9f6f6713a45c9bd03
12,663
import laspy def read_lidar(filename, **kwargs): """Read a LAS file. Args: filename (str): Path to a LAS file. Returns: LasData: The LasData object return by laspy.read. """ try: except ImportError: print( "The laspy package is required for this function. Use pip install laspy to install it." ) return return laspy.read(filename, **kwargs)
5336c34223216d4a1857cc5c858ccca704508e22
12,664
def get_gene_starting_with(gene_symbol: str, verbose: bool = True): """ get the genes that start with the symbol given Args: - gene_symbol: str - verbose: bool Returns: - list of str - None """ gene_symbol = gene_symbol.strip().upper() ext = "search/symbol/{}*".format(gene_symbol) data = get_api_response("{}/{}".format(URL, ext)) res = data["response"]["docs"] if res == []: if verbose: print("No gene found starting with {}".format(gene_symbol)) return else: gene_symbols = [res[i]["symbol"] for i in range(len(res))] if verbose: print("Found these genes starting with {}:".format(gene_symbol)) for symbol in gene_symbols: print(symbol) return gene_symbols
c0f092a93d44dd264f6b251ff3eba565b29abda0
12,665
import time def gen_timestamp(): """ Generates a unique (let's hope!), whole-number, unix-time timestamp. """ return int(time() * 1e6)
cb044e7428c062660eb998856245d4cd2c692a7e
12,666
def learningCurve(X, y, Xval, yval, Lambda): """returns the train and cross validation set errors for a learning curve. In particular, it returns two vectors of the same length - error_train and error_val. Then, error_train(i) contains the training error for i examples (and similarly for error_val(i)). In this function, you will compute the train and test errors for dataset sizes from 1 up to m. In practice, when working with larger datasets, you might want to do this in larger intervals. """ # Number of training examples m, _ = X.shape # You need to return these values correctly error_train = np.zeros(m) error_val = np.zeros(m) for i in range(m): theta = trainLinearReg(X[:i + 1], y[:i + 1], Lambda) error_train[i], _ = linearRegCostFunction(X[:i + 1], y[:i + 1], theta, 0) error_val[i], _ = linearRegCostFunction(Xval, yval, theta, 0) return error_train, error_val
8cdfdec694cbfadef92375c7cf8eba4da012be59
12,667
def decode_xml(text): """Parse an XML document into a dictionary. This assume that the document is only 1 level, i.e.: <top> <child1>content</child1> <child2>content</child2> </top> will be parsed as: child1=content, child2=content""" xmldoc = minidom.parseString(text) return dict([(x.tagName, x.firstChild.nodeValue) for x in xmldoc.documentElement.childNodes if x.childNodes.length == 1])
826bdc1ff0c4df503fdbc6f7e76b013d907b208b
12,668
def _qcheminputfile(ccdata, templatefile, inpfile): """ Generate input file from geometry (list of lines) depending on job type :ccdata: ccData object :templatefile: templatefile - tells us which template file to use :inpfile: OUTPUT - expects a path/to/inputfile to write inpfile """ string = '' if hasattr(ccdata, 'charge'): charge = ccdata.charge else: charge = 0 if hasattr(ccdata, 'mult'): mult = ccdata.mult else: print('Multiplicity not found, set to 1 by default') mult = 1 # $molecule string += '$molecule\n' string += '{0} {1}\n'.format(charge, mult) # Geometry (Maybe a cleaner way to do this..) atomnos = [pt.Element[x] for x in ccdata.atomnos] atomcoords = ccdata.atomcoords[-1] if not type(atomcoords) is list: atomcoords = atomcoords.tolist() for i in range(len(atomcoords)): atomcoords[i].insert(0, atomnos[i]) for atom in atomcoords: string += ' {0} {1:10.8f} {2:10.8f} {3:10.8f}\n'.format(*atom) string += '$end\n\n' # $end # $rem with open(templates.get(templatefile), 'r') as templatehandle: templatelines = [x for x in templatehandle.readlines()] for line in templatelines: string += line # $end return string
3ca565c4c599bccfd3916a0003126b3085cc7254
12,669
def arrangements(ns): """ prime factors of 19208 lead to the "tribonacci" dict; only needed up to trib(4) """ trib = {0: 1, 1: 1, 2: 2, 3: 4, 4: 7} count = 1 one_seq = 0 for n in ns: if n == 1: one_seq += 1 if n == 3: count *= trib[one_seq] one_seq = 0 return count # # one-liner... # return reduce(lambda c, n: (c[0]*trib[c[1]], 0) if n == 3 else (c[0], c[1]+1), ns, (1,0))[0]
01f3defb25624d7a801be87c7336ddf72479e489
12,670
def vtpnt(x, y, z=0): """坐标点转化为浮点数""" return win32com.client.VARIANT (pythoncom.VT_ARRAY | pythoncom.VT_R8, (x, y, z))
1e7c79353d010d4dd8daa4b7fa7c39b841ff8ffe
12,671
from datetime import datetime def get_time_delta(pre_date: datetime): """ 获取给定时间与当前时间的差值 Args: pre_date: Returns: """ date_delta = datetime.datetime.now() - pre_date return date_delta.days
4f8894b06dc667b166ab0ee6d86b484e967501ac
12,672
from bs4 import BeautifulSoup def render_checkbox_list(soup_body: object) -> object: """As the chosen markdown processor does not support task lists (lists with checkboxes), this function post-processes a bs4 object created from outputted HTML, replacing instances of '[ ]' (or '[]') at the beginning of a list item with an unchecked box, and instances of '[x]' (or '[X]') at the beginning of a list item with a checked box. Args: soup_body: bs4 object input Returns: modified bs4 object """ if not isinstance(soup_body, BeautifulSoup): raise TypeError('Input must be a bs4.BeautifulSoup object') for ul in soup_body.find_all('ul'): for li in ul.find_all('li', recursive=False): if (li.contents[0].string[:2] == '[]') or (li.contents[0].string[:3] == '[ ]'): unchecked = soup_body.new_tag("input", disabled="", type="checkbox") li.contents[0].string.replace_with(li.contents[0].string.replace('[] ', u'\u2002')) li.contents[0].string.replace_with(li.contents[0].string.replace('[ ] ', u'\u2002')) li.contents[0].insert_before(unchecked) li.find_parent('ul')['style'] = 'list-style-type: none; padding-left: 0.5em; margin-left: 0.25em;' elif (li.contents[0].string[:3] == '[x]') or (li.contents[0].string[:3] == '[X]'): checked = soup_body.new_tag("input", disabled="", checked="", type="checkbox") li.contents[0].string.replace_with(li.contents[0].string.replace('[x] ', u'\u2002')) li.contents[0].string.replace_with(li.contents[0].string.replace('[X] ', u'\u2002')) li.contents[0].insert_before(checked) li.find_parent('ul')['style'] = 'list-style-type: none; padding-left: 0.5em; margin-left: 0.25em;' return soup_body
640f00d726a1268eb71134e29dbde53ef0ec44f5
12,673
def slowness_to_velocity(slowness): """ Convert a slowness log in µs per unit depth, to velocity in unit depth per second. Args: slowness (ndarray): A value or sequence of values. Returns: ndarray: The velocity. """ return 1e6 / np.array(slowness)
dbfc3b4206ddf615da634e328328c4b8588e5c7a
12,674
def SingleDetectorLogLikelihoodModelViaArray(lookupNKDict,ctUArrayDict,ctVArrayDict, tref, RA,DEC, thS,phiS,psi, dist,det): """ DOCUMENT ME!!! """ global distMpcRef # N.B.: The Ylms are a function of - phiref b/c we are passively rotating # the source frame, rather than actively rotating the binary. # Said another way, the m^th harmonic of the waveform should transform as # e^{- i m phiref}, but the Ylms go as e^{+ i m phiref}, so we must give # - phiref as an argument so Y_lm h_lm has the proper phiref dependence U = ctUArrayDict[det] V = ctVArrayDict[det] Ylms = ComputeYlmsArray(lookupNKDict[det], thS,-phiS) if (det == "Fake"): F=np.exp(-2.*1j*psi) # psi is applied through *F* in our model else: F = ComplexAntennaFactor(det, RA,DEC,psi,tref) distMpc = dist/(lal.PC_SI*1e6) # Term 2 part 1 : conj(Ylms*F)*crossTermsU*F*Ylms # Term 2 part 2: Ylms*F*crossTermsV*F*Ylms term2 = 0.j term2 += F*np.conj(F)*(np.dot(np.conj(Ylms), np.dot(U,Ylms))) term2 += F*F*np.dot(Ylms,np.dot(V,Ylms)) term2 = np.sum(term2) term2 = -np.real(term2) / 4. /(distMpc/distMpcRef)**2 return term2
35c27e53833cb54f856adde6815bf51c3feca019
12,675
import numpy as np def manualcropping(I, pointsfile): """This function crops a copy of image I according to points stored in a text file (pointsfile) and corresponding to aponeuroses (see Args section). Args: I (array): 3-canal image pointsfile (text file): contains points' coordinates. Pointsfile must be organized such that: - column 0 is the ID of each point - column 1 is the X coordinate of each point, that is the corresponding column in I - column 2 is the Y coordinate, that is the row in I - row 0 is for txt columns' names - rows 1 and 2 are for two points of the scale - rows 3 to 13 are aponeuroses' points in panoramic images // raws 3 to 10 in simple images - following rows are for muscle fascicles (and are optional for this function) Other requirements: pointsfile's name must 1) include extension 2) indicates whether I is panoramic or simple by having 'p' or 's' just before the point of the extension. Returns: I2 (array) : array of same type than I. It is the cropped image of I according to the aponeuroses' points manually picked and stored in pointsfile. point_of_intersect (tuple) : point at right of the image; should correspond to the point of intersection of deep and upper aponeuroses. min_raw, max_raw, min_col, max_col: indices of the location of the cropped image in the input raw image """ data = open(pointsfile, 'r') #finds whether the image is panoramic or simple search_point = -1 while (pointsfile[search_point] != '.') and (search_point > (-len(pointsfile))): search_point = search_point-1 if (search_point == -len(pointsfile)): raise TypeError("Input pointsfile's name is not correct. Check extension.") else: imagetype = pointsfile[search_point-1] #extract points from the input file picked_points = [] for line in data: line = line.strip('\n') x = line.split('\t') picked_points.append((x[1], x[2])) #keep aponeuroses points according to image type if imagetype == 'p': #keep points 3 to 13 included apos = np.asarray(picked_points[3:14], dtype=np.float64, order='C') elif imagetype == 's': #keep points 3 to 10 included apos = np.asarray(picked_points[3:11], dtype=np.float64, order='C') else: raise ValueError("pointsfile's name does not fulfill conditions. See docstrings") #find max and min indexes for columns and raws to crop image I #with a margin of 10 pixels (5 pixels for min_raw). #Coordinates are inverted in apos min_raw = max(0, np.min(apos[:, 1])-10) max_raw = min(I.shape[0], np.max(apos[:, 1])+20) min_col = max(0, np.min(apos[:, 0])-10) max_col = min(I.shape[1], np.max(apos[:, 0])+10) i_cropped = np.copy(I[int(min_raw):int(max_raw), int(min_col):int(max_col), :]) index = np.argmax(apos[:, 0]) point_of_intersect = (apos[index][1] - min_raw, apos[index][0] - min_col) #close file data.close() return i_cropped, point_of_intersect, int(min_raw), int(max_raw), int(min_col), int(max_col)
eb3f49b5b46d1966946fc3d00bcae113f51c60d1
12,676
from datetime import datetime def prepare_time_micros(data, schema): """Convert datetime.time to int timestamp with microseconds""" if isinstance(data, datetime.time): return int(data.hour * MCS_PER_HOUR + data.minute * MCS_PER_MINUTE + data.second * MCS_PER_SECOND + data.microsecond) else: return data
bfdfe40065db66417bf2b641a24b195f4114687e
12,677
def get_configs_path_mapping(): """ Gets a dictionary mapping directories to back up to their destination path. """ return { "Library/Application Support/Sublime Text 2/Packages/User/": "sublime_2", "Library/Application Support/Sublime Text 3/Packages/User/": "sublime_3", "Library/Preferences/IntelliJIdea2018.2/": "intellijidea_2018.2", "Library/Preferences/PyCharm2018.2/": "pycharm_2018.2", "Library/Preferences/CLion2018.2/": "clion_2018.2", "Library/Preferences/PhpStorm2018.2": "phpstorm_2018.2", }
d7617139a36ca2e1d4df57379d6af73e3b075c84
12,678
import os def plot_sample_variation_polar(annots_df_group, **kwargs): """ Function: plot polar coordinate values of R3, R4, T3, T4, T3' positions of wild-type flies of a specific age. bundles from one sample are plotted together on the same subplot. Inputs: - annots_df_group: DataFrame group. Processed annotation information of a specific age, grouped by sample number. - Additional inputs: - is_save: Boolean. Save figures or not. Default = False. - fig_format: extension figure format. Default = "svg". - fig_res: figure resolution. Default = 300. Output: - Figure. - sum_coords: summary of polar coordinates. """ ### parameters if('is_save' in kwargs.keys()): is_save = kwargs['is_save'] else: is_save = False if('fig_format' in kwargs.keys()): fig_format = kwargs['fig_format'] else: fig_format = 'svg' if('fig_res' in kwargs.keys()): fig_res = kwargs['fig_res'] else: fig_res = 300 ### Params paths = settings.paths phi_unit = get_angle_unit_theory('phi_unit') color_code = settings.matching_info.color_code plot_color = { 'R3':color_code[3], 'R4':color_code[4], 'T4':color_code[4], 'T3':color_code[3], 'T7':color_code[7], } num_subplots = len(annots_df_group) ### Figure set-up fig, axes = plt.subplots(num_subplots, 1, figsize = (30, 15), subplot_kw={'projection': 'polar'}) fig.tight_layout() sum_coords = {} coords = {} for i in plot_color.keys(): sum_coords[i] = np.zeros((2, num_subplots)) for i_fig in range(num_subplots): i_sample = i_fig ### calculating sample_id = list(annots_df_group.groups.keys())[i_sample] annots_df_current = annots_df_group.get_group(sample_id).reset_index(drop = True) annots_df_current.set_index('bundle_no', drop = True, inplace = True) ### initialization coords[i_fig] = {} for i in plot_color.keys(): coords[i_fig][i] = np.zeros((2, len(annots_df_current))) ### loop through bundle for ind, bundle_no in enumerate(annots_df_current.index): pos_t3 = annots_df_current.loc[bundle_no, 'T3c'] pos_t4 = 1 pos_t7 = annots_df_current.loc[bundle_no, 'T7c'] dTiCs = {3:pos_t3, 7:pos_t7, 4: pos_t4} target_grid_polar = get_target_grid_polar_summary(return_type = 'theory', dTiCs = dTiCs) coords[i_fig]['R3'][0, ind] = target_grid_polar[2,0] coords[i_fig]['R3'][1, ind] = annots_df_current.loc[bundle_no, 'R3'] coords[i_fig]['R4'][0, ind] = target_grid_polar[5,0] coords[i_fig]['R4'][1, ind] = annots_df_current.loc[bundle_no, 'R4'] coords[i_fig]['T3'][0, ind] = target_grid_polar[2,0] coords[i_fig]['T3'][1, ind] = annots_df_current.loc[bundle_no, 'T3c'] coords[i_fig]['T7'][0, ind] = target_grid_polar[5,0] coords[i_fig]['T7'][1, ind] = annots_df_current.loc[bundle_no, 'T7c'] coords[i_fig]['T4'][0, ind] = 0 coords[i_fig]['T4'][1, ind] = 1 ### get centroids for t in coords[i_fig].keys(): sum_coords[t][:, i_sample] = np.mean(coords[i_fig][t], axis = 1) ### Plotting ax = axes.ravel()[i_fig] ### references ax.plot([0,0], [0,2.5], '--', color = "0.8", linewidth = 0.5) ax.plot([0,target_grid_polar[2,0]], [0,2.5], '--', color = "0.8", linewidth = 0.5) ax.plot([0,target_grid_polar[5,0]], [0,2.5], '--', color = "0.8", linewidth = 0.5) ### individual dots for ind in range(len(annots_df_current)): for t in ['R3', 'R4']: ax.plot(coords[i_fig][t][0, ind], coords[i_fig][t][1, ind], 'o', color = plot_color[t], markersize = 10, alpha = 0.5) for t in ['T3', 'T4', 'T7']: ax.plot(coords[i_fig][t][0, ind], coords[i_fig][t][1, ind], 'o', mec = plot_color[t], markersize = 25, mew = 1.0, mfc = 'none', alpha = 0.8) ax.plot(0, 0, 'o', color = 'k', markersize = 5) ax.text(0.3, -1, "C") ### axis ax.set_thetamin(-30) ax.set_thetamax(30) ax.set_rlim(0, 2.5) ax.set_yticks([0, 0.5, 1.0, 1.5, 2.0]) ax.set_xticks([-phi_unit, 0, phi_unit]) ax.set_xticklabels([1, 0, -1]) ax.grid(axis = 'y', linestyle = '--', which = 'major', linewidth = 0.5) ax.grid(axis = 'x', linestyle = '--', which = 'major', linewidth = 0.5) ax.tick_params() if(i_fig == num_subplots-1): ### last sub-figure ax.set_xlabel('Relative Length (a.u.)') if(i_fig == round(num_subplots/2)-1): ### middle sub-figure. ax.set_ylabel("\nRelative Angle (a.u.)") ax.yaxis.set_label_position("right") ### saving fig_format = 'svg' fig_name = f'S3C_Fig.{fig_format}' fig_save_path = os.path.join(paths.output_prefix, fig_name) if(is_save): plt.savefig(fig_save_path, dpi=fig_res, bbox_inches='tight', format = fig_format) plt.show() return coords, sum_coords
9fae03a8d588143745b6a971cd37ee5c1e071338
12,679
def num_from_bins(bins, cls, reg): """ :param bins: list The bins :param cls: int Classification result :param reg: Regression result :return: computed value """ bin_width = bins[0][1] - bins[0][0] bin_center = float(bins[cls][0] + bins[cls][1]) / 2 return bin_center + reg * bin_width
468e56075cf214f88d87298b259f7253d013a3f3
12,680
def rotate90(matrix: list) -> tuple: """return the matrix rotated by 90""" return tuple(''.join(column)[::-1] for column in zip(*matrix))
770a8a69513c4f88c185778ad9203976d5ee6147
12,681
def get_aspect(jdate, body1, body2): """ Return the aspect and orb between two bodies for a certain date Return None if there's no aspect """ if body1 > body2: body1, body2 = body2, body1 dist = distance(long(jdate, body1), long(jdate, body2)) for i_asp, aspect in enumerate(aspects['value']): orb = get_orb(body1, body2, i_asp) if i_asp == 0 and dist <= orb: return body1, body2, i_asp, dist elif aspect - orb <= dist <= aspect + orb: return body1, body2, i_asp, aspect - dist return None
11a9b05fbc924290e390329395361da0c856541e
12,682
def create_rollout_policy(domain: Simulator, rollout_descr: str) -> Policy: """returns, if available, a domain specific rollout policy Currently only supported by grid-verse environment: - "default" -- default "informed" rollout policy - "gridverse-extra" -- straight if possible, otherwise turn :param domain: environment :param rollout_descr: "default" or "gridverse-extra" """ if isinstance(domain, gridverse_domain.GridverseDomain): if rollout_descr == "default": pol = partial( gridverse_domain.default_rollout_policy, encoding=domain._state_encoding, # pylint: disable=protected-access ) elif rollout_descr == "gridverse-extra": pol = partial( gridverse_domain.straight_or_turn_policy, encoding=domain._state_encoding, # pylint: disable=protected-access ) else: if rollout_descr: raise ValueError( f"{rollout_descr} not accepted as rollout policy for domain {domain}" ) pol = partial(random_policy, action_space=domain.action_space) def rollout(augmented_state: BADDr.AugmentedState) -> int: """ So normally PO-UCT expects states to be numpy arrays and everything is dandy, but we are planning in augmented space here in secret. So the typical rollout policy of the environment will not work: it does not expect an `AugmentedState`. So here we gently provide it the underlying state and all is well :param augmented_state: """ return pol(augmented_state.domain_state) return RolloutPolicyForPlanning(rollout)
563363589b4ecc6c75306773a6de6320dd697c29
12,683
def get_event_details(event): """Extract event image and timestamp - image with no tag will be tagged as latest. :param dict event: start container event dictionary. :return tuple: (container image, last use timestamp). """ image = str(event['from'] if ":" in event['from'] else event['from'] + ":latest") timestamp = event['time'] return image, timestamp
c9b4ded7f343f0d9486c298b9a6f2d96dde58b8c
12,684
def add_extra_vars_rm_some_data(df=None, target='CHBr3', restrict_data_max=False, restrict_min_salinity=False, # use_median_value_for_chlor_when_NaN=False, # median_4MLD_when_NaN_or_less_than_0=False, # median_4depth_when_greater_than_0=False, rm_LOD_filled_data=False, # add_modulus_of_lat=False, # rm_Skagerrak_data=False, rm_outliers=False, verbose=True, debug=False): """ Add, process, or remove (requested) derivative variables for use with ML code Parameters ------- Returns ------- (pd.DataFrame) """ # --- Apply choices & Make user aware of choices applied to data Shape0 = str(df.shape) N0 = df.shape[0] # remove the outlier values if rm_outliers: Outlier = utils.get_outlier_value( df, var2use=target, check_full_df_used=False) bool = df[target] < Outlier df_tmp = df.loc[bool] prt_str = 'Removing outlier {} values. (df {}=>{},{})' N = int(df_tmp.shape[0]) if verbose: print(prt_str.format(target, Shape0, str(df_tmp.shape), N0-N)) df = df_tmp return df
b86c49f6af0ddf144a5388b842240ddb44cf7236
12,685
def cvCreateMemStorage(*args): """cvCreateMemStorage(int block_size=0) -> CvMemStorage""" return _cv.cvCreateMemStorage(*args)
b6ced2d030345b5500daa051601a20bd19e01825
12,686
import json def copyJSONable(obj): """ Creates a copy of obj and ensures it is JSONable. :return: copy of obj. :raises: TypeError: if the obj is not JSONable. """ return json.loads(json.dumps(obj))
1cc3c63893c7716a4c3a8333e725bb518b925923
12,687
from typing import List def get_eez_and_land_union_shapes(iso2_codes: List[str]) -> pd.Series: """ Return Marineregions.org EEZ and land union geographical shapes for a list of countries. Parameters ---------- iso2_codes: List[str] List of ISO2 codes. Returns ------- shapes: pd.Series: Shapes of the union of EEZ and land for each countries. Notes ----- Union shapes are divided based on their territorial ISO codes. For example, the shapes for French Guyana and France are associated to different entries. """ shape_fn = f"{data_path}geographics/source/EEZ_land_union/EEZ_Land_v3_202030.shp" shapes = gpd.read_file(shape_fn) # Convert country ISO2 codes to ISO3 iso3_codes = convert_country_codes(iso2_codes, 'alpha_2', 'alpha_3', throw_error=True) # Get 'union' polygons associated with each code shapes = shapes.set_index("ISO_TER1")["geometry"] missing_codes = set(iso3_codes) - set(shapes.index) assert not missing_codes, f"Error: Shapes not available for codes {sorted(list(missing_codes))}" shapes = shapes.loc[iso3_codes] shapes.index = convert_country_codes(list(shapes.index), 'alpha_3', 'alpha_2', throw_error=True) return shapes
1cebbbbc4d8d962776bbd17e8d2053e1c3dcf5ef
12,688
def putrowstride(a,s): """ Put the stride of a matrix view object """ t=getType(a) f={'mview_f':vsip_mputrowstride_f, 'mview_d':vsip_mputrowstride_d, 'mview_i':vsip_mputrowstride_i, 'mview_si':vsip_mputrowstride_si, 'mview_uc':vsip_mputrowstride_uc, 'mview_bl':vsip_mputrowstride_bl, 'cmview_f':vsip_cmputrowstride_f, 'cmview_d':vsip_cmputrowstride_d } assert t[0] and t[1] in f,'Type <:%s:> not a supported type for for putrowstride'%t[1] return f[t[1]](a,s)
ad15cc8c0f3e7d88849aed6cfef5408013700a01
12,689
def list_tracked_stocks(): """Returns a list of all stock symbols for the stocks being tracker""" data = read_json("stockJSON/tracked_stocks.json") return list(data.keys())
96c1eeb4fb728d447eb4e4ae055e0ae065df6466
12,690
def min_max_two(first, second): """Pomocna funkce, vrati dvojici: (mensi ze zadanych prvku, vetsi ze zadanych prvku). K tomu potrebuje pouze jedno porovnani.""" return (first, second) if first < second else (second, first)
7ddda1ad69056c22d9ba890e19e62464f56c08e1
12,691
def expand_pin_groups_and_identify_pin_types(tsm: SMContext, pins_in): """ for the given pins expand all the pin groups and identifies the pin types Args: tsm (SMContext): semiconductor module context from teststand pins_in (_type_): list of pins for which information needs to be expanded if it is pin group Returns: pins_info, pins_expanded: tuple of pins_info and pins_expanded. """ pins_temp, pin_types_temp = get_all_pins(tsm) pins_info = [] pins_expanded = [] i = 0 for d_pin in pins_in: if d_pin in pins_temp: index_d = pins_temp.index(d_pin) d_pin_type = pin_types_temp[index_d] count = 1 pin_expanded = ExpandedPinInformation(d_pin, d_pin_type, i) pins_expanded.append(pin_expanded) else: d_pin_type = PinType.PIN_GROUP temp_exp_pins = tsm.get_pins_in_pin_groups(d_pin) # This works fine count = len(temp_exp_pins) for a_pin in temp_exp_pins: index_a = pins_temp.index(a_pin) a_pin_type = pin_types_temp[index_a] pin_expanded = ExpandedPinInformation( a_pin, a_pin_type, i ) # Found bug here due to class & fixed it. pins_expanded.append(pin_expanded) pin_info = PinInformation(d_pin, d_pin_type, count) pins_info.append(pin_info) i += 1 pins_expanded = remove_duplicates_from_tsm_pin_information_array(pins_info, pins_expanded) return pins_info, pins_expanded
141485a5cef061615afb58e514504dcbc89087ca
12,692
def multi_ways_balance_merge_sort(a): """ 多路平衡归并排序 - 多用于外部排序 - 使用多维数组模拟外部存储归并段 - 使用loser tree来实现多路归并 - 归并的趟数跟路数k成反比,增加路数k可以调高效率 :param a: :return: """ SENTRY = float('inf') # 哨兵,作为归并段的结尾 leaves = [] # 每个归并段中的一个元素构成loser tree的原始序列 b = [] # 输出归并段,此实现中简化为以为数组。实际情况下也需要对输出分段。 for v in a: merge_sort(v) # 归并段内排序,采用归并排序 v.append(SENTRY) # 每个归并段追加哨兵 leaves.append(v[0]) # 每个归并段的首元素构成初始化loser tree的原始序列 del v[0] # 删除各归并段的首元素 lt = LoserTree(leaves) # 构建loser tree # 循环获取winner while True: i, v = lt.winner # winner if v == SENTRY: # 排序结束 break b.append(v) # 将winner写入输出归并段 lt.modify_key(i, a[i][0]) # winner所在的归并段的下一个元素更新入loser tree del a[i][0] # 删除已处理数据 return b
4abeceb361f662e2ae8bba1a2cd94c9f598bdc9d
12,693
def check_instance_of(value, types, message = None): """ Raises a #TypeError if *value* is not an instance of the specified *types*. If no message is provided, it will be auto-generated for the given *types*. """ if not isinstance(value, types): if message is None: message = f'expected {_repr_types(types)}, got {type(value).__name__} instead' raise TypeError(_get_message(message)) return value
4d62fea56a3c33bf1a6bd5921ff982544e9fbe29
12,694
def create_input_metadatav1(): """Factory pattern for the input to the marshmallow.json.MetadataSchemaV1. """ def _create_input_metadatav1(data={}): data_to_use = { 'title': 'A title', 'authors': [ { 'first_name': 'An', 'last_name': 'author' } ], 'description': 'A description', 'resource_type': { 'general': 'other', 'specific': 'other' }, 'license': 'mit-license', 'permissions': 'all_view', } data_to_use.update(data) return data_to_use return _create_input_metadatav1
3149876217b01864215d4de411acb18eb578f1a9
12,695
import logging def create_job(title: str = Body(None, description='The title of the codingjob'), codebook: dict = Body(None, description='The codebook'), units: list = Body(None, description='The units'), rules: dict = Body(None, description='The rules'), debriefing: dict = Body(None, description='Debriefing information'), jobsets: list = Body(None, description='A list of codingjob jobsets. An array of objects, with keys: name, codebook, unit_set'), authorization: dict = Body(None, description='A dictionnary containing authorization settings'), provenance: dict = Body(None, description='A dictionary containing any information about the units'), user: User = Depends(auth_user), db: Session = Depends(get_db)): """ Create a new codingjob. Body should be json structured as follows: { "title": <string>, "codebook": {.. blob ..}, # required, but can be omitted if specified in every jobset "units": [ {"id": <string> # An id string. Needs to be unique within a codingjob (not necessarily across codingjobs) "unit": {.. blob ..}, "gold": {.. blob ..}, # optional, include correct answer here for gold questions } .. ], "rules": { "ruleset": <string>, "authorization": "open"|"restricted", # optional, default: open .. additional ruleset parameters .. }, "debriefing": { "message": <string>, "link": <string> (url) } "jobsets": [ # optional {"name": <string>, "codebook": <codebook>, ## optional "unit_set": [<external_id>] ## optional } ] "authorization": { # optional, default: {'restricted': False} restricted: boolean, users: [emails] }, "provenance": {.. blob ..}, # optional } Where ..blob.. indicates that this is not processed by the backend, so can be annotator specific. See the annotator documentation for additional informations. The rules distribute how units should be distributed, how to deal with quality control, etc. The ruleset name specifies the class of rules to be used (currently "crowd" or "expert"). Depending on the ruleset, additional options can be given. See the rules documentation for additional information """ check_admin(user) if not title or not codebook or not units or not rules: raise HTTPException(status_code=400, detail='Codingjob is missing keys') try: job = crud_codingjob.create_codingjob(db, title=title, codebook=codebook, jobsets=jobsets, provenance=provenance, rules=rules, debriefing=debriefing, creator=user, units=units, authorization=authorization) except Exception as e: logging.error(e) raise HTTPException(status_code=400, detail='Could not create codingjob') return dict(id=job.id)
3b8fbeee052fc17c4490f7b51c57b9a83b878bf0
12,696
from typing import Dict async def finalize( db, pg: AsyncEngine, subtraction_id: str, gc: Dict[str, float], count: int, ) -> dict: """ Finalize a subtraction by setting `ready` to True and updating the `gc` and `files` fields. :param db: the application database client :param pg: the PostgreSQL AsyncEngine object :param subtraction_id: the id of the subtraction :param gc: a dict contains gc data :return: the updated subtraction document """ updated_document = await db.subtraction.find_one_and_update( {"_id": subtraction_id}, { "$set": { "gc": gc, "ready": True, "count": count, } }, ) return updated_document
f9f0a498f5c4345bf9a61cb65ff64d05874caee7
12,697
def find_path(a, b, is_open): """ :param a: Start Point :param b: Finish Point :param is_open: Function returning True if the Point argument is an open square :return: A list of Points containing the moves needed to get from a to b """ if a == b: return [] if not is_open(b): return None moves = rectilinear_path(a, b, is_open) or direct_path(a, b, is_open) or find_path_using_a_star(a, b, is_open) return moves
e42be77beb59ec9ef230c8f30abab33f4bfcd12b
12,698
def view_skill_api(): """ General API for skills and posts """ dbsess = get_session() action = request.form["action"] kind = request.form["kind"] if kind == "post": if action == "read": post = models.Post.get_by_id(dbsess, int(request.form["post-id"])) if not post: return "", 404 return jsonify({ "title": post.title, "content": post.body, }) if action == "create": skills = request.form.getlist("skill-ids[]") post = models.Post(title=request.form["title"], body=request.form["content"]) dbsess.add(post) dbsess.commit() for skill_id in skills: postskill = models.PostSkill(post_id=post.id, skill_id=skill_id) dbsess.add(postskill) dbsess.commit() return jsonify({"new-id": post.id}), 201 if action == "modify": skills = [int(_id) for _id in request.form.getlist("skill-ids[]")] post = models.Post.get_by_id(dbsess, int(request.form["post-id"])) post.title = request.form["title"] post.body = request.form["content"] dbsess.query(models.PostSkill).filter_by(post_id=post.id).delete() for skill_id in skills: postskill = models.PostSkill(post_id=post.id, skill_id=skill_id) dbsess.add(postskill) dbsess.commit() dbsess.add(post) dbsess.commit() return "", 202 if action == "delete": pass if kind == "skill": if action == "read": send_skills = [] skills = dbsess.query(models.Skill).all() post = models.Post.get_by_id(dbsess, int(request.form["post-id"])) for skill in skills: send_skills.append({ "name": skill.name, "id": skill.id, "selected": skill in [skl.skill for skl in post.skills] if post else False, }) return jsonify({"skills": send_skills}), 200 return "", 400 return "", 400
622c4d7eadac7abf23f0706fc49389bd1453846c
12,699