content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import List def _hostnames() -> List[str]: """Returns all host names from the ansible inventory.""" return sorted(_ANSIBLE_RUNNER.get_hosts())
8c1ed3f61887ff637d9a9091a20cc3f9e4144dde
12,300
def seabass_to_pandas(path): """SeaBASS to Pandas DataFrame converter Parameters ---------- path : str path to an FCHECKed SeaBASS file Returns ------- pandas.DataFrame """ sb = readSB(path) dataframe = pd.DataFrame.from_dict(sb.data) return dataframe
7988da0adb19e59d7c898658d2fe659b2d145606
12,301
def countVisits(item, value=None): """This function takes a pandas.Series of item tags, and an optional string for a specific tag and returns a numpy.ndarray of the same size as the input, which contains either 1) a running count of unique transitions of item, if no target tag is given, or 2) a running count of the numer of entries to a run of target tag :param item: a pandas Series of labels of events :param value: optional value of the item to keep track of :return: a running count of the unique values of items if value==None, or a running count of the specific value """ # make sure item is a 1-D np array or a Pandas Series # if not isinstance(item, (pd.core.series.Series, np.ndarray) ): assert (isinstance(item, pd.core.series.Series)) # create counter; this saves time, apparently count = np.zeros((item.size), dtype=np.int) if value is None: # not specified, then we track any time item changes value count[np.where(item != item.shift())] = 1 else: # only when item==value count[np.where(np.logical_and(item != item.shift(), item == value))] = 1 return count.cumsum()
dbb677cc356d867d7f861fe18e2d5c653598d20c
12,302
import numpy as np import torch from pathlib import Path def test_run_inference(ml_runner_with_container: MLRunner, tmp_path: Path) -> None: """ Test that run_inference gets called as expected. """ def _expected_files_exist() -> bool: output_dir = ml_runner_with_container.container.outputs_folder if not output_dir.is_dir(): return False expected_files = ["test_mse.txt", "test_mae.txt"] return all([(output_dir / p).exists() for p in expected_files]) # create the test data N = 100 x = torch.rand((N, 1)) * 10 y = 0.2 * x + 0.1 * torch.randn(x.size()) xy = torch.cat((x, y), dim=1) data_path = tmp_path / "hellocontainer.csv" np.savetxt(data_path, xy.numpy(), delimiter=",") expected_ckpt_path = ml_runner_with_container.container.outputs_folder / "checkpoints" / "last.ckpt" assert not expected_ckpt_path.exists() # update the container to look for test data at this location ml_runner_with_container.container.local_dataset_dir = tmp_path assert not _expected_files_exist() actual_train_ckpt_path = ml_runner_with_container.checkpoint_handler.get_recovery_or_checkpoint_path_train() assert actual_train_ckpt_path is None ml_runner_with_container.run() actual_train_ckpt_path = ml_runner_with_container.checkpoint_handler.get_recovery_or_checkpoint_path_train() assert actual_train_ckpt_path == expected_ckpt_path actual_test_ckpt_path = ml_runner_with_container.checkpoint_handler.get_checkpoints_to_test() assert actual_test_ckpt_path == [expected_ckpt_path] assert actual_test_ckpt_path[0].exists() # After training, the outputs directory should now exist and contain the 2 error files assert _expected_files_exist() # if no checkpoint handler, no checkpoint paths will be saved and these are required for # inference so ValueError will be raised with pytest.raises(ValueError) as e: ml_runner_with_container.checkpoint_handler = None # type: ignore ml_runner_with_container.run() assert "expects exactly 1 checkpoint for inference, but got 0" in str(e)
dc38c5582f8d69ff53f24c34d403ed3f14f964f9
12,303
def gen_accel_table(table_def): """generate an acceleration table""" table = [] for i in range(1001): table.append(0) for limit_def in table_def: range_start, range_end, limit = limit_def for i in range(range_start, range_end + 1): table[i] = limit return table
53d96db86068d893dfbb216e9e1283535cad9412
12,304
from typing import Tuple import torch def dataset_constructor( config: ml_collections.ConfigDict, ) -> Tuple[ torch.utils.data.Dataset, torch.utils.data.Dataset, torch.utils.data.Dataset ]: """ Create datasets loaders for the chosen datasets :return: Tuple (training_set, validation_set, test_set) """ dataset = { "AddProblem": AdditionProblem, "CopyMemory": CopyMemory, "MNIST": MNIST, "CIFAR10": CIFAR10, "SpeechCommands": SpeechCommands, "CharTrajectories": CharTrajectories, }[config.dataset] training_set = dataset( partition="train", seq_length=config.seq_length, memory_size=config.memory_size, mfcc=config.mfcc, sr=config.sr_train, dropped_rate=config.drop_rate, ) test_set = dataset( partition="test", seq_length=config.seq_length, memory_size=config.memory_size, mfcc=config.mfcc, sr=config.sr_train if config.sr_test == 0 else config.sr_test, # Test set can be sample differently. dropped_rate=config.drop_rate, ) if config.dataset in ["SpeechCommands", "CharTrajectories"]: validation_set = dataset( partition="val", seq_length=config.seq_length, memory_size=config.memory_size, mfcc=config.mfcc, sr=config.sr_train, dropped_rate=config.drop_rate, ) else: validation_set = None return training_set, validation_set, test_set
175e45640e85df7f76331dc99b60d73fccbbdc43
12,305
def ensemble_log_params(m, params, hess=None, steps=scipy.inf, max_run_hours=scipy.inf, temperature=1.0, step_scale=1.0, sing_val_cutoff=0, seeds=None, recalc_hess_alg = False, recalc_func=None, save_hours=scipy.inf, save_to=None, skip_elems = 0, log_params=True, save_scalefactors=False): """ Generate a Bayesian ensemble of parameter sets consistent with the data in the model. The sampling is done in terms of the logarithm of the parameters. Inputs: m -- Model to generate the ensemble for params -- Initial parameter KeyedList to start from hess -- Hessian of the model steps -- Maximum number of Monte Carlo steps to attempt max_run_hours -- Maximum number of hours to run temperature -- Temperature of the ensemble step_scale -- Additional scale applied to each step taken. step_scale < 1 results in steps shorter than those dictated by the quadratic approximation and may be useful if acceptance is low. sing_val_cutoff -- Truncate the quadratic approximation at eigenvalues smaller than this fraction of the largest. seeds -- A tuple of two integers to seed the random number generator recalc_hess_alg --- If True, the Monte-Carlo is done by recalculating the hessian matrix every timestep. This signficantly increases the computation requirements for each step, but it may be worth it if it improves convergence. recalc_func --- Function used to calculate the hessian matrix. It should take only a log parameters argument and return the matrix. If this is None, default is to use m.GetJandJtJInLogParameteters save_hours --- If save_to is not None, the ensemble will be saved to that file every 'save_hours' hours. save_to --- Filename to save ensemble to. skip_elems --- If non-zero, skip_elems are skipped between each included step in the returned ensemble. For example, skip_elems=1 will return every other member. Using this option can reduce memory consumption. save_scalefactors --- If True, scale factors will be saved during integration. Outputs: ens, ens_fes, ratio, [scale_factors] ens -- List of KeyedList parameter sets in the ensemble ens_fes -- List of free energies for each parameter set ratio -- Fraction of attempted moves that were accepted scale_factors -- List of scale factors throughout ensemble, only returned if save_scalefactors is True. The sampling is done by Markov Chain Monte Carlo, with a Metropolis-Hasting update scheme. The canidate-generating density is a gaussian centered on the current point, with axes determined by the hessian. For a useful introduction see: Chib and Greenberg. "Understanding the Metropolis-Hastings Algorithm" _The_American_Statistician_ 49(4), 327-335 """ if scipy.isinf(steps) and scipy.isinf(max_run_hours): logger.warn('Both steps and max_run_hours are infinite! ' 'Code will not stop by itself!') if seeds is None: seeds = int(time.time()%1 * 1e6) logger.debug('Seeding random number generator based on system time.') logger.debug('Seed used: %s' % str(seeds)) scipy.random.seed(seeds) if isinstance(params, KeyedList): param_keys = params.keys() curr_params = copy.deepcopy(params) curr_F = m.free_energy(curr_params, temperature) ens, ens_Fs = [curr_params], [curr_F] curr_sf = m.internalVars['scaleFactors'].copy() ens_scale_factors = [curr_sf] # We work with arrays of params through the rest of the code curr_params = scipy.array(curr_params) if recalc_func is None and log_params: recalc_func = lambda p: m.GetJandJtJInLogParameters(scipy.log(p))[1] else: recalc_func = lambda p: m.GetJandJtJ(p)[1] accepted_moves, attempt_exceptions, ratio = 0, 0, scipy.nan start_time = last_save_time = time.time() # Calculate our first hessian if necessary if hess is None: hess = recalc_func(curr_params) # Generate the sampling matrix used to generate candidate moves samp_mat = _sampling_matrix(hess, sing_val_cutoff, temperature, step_scale) steps_attempted = 0 while steps_attempted < steps: # Have we run too long? if (time.time() - start_time) >= max_run_hours*3600: break # Generate the trial move from the quadratic approximation deltaParams = _trial_move(samp_mat) # Scale the trial move by the step_scale and the temperature #scaled_step = step_scale * scipy.sqrt(temperature) * deltaParams scaled_step = deltaParams if log_params: next_params = curr_params * scipy.exp(scaled_step) else: next_params = curr_params + scaled_step try: next_F = m.free_energy(next_params, temperature) except Utility.SloppyCellException, X: logger.warn('SloppyCellException in free energy evaluation at step ' '%i, free energy set to infinity.' % len(ens)) logger.warn('Parameters tried: %s.' % str(next_params)) attempt_exceptions += 1 next_F = scipy.inf except Utility.ConstraintViolatedException, X: logger.warn('ConstraintViolatedException in free energy evaluation ' 'at step %i, free energy set to infinity.' % len(ens)) logger.warn('Parameters tried: %s.' % str(next_params)) attempt_exceptions += 1 next_F = scipy.inf if recalc_hess_alg and not scipy.isinf(next_F): try: next_hess = recalc_func(next_params) next_samp_mat = _sampling_matrix(next_hess, sing_val_cutoff, temperature, step_scale) accepted = _accept_move_recalc_alg(curr_F, samp_mat, next_F, next_samp_mat, deltaParams, temperature) except Utility.SloppyCellException, X: logger.warn('SloppyCellException in JtJ evaluation at step ' '%i, move not accepted.' % len(ens)) logger.warn('Parameters tried: %s.' % str(next_params)) attempt_exceptions += 1 next_F = scipy.inf accepted = False else: accepted = _accept_move(next_F - curr_F, temperature) steps_attempted += 1 if accepted: accepted_moves += 1. curr_params = next_params curr_sf = m.internalVars['scaleFactors'].copy() curr_F = next_F if recalc_hess_alg: hess = next_hess samp_mat = next_samp_mat if steps_attempted % (skip_elems + 1) == 0: ens_Fs.append(curr_F) if save_scalefactors: ens_scale_factors.append(curr_sf) if isinstance(params, KeyedList): ens.append(KeyedList(zip(param_keys, curr_params))) else: ens.append(curr_params) ratio = accepted_moves/steps_attempted # Save to a file if save_to is not None\ and time.time() >= last_save_time + save_hours * 3600: _save_ens(ens, ens_Fs, ratio, save_to, attempt_exceptions, steps_attempted, ens_scale_factors, save_sf=save_scalefactors) last_save_time = time.time() if save_to is not None: _save_ens(ens, ens_Fs, ratio, save_to, attempt_exceptions, steps_attempted, ens_scale_factors, save_sf=save_scalefactors) if save_scalefactors: return ens, ens_Fs, ratio, ens_scale_factors else: return ens, ens_Fs, ratio
2617b297ccb6d347b8a1b6afd8f09af5a1c7db81
12,306
import os def issue_config_exists(repo_path): """ returns True if the issue template config.yml file exists in the repo_path """ path_to_config = repo_path + "/.github/ISSUE_TEMPLATE/config.yml" return os.path.exists(path_to_config)
129b5b47304a60a6c10a8740dda1459c816f6ea1
12,307
import os def _read(fd): """Default read function.""" return os.read(fd, 1024)
1763d3cceb6d55c257218dbbbb52209ab55de623
12,308
def get_metrics(actual_classes, pred_classes): """ Function to calculate performance metrics for the classifier For each class, the following is calculated TP: True positives = samples that were correctly put into the class TN: True negatives = samples that were correctly not put into the class FP: False positive = samples that were incorectly put into the class FN: False negatives = samples that should be in the class but were put into another class Parameters ---------- pred_classes : neuron types predicted by the classifier actual_classes : known neuron types Returns ------- conf_mat: Confusion matrix = a visual representation of the algorithm's performance acc: Accuracy = the fraction of correctly classified samples MK: Markedness = a measure of how trustworthy a classification is, accounting for both positive and negative classifications. Value close to 1 means the classifier makes mostly correct predictions, value close to -1 means the classifier makes mostly wrong predictions. """ conf_mat = metrics.confusion_matrix(actual_classes, pred_classes) acc = metrics.balanced_accuracy_score(actual_classes, pred_classes) """ the next portion of code is copied from: https://towardsdatascience.com/multi-class-classification-extracting-performance-metrics-from-the-confusion-matrix-b379b427a872 """ FP = conf_mat.sum(axis=0) - np.diag(conf_mat) FN = conf_mat.sum(axis=1) - np.diag(conf_mat) TP = np.diag(conf_mat) TN = conf_mat.sum() - (FP + FN + TP) FP = np.sum(FP) FN = np.sum(FN) TP = np.sum(TP) TN = np.sum(TN) """ end of copied code """ MK = (TP/(TP+FP)) + (TN/(TN+FN)) - 1 return conf_mat, acc, MK
925d80d146ca29984886324338b9f99688c721b8
12,309
import dateutil def extract_tika_meta(meta): """Extracts and normalizes metadata from Apache Tika. Returns a dict with the following keys set: - content-type - author - date-created - date-modified - original-tika-meta The dates are encoded in the ISO format.""" def _get_flat(dict, *keys): item = None for key in keys: item = dict.get(key) if item is not None: break if type(item) is list: return item[0] return item def _get_bool(dict, *keys): item = _get_flat(dict, *keys) if not item: return False if type(item) is bool: return item return item.lower() == "true" data = { 'content-type': _get_flat(meta, 'Content-Type', 'content-type'), 'author': _get_flat(meta, 'Author', 'meta:author', 'creator'), 'date-created': _get_flat(meta, 'Creation-Date', 'dcterms:created', 'meta:created', 'created'), 'date-modified': _get_flat(meta, 'Last-Modified', 'Last-Saved-Date', 'dcterms:modified', 'meta:modified', 'created'), 'original-tika-meta': meta } for key in ['date-modified', 'date-created']: if data.get(key): data[key] = dateutil.parser.parse(data[key]).isoformat() return data
d5e73afa3b7747d31f295acb840c3730a3e60ed1
12,310
def __gen_pause_flow(testbed_config, src_port_id, flow_name, pause_prio_list, flow_dur_sec): """ Generate the configuration for a PFC pause storm Args: testbed_config (obj): L2/L3 config of a T0 testbed src_port_id (int): ID of the source port flow_name (str): flow' name pause_prio_list (list): priorities to pause for PFC frames flow_dur_sec (float): duration of the flow in second Returns: flow configuration (obj): including name, packet format, rate, ... """ pause_time = [] for x in range(8): if x in pause_prio_list: pause_time.append('ffff') else: pause_time.append('0000') vector = pfc_class_enable_vector(pause_prio_list) pause_pkt = Header(PfcPause( dst=FieldPattern(choice='01:80:C2:00:00:01'), src=FieldPattern(choice='00:00:fa:ce:fa:ce'), class_enable_vector=FieldPattern(choice=vector), pause_class_0=FieldPattern(choice=pause_time[0]), pause_class_1=FieldPattern(choice=pause_time[1]), pause_class_2=FieldPattern(choice=pause_time[2]), pause_class_3=FieldPattern(choice=pause_time[3]), pause_class_4=FieldPattern(choice=pause_time[4]), pause_class_5=FieldPattern(choice=pause_time[5]), pause_class_6=FieldPattern(choice=pause_time[6]), pause_class_7=FieldPattern(choice=pause_time[7]), )) dst_port_id = (src_port_id + 1) % len(testbed_config.devices) pause_src_point = PortTxRx(tx_port_name=testbed_config.ports[src_port_id].name, rx_port_name=testbed_config.ports[dst_port_id].name) """ The minimal fixed time duration in IXIA is 1 second. To support smaller durations, we need to use # of packets """ speed_str = testbed_config.layer1[0].speed speed_gbps = int(speed_str.split('_')[1]) pause_dur = 65535 * 64 * 8.0 / (speed_gbps * 1e9) pps = int(2 / pause_dur) pkt_cnt = pps * flow_dur_sec pause_flow = Flow( name=flow_name, tx_rx=TxRx(pause_src_point), packet=[pause_pkt], size=Size(64), rate=Rate('pps', value=pps), duration=Duration(FixedPackets(packets=pkt_cnt, delay=0)) ) return pause_flow
953a6d3a3741b6af0b06bd8165abd7350b838b41
12,311
def parse_str_to_bio(str, dia_act): """ parse str to BIO format """ intent = parse_intent(dia_act) w_arr, bio_arr = parse_slots(str, dia_act) bio_arr[-1] = intent return ' '.join(w_arr), ' '.join(bio_arr), intent
951cd110acd5fa53def9e781c0ab9b545d2931b8
12,312
def train_early_stop( update_fn, validation_fn, optimizer, state, max_epochs=1e4, **early_stop_args ): """Run update_fn until given validation metric validation_fn increases. """ logger = Logger() check_early_stop = mask_scheduler(**early_stop_args) for epoch in jnp.arange(max_epochs): (optimizer, state), metrics, output = update_fn(optimizer, state) if epoch % 1000 == 0: print(f"Loss step {epoch}: {metrics['loss']}") if epoch % 25 == 0: val_metric = validation_fn(optimizer, state) stop_training, optimizer = check_early_stop(val_metric, epoch, optimizer) metrics = {**metrics, "validation_metric": val_metric} logger.write(metrics, epoch) if stop_training: print("Converged.") break logger.close() return optimizer, state
a9dc6e76d2796edacc0f55b06e9cf258a90dffea
12,313
from typing import List def get_povm_object_names() -> List[str]: """Return the list of valid povm-related object names. Returns ------- List[str] the list of valid povm-related object names. """ names = ["pure_state_vectors", "matrices", "vectors", "povm"] return names
cb80899b9b3a4aca4bfa1388c6ec9c61c59978a4
12,314
def choose(a,b): """ n Choose r function """ a = op.abs(round(a)) b = op.abs(round(b)) if(b > a): a, b = b, a return factorial(a) / (factorial(b) * factorial(a-b))
30b70dc950e9f6d501cf5ef07bfed682dce41c43
12,315
from typing import List import torch from typing import Optional def pad_and_stack_list_of_tensors(lst_embeddings: List[torch.Tensor], max_sequence_length: Optional[int] = None, return_sequence_length: bool = False): """ it takes the list of embeddings as the input, then applies zero-padding and stacking to transform it as @param lst_embeddings: @param max_sequence_length: """ dim = -2 # second last axis. it must be the sequence dimension. lst_seq_len = [embeddings.shape[dim] for embeddings in lst_embeddings] if max_sequence_length is None: max_sequence_length = max(lst_seq_len) else: n_max = max(lst_seq_len) assert max_sequence_length >= n_max, \ f"`max_sequence_length` must be greater or equal to max. embeddings size: {n_max} > {max_sequence_length}" lst_padded_embeddings = [pad_trailing_tensors(e_t, max_sequence_length) for e_t in lst_embeddings] stacked_embeddings = torch.stack(lst_padded_embeddings) if return_sequence_length: return stacked_embeddings, lst_seq_len else: return stacked_embeddings
78c3a11f7ff79798d9b86703318eabb8da32695a
12,316
from typing import List def bq_solid_for_queries(sql_queries): """ Executes BigQuery SQL queries. Expects a BQ client to be provisioned in resources as context.resources.bigquery. """ sql_queries = check.list_param(sql_queries, 'sql queries', of_type=str) @solid( input_defs=[InputDefinition(_START, Nothing)], output_defs=[OutputDefinition(List[DataFrame])], config_field=define_bigquery_query_config(), required_resource_keys={'bigquery'}, metadata={'kind': 'sql', 'sql': '\n'.join(sql_queries)}, ) def bq_solid(context): # pylint: disable=unused-argument query_job_config = _preprocess_config(context.solid_config.get('query_job_config', {})) # Retrieve results as pandas DataFrames results = [] for sql_query in sql_queries: # We need to construct a new QueryJobConfig for each query. # See: https://bit.ly/2VjD6sl cfg = QueryJobConfig(**query_job_config) if query_job_config else None context.log.info( 'executing query %s with config: %s' % (sql_query, cfg.to_api_repr() if cfg else '(no config provided)') ) results.append( context.resources.bigquery.query(sql_query, job_config=cfg).to_dataframe() ) return results return bq_solid
0b7d71d6ec6aca87a581c8e0876bc1d88e7242c8
12,317
def mock_accession_unreplicated( mocker: MockerFixture, mock_accession_gc_backend, mock_metadata, lab: str, award: str, ) -> Accession: """ Mocked accession instance with dummy __init__ that doesn't do anything and pre-baked assembly property. @properties must be patched before instantiation """ mocker.patch.object( Accession, "experiment", new_callable=PropertyMock( return_value=EncodeExperiment( { "@id": "foo", "assay_term_name": "microRNA", "replicates": [ {"biological_replicate_number": 1, "status": "released"} ], } ) ), ) mocked_accession = AccessionMicroRna( "imaginary_steps.json", Analysis(mock_metadata, backend=mock_accession_gc_backend), "mock_server.biz", EncodeCommonMetadata(lab, award), Recorder(use_in_memory_db=True), no_log_file=True, ) return mocked_accession
c221c34a72809737d22b76beff89a18eece128ff
12,318
from typing import Optional def get_prepared_statement(statement_name: Optional[str] = None, work_group: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetPreparedStatementResult: """ Resource schema for AWS::Athena::PreparedStatement :param str statement_name: The name of the prepared statement. :param str work_group: The name of the workgroup to which the prepared statement belongs. """ __args__ = dict() __args__['statementName'] = statement_name __args__['workGroup'] = work_group if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws-native:athena:getPreparedStatement', __args__, opts=opts, typ=GetPreparedStatementResult).value return AwaitableGetPreparedStatementResult( description=__ret__.description, query_statement=__ret__.query_statement)
e3bcd74b2bc9093a0fff822a4f35b0de4dab3e03
12,319
def handle_col(element, box, _get_image_from_uri, _base_url): """Handle the ``span`` attribute.""" if isinstance(box, boxes.TableColumnBox): integer_attribute(element, box, 'span') if box.span > 1: # Generate multiple boxes # http://lists.w3.org/Archives/Public/www-style/2011Nov/0293.html return [box.copy() for _i in range(box.span)] return [box]
ef9fe04982bbb278df1453104823235ecf23113f
12,320
def get_dotted_field(input_dict: dict, accessor_string: str) -> dict: """Gets data from a dictionary using a dotted accessor-string. Parameters ---------- input_dict : dict A nested dictionary. accessor_string : str The value in the nested dict. Returns ------- dict Data from the dictionary. """ current_data = input_dict for chunk in accessor_string.split("."): current_data = current_data.get(chunk, {}) return current_data
2c82c0512384810e77a5fb53c73f67d2055dc98e
12,321
import re def separa_frases(sentenca): """[A funcao recebe uma sentenca e devolve uma lista das frases dentro da sentenca] Arguments: sentenca {[str]} -- [recebe uma frase] Returns: [lista] -- [lista das frases contidas na sentença] """ return re.split(r'[,:;]+', sentenca)
d3ac427172e34054119659adc55295ac27965e6c
12,322
import pathlib import json import importlib def read_datasets(path=None, filename="datasets.json"): """Read the serialized (JSON) dataset list """ if path is None: path = _MODULE_DIR else: path = pathlib.Path(path) with open(path / filename, 'r') as fr: ds = json.load(fr) # make the functions callable for _, dset_opts in ds.items(): args = dset_opts.get('load_function_args', {}) kwargs = dset_opts.get('load_function_kwargs', {}) fail_func = partial(unknown_function, dset_opts['load_function_name']) func_mod_name = dset_opts.get('load_function_module', None) if func_mod_name: func_mod = importlib.import_module(func_mod_name) else: func_mod = _MODULE func_name = getattr(func_mod, dset_opts['load_function_name'], fail_func) func = partial(func_name, *args, **kwargs) dset_opts['load_function'] = func return ds
ade3b9169d0f1db45d3358f27a54ea634f6d883e
12,323
def as_actor(input, actor) : """Takes input and actor, and returns [as <$actor>]$input[endas].""" if " " in actor : repla = "<%s>"%actor else : repla = actor return "[as %s]%s[endas]" % (repla, input)
dc9bd33bd6b2156f4fa353db2a0b01bfa6dd1357
12,324
def error_403(request): """View rendered when encountering a 403 error.""" return error_view(request, 403, _("Forbidden"), _("You are not allowed to acces to the resource %(res)s.") % {"res": request.path})
1e104b006100f296ab8f816abae8272b35c9399b
12,325
def _format_param(name, optimizer, param): """Return correctly formatted lr/momentum for each param group.""" if isinstance(param, (list, tuple)): if len(param) != len(optimizer.param_groups): raise ValueError("expected {} values for {}, got {}".format( len(optimizer.param_groups), name, len(param))) return param else: return [param] * len(optimizer.param_groups)
52904bdfb1cba7fe3175606bf77f5e46b3c7df80
12,326
def as_binary_vector(labels, num_classes): """ Construct binary label vector given a list of label indices. Args: labels (list): The input label list. num_classes (int): Number of classes of the label vector. Returns: labels (numpy array): the resulting binary vector. """ label_arr = np.zeros((num_classes,)) for lbl in set(labels): label_arr[lbl] = 1.0 return label_arr
176a1148d90dcd336ea29ac13b73cc7a6c0cdc60
12,327
def evaluation_lda(model, data, dictionary, corpus): """ Compute coherence score and perplexity. params: model: lda model data: list of lists (tokenized) dictionary corpus returns: coherence score, perplexity score """ coherence_model_lda = CoherenceModel(model=model, texts=data, dictionary=dictionary, coherence='c_v') coherence = coherence_model_lda.get_coherence() perplexity = model.log_perplexity(corpus) return coherence, perplexity
c38e3ed3728b9a598ec0cf36c07d606daeb8f388
12,328
def get_map_with_square(map_info, square): """ build string of the map with its top left bigger square without obstacle full """ map_string = "" x_indices = list(range(square["x"], square["x"] + square["size"])) y_indices = list(range(square["y"], square["y"] + square["size"])) M = map_info["matrix"] for y in range(map_info["line_num"]): if map_string: map_string += '\n' for x in range(map_info["line_len"]): if M[y][x]: map_string += map_info["obstacle_char"] elif x in x_indices and y in y_indices: map_string += map_info["full_char"] else: map_string += map_info["empty_char"] return map_string
20d405edd8e5e86e943c297455ebfbeb54b669f8
12,329
def bgr_colormap(): """ In cdict, the first column is interpolated between 0.0 & 1.0 - this indicates the value to be plotted the second column specifies how interpolation should be done from below the third column specifies how interpolation should be done from above if the second column does not equal the third, then there will be a break in the colors """ darkness = 0.85 #0 is black, 1 is white cdict = {'red': ((0.0, 0.0, 0.0), (0.5, darkness, darkness), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (0.5, darkness, darkness), (1.0, 0.0, 0.0)), 'blue': ((0.0, 1.0, 1.0), (0.5, darkness, darkness), (1.0, 0.0, 0.0)) } return LinearSegmentedColormap("bgr", cdict)
ffeb0d415c237a5f8cc180e86bb08d73e443b133
12,330
def autovalidation_from_docstring(): """ Test validation using JsonSchema The default payload is invalid, try it, then change the age to a valid integer and try again --- tags: - officer parameters: - name: body in: body required: true schema: id: Officer required: - name - age properties: name: type: string description: The officer's name. default: "James T. Kirk" age: type: integer description: The officer's age (should be integer) default: "138" tags: type: array description: optional list of tags default: ["starfleet", "captain", "enterprise", "dead"] items: type: string responses: 200: description: A single officer item schema: $ref: '#/definitions/Officer' """ data = request.json return jsonify(data)
82cb9d043666b465226712e6b12be94291ac5792
12,331
import requests def get_vlan_groups(url, headers): """ Get dictionary of existing vlan groups """ vlan_groups = [] api_url = f"{url}/api/ipam/vlan-groups/" response = requests.request("GET", api_url, headers=headers) all_vlan_groups = response.json()["results"] for vlan_group in all_vlan_groups: vlan_group_info = dict() vlan_group_info["name"] = vlan_group["name"] vlan_group_info["state"] = "present" if vlan_group["site"] is not None: vlan_group_info["site"] = vlan_group["site"]["name"] else: vlan_group_info["site"] = None vlan_groups.append(vlan_group_info) return vlan_groups
c0494708e4d2cb5b61a8e4c7ac4136051b1903c7
12,332
def getLastReading(session: Session) -> Reading: """ Finds the last reading associated with the session NB: Always returns a Reading, because every Session has at least 1 Reading Args: session (Session): A Session object representing the session record in the database Returns: datetime: Time object of last reading """ return Reading.objects.filter(session_id=session.pk).order_by("t").reverse()[:1].get()
87f9e86316bf3975077797832225bbe9b027e648
12,333
def process_outlier(data, population_set): """ Parameters ---------- data population_set Returns ------- """ content = list() for date in set(map(lambda x: x['date'], data)): tmp_item = { "date": date, "value": list() } for value in filter(lambda d: d["date"] == date, data): tmp_value = deepcopy(value) del tmp_value["date"] if population_set: tmp_value["rate"] = round( tmp_value["value"] / population_set[tmp_value["age"]] * RATE_PER_POPULATION_FACTOR, 1 ) tmp_item["value"].append(tmp_value) content.append(tmp_item) return deepcopy(content)
e793aa85bf6b14406d495775a89d37a68ae6bf8b
12,334
import six def valid_http(http_success=HTTPOk, # type: Union[Type[HTTPSuccessful], Type[HTTPRedirection]] http_kwargs=None, # type: Optional[ParamsType] detail="", # type: Optional[Str] content=None, # type: Optional[JSON] content_type=CONTENT_TYPE_JSON, # type: Optional[Str] ): # type: (...) -> Union[HTTPSuccessful, HTTPRedirection] """ Returns successful HTTP with standardized information formatted with content type. (see :func:`raise_http` for HTTP error calls) :param http_success: any derived class from *valid* HTTP codes (<400) (default: `HTTPOk`) :param http_kwargs: additional keyword arguments to pass to `http_success` when called :param detail: additional message information (default: empty) :param content: json formatted content to include :param content_type: format in which to return the exception (one of `magpie.common.SUPPORTED_ACCEPT_TYPES`) :returns: formatted successful response with additional details and HTTP code """ global RAISE_RECURSIVE_SAFEGUARD_COUNT # pylint: disable=W0603 content = dict() if content is None else content detail = repr(detail) if not isinstance(detail, six.string_types) else detail content_type = CONTENT_TYPE_JSON if content_type == CONTENT_TYPE_ANY else content_type http_code, detail, content = validate_params(http_success, [HTTPSuccessful, HTTPRedirection], detail, content, content_type) json_body = format_content_json_str(http_code, detail, content, content_type) resp = generate_response_http_format(http_success, http_kwargs, json_body, content_type=content_type) RAISE_RECURSIVE_SAFEGUARD_COUNT = 0 # reset counter for future calls (don't accumulate for different requests) return resp
6c88712cd501291fe126b87086ee29700f44832b
12,335
def operating_cf(cf_df): """Checks if the latest reported OCF (Cashflow) is positive. Explanation of OCF: https://www.investopedia.com/terms/o/operatingcashflow.asp cf_df = Cashflow Statement of the specified company """ cf = cf_df.iloc[cf_df.index.get_loc("Total Cash From Operating Activities"),0] if (cf > 0): return True else: return False
ed6a849fa504b79cd65c656d9a1318aaaeed52bf
12,336
from io import StringIO def generate_performance_scores(query_dataset, target_variable, candidate_datasets, params): """Generates all the performance scores. """ performance_scores = list() # params algorithm = params['regression_algorithm'] cluster_execution = params['cluster'] hdfs_address = params['hdfs_address'] hdfs_user = params['hdfs_user'] inner_join = params['inner_join'] # HDFS Client hdfs_client = None if cluster_execution: # time.sleep(np.random.randint(1, 120)) # avoid opening multiple sockets at the same time hdfs_client = InsecureClient(hdfs_address, user=hdfs_user) # reading query dataset query_data_str = read_file(query_dataset, hdfs_client, cluster_execution) query_data = pd.read_csv(StringIO(query_data_str)) query_data.set_index( 'key-for-ranking', drop=True, inplace=True ) # build model on query data only _, scores_before = get_performance_scores( query_data, target_variable, algorithm, False ) for candidate_dataset in candidate_datasets: # reading candidate dataset candidate_data_str = read_file(candidate_dataset, hdfs_client, cluster_execution) candidate_data = pd.read_csv(StringIO(candidate_data_str)) candidate_data.set_index( 'key-for-ranking', drop=True, inplace=True ) # join dataset join_ = query_data.join( candidate_data, how='left', rsuffix='_r' ) if inner_join: join_.dropna(inplace=True) # build model on joined data # print('[INFO] Generating performance scores for query dataset %s and candidate dataset %s ...' % (query_dataset, candidate_dataset)) imputation_strategy, scores_after = get_performance_scores( join_, target_variable, algorithm, not(inner_join) ) # print('[INFO] Performance scores for query dataset %s and candidate dataset %s done!' % (query_dataset, candidate_dataset)) performance_scores.append( generate_output_performance_data( query_dataset=query_dataset, target=target_variable, candidate_dataset=candidate_dataset, scores_before=scores_before, scores_after=scores_after, imputation_strategy=imputation_strategy ) ) return performance_scores
b8cb09973f17aab2c16515a026747c3e006bfd35
12,337
import cmath import math def correct_sparameters_twelve_term(sparameters_complex,twelve_term_correction,reciprocal=True): """Applies the twelve term correction to sparameters and returns a new sparameter list. The sparameters should be a list of [frequency, S11, S21, S12, S22] where S terms are complex numbers. The twelve term correction should be a list of [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr] where Edf, etc are complex numbers""" if len(sparameters_complex) != len(twelve_term_correction): raise TypeError("s parameter and twelve term correction must be the same length") sparameter_out=[] phase_last=0. for index,row in enumerate(sparameters_complex): frequency=row[0] Sm=np.matrix(row[1:]).reshape((2,2)) [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr]=twelve_term_correction[index] # frequency Edf Esf Erf Exf Elf Etf Edr Esr Err Exr Elr Etr. # print [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr] # print Sm[0,0] D =(1+(Sm[0,0]-Edf)*(Esf/Erf))*(1+(Sm[1,1]-Edr)*(Esr/Err))-(Sm[0,1]*Sm[1,0]*Elf*Elr)/(Etf*Etr) # print D S11 =(Sm[0,0]-Edf)/(D*Erf)*(1+(Sm[1,1]-Edr)*(Esr/Err))-(Sm[0,1]*Sm[1,0]*Elf)/(D*Etf*Etr) S21 =((Sm[1,0]-Exr)/(D*Etf))*(1+(Sm[1,1]-Edr)*(Esr-Elf)/Err) S12 = ((Sm[0,1]-Exf)/(D*Etr))*(1+(Sm[0,0]-Edf)*(Esf-Elr)/Erf) S22 = (Sm[1,1]-Edr)/(D*Err)*(1+(Sm[0,0]-Edf)*(Esf/Erf))-(Sm[0,1]*Sm[1,0]*Elr)/(D*Etf*Etr) # S12 and S21 are averaged together in a weird way that makes phase continuous geometric_mean=cmath.sqrt(S21*S12) root_select=1 phase_new=cmath.phase(geometric_mean) # if the phase jumps by >180 but less than 270, then pick the other root if abs(phase_new-phase_last)>math.pi/2 and abs(phase_new-phase_last)<3*math.pi/2: root_select=-1 mean_S12_S21=root_select*cmath.sqrt(S21*S12) if reciprocal: sparameter_out.append([frequency,S11,mean_S12_S21,mean_S12_S21,S22]) else: sparameter_out.append([frequency,S11,S21,S12,S22]) phase_last=cmath.phase(mean_S12_S21) return sparameter_out
e957c8eebd905b93b45e79a7349c1fca895c5430
12,338
def api_activity_logs(request): """Test utility.""" auth = get_auth(request) obj = ActivityLogs(auth=auth) check_apiobj(authobj=auth, apiobj=obj) return obj
7b13f382e71971b6ed93154a591a27f95fd81a2c
12,339
def RNAshapes_parser(lines=None,order=True): """ Returns a list containing tuples of (sequence,pairs object,energy) for every sequence [[Seq,Pairs,Ene],[Seq,Pairs,Ene],...] Structures will be ordered by the structure energy by default, of ordered isnt desired set order to False """ result = lineParser(lines) if order: result = order_structs(result) return result
3c45a4f6efb190cb26512dea4a55c44292191e0f
12,340
from typing import Callable from typing import Optional from typing import Union from typing import Dict from typing import Any def get_case_strategy( # pylint: disable=too-many-locals draw: Callable, operation: APIOperation, hooks: Optional[HookDispatcher] = None, data_generation_method: DataGenerationMethod = DataGenerationMethod.default(), path_parameters: Union[NotSet, Dict[str, Any]] = NOT_SET, headers: Union[NotSet, Dict[str, Any]] = NOT_SET, cookies: Union[NotSet, Dict[str, Any]] = NOT_SET, query: Union[NotSet, Dict[str, Any]] = NOT_SET, body: Any = NOT_SET, ) -> Any: """A strategy that creates `Case` instances. Explicit `path_parameters`, `headers`, `cookies`, `query`, `body` arguments will be used in the resulting `Case` object. If such explicit parameters are composite (not `body`) and don't provide the whole set of parameters for that location, then we generate what is missing and merge these two parts. Note that if parameters are optional, then they may remain absent. The primary purpose of this behavior is to prevent sending incomplete explicit examples by generating missing parts as it works with `body`. """ to_strategy = DATA_GENERATION_METHOD_TO_STRATEGY_FACTORY[data_generation_method] context = HookContext(operation) with detect_invalid_schema(operation): path_parameters_value = get_parameters_value( path_parameters, "path", draw, operation, context, hooks, to_strategy ) headers_value = get_parameters_value(headers, "header", draw, operation, context, hooks, to_strategy) cookies_value = get_parameters_value(cookies, "cookie", draw, operation, context, hooks, to_strategy) query_value = get_parameters_value(query, "query", draw, operation, context, hooks, to_strategy) media_type = None if body is NOT_SET: if operation.body: parameter = draw(st.sampled_from(operation.body.items)) strategy = _get_body_strategy(parameter, to_strategy, operation) strategy = apply_hooks(operation, context, hooks, strategy, "body") media_type = parameter.media_type body = draw(strategy) else: media_types = operation.get_request_payload_content_types() or ["application/json"] # Take the first available media type. # POSSIBLE IMPROVEMENT: # - Test examples for each available media type on Open API 2.0; # - On Open API 3.0, media types are explicit, and each example has it. # We can pass `OpenAPIBody.media_type` here from the examples handling code. media_type = media_types[0] if operation.schema.validate_schema and operation.method.upper() == "GET" and operation.body: raise InvalidSchema("Body parameters are defined for GET request.") return Case( operation=operation, media_type=media_type, path_parameters=path_parameters_value, headers=CaseInsensitiveDict(headers_value) if headers_value is not None else headers_value, cookies=cookies_value, query=query_value, body=body, data_generation_method=data_generation_method, )
d46fde928b0ceaa3886904e35876c245e7fcb245
12,341
def type_from_value(value, visitor=None, node=None): """Given a Value from resolving an annotation, return the type.""" ctx = _Context(visitor, node) return _type_from_value(value, ctx)
92568581d8f7b47ac469d0575f549acb1b67c857
12,342
def _accesslen(data) -> int: """This was inspired by the `default_collate` function. https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/ """ if isinstance(data, (tuple, list)): item = data[0] if not isinstance(item, (float, int, str)): return len(item) return len(data)
df709ee8a97c920a1413c9d7240f83d0406577a6
12,343
def createSkill(request, volunteer_id): """ Method to create skills and interests :param request: :param volunteer_id: :return: """ if request.method == 'POST': volunteer = Volunteer_User_Add_Ons.objects.get(pk=volunteer_id) skills = request.POST.getlist('skills') interests = request.POST.getlist('interests') # call to create the skills createInputToken(request, skills, 'Skill', volunteer_id) # call to create the interests createInputToken(request, interests, 'Interest', volunteer_id) return HttpResponse('ok')
f612ef94b02664526018fd2ea948a36587cb15bf
12,344
def analyticJacobian(robot : object, dq = 0.001, symbolic = False): """Using Homogeneous Transformation Matrices, this function computes Analytic Jacobian Matrix of a serial robot given joints positions in radians. Serial robot's kinematic parameters have to be set before using this function Args: robot (Serial): serial robot (this won't work with other type of robots) dq (float, optional): step size for numerical derivative. Defaults to 0.001. symbolic (bool, optional): used to calculate symbolic equations. Defaults to False. Returns: J (np.array): Inertial Analytic Jacobian Matrix (numerical) J (SymPy Matrix): Inertial Analytic Jacobian Matrix (symbolical) """ # Calculate forward kinematics: f(q) fkHTM = forwardHTM(robot, symbolic) # Convert result into an Axis - Angle vector: x(q) x = axisAngle(fkHTM[-1], symbolic) if symbolic: # Calculate Analytic Jacobian Matrix by differentiating Axis - Angle vector with SymPy functions return nsimplify(trigsimp(x.jacobian(robot.qSymbolic)).evalf(), tolerance = 1e-10) else: # Get number of joints (generalized coordinates) n = robot.jointsPositions.shape[0] # Initializes jacobian matrix with zeros J = np.zeros((6, n)) # Auxiliar variable to keep original joints positions q = robot.jointsPositions.copy() # Iterates through all colums (generalized coordinates) for j in range(n): # Set increment to current generalized coordinate: z[j] = q[j] + dq robot.jointsPositions[j] += dq # Calculate forward kinematics with step size: f(z) = f(q + dq) f = forwardHTM(robot) # Convert result into an Axis - Angle vector: X(q + dq) X = axisAngle(f[-1]) # Calculate analytic jacobian matrix: [X(q + dq) - x(q)] / dq J[: , j] = ((X - x) / dq).flatten() # Eliminates step size by copying original values from auxiliar variable robot.jointsPositions[:, :] = q return J
a906148f26fea9bb9d833ac95dffde87a704e372
12,345
def test_sharedmethod_reuse_on_subclasses(): """ Regression test for an issue where sharedmethod would bind to one class for all time, causing the same method not to work properly on other subclasses of that class. It has the same problem when the same sharedmethod is called on different instances of some class as well. """ class AMeta(type): def foo(cls): return cls.x class A: x = 3 def __init__(self, x): self.x = x @sharedmethod def foo(self): return self.x a1 = A(1) a2 = A(2) assert a1.foo() == 1 assert a2.foo() == 2 # Similar test now, but for multiple subclasses using the same sharedmethod # as a classmethod assert A.foo() == 3 class B(A): x = 5 assert B.foo() == 5
829ad4fafb32cb18d8da7b8144be25746f892ce5
12,346
import os import inspect def get_subtask_spec_factory_classes(): """Return dictionary with all factory classes defined in files in this directory. This file is excluded from the search.""" this_file = os.path.split(__file__)[-1] directory = os.path.dirname(__file__) exclude = [this_file, "subtask_spec_factory.py"] factory_files = [f for f in os.listdir(directory) if f.endswith(".py") and f not in exclude] factory_classes = {} for f in factory_files: path = os.path.join(directory, f) relative_import_string = "." + inspect.getmodulename(path) module = import_module(relative_import_string, package=__package__) for name in dir(module): obj = getattr(module, name) if inspect.isclass(obj): if issubclass(obj, SubtaskSpecFactory): factory_classes[name] = obj return factory_classes
500e30e5ed3ba8a7aad660ad80fa123485a9f9b1
12,347
def triu_indices_from(arr, k=0): """ Returns the indices for the upper-triangle of `arr`. Args: arr (Union[Tensor, list, tuple]): 2-dimensional array. k (int, optional): Diagonal offset, default is 0. Returns: triu_indices_from, tuple of 2 tensor, shape(N) Indices for the upper-triangle of `arr`. Raises: TypeError: If `arr` cannot be converted to tensor, or `k` is not a number. ValueError: If `arr` cannot be converted to a 2-dimensional tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore.numpy as np >>> tensor = np.ones((3,3)) >>> print(np.triu_indices_from(tensor)) (Tensor(shape=[6], dtype=Int32, value= [0, 0, 0, 1, 1, 2]), Tensor(shape=[6], dtype=Int32, value= [0, 1, 2, 1, 2, 2])) """ arr = asarray(arr) if arr.ndim != 2: _raise_value_error("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
b95a7ed3fac1810bdfe9659471cbcd2d14fc8c99
12,348
def is_debug(): """Return true if xylem is set to debug console output.""" global _debug return _debug
b605a56645aecbd995142d964efd1935ade29673
12,349
def func(var): """Function""" return var + 1
a6ca4247f7f7307c384708ed9535046e4ec7d4e3
12,350
def flanking_regions_fasta_deletion(genome, dataframe, flanking_region_size): """ Makes batch processing possible, pulls down small region of genome for which to design primers around. This is based on the chromosome and position of input file. Each Fasta record will contain: >Sample_Gene_chr:posStart-posStop Seq of flanking region upstream of SV + seq of flanking region downstream of SV Args: genome (list): genome list of tuples (header, seq). dataframe (pandas object): dataframe with sample info. flanking_region_size (int): length of sequence upstream and downstream of input coordinate position to pull as sequence to design primers around. """ output = [] for headers, seqs in genome: chrm = str(headers) seq = str(seqs) for gene, sample, chrom, start, stop in zip(dataframe.Gene, dataframe.Sample, dataframe.Chr, dataframe.PosStart, dataframe.PosStop): if str(chrom) == chrm: header = str(str(sample)+"_"+str(gene)+"_"+\ str(chrom)+":"+str(start)+"-"+str(stop)+"__") flank_seq = seq[int(start)-int(flanking_region_size):int(start)+1]\ +seq[int(stop):(int(stop)+int(flanking_region_size))] output.append((header, flank_seq.upper())) return output
a20da206630d1f2fb002c5ca63eab9f240b1f1d5
12,351
import functools def numpy_episodes( train_dir, test_dir, shape, loader, preprocess_fn=None, scan_every=10, num_chunks=None, **kwargs): """Read sequences stored as compressed Numpy files as a TensorFlow dataset. Args: train_dir: Directory containing NPZ files of the training dataset. test_dir: Directory containing NPZ files of the testing dataset. shape: Tuple of batch size and chunk length for the datasets. use_cache: Boolean. Set to True to cache episodes in memory. Default is to read episodes from disk every time. **kwargs: Keyword arguments to forward to the read episodes implementation. Returns: Structured data from numpy episodes as Tensors. """ try: dtypes, shapes = _read_spec(train_dir, **kwargs) except ZeroDivisionError: dtypes, shapes = _read_spec(test_dir, **kwargs) loader = { 'scan': functools.partial(_read_episodes_scan, every=scan_every), 'reload': _read_episodes_reload, 'dummy': _read_episodes_dummy, }[loader] train = tf.data.Dataset.from_generator( functools.partial(loader, train_dir, shape[0], **kwargs), dtypes, shapes) test = tf.data.Dataset.from_generator( functools.partial(loader, test_dir, shape[0], **kwargs), dtypes, shapes) chunking = lambda x: tf.data.Dataset.from_tensor_slices( # Returns dict of image, action, reward, length tensors with num_chunks in 0 dim. chunk_sequence(x, shape[1], True, num_chunks)) def sequence_preprocess_fn(sequence): if preprocess_fn: with tf.device('/cpu:0'): sequence['image'] = preprocess_fn(sequence['image']) return sequence # This transformation (flat_map): # 1. Chunk each sequence, # 2. From each sequence one can get variable number of chunks # (first dim. of a tensor is chunks number, like with batches). # Flatten to get the dataset of chunks. train = train.flat_map(chunking) train = train.shuffle(100 * shape[0]) train = train.batch(shape[0], drop_remainder=True) train = train.map(sequence_preprocess_fn, 10).prefetch(20) test = test.flat_map(chunking) test = test.shuffle(100 * shape[0]) test = test.batch(shape[0], drop_remainder=True) test = test.map(sequence_preprocess_fn, 10).prefetch(20) return attr_dict.AttrDict(train=train, test=test)
fd9c727c64bdd725ef1615754d12b93f21568c2f
12,352
def fft_convolve(ts, query): """ Computes the sliding dot product for query over the time series using the quicker FFT convolution approach. Parameters ---------- ts : array_like The time series. query : array_like The query. Returns ------- array_like - The sliding dot product. """ n = len(ts) m = len(query) x = np.fft.fft(ts) y = np.append(np.flipud(query), np.zeros([1, n - m])) y = np.fft.fft(y) z = np.fft.ifft(x * y) return np.real(z[m - 1:n])
7e1fec2a3b30770909d7c185bbc0b4885cb7eb22
12,353
from typing import List from typing import Optional def _add_merge_gvcfs_job( b: hb.Batch, gvcfs: List[hb.ResourceGroup], output_gvcf_path: Optional[str], sample_name: str, ) -> Job: """ Combine by-interval GVCFs into a single sample GVCF file """ job_name = f'Merge {len(gvcfs)} GVCFs, {sample_name}' j = b.new_job(job_name) j.image(PICARD_IMAGE) j.cpu(2) java_mem = 7 j.memory('standard') # ~ 4G/core ~ 7.5G j.storage(f'{len(gvcfs) * 1.5 + 2}G') j.declare_resource_group( output_gvcf={ 'g.vcf.gz': '{root}-' + sample_name + '.g.vcf.gz', 'g.vcf.gz.tbi': '{root}-' + sample_name + '.g.vcf.gz.tbi', } ) input_cmd = ' '.join(f'INPUT={g["g.vcf.gz"]}' for g in gvcfs) j.command( f"""set -e (while true; do df -h; pwd; du -sh $(dirname {j.output_gvcf['g.vcf.gz']}); free -m; sleep 300; done) & java -Xms{java_mem}g -jar /usr/picard/picard.jar \ MergeVcfs {input_cmd} OUTPUT={j.output_gvcf['g.vcf.gz']} df -h; pwd; du -sh $(dirname {j.output_gvcf['g.vcf.gz']}); free -m """ ) if output_gvcf_path: b.write_output(j.output_gvcf, output_gvcf_path.replace('.g.vcf.gz', '')) return j
d89fd051cd20bef7263b600ce3513ba858acbadd
12,354
def register_permission(name, codename, ctypes=None): """Registers a permission to the framework. Returns the permission if the registration was successfully, otherwise False. **Parameters:** name The unique name of the permission. This is displayed to the customer. codename The unique codename of the permission. This is used internally to identify the permission. content_types The content type for which the permission is active. This can be used to display only reasonable permissions for an object. This must be a Django ContentType """ if ctypes is None: ctypes = [] # Permission with same codename and/or name must not exist. if Permission.objects.filter(Q(name=name) | Q(codename=codename)): return False p = Permission.objects.create(name=name, codename=codename) ctypes = [ContentType.objects.get_for_model(ctype) for ctype in ctypes] if ctypes: p.content_types = ctypes p.save() return p
f09766685ac4690bd72739450977646d521a21d0
12,355
def calculate_outliers(tile_urls, num_outliers, cache, nprocs): """ Fetch tiles and calculate the outlier tiles per layer. The number of outliers is per layer - the largest N. Cache, if true, uses a local disk cache for the tiles. This can be very useful if re-running percentile calculations. Nprocs is the number of processes to use for both fetching and aggregation. Even on a system with a single CPU, it can be worth setting this to a larger number to make concurrent nework requests for tiles. """ def factory_fn(): return LargestN(num_outliers, cache) if nprocs > 1: results = parallel( tile_urls, FactoryFunctionHolder(factory_fn), nprocs) else: results = sequential(tile_urls, factory_fn) return results
6e72820de2f954a9e349aa40d165817b3ab7c012
12,356
import random def load_trigger_dataset( fname, templatizer, limit=None, train=False, preprocessor_key=None, priming_dataset=None, max_priming_examples=64, ): """ Loads a MLM classification dataset. Parameters ========== fname : str The filename. templatizer : Templatizer Maps instances to cloze-style model inputs. limit : int (optional) Limit the amount of data loaded. train : bool Whether the data is used for training. Default: False. preprocessor_key : str Key used to lookup preprocessor for data. """ if preprocessor_key is None: preprocessor = PREPROCESSORS[fname.split('.')[-1]] else: preprocessor = PREPROCESSORS[preprocessor_key] instances = [] for x in preprocessor(fname, train=train): try: model_inputs, label_id = templatizer(x, train=train) if priming_dataset is not None: model_inputs, label_id = prime( model_inputs, label_id, priming_dataset, model_max_length=templatizer._tokenizer.model_max_length, max_priming_examples=max_priming_examples, ) except ValueError as e: logger.warning('Encountered error "%s" when processing "%s". Skipping.', e, x) continue else: instances.append((model_inputs, label_id)) if limit: limit = min(len(instances), limit) return random.sample(instances, limit) return instances
6ed4970dd0031bd33cf19414f439c69e5d5a079a
12,357
def pmu2bids(physio_files, verbose=False): """ Function to read a list of Siemens PMU physio files and save them as a BIDS physiological recording. Parameters ---------- physio_files : list of str list of paths to files with a Siemens PMU recording verbose : bool verbose flag Returns ------- physio : PhysioData PhysioData with the contents of the file """ # In case we are handled just a single file, make it a one-element list: if isinstance(physio_files, str): physio_files = [physio_files] # Init PhysioData object to hold physio signals: physio = PhysioData() # Read the files from the list, extract the relevant information and # add a new PhysioSignal to the list: for f in physio_files: physio_type, MDHTime, sampling_rate, physio_signal = readpmu(f, verbose=verbose) testSamplingRate( sampling_rate = sampling_rate, Nsamples = len(physio_signal), logTimes=MDHTime ) # specify label: if 'PULS' in physio_type: physio_label = 'cardiac' elif 'RESP' in physio_type: physio_label = 'respiratory' elif "TRIGGER" in physio_type: physio_label = 'trigger' else: physio_label = physio_type physio.append_signal( PhysioSignal( label=physio_label, units='', samples_per_second=sampling_rate, physiostarttime=MDHTime[0], signal=physio_signal ) ) return physio
41e607c80955689e5a189652ba445bf0014a3893
12,358
def add_chain(length): """Adds a chain to the network so that""" chained_works = [] chain = utils.generate_chain(length) for i in range(len(chain)-1): agent_id = get_random_agent().properties(ns.KEY_AGENT_ID).value().next() work_id = g.create_work().properties(ns.KEY_WORK_ID).value().next() g.agent(agent_id).owns_work(g.work(work_id)).next() item1 = g.create_item(chain[i]) g.agent(agent_id).works(work_id).demands(item1).next() item2 = g.create_item(chain[i+1]) g.agent(agent_id).works(work_id).offers(item2).next() chained_works.append(work_id) return chained_works
80a176fb34460404c847f00dbeab963f1a0be71e
12,359
from vartools.result import re_fit_data import sys def re_fit(file_name, top_c, bot_c): """ re-fits a prepared oocyte file (-t and -b flags for top and bot constraints)""" if top_c == "True": top_c = True elif top_c == "False": top_c = False else: sys.exit("Invalid option: " + top_c) if bot_c == "True": bot_c = True elif bot_c == "False": bot_c = False else: sys.exit("Invalid option: " + bot_c) re_fit_data(file_name, top_c, bot_c) return None
e231c2415ce0ea54fd349f79f78783f71911bd8c
12,360
def convert_graph_to_db_format(input_graph: nx.Graph, with_weights=False, cast_to_directed=False): """Converts a given graph into a DB format, which consists of two or three lists 1. **Index list:** a list where the i-th position contains the index of the beginning of the list of adjacent nodes (in the second list). 2. **Node list:** for each node, we list (in order) all the nodes which are adjacent to it. 3. **Weight list:** if the weight parameter is True, includes the weights of the edges, corresponds to the nodes list **Assumptions:** The code has several preexisting assumptions: a) The nodes are labeled with numbers b) Those numbers are the sequence [0,...,num_of_nodes-1] c) If there are weights, they are floats d) If there are weights, they are initialized for all edges e) If there are weights, the weight key is 'weight' .. Note:: The code behaves differently for directed and undirected graphs. For undirected graph, every edge is actually counted twice (p->q and q->p). Example:: For the simple directed graph (0->1, 0->2,0->3,2->0,3->1,3->2): `Indices: [0, 3, 3, 4, 6]` `Neighbors: [1, 2, 3, 0, 1, 2]` Note that index[1] is the same as index[2]. That is because 1 has no neighbors, and so his neighbor list is of size 0, but we still need to have an index for the node on. For the same graph when it is undirected: `Indices: [0, 3, 5, 7, 10]` `Neighbors: [1, 2, 3, 0, 3, 0, 3, 0, 1, 2]` Note that the number of edges isn't doubled because in the directed version there is a bidirectional edge. :param graph: the nx.Graph object to convert :param with_weights: whether to create a weight list. Defaults to False. :param cast_to_directed: whether to cast the graph into a directed format :return: two or three lists: index,nodes, [weights] """ if cast_to_directed: graph = input_graph.to_directed() else: graph = input_graph.copy() if graph.is_directed(): # Color printing taken from https://www.geeksforgeeks.org/print-colors-python-terminal/ print("\033[93m {}\033[00m".format('Note that the graph is processed as a directed graph')) indices = [0] # The first neighbor list always starts at index 0 neighbor_nodes = [] nodes = [node for node in graph.nodes()] # print(nodes) nodes.sort() neighbors = [sorted([x for x in graph.neighbors(node)]) for node in nodes] # Create the indices and neighbor nodes lists for neighbor_list in neighbors: neighbor_list.sort() # print(neighbor_list) neighbor_nodes.extend(neighbor_list) indices.append(indices[-1] + len(neighbor_list)) if with_weights: try: weights = [0] * len(neighbor_nodes) current_index = 0 for node in nodes: for x in neighbors[node]: w = graph[node][x]['weight'] weights[current_index] = w current_index += 1 return indices, neighbor_nodes, weights except KeyError: # Print in red print("\033[91m {}\033[00m".format('No weights defined, returning an empty list of weights')) print() return indices, neighbor_nodes, [] return indices, neighbor_nodes
3f538f697df16b13aeb513dd60831a1252fffb6c
12,361
def auxiliary_subfields(): """Factory associated with AuxSubfieldsPoroelasticity. """ return AuxSubfieldsPoroelasticity()
bcbdaf5b6ee006a6380206ebd331f7e516593b83
12,362
def cassandra_get_unit_data(): """ Basing function to obtain units from db and return as dict :return: dictionary of units """ kpi_dict = {} cassandra_cluster = Cluster() session = cassandra_cluster.connect('pb2') query = session.prepare('SELECT * FROM kpi_units') query_data = session.execute(query) for row in query_data: kpi_dict[row[1]] = [row[0], row[2], row[3], row[4]] return kpi_dict
ab24e4e09f648a74cd16a140279da54aab3d4096
12,363
def read_cfg_float(cfgp, section, key, default): """ Read float from a config file Args: cfgp: Config parser section: [section] of the config file key: Key to be read default: Value if couldn't be read Returns: Resulting float """ if cfgp.has_option(section, key): return cfgp.getfloat(section, key) else: return default
0ed341c2d1436e3378e4e126735ac7306973ca8c
12,364
def random(website): """ 随机获取cookies :param website:查询网站给 如:weibo :return:随机获取的cookies """ g = get_conn() cookies = getattr(g, website + '_cookies').random() return cookies
6db8d81f18e57af2a7d9294481e45d4ad38962ce
12,365
import requests def get_pid(referral_data): """ Example getting PID using the same token used to query AD NOTE! to get PID the referral information must exist in the BETA(UAT) instance of TOMS """ referral_uid = referral_data['referral_uid'] url = "https://api.beta.genomics.nhs.uk/reidentification/referral-pid/{referral_uid}".format(referral_uid=referral_uid) auth_header = {'Authorization': 'Bearer {}'.format(jwt_token)} pid = requests.get(url, headers=auth_header).json() return pid
8e5e43c1a2c85826e03f0fd090fc235b0320aed7
12,366
from typing import Union from pathlib import Path from typing import Tuple from typing import List from datetime import datetime def open_events( fname: Union[Path, str], leap_sec: float, get_frame_rate: bool = False ) -> Tuple[ List[float], List[float], List[float], List[datetime], Union[List[float], None] ]: """ Parameters ---------- fname : Path or str filename of *_events.pos file leap_sec : float The current leap second used to convert GPS time to UTC time get_frame_rate : bool [default=False] Whether to return the frame rate of sequential trigger events Returns ------- lat : List[float] Latitudes (decimal degrees) of trigger events recorded by Reach M2 lon : List[float] Longitudes (decimal degrees) of trigger events recorded by Reach M2 height : List[float] Ellipsoid heights of trigger events recorded by Reach M2 dt_ls : List[datetime] datetime (UTC) of trigger events recorded by Reach M2 reach_frate : List[float] or None if get_frame_rate is True: reach_frate -> frame rate (seconds) of trigger events recorded by Reach M2 if get_frame_rate is False: reach_frate = None """ with open(fname, encoding="utf-8") as fid: contents = fid.readlines() lat, lon, height, dt_ls = [], [], [], [] reach_frate = [] if get_frame_rate else None cnt = 0 for i in range(len(contents)): if contents[i].startswith("%"): continue row = contents[i].strip().split() dt = datetime_from_event_text(row[0], row[1], leap_sec) if cnt > 0: reach_frate.append((dt - prev_dt).total_seconds()) # noqa lat.append(float(row[2])) lon.append(float(row[3])) height.append(float(row[4])) dt_ls.append(dt) prev_dt = dt # noqa cnt += 1 return lat, lon, height, dt_ls, reach_frate
973b835b1df2aafba1a535b378434b6a532584d0
12,367
def intdags_permutations(draw, min_size:int=1, max_size:int=10): """ Produce instances of a same DAG. Instances are not nesessarily topologically sorted """ return draw(lists(permutations(draw(intdags())), min_size=min_size, max_size=max_size))
50377412dbd091afa98761e673a35f44acbeb60d
12,368
def getConfiguredGraphClass(doer): """ In this class method, we must return a configured graph class """ # if options.bReified: # DU_GRAPH = Graph_MultiSinglePageXml_Segmenter_Separator_DOM if options.bSeparator: DU_GRAPH = ConjugateSegmenterGraph_MultiSinglePageXml_Separator else: DU_GRAPH = ConjugateSegmenterGraph_MultiSinglePageXml ntClass = My_ConjugateNodeType if options.bBB2: nt = ntClass("mi_clstr" #some short prefix because labels below are prefixed with it , [] # in conjugate, we accept all labels, andNone becomes "none" , [] , False # unused , BBoxDeltaFun = None , bPreserveWidth=True ) elif options.bBB31: nt = ntClass("mi_clstr" #some short prefix because labels below are prefixed with it , [] # in conjugate, we accept all labels, andNone becomes "none" , [] , False # unused , BBoxDeltaFun = (None, lambda v: v * 0.066*3) # shrink to 60% of its size , bPreserveWidth=True ) else: nt = ntClass("mi_clstr" #some short prefix because labels below are prefixed with it , [] # in conjugate, we accept all labels, andNone becomes "none" , [] , False # unused , BBoxDeltaFun =lambda v: max(v * 0.066, min(5, v/3)) #we reduce overlap in this way ) nt.setLabelAttribute("id") ## HD added 23/01/2020: needed for output generation DU_GRAPH.clusterType='paragraph' nt.setXpathExpr(( ".//pc:TextLine" , "./pc:TextEquiv") #how to get their text ) DU_GRAPH.addNodeType(nt) return DU_GRAPH
3089572eb1aa4e7db505b5211d156d3e044aaed5
12,369
def find_amped_polys_for_syntheticidle(qubit_filter, idleStr, model, singleQfiducials=None, prepLbl=None, effectLbls=None, initJ=None, initJrank=None, wrtParams=None, algorithm="greedy", require_all_amped=True, idtPauliDicts=None, comm=None, verbosity=0): """ Find fiducial pairs which amplify the parameters of a synthetic idle gate. This routine is primarily used internally within higher-level n-qubit sequence selection routines. Parameters ---------- qubit_filter : list A list specifying which qubits fiducial pairs should be placed upon. Typically this is a subset of all the qubits, as the synthetic idle is composed of nontrivial gates acting on a localized set of qubits and noise/errors are localized around these. idleStr : Circuit The operation sequence specifying the idle operation to consider. This may just be a single idle gate, or it could be multiple non-idle gates which together act as an idle. model : Model The model used to compute the polynomial expressions of probabilities to first-order. Thus, this model should always have (simulation) type "termorder". singleQfiducials : list, optional A list of gate-name tuples (e.g. `('Gx',)`) which specify a set of single- qubit fiducials to use when trying to amplify gate parameters. Note that no qubit "state-space" label is required here (i.e. *not* `(('Gx',1),)`); the tuples just contain single-qubit gate *names*. If None, then `[(), ('Gx',), ('Gy',)]` is used by default. prepLbl : Label, optional The state preparation label to use. If None, then the first (and usually the only) state prep label of `model` is used, so it's usually fine to leave this as None. effectLbls : list, optional The list of POVM effect labels to use, as a list of `Label` objects. These are *simplified* POVM effect labels, so something like "Mdefault_0", and if None the default is all the effect labels of the first POVM of `model`, which is usually what you want. initJ : numpy.ndarray, optional An initial Jacobian giving the derivatives of some other polynomials with respect to the same `wrtParams` that this function is called with. This acts as a starting point, and essentially informs the fiducial-pair selection algorithm that some parameters (or linear combos of them) are *already* amplified (e.g. by some other germ that's already been selected) and for which fiducial pairs are not needed. initJrank : int, optional The rank of `initJ`. The function could compute this from `initJ` but in practice one usually has the rank of `initJ` lying around and so this saves a call to `np.linalg.matrix_rank`. wrtParams : slice, optional The parameters to consider for amplification. (This function seeks fiducial pairs that amplify these parameters.) If None, then pairs which amplify all of `model`'s parameters are searched for. algorithm : {"greedy","sequential"} Which algorithm is used internally to find fiducial pairs. "greedy" will give smaller sets of fiducial pairs (better) but takes longer. Usually it's worth the wait and you should use the default ("greedy"). require_all_amped : bool, optional If True and AssertionError is raised when fewer than all of the requested parameters (in `wrtParams`) are amplifed by the final set of fiducial pairs. verbosity : int, optional The level of detail printed to stdout. 0 means silent. Returns ------- J : numpy.ndarray The final jacobian with rows equal to the number of chosen amplified polynomials (note there is one row per fiducial pair *including* the outcome - so there will be two different rows for two different outcomes) and one column for each parameter specified by `wrtParams`. Jrank : int The rank of the jacobian `J`, equal to the number of amplified parameters (at most the number requested). fidpair_lists : list The selected fiducial pairs, each in "gatename-fidpair-list" format. Elements of `fidpair_lists` are themselves lists, all of length=#qubits. Each element of these lists is a (prep1Qnames, meas1Qnames) 2-tuple specifying the 1-qubit gates (by *name* only) on the corresponding qubit. For example, the single fiducial pair prep=Gx:1Gy:2, meas=Gx:0Gy:0 in a 3-qubit system would have `fidpair_lists` equal to: `[ [ [(),('Gx','Gy')], [('Gx',), () ], [('Gy',), () ] ] ]` ` < Q0 prep,meas >, < Q1 prep,meas >, < Q2 prep,meas >` """ #Note: "useful" fiducial pairs are identified by looking at the rank of a # Jacobian matrix. Each row of this Jacobian is the derivative of the # "amplified polynomial" - the L=1 polynomial for a fiducial pair (i.e. # pr_poly(F1*(germ)*F2) ) minus the L=0 polynomial (i.e. pr_poly(F1*F2) ). # When the model only gives probability polynomials to first order in # the error rates this gives the L-dependent and hence amplified part # of the polynomial expression for the probability of F1*(germ^L)*F2. # This derivative of an amplified polynomial, taken with respect to # all the parameters we care about (i.e. wrtParams) would ideally be # kept as a polynomial and the "rank" of J would be the number of # linearly independent polynomials within the rows of J (each poly # would be a vector in the space of polynomials). We currently take # a cheap/HACK way out and evaluate the derivative-polynomial at a # random dummy value which should yield linearly dependent vectors # in R^n whenever the polynomials are linearly indepdendent - then # we can use the usual scipy/numpy routines for computing a matrix # rank, etc. # Assert that model uses termorder, as doing L1-L0 to extract the "amplified" part # relies on only expanding to *first* order. assert(model._sim_type == "termorder" and model._sim_args['max_order'] == 1), \ '`model` must use "termorder:1" simulation type!' printer = _VerbosityPrinter.build_printer(verbosity, comm) if prepLbl is None: prepLbl = model._shlp.get_default_prep_lbl() if effectLbls is None: povmLbl = model._shlp.get_default_povm_lbl(sslbls=None) effectLbls = [_Lbl("%s_%s" % (povmLbl, l)) for l in model._shlp.get_effect_labels_for_povm(povmLbl)] if singleQfiducials is None: # TODO: assert model has Gx and Gy gates? singleQfiducials = [(), ('Gx',), ('Gy',)] # ('Gx','Gx') #dummy = 0.05*_np.ones(model.num_params(),'d') # for evaluating derivs... #dummy = 0.05*_np.arange(1,model.num_params()+1) # for evaluating derivs... #dummy = 0.05*_np.random.random(model.num_params()) dummy = 5.0 * _np.random.random(model.num_params()) + 0.5 * _np.ones(model.num_params(), 'd') # expect terms to be either coeff*x or coeff*x^2 - (b/c of latter case don't eval at zero) #amped_polys = [] selected_gatename_fidpair_lists = [] if wrtParams is None: wrtParams = slice(0, model.num_params()) Np = _slct.length(wrtParams) if initJ is None: J = _np.empty((0, Np), 'complex'); Jrank = 0 else: J = initJ; Jrank = initJrank if algorithm == "greedy": Jrows = _np.empty((len(effectLbls), Np), 'complex') #Outer iteration while Jrank < Np: if algorithm == "sequential": printer.log("Sequential find_amped_polys_for_syntheticidle started. Target rank=%d" % Np) assert(comm is None), "No MPI support for algorithm='sequential' case!" elif algorithm == "greedy": maxRankInc = 0 bestJrows = None printer.log("Greedy find_amped_polys_for_syntheticidle started. Target rank=%d" % Np) else: raise ValueError("Invalid `algorithm` argument: %s" % algorithm) # loop over all possible (remaining) fiducial pairs nQubits = len(qubit_filter) loc_Indices, _, _ = _mpit.distribute_indices( list(range(len(singleQfiducials)**nQubits)), comm, False) loc_itr = 0; nLocIters = len(loc_Indices) #print("DB: Rank %d indices = " % comm.Get_rank(), loc_Indices) with printer.progress_logging(2): for itr, prep in enumerate(_itertools.product(*([singleQfiducials] * nQubits))): # There's probably a cleaner way to do this, if loc_itr < len(loc_Indices) and itr == loc_Indices[loc_itr]: loc_itr += 1 # but this limits us to this processor's local indices else: continue #print("DB: Rank %d: running itr=%d" % (comm.Get_rank(), itr)) printer.show_progress(loc_itr, nLocIters, prefix='--- Finding amped-polys for idle: ') prepFid = _objs.Circuit(()) for i, el in enumerate(prep): prepFid = prepFid + _onqubit(el, qubit_filter[i]) for meas in _itertools.product(*([singleQfiducials] * nQubits)): if idtPauliDicts is not None: # For idle tomography compatibility, only consider fiducial pairs with either # all-the-same or all-different prep & measure basis (basis is determined # by the *last* letter in the value, e.g. ignore '-' sign in '-X'). prepDict, measDict = idtPauliDicts rev_prepDict = {v[-1]: k for k, v in prepDict.items()} # could do this once above, rev_measDict = {v[-1]: k for k, v in measDict.items()} # but this isn't the bottleneck. cmp = [(rev_prepDict[prep[kk]] == rev_measDict[meas[kk]]) for kk in range(nQubits)] # if all are not the same or all are not different, skip if not (all(cmp) or not any(cmp)): continue measFid = _objs.Circuit(()) for i, el in enumerate(meas): measFid = measFid + _onqubit(el, qubit_filter[i]) gatename_fidpair_list = [(prep[i], meas[i]) for i in range(nQubits)] if gatename_fidpair_list in selected_gatename_fidpair_lists: continue # we've already chosen this pair in a previous iteration gstr_L0 = prepFid + measFid # should be a Circuit gstr_L1 = prepFid + idleStr + measFid # should be a Circuit ps = model._fwdsim().prs_as_polys(prepLbl, effectLbls, gstr_L1) qs = model._fwdsim().prs_as_polys(prepLbl, effectLbls, gstr_L0) if algorithm == "sequential": added = False for elbl, p, q in zip(effectLbls, ps, qs): amped = p + -1 * q # the amplified poly Jrow = _np.array([[amped.deriv(iParam).evaluate(dummy) for iParam in _slct.as_array(wrtParams)]]) if _np.linalg.norm(Jrow) < 1e-8: continue # row of zeros can fool matrix_rank Jtest = _np.concatenate((J, Jrow), axis=0) testRank = _np.linalg.matrix_rank(Jtest, tol=RANK_TOL) if testRank > Jrank: printer.log("fidpair: %s,%s (%s) increases rank => %d" % (str(prep), str(meas), str(elbl), testRank), 4) J = Jtest Jrank = testRank if not added: selected_gatename_fidpair_lists.append(gatename_fidpair_list) added = True # only add fidpair once per elabel loop! if Jrank == Np: break # this is the largest rank J can take! elif algorithm == "greedy": #test adding all effect labels - get the overall increase in rank due to this fidpair for k, (elbl, p, q) in enumerate(zip(effectLbls, ps, qs)): amped = p + -1 * q # the amplified poly Jrows[k, :] = _np.array([[amped.deriv(iParam).evaluate(dummy) for iParam in _slct.as_array(wrtParams)]]) Jtest = _np.concatenate((J, Jrows), axis=0) testRank = _np.linalg.matrix_rank(Jtest, tol=RANK_TOL) rankInc = testRank - Jrank if rankInc > maxRankInc: maxRankInc = rankInc bestJrows = Jrows.copy() bestFidpair = gatename_fidpair_list if testRank == Np: break # this is the largest rank we can get! if algorithm == "greedy": # get the best of the bestJrows, bestFidpair, and maxRankInc if comm is not None: maxRankIncs_per_rank = comm.allgather(maxRankInc) iWinningRank = maxRankIncs_per_rank.index(max(maxRankIncs_per_rank)) maxRankInc = maxRankIncs_per_rank[iWinningRank] if comm.Get_rank() == iWinningRank: comm.bcast(bestJrows, root=iWinningRank) comm.bcast(bestFidpair, root=iWinningRank) else: bestJrows = comm.bcast(None, root=iWinningRank) bestFidpair = comm.bcast(None, root=iWinningRank) if require_all_amped: assert(maxRankInc > 0), "No fiducial pair increased the Jacobian rank!" Jrank += maxRankInc J = _np.concatenate((J, bestJrows), axis=0) selected_gatename_fidpair_lists.append(bestFidpair) printer.log("%d fidpairs => rank %d (Np=%d)" % (len(selected_gatename_fidpair_lists), Jrank, Np)) #DEBUG #print("DB: J = ") #_gt.print_mx(J) #print("DB: svals of J for synthetic idle: ", _np.linalg.svd(J, compute_uv=False)) return J, Jrank, selected_gatename_fidpair_lists
47d7f684047a5b0379febe2fd64e964f805a2764
12,370
def _seed(x, deg=5, seeds=None): """Seed the greedy algorithm with (deg+1) evenly spaced indices""" if seeds is None: f = lambda m, n: [ii*n//m + n//(2*m) for ii in range(m)] indices = np.sort(np.hstack([[0, len(x)-1], f(deg-1, len(x))])) else: indices = seeds errors = [] return indices, errors
7a5ff1e2e27b812f17196fbec1d7c6a2c867207c
12,371
def get_ref(cube): """Gets the 8 reflection symmetries of a nd numpy array""" L = [] L.append(cube[:,:,:]) L.append(cube[:,:,::-1]) L.append(cube[:,::-1,:]) L.append(cube[::-1,:,:]) L.append(cube[:,::-1,::-1]) L.append(cube[::-1,:,::-1]) L.append(cube[::-1,::-1,:]) L.append(cube[::-1,::-1,::-1]) return L
683ef2c7c0a312e4cf891f191452f9c29f6bc1fd
12,372
from typing import Collection from typing import Tuple from typing import Optional from typing import Mapping def get_relation_functionality( mapped_triples: Collection[Tuple[int, int, int]], add_labels: bool = True, label_to_id: Optional[Mapping[str, int]] = None, ) -> pd.DataFrame: """Calculate relation functionalities. :param mapped_triples: The ID-based triples. :return: A dataframe with columns ( functionality | inverse_functionality ) """ df = pd.DataFrame(data=mapped_triples, columns=["h", "r", "t"]) df = df.groupby(by="r").agg(dict( h=["nunique", COUNT_COLUMN_NAME], t="nunique", )) df[FUNCTIONALITY_COLUMN_NAME] = df[("h", "nunique")] / df[("h", COUNT_COLUMN_NAME)] df[INVERSE_FUNCTIONALITY_COLUMN_NAME] = df[("t", "nunique")] / df[("h", COUNT_COLUMN_NAME)] df = df[[FUNCTIONALITY_COLUMN_NAME, INVERSE_FUNCTIONALITY_COLUMN_NAME]] df.columns = df.columns.droplevel(1) df.index.name = RELATION_ID_COLUMN_NAME df = df.reset_index() return add_relation_labels(df, add_labels=add_labels, label_to_id=label_to_id)
1e6aa6d9e61ebd788d8c1726ca8a75d551b654b8
12,373
import json def df_to_vega_lite(df, path=None): """ Export a pandas.DataFrame to a vega-lite data JSON. Params ------ df : pandas.DataFrame dataframe to convert to JSON path : None or str if None, return the JSON str. Else write JSON to the file specified by path. """ chart = altair.Chart(data=df) data = chart.to_dict()['data']['values'] if path is None: return json.dumps(data, **json_dump_kwargs) with open(path, 'w') as write_file: json.dump(data, write_file, **json_dump_kwargs)
5cf5cf834d4113c05c4cc8b99aaa2a94e0a7b746
12,374
def _is_json_mimetype(mimetype): """Returns 'True' if a given mimetype implies JSON data.""" return any( [ mimetype == "application/json", mimetype.startswith("application/") and mimetype.endswith("+json"), ] )
9c2580ff4a783d9f79d6f6cac41befb516c52e9f
12,375
from datetime import datetime def make_request(action, data, token): """Make request based on passed arguments and timestamp.""" return { 'action': action, 'time': datetime.now().timestamp(), 'data': data, 'token': token }
60e511f7b067595bd698421adaafe37bbf8e59e1
12,376
def get_stats_historical_prices(timestamp, horizon): """ We assume here that the price is a random variable following a normal distribution. We compute the mean and covariance of the price distribution. """ hist_prices_df = pd.read_csv(HISTORICAL_PRICES_CSV) hist_prices_df["timestamp"] = pd.to_datetime(hist_prices_df["timestamp"]) hist_prices_df = hist_prices_df.set_index("timestamp") start = pd.Timestamp(year=2018, month=6, day=2, hour=timestamp.hour, minute=timestamp.minute) end = pd.Timestamp(year=2018, month=10, day=25, hour=timestamp.hour, minute=timestamp.minute) hist_prices_df = hist_prices_df[ (hist_prices_df.index >= start) & (hist_prices_df.index < end) ] hist_prices_df['hour'] = hist_prices_df.index.hour hist_prices_df['minute'] = hist_prices_df.index.minute num_features = horizon num_samples = min(hist_prices_df.groupby( [hist_prices_df.index.hour, hist_prices_df.index.minute] ).count()['clearing_price'].values) new = hist_prices_df.groupby( [hist_prices_df.index.hour, hist_prices_df.index.minute] ).mean() new = new.set_index(pd.Index(range(48))) i = new[ (new.hour == timestamp.hour) & (new.minute == timestamp.minute) ]['clearing_price'].index.values[0] a = new[new.index >= i]['clearing_price'] b = new[new.index < i]['clearing_price'] mean_X = np.concatenate((a, b)) X = np.copy(hist_prices_df['clearing_price'].values) X = np.reshape(X, (num_samples, num_features)) cov = GaussianMixture(covariance_type='tied').fit( normalize(X)).covariances_ return mean_X, cov
bc6fdcbcb54f156d880ba2504a0ca0d50f889786
12,377
def _unflattify(values, shape): """ Unflattifies parameter values. :param values: The flattened array of values that are to be unflattified :type values: torch.Tensor :param shape: The shape of the parameter prior :type shape: torch.Size :rtype: torch.Tensor """ if len(shape) < 1 or values.shape[1:] == shape: return values return values.reshape(values.shape[0], *shape)
e885517419eb48fd1a4ebdf14a8fa3b19f3c5444
12,378
def theme_cmd(data, buffer, args): """Callback for /theme command.""" if args == '': weechat.command('', '/help ' + SCRIPT_COMMAND) return weechat.WEECHAT_RC_OK argv = args.strip().split(' ', 1) if len(argv) == 0: return weechat.WEECHAT_RC_OK if argv[0] in ('install',): weechat.prnt('', '{0}: action "{1}" not developed' ''.format(SCRIPT_NAME, argv[0])) return weechat.WEECHAT_RC_OK # check arguments if len(argv) < 2: if argv[0] in ('install', 'installfile', 'save', 'export'): weechat.prnt('', '{0}: too few arguments for action "{1}"' ''.format(SCRIPT_NAME, argv[0])) return weechat.WEECHAT_RC_OK # execute asked action if argv[0] == 'list': theme_list(argv[1] if len(argv) >= 2 else '') elif argv[0] == 'info': filename = None if len(argv) >= 2: filename = argv[1] theme = Theme(filename) if filename: theme.info('Info about theme "{0}":'.format(filename)) else: theme.info('Info about current theme:') elif argv[0] == 'show': filename = None if len(argv) >= 2: filename = argv[1] theme = Theme(filename) if filename: theme.show('Content of theme "{0}":'.format(filename)) else: theme.show('Content of current theme:') elif argv[0] == 'installfile': theme = Theme() theme.save(theme_config_get_undo()) theme = Theme(argv[1]) if theme.isok(): theme.install() elif argv[0] == 'update': theme_update() elif argv[0] == 'undo': theme = Theme(theme_config_get_undo()) if theme.isok(): theme.install() elif argv[0] == 'save': theme = Theme() theme.save(argv[1]) elif argv[0] == 'backup': theme = Theme() theme.save(theme_config_get_backup()) elif argv[0] == 'restore': theme = Theme(theme_config_get_backup()) if theme.isok(): theme.install() elif argv[0] == 'export': htheme = HtmlTheme() whitebg = False htmlfile = argv[1] argv2 = args.strip().split(' ', 2) if len(argv2) >= 3 and argv2[1] == 'white': whitebg = True htmlfile = argv2[2] htheme.save_html(htmlfile, whitebg) return weechat.WEECHAT_RC_OK
f361a56392320efac4bd1e4101b002c1e42d4b89
12,379
def get_unique_chemical_names(reagents): """Get the unique chemical species names in a list of reagents. The concentrations of these species define the vector space in which we sample possible experiments :param reagents: a list of perovskitereagent objects :return: a list of the unique chemical names in all of the reagent """ chemical_species = set() if isinstance(reagents, dict): reagents = [v for v in reagents.values()] for reagent in reagents: chemical_species.update(reagent.chemicals) return sorted(list(chemical_species))
ae5d6b3bdd8e03c47b9c19c900760c8c2b83d0a0
12,380
def get_sorted_keys(dict_to_sort): """Gets the keys from a dict and sorts them in ascending order. Assumes keys are of the form Ni, where N is a letter and i is an integer. Args: dict_to_sort (dict): dict whose keys need sorting Returns: list: list of sorted keys from dict_to_sort """ sorted_keys = list(dict_to_sort.keys()) sorted_keys.sort(key=lambda x: int(x[1:])) return sorted_keys
9614dee83723e21248381c61a60e92e78c121216
12,381
def model_3d(psrs, psd='powerlaw', noisedict=None, components=30, gamma_common=None, upper_limit=False, bayesephem=False, wideband=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 3D from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. GWB with HD correlations modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Monopole signal modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 3. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum'] 'powerlaw' is default value. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling Tspan = model_utils.get_tspan(psrs) # red noise s = red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # common red noise block s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='hd', name='gw') # monopole s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='monopole', name='monopole') # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True) # timing model s += gp_signals.TimingModel() # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not wideband: s2 = s + white_noise_block(vary=False, inc_ecorr=True) models.append(s2(p)) else: s3 = s + white_noise_block(vary=False, inc_ecorr=False) models.append(s3(p)) # set up PTA pta = signal_base.PTA(models) # set white noise parameters if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta
37abad1016fadd82bcff1a55e9835db28a5c4eb8
12,382
def max_votes(x): """ Return the maximum occurrence of predicted class. Notes ----- If number of class 0 prediction is equal to number of class 1 predictions, NO_VOTE will be returned. E.g. Num_preds_0 = 25, Num_preds_1 = 25, Num_preds_NO_VOTE = 0, returned vote : "NO_VOTE". """ if x['Num_preds_0'] > x['Num_preds_1'] and x['Num_preds_0'] > x['Num_preds_NO_VOTE']: return 0 elif x['Num_preds_1'] > x['Num_preds_0'] and x['Num_preds_1'] > x['Num_preds_NO_VOTE']: return 1 else: return 'NO_VOTE'
2eadafdaf9e9b4584cd81685a5c1b77a090e4f1c
12,383
def misclassification_error(y_true: np.ndarray, y_pred: np.ndarray, normalize: bool = True) -> float: """ Calculate misclassification loss Parameters ---------- y_true: ndarray of shape (n_samples, ) True response values y_pred: ndarray of shape (n_samples, ) Predicted response values normalize: bool, default = True Normalize by number of samples or not Returns ------- Misclassification of given predictions """ n = y_true.shape[-1] counter = np.ones_like(y_true) error = counter[y_true!=y_pred].sum(axis=-1) return error / n if normalize else error
676657fa4da7b4734077ba3a19878d8890f44815
12,384
from scipy.stats import uniform def dunif(x, minimum=0,maximum=1): """ Calculates the point estimate of the uniform distribution """ result=uniform.pdf(x=x,loc=minimum,scale=maximum-minimum) return result
980ffb875cefec13bb78c3a3c779c68e7f510fb7
12,385
def _generate_upsert_sql(mon_loc): """ Generate SQL to insert/update. """ mon_loc_db = [(k, _manipulate_values(v, k in TIME_COLUMNS)) for k, v in mon_loc.items()] all_columns = ','.join(col for (col, _) in mon_loc_db) all_values = ','.join(value for (_, value) in mon_loc_db) update_query = ','.join(f"{k}={v}" for (k, v) in mon_loc_db if k not in ['AGENCY_CD', 'SITE_NO']) statement = ( f"MERGE INTO GW_DATA_PORTAL.WELL_REGISTRY_STG a " f"USING (SELECT '{mon_loc['AGENCY_CD']}' AGENCY_CD, '{mon_loc['SITE_NO']}' " f"SITE_NO FROM DUAL) b ON (a.AGENCY_CD = b.AGENCY_CD AND a.SITE_NO = b.SITE_NO) " f"WHEN MATCHED THEN UPDATE SET {update_query} WHEN NOT MATCHED THEN INSERT ({all_columns}) VALUES ({all_values})" ) return statement
7cbfdc1dd8709a354e4e246324042c8cf02a703b
12,386
import functools def filtered_qs(func): """ #TODO: zrobić, obsługę funkcji z argumentami :param func: :return: """ @functools.wraps(func) def wrapped(self, *args, **kwargs): ret_qs = func(self) return ret_qs.filter(*args, **kwargs) return wrapped
5d3330c44fc9e7f9bffc74d27a3ebb69bc35944e
12,387
def dict2obj(d): """Given a dictionary, return an object with the keys mapped to attributes and the values mapped to attribute values. This is recursive, so nested dictionaries are nested objects.""" top = type('dict2obj', (object,), d) seqs = tuple, list, set, frozenset for k, v in d.items(): if isinstance(v, dict): setattr( top, k, dict2obj(v) ) elif isinstance(v, seqs): setattr( top, k, type(v)(dict2obj(sj) if isinstance(sj, dict) else sj for sj in v) ) else: setattr(top, k, v) return top
ccfa713dc130024427872eb6f2017a0383e3bc01
12,388
def customized_algorithm_plot(experiment_name='finite_simple_sanity', data_path=_DEFAULT_DATA_PATH): """Simple plot of average instantaneous regret by agent, per timestep. Args: experiment_name: string = name of experiment config. data_path: string = where to look for the files. Returns: p: ggplot plot """ df = load_data(experiment_name, data_path) plt_df = (df.groupby(['t', 'agent']) .agg({'instant_regret': np.mean}) .reset_index()) plt_df['agent_new_name'] = plt_df.agent.apply(rename_agent) custom_labels = ['Laplace TS','Langevin TS','TS','bootstrap TS'] custom_colors = ["#E41A1C","#377EB8","#4DAF4A","#984EA3"] p = (gg.ggplot(plt_df) + gg.aes('t', 'instant_regret', colour='agent_new_name') + gg.geom_line(size=1.25, alpha=0.75) + gg.xlab('time period (t)') + gg.ylab('per-period regret') + gg.scale_color_manual(name='agent', labels = custom_labels,values=custom_colors)) return p
bd046c14de1598672391bbcb134dfe8bcff0b558
12,389
def _get_log_time_scale(units): """Retrieves the ``log10()`` of the scale factor for a given time unit. Args: units (str): String specifying the units (one of ``'fs'``, ``'ps'``, ``'ns'``, ``'us'``, ``'ms'``, ``'sec'``). Returns: The ``log10()`` of the scale factor for the time unit. """ scale = {"fs": -15, "ps": -12, "ns": -9, "us": -6, "ms": -3, "sec": 0} units_lwr = units.lower() if units_lwr not in scale: raise ValueError(f"Invalid unit ({units}) provided") else: return scale[units_lwr]
2371aab923aacce9159bce6ea1470ed49ef2c72f
12,390
def resolvermatch(request): """Add the name of the currently resolved pattern to the RequestContext""" match = resolve(request.path) if match: return {'resolved': match} else: return {}
41cc88633e0b207a53318c761c9849ad2d079994
12,391
def selection_sort(arr: list) -> list: """ Main sorting function. Using "find_smallest" function as part of the algorythm. :param arr: list to sort :return: sorted list """ new_arr = [] for index in range(len(arr)): smallest = find_smallest(arr) new_arr.append(arr.pop(smallest)) return new_arr
e618c5469ce77d830255dc16806f9499bed7ca9a
12,392
def get_primary_monitor(): """ Returns the primary monitor. Wrapper for: GLFWmonitor* glfwGetPrimaryMonitor(void); """ return _glfw.glfwGetPrimaryMonitor()
0bcc55f64c1b8ce6bad31323e5a4bb6ff05eab47
12,393
def query_people_and_institutions(rc, names): """Get the people and institutions names.""" people, institutions = [], [] for person_name in names: person_found = fuzzy_retrieval(all_docs_from_collection( rc.client, "people"), ["name", "aka", "_id"], person_name, case_sensitive=False) if not person_found: person_found = fuzzy_retrieval(all_docs_from_collection( rc.client, "contacts"), ["name", "aka", "_id"], person_name, case_sensitive=False) if not person_found: print( "WARNING: {} not found in contacts or people. Check aka".format( person_name)) else: people.append(person_found['name']) inst = fuzzy_retrieval(all_docs_from_collection( rc.client, "institutions"), ["name", "aka", "_id"], person_found["institution"], case_sensitive=False) if inst: institutions.append(inst["name"]) else: institutions.append(person_found.get("institution", "missing")) print("WARNING: {} missing from institutions".format( person_found["institution"])) else: people.append(person_found['name']) pinst = get_recent_org(person_found) inst = fuzzy_retrieval(all_docs_from_collection( rc.client, "institutions"), ["name", "aka", "_id"], pinst, case_sensitive=False) if inst: institutions.append(inst["name"]) else: institutions.append(pinst) print( "WARNING: {} missing from institutions".format( pinst)) return people, institutions
fd98a7557e2ee07b67ca8eddaf76c28b7b99033a
12,394
from typing import Union from typing import Tuple def add_device(overlay_id) -> Union[str, Tuple[str, int]]: """ Add device to an overlay. """ manager = get_manager() api_key = header_api_key(request) if not manager.api_key_is_valid(api_key): return jsonify(error="Not authorized"), 403 if not request.data: return jsonify(error="Send device id to add to overlay in body"), 400 if "device_id" in request.json: return manager.add_device_to_overlay(overlay_id,request.get_json()['device_id']) return jsonify(error="Send device_id as JSON"), 400
b9652b8d99672d0219df4821decebded458719bd
12,395
from math import sin, cos def pvtol(t, x, u, params={}): """Reduced planar vertical takeoff and landing dynamics""" m = params.get('m', 4.) # kg, system mass J = params.get('J', 0.0475) # kg m^2, system inertia r = params.get('r', 0.25) # m, thrust offset g = params.get('g', 9.8) # m/s, gravitational constant c = params.get('c', 0.05) # N s/m, rotational damping l = params.get('c', 0.1) # m, pivot location return np.array([ x[3], -c/m * x[1] + 1/m * cos(x[0]) * u[0] - 1/m * sin(x[0]) * u[1], -g - c/m * x[2] + 1/m * sin(x[0]) * u[0] + 1/m * cos(x[0]) * u[1], -l/J * sin(x[0]) + r/J * u[0] ])
ff3357e6e1fc1b6f878d9f16b14eba0b687642cd
12,396
from typing import List from typing import Any from typing import Callable def route( path: str, methods: List[str], **kwargs: Any ) -> Callable[[AnyCallable], AnyCallable]: """General purpose route definition. Requires you to pass an array of HTTP methods like GET, POST, PUT, etc. The remaining kwargs are exactly the same as for FastAPI's decorators like @get, @post, etc. Most users will probably want to use the shorter decorators like @get, @post, @put, etc. so they don't have to pass the list of methods. """ def marker(method: AnyCallable) -> AnyCallable: setattr( method, "_endpoint", EndpointDefinition( endpoint=method, args=RouteArgs(path=path, methods=methods, **kwargs) ), ) return method return marker
9e499d59b48a3562f46bdcbde76d87ceb199691e
12,397
import wx def canHaveGui(): """Return ``True`` if a display is available, ``False`` otherwise. """ # We cache this because calling the # IsDisplayAvailable function will cause the # application to steal focus under OSX! try: return wx.App.IsDisplayAvailable() except ImportError: return False
9a9af0f46ca22faeb5f76e350d1c831bcba95343
12,398
def syntactic_analysis(input_fd): """ Realiza análisis léxico-gráfico y sintáctico de un programa Tiger. @type input_fd: C{file} @param input_fd: Descriptor de fichero del programa Tiger al cual se le debe realizar el análisis sintáctico. @rtype: C{LanguageNode} @return: Como resultado del análsis sintáctico se obtiene el árbol de sintáxis abstracta correspondiente al programa Tiger recibido como argumento. El árbol se retorna a través del nodo de la raíz del árbol. @raise SyntacticError: Esta excepción se lanzará si se encuentra algún error de sintáxis durante el análisis del programa. La excepción contendrá información acerca del error, como por ejemplo, la línea y/o columna donde se encontró el error. """ data = input_fd.read() ast = parser.parse(data) return ast
0d0481c8ac84ac1de1ff3f756f20f33bdc8a18e0
12,399