content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def dilate( data, iterations=1, structure=None ): """Dilate a binary ND array by a number of iterations.""" # Convert to binary, just in case. mask = binarise(data).astype(int) if not structure: structure = ndimage.generate_binary_structure(3,1) # Check we have positive iterations - no header available here to convert from mm. iterations = np.abs(iterations) # Slightly awkward as I'm not certain iterations == voxels print (" Dilating {0} iterations ...".format(iterations)) if iterations > 0: dilated_mask = ndimage.binary_dilation( mask, structure, iterations ) return dilated_mask # End of dilate() definition
724b10f0c1d0d417f4ca693a5322349f390da17c
12,100
from PyPDF4 import PdfFileReader def text_from_pdf(file_name : str) -> str: """ Extract text from PDF file ========================== Parameters ---------- file_name : str Name of the file to extract text from. Returns ------- str The extracted text. """ text = '' with open(file_name, 'rb') as instream: reader = PdfFileReader(instream) for i in range(reader.numPages): text += '{}\n'.format(reader.getPage(i).extractText()) return text
a1b0077b143b4fee211dd38b6beabf58c7692177
12,101
import configparser def read_section(section, fname): """Read the specified section of an .ini file.""" conf = configparser.ConfigParser() conf.read(fname) val = {} try: val = dict((v, k) for v, k in conf.items(section)) return val except configparser.NoSectionError: return None
65d6b81b45fc7b75505dd6ee4dda19d13ebf7095
12,102
import torch def freqz( b, a=1, worN=512, whole=False, fs=2 * np.pi, log=False, include_nyquist=False ): """Compute the frequency response of a digital filter.""" h = None lastpoint = 2 * np.pi if whole else np.pi if log: w = np.logspace(0, lastpoint, worN, endpoint=include_nyquist and not whole) else: w = np.linspace(0, lastpoint, worN, endpoint=include_nyquist and not whole) w = torch.tensor(w, device=b.device) if a.size() == 1: n_fft = worN if whole else worN * 2 h = torch.fft.rfft(b, n=n_fft)[:worN] h /= a if h is None: zm1 = torch.exp(-1j * w) h = polyval(b, zm1) / (polyval(a, zm1) + 1e-16) # need to catch NaNs here w = w * fs / (2 * np.pi) return w, h
d6950acc8535791968d34edf8c4ebd557000b72e
12,103
def _helper_fit_partition(self, pnum, endog, exog, fit_kwds, init_kwds_e={}): """handles the model fitting for each machine. NOTE: this is primarily handled outside of DistributedModel because joblib cannot handle class methods. Parameters ---------- self : DistributedModel class instance An instance of DistributedModel. pnum : scalar index of current partition. endog : array_like endogenous data for current partition. exog : array_like exogenous data for current partition. fit_kwds : dict-like Keywords needed for the model fitting. init_kwds_e : dict-like Additional init_kwds to add for each partition. Returns ------- estimation_method result. For the default, _est_regularized_debiased, a tuple. """ temp_init_kwds = self.init_kwds.copy() temp_init_kwds.update(init_kwds_e) model = self.model_class(endog, exog, **temp_init_kwds) results = self.estimation_method(model, pnum, self.partitions, fit_kwds=fit_kwds, **self.estimation_kwds) return results
30b7e6d48c2f0fa3eb2d2486fee9a87dad609886
12,104
def generate_2d_scatter(data, variables, class_data=None, class_names=None, nrows=None, ncols=None, sharex=False, sharey=False, show_legend=True, xy_line=False, trendline=False, cmap_class=None, shorten_variables=False, **kwargs): """Generate 2D scatter plots from the given data and variables. This method will generate 2D scatter plots for all combinations of the given variables. Parameters ---------- data : object like :class:`pandas.core.frame.DataFrame` The data we will plot here. variables : list of strings The variables we will generate scatter plots for. class_data : object like :class:`pandas.core.series.Series`, optional Class information for the points (if available). class_names : dict of strings, optional A mapping from the class data to labels/names. nrows : integer, optional The number of rows to use in a figure. ncols : integer, optional The number of columns to use in a figure. sharex : boolean, optional If True, the scatter plots will share the x-axis. sharey : boolean, optional If True, the scatter plots will share the y-axis. show_legend : boolean, optional If True, we will create a legend here and show it. xy_line : boolean, optional If True, we will add a x=y line to the plot. trendline : boolean, optional If True, we will add a trend line to the plot. cmap_class : string or object like :class:`matplotlib.colors.Colormap`, optional A color map to use for classes. kwargs : dict, optional Additional arguments used for the plotting. Returns ------- figures : list of objects like :class:`matplotlib.figure.Figure` The figures containing the plots. axes : list of objects like :class:`matplotlib.axes.Axes` The axes containing the plots. """ nplots = comb(len(variables), 2, exact=True) figures, axes = create_fig_and_axes( nplots, nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, **kwargs, ) fig = None for i, (xvar, yvar) in enumerate(combinations(variables, 2)): # We do not want to repeat the legend in all subplots: show_legend_ax = False if axes[i].figure != fig: fig = axes[i].figure show_legend_ax = True xlabel = None ylabel = None if shorten_variables: if len(xvar) > 5: xlabel = xvar[:3] + '...' if len(yvar) > 5: ylabel = yvar[:3] + '...' _, _, patches, labels = plot_scatter( data, xvar, yvar, axi=axes[i], xlabel=xlabel, ylabel=ylabel, class_data=class_data, class_names=class_names, cmap_class=cmap_class, **kwargs, ) if xy_line: line_xy = add_xy_line(axes[i], alpha=0.7, color='black') patches.append(line_xy) labels.append('x = y') if trendline: line_trend = add_trendline(axes[i], data[xvar], data[yvar], alpha=0.7, ls='--', color='black') patches.append(line_trend) labels.append('y = a + bx') if show_legend and show_legend_ax and patches and labels: axes[i].legend(patches, labels) return figures, axes
9d2a843f07cbfed921831a64ad39b4c13a947500
12,105
def getOptions(options): """translate command line options to PAML options.""" codeml_options = {} if options.analysis == "branch-specific-kaks": codeml_options["seqtype"] = "1" codeml_options["model"] = "1" elif options.analysis == "branch-fixed-kaks": codeml_options["seqtype"] = "1" codeml_options["model"] = "0" elif options.analysis == "branch-all-but-one-fixed-kaks": codeml_options["seqtype"] = "1" codeml_options["model"] = "2" if not tree: raise ValueError("please supply a tree for this mode.") if not options.filename_output_tree: raise ValueError( "please speficy filename-output-tree as location " "(relative to this script) for trees.") elif options.analysis == "site-specific-kaks": codeml_options["ncatG"] = "10" codeml_options["getSE"] = "1" codeml_options["seqtype"] = "1" codeml_options["NSsites"] = "0 3 1 2 7 8" codeml_options["model"] = "0" codeml_options["CodonFreq"] = "2" elif options.analysis == "pairwise": codeml_options["seqtype"] = "1" codeml_options["model"] = "0" codeml_options["runmode"] = "-2" if options.multiple_genes: codeml_options["Malpha"] = "0" codeml_options["Mgene"] = "0" if options.omega is not None: codeml_options["omega"] = str(options.omega) if options.estimate_ancestors: codeml_options["RateAncestor"] = "1" if options.codon_frequencies is not None: c = options.codon_frequencies.upper() if c in ("UNIFORM", "FEQUAL"): a = "0" elif c == "F1X4": a = "1" elif c == "F3X4": a = "2" elif c == "F61": a = "3" else: a = options.codon_frequencies codeml_options["CodonFreq"] = a if options.method is not None: codeml_options["method"] = str(options.method) if options.optimization_threshold is not None: codeml_options["Small_Diff"] = str(options.optimization_threshold) if options.clean_data: codeml_options["cleandata"] = options.clean_data return codeml_options
86b0fa157e9a9c48d7bf683e57f24f49e32f15e7
12,106
import json def deserialize_block_to_json(block: Block) -> str: """Deserialize Block object to JSON string Parameters ---------- block : Block Block object Returns ------- str JSON string """ try: if block: return json.dumps( { "blockId": block.id, "blockNumber": block.number, "timestamp": block.timestamp, "producer": block.producer, "unfilteredTransactionCount": block.unfilteredTransactionCount, "unfilteredTransactionTraceCount": block.unfilteredTransactionTraceCount, "unfilteredExecutedInputActionCount": block.unfilteredExecutedInputActionCount, "unfilteredExecutedTotalActionCount": block.unfilteredExecutedTotalActionCount, "filteringIncludeFilterExpr": block.filteringIncludeFilterExpr, "filteredTransactionTraceCount": block.filteredTransactionTraceCount, "filteredExecutedInputActionCount": block.filteredExecutedInputActionCount, "filteredExecutedTotalActionCount": block.filteredExecutedTotalActionCount, "filteredTransactionCount": block.filteredTransactionCount, }, sort_keys=True, ) else: raise ValueError("None block made it through") except ValueError as e: logger.exception( BlocktraceLog( __name__, "catching_exception", {"hint": "Check debug logs to see why None Block made it through"}, ) ) return ""
b78f31ef076bcb36011df45c6c5c68563a47e71e
12,107
def get_invocations(benchmark: Benchmark): """ Returns a list of invocations that invoke the tool for the given benchmark. It can be assumed that the current directory is the directory from which execute_invocations.py is executed. For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters. If this benchmark is not supported, an empty list has to be returned. """ if not is_benchmark_supported(benchmark): return [] prec = dict() prec["epsilon-correct"] = "0.000001" prec["probably-epsilon-correct"] = "0.05" prec["often-epsilon-correct"] = "0.001" prec["often-epsilon-correct-10-min"] = "0.001" result = [] for track in prec.keys(): benchmark_settings = "./pet.sh reachability --precision {} --relative-error --only-result -m {} -p {} --property {}".format( prec[track], benchmark.get_prism_program_filename(), benchmark.get_prism_property_filename(), benchmark.get_property_name(), ) if benchmark.get_open_parameter_def_string() != "": benchmark_settings += " --const {}".format( benchmark.get_open_parameter_def_string() ) if ( "haddad" in benchmark.get_prism_program_filename() or "gathering" in benchmark.get_prism_program_filename() ): benchmark_settings = "./fix-syntax " + benchmark_settings # default settings PET eps-corr default_inv = Invocation() default_inv.identifier = "default" default_inv.note = "Default settings." default_inv.track_id = track default_inv.add_command(benchmark_settings) result += [default_inv] if ( track == "epsilon-correct" or benchmark.get_model_type() == "ctmc" or "haddad" in benchmark.get_prism_program_filename() or "csma" in benchmark.get_prism_program_filename() or "wlan" in benchmark.get_prism_program_filename() or "gathering" in benchmark.get_prism_program_filename() ): # smc is prob eps correct, cannot handle ctmc and haddad monmege cannot be parsed by it continue if benchmark.get_num_states_tweak() is None: # need this info continue smc_settings = "./smc.sh {} {} -prop {} -heuristic RTDP_ADJ -RTDP_ADJ_OPTS 1 -colourParams S:{},Av:10,e:{},d:0.05,p:0.05,post:64".format( benchmark.get_prism_program_filename(), benchmark.get_prism_property_filename(), benchmark.get_property_name(), benchmark.get_num_states_tweak(), prec[track], ) if benchmark.get_open_parameter_def_string() != "": smc_settings += " -const {}".format( benchmark.get_open_parameter_def_string() ) if ( "haddad" in benchmark.get_prism_program_filename() or "gathering" in benchmark.get_prism_program_filename() ): smc_settings = "./fix-syntax " + smc_settings # SMC invocations SMC_inv = Invocation() SMC_inv.identifier = "specific" SMC_inv.note = "Statistical model checking with limited information (no transition probabilities)" SMC_inv.track_id = track SMC_inv.add_command(smc_settings) result += [SMC_inv] return result
4afeaa62cecd2ae21f6e112fe5c87dff54310a95
12,108
def see(node: "Position", move: Move = None) -> float: """Static-Exchange-Evaluation Args: node: The current position to see move (Move, optional): The capture move to play. Defaults to None. Returns: float: The score associated with this capture. Positive is good. """ c = node.state.turn bitboards = node.boards if move is None: return 0 if not move.is_capture: return 0 i = 0 gain = [0] * 32 target = bitboards.piece_at(move._to) if target is None: return 0 occ = bitboards.occupancy from_bb = Bitboard(1 << move._from) attack_defend_bb = bitboards.attack_defend_to(move._to, c) xrays = bitboards.xrays_bb gain[i] = PIECE_VALUES[target._type] assert target is not None pt = (bitboards.piece_at(move._from))._type while True: i += 1 gain[i] = PIECE_VALUES[pt] - gain[i-1] if max(-gain[i-1], gain[i]) < 0: break attack_defend_bb ^= from_bb occ ^= from_bb from_bb, pt = least_valuable_attacker(~c, bitboards, attack_defend_bb) if not from_bb: break i -= 1 while i: gain[i-1] = -max(-gain[i-1], gain[i]) i -= 1 return gain[0]
e6062b7cd09e9b2dca514e5be23b7fa870ff923f
12,109
import sys def new(option): """ Create a new message queue object; options must contain the type of queue (which is the name of the child class), see above. """ options = option.copy() qtype = options.pop("type", "DQS") try: __import__("messaging.queue.%s" % (qtype.lower())) except SyntaxError: raise SyntaxError("error importing dirq type: %s" % qtype) except ImportError: raise ImportError( "you must install %s dependencies before using this module" % (qtype, )) try: module = sys.modules["messaging.queue.%s" % (qtype.lower())] return getattr(module, qtype)(**options) except KeyError: pass raise ValueError("queue type not valid: %s" % qtype)
9e285f4bee5442a41c10b32158595da5e03707de
12,110
def rk4(f, t0, y0, h, N): """"Solve IVP given by y' = f(t, y), y(t_0) = y_0 with step size h > 0, for N steps, using the Runge-Kutta 4 method. Also works if y is an n-vector and f is a vector-valued function.""" t = t0 + np.array([i * h for i in range(N+1)]) m = len(y0) y = np.zeros((N+1, m)) y[0] = y0 # Repeatedly approximate next value. for n in range(N): k1 = f(t[n], y[n]) k2 = f(t[n] + h/2, y[n] + k1 * h/2) k3 = f(t[n] + h/2, y[n] + k2 * h/2) k4 = f(t[n] + h, y[n] + k3 * h) y[n+1] = y[n] + h * (k1 + 2 * k2 + 2 * k3 + k4) / 6 return t, y
e6b7c3d1ac0ea765a3ac9ebac69159dd2c2eab78
12,111
import os def main(): """ Example entry point; please see Enumeration example for more in-depth comments on preparing and cleaning up the system. :return: True if successful, False otherwise. :rtype: bool """ # Since this application saves images in the current folder # we must ensure that we have permission to write to this folder. # If we do not have permission, fail right away. try: test_file = open('test.txt', 'w+') except IOError: print('Unable to write to current directory. Please check permissions.') input('Press Enter to exit...') return False test_file.close() os.remove(test_file.name) result = True # Retrieve singleton reference to system object system = PySpin.System.GetInstance() # Get current library version version = system.GetLibraryVersion() print('Library version: {}.{}.{}.{}\n'.format(version.major, version.minor, version.type, version.build)) # Retrieve list of cameras from the system cam_list = system.GetCameras() num_cameras = cam_list.GetSize() print('Number of cameras detected: {}\n'.format(num_cameras)) # Finish if there are no cameras if num_cameras == 0: # Clear camera list before releasing system cam_list.Clear() # Release system instance system.ReleaseInstance() print('Not enough cameras!') input('Done! Press Enter to exit...') return False # Run example on each camera for i, cam in enumerate(cam_list): print('Running example for camera {}...\n'.format(i)) result &= run_single_camera(cam) print('Camera {} example complete...\n'.format(i)) # Release reference to camera del cam # Clear camera list before releasing system cam_list.Clear() # Release system instance system.ReleaseInstance() input('Done! Press Enter to exit...') return result
62b846f3dd26106ea6dcc01bed841895f3691728
12,112
import torch def parse_predictions(est_data, gt_data, config_dict): """ Parse predictions to OBB parameters and suppress overlapping boxes Args: est_data, gt_data: dict {point_clouds, center, heading_scores, heading_residuals, size_scores, size_residuals, sem_cls_scores} config_dict: dict {dataset_config, remove_empty_box, use_3d_nms, nms_iou, use_old_type_nms, conf_thresh, per_class_proposal} Returns: batch_pred_map_cls: a list of len == batch size (BS) [pred_list_i], i = 0, 1, ..., BS-1 where pred_list_i = [(pred_sem_cls, box_params, box_score)_j] where j = 0, ..., num of valid detections - 1 from sample input i """ eval_dict = {} pred_center = est_data['center'] # B,num_proposal,3 pred_heading_class = torch.argmax(est_data['heading_scores'], -1) # B,num_proposal heading_residuals = est_data['heading_residuals_normalized'] * ( np.pi / config_dict['dataset_config'].num_heading_bin) # Bxnum_proposalxnum_heading_bin pred_heading_residual = torch.gather(heading_residuals, 2, pred_heading_class.unsqueeze(-1)) # B,num_proposal,1 pred_heading_residual.squeeze_(2) pred_size_class = torch.argmax(est_data['size_scores'], -1) # B,num_proposal size_residuals = est_data['size_residuals_normalized'] * torch.from_numpy( config_dict['dataset_config'].mean_size_arr.astype(np.float32)).cuda().unsqueeze(0).unsqueeze(0) pred_size_residual = torch.gather(size_residuals, 2, pred_size_class.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, 1, 3)) # B,num_proposal,1,3 pred_size_residual.squeeze_(2) pred_sem_cls = torch.argmax(est_data['sem_cls_scores'], -1) # B,num_proposal sem_cls_probs = softmax(est_data['sem_cls_scores'].detach().cpu().numpy()) # B,num_proposal,10 pred_sem_cls_prob = np.max(sem_cls_probs, -1) # B,num_proposal num_proposal = pred_center.shape[1] # Since we operate in upright_depth coord for points, while util functions # assume upright_camera coord. bsize = pred_center.shape[0] pred_corners_3d_upright_camera = np.zeros((bsize, num_proposal, 8, 3)) pred_center_upright_camera = flip_axis_to_camera(pred_center.detach().cpu().numpy()) for i in range(bsize): for j in range(num_proposal): heading_angle = config_dict['dataset_config'].class2angle( \ pred_heading_class[i, j].detach().cpu().numpy(), pred_heading_residual[i, j].detach().cpu().numpy()) box_size = config_dict['dataset_config'].class2size( \ int(pred_size_class[i, j].detach().cpu().numpy()), pred_size_residual[i, j].detach().cpu().numpy()) corners_3d_upright_camera = get_3d_box(box_size, -heading_angle, pred_center_upright_camera[i, j, :]) pred_corners_3d_upright_camera[i, j] = corners_3d_upright_camera K = pred_center.shape[1] # K==num_proposal nonempty_box_mask = np.ones((bsize, K)) if config_dict['remove_empty_box']: # ------------------------------------- # Remove predicted boxes without any point within them.. batch_pc = gt_data['point_clouds'].cpu().numpy()[:, :, 0:3] # B,N,3 for i in range(bsize): pc = batch_pc[i, :, :] # (N,3) for j in range(K): box3d = pred_corners_3d_upright_camera[i, j, :, :] # (8,3) box3d = flip_axis_to_depth(box3d) pc_in_box, inds = extract_pc_in_box3d(pc, box3d) if len(pc_in_box) < 5: nonempty_box_mask[i, j] = 0 # ------------------------------------- obj_logits = est_data['objectness_scores'].detach().cpu().numpy() obj_prob = softmax(obj_logits)[:, :, 1] # (B,K) if not config_dict['use_3d_nms']: # ---------- NMS input: pred_with_prob in (B,K,7) ----------- pred_mask = np.zeros((bsize, K), dtype=np.uint8) for i in range(bsize): boxes_2d_with_prob = np.zeros((K, 5)) for j in range(K): boxes_2d_with_prob[j, 0] = np.min(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_2d_with_prob[j, 2] = np.max(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_2d_with_prob[j, 1] = np.min(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_2d_with_prob[j, 3] = np.max(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_2d_with_prob[j, 4] = obj_prob[i, j] nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] pick = nms_2d_faster(boxes_2d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict['nms_iou'], config_dict['use_old_type_nms']) assert (len(pick) > 0) pred_mask[i, nonempty_box_inds[pick]] = 1 eval_dict['pred_mask'] = pred_mask # ---------- NMS output: pred_mask in (B,K) ----------- elif config_dict['use_3d_nms'] and (not config_dict['cls_nms']): # ---------- NMS input: pred_with_prob in (B,K,7) ----------- pred_mask = np.zeros((bsize, K), dtype=np.uint8) for i in range(bsize): boxes_3d_with_prob = np.zeros((K, 7)) for j in range(K): boxes_3d_with_prob[j, 0] = np.min(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_3d_with_prob[j, 1] = np.min(pred_corners_3d_upright_camera[i, j, :, 1]) boxes_3d_with_prob[j, 2] = np.min(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_3d_with_prob[j, 3] = np.max(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_3d_with_prob[j, 4] = np.max(pred_corners_3d_upright_camera[i, j, :, 1]) boxes_3d_with_prob[j, 5] = np.max(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_3d_with_prob[j, 6] = obj_prob[i, j] nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] pick = nms_3d_faster(boxes_3d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict['nms_iou'], config_dict['use_old_type_nms']) assert (len(pick) > 0) pred_mask[i, nonempty_box_inds[pick]] = 1 eval_dict['pred_mask'] = pred_mask # ---------- NMS output: pred_mask in (B,K) ----------- elif config_dict['use_3d_nms'] and config_dict['cls_nms']: # ---------- NMS input: pred_with_prob in (B,K,8) ----------- pred_mask = np.zeros((bsize, K), dtype=np.uint8) for i in range(bsize): boxes_3d_with_prob = np.zeros((K, 8)) for j in range(K): boxes_3d_with_prob[j, 0] = np.min(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_3d_with_prob[j, 1] = np.min(pred_corners_3d_upright_camera[i, j, :, 1]) boxes_3d_with_prob[j, 2] = np.min(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_3d_with_prob[j, 3] = np.max(pred_corners_3d_upright_camera[i, j, :, 0]) boxes_3d_with_prob[j, 4] = np.max(pred_corners_3d_upright_camera[i, j, :, 1]) boxes_3d_with_prob[j, 5] = np.max(pred_corners_3d_upright_camera[i, j, :, 2]) boxes_3d_with_prob[j, 6] = obj_prob[i, j] boxes_3d_with_prob[j, 7] = pred_sem_cls[i, j] # only suppress if the two boxes are of the same class!! nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] pick = nms_3d_faster_samecls(boxes_3d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict['nms_iou'], config_dict['use_old_type_nms']) assert (len(pick) > 0) pred_mask[i, nonempty_box_inds[pick]] = 1 eval_dict['pred_mask'] = pred_mask # ---------- NMS output: pred_mask in (B,K) ----------- return eval_dict, {'pred_corners_3d_upright_camera': pred_corners_3d_upright_camera, 'sem_cls_probs': sem_cls_probs, 'obj_prob': obj_prob, 'pred_sem_cls': pred_sem_cls}
9d31b44e37e7af458084b29927eaa29d2e1889af
12,113
def benchmark_op(op, burn_iters: int = 2, min_iters: int = 10): """Final endpoint for all kb.benchmarks functions.""" assert not tf.executing_eagerly() with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) bm = tf.test.Benchmark() result = bm.run_op_benchmark( sess, op, burn_iters=burn_iters, min_iters=min_iters ) summarize(result) return result
4b46cbb4f487332b43e1c06daef294e9e01f13a5
12,114
def run_truncated_sprt(list_alpha, list_beta, logits_concat, labels_concat, verbose=False): """ Calculate confusion matrix, mean hitting time, and truncate rate of a batch. Args: list_alpha: A list of floats. list_beta: A list of floats with the same length as list_alpha's. logits_concat: A logit Tensor with shape (batch, (duration - order_sprt), order_sprt + 1, 2). This is the output of datasets.data_processing.sequential_concat(logit_slice, labels_slice) labels_concat: A binary label Tensor with shape (batch size,) with label = 0 or 1. This is the output of datasets.data_processing.sequential_concat(logit_slice, labels_slice). Returns: dict_confmx_sprt: A dictionary with keys like "thresh=0.2342,-0.2342". Value is a confusion matrix Tensor. dict_mean_hittimes: A dictionary with keys like "thresh=0.2342,-0.2342". Value is a mean hitting time. dict_truncate_rates: A dictionary with keys like "thresh=0.2342,-0.2342". Value is an truncate rate. """ dict_confmx_sprt = dict() dict_mean_hittimes = dict() dict_var_hittimes = dict() dict_truncate_rates = dict() batch_size_tmp = labels_concat.shape[0] for alpha, beta in zip(list_alpha, list_beta): # Calc thresholds alpha = float(alpha) beta = float(beta) thresh = [np.log(beta/(1-alpha)), np.log((1-beta)/alpha)] key = "thresh={:6.4f},{:7.4f}".format(thresh[0], thresh[1]) # Run truncated sprt confmx, mean_hittime, var_hittime, truncate_rate = binary_truncated_sprt(logits_concat, labels_concat, alpha, beta) dict_confmx_sprt[key] = confmx dict_mean_hittimes[key] = mean_hittime dict_var_hittimes[key] = var_hittime dict_truncate_rates[key] = truncate_rate if verbose: print("====================================") print("SPRT w/ alpha={}, beta={}".format(alpha, beta)) print("Thresholds = {}".format(thresh)) print("Confusion Matrix") print(confmx) print("Mean Hitting Time: {} +- {}".format(mean_hittime, tf.sqrt(var_hittime))) print("truncate: {} / {} = {}".format(tf.round(truncate_rate*batch_size_tmp), batch_size_tmp, truncate_rate)) print("====================================") return dict_confmx_sprt, dict_mean_hittimes, dict_var_hittimes, dict_truncate_rates
7934b1de29c60a59df056cbb1e4dce42e76ca540
12,115
def get_users(metadata): """ Pull users, handles hidden user errors Parameters: metadata: sheet of metadata from mwclient Returns: the list of users """ users = [] for rev in metadata: try: users.append(rev["user"]) except (KeyError): users.append(None) return users
48dbae6a63019b0e4c2236a97e147102fe4d8758
12,116
from re import S def solve(FLT_MIN, FLT_MAX): """Solving cos(x) <= -0.99, dx/dt=1, x(0) = 0 # Basic steps: # 1. First compute the n terms for each ode # 2. Next replace the guard with ode(t), so that it is only in t # 3. Then compute the number of terms needed for g(t) # 4. Finally, compute g(t) = 0 and g(t)-2g(0) = 0 # 5. Note that computing number of terms "n" in taylor essentially # guarantees that tᵣ - t ≤ floating point error only, specified by the # polynomial solver. """ # XXX: This is the theta def test_multivariate(): # LTI is easy to solve # Xdiff = S.sympify('(5*x(t) + 2*y(t) + 1)') # Time varying, takes more time in general, # with increasing power for t^n # Xdiff = S.sympify('(5*x(t) + 2*y(t) + t**3)') # Non linear with periodic functions # Xdiff = S.sympify('sin(sqrt(x(t)+1))') # import math # FLT_MIN = 0 # FLT_MAX = 2*math.pi # More complex ode # Xdiff = S.sympify('sin(sin(x(t)+1))') # The angles can only be between 0 and 2π # import math # FLT_MIN = -2*math.pi # FLT_MAX = 2*math.pi # A sqrt # Xdiff = S.sympify('sqrt(x(t)+1)') # The ones below need to have a reduced search space bound for # continous variables. # Another sqrt, does not seem to converge # Xdiff = S.sympify('x(t)*t') # Does not work # Now multiplication, seems to not coverge ever. Xdiff = S.sympify('exp(2*x(t))') # Does not work either # Using scaling factor, to reduce the bounds of the maximisation # problem. FLT_MIN = -1e1 FLT_MAX = 1e1 return FLT_MIN, FLT_MAX, Xdiff FLT_MIN, FLT_MAX, tomaximize = test_multivariate() xt = S.sympify('x(t)') x = S.abc.x yt = S.sympify('y(t)') y = S.abc.y # Coupled ode example (tokens, nx) = getN({xt.diff(t): ([tomaximize], {yt.diff(t): (xt, # args always in # same order for # everyone [x, y, t])}, # Always list all the replacements {xt: x, yt: y}, [x, y, t])}, FLT_MIN=FLT_MIN, FLT_MAX=FLT_MAX, epsilon=1e-6) # print(tokens) print('required terms for θ satisfying Lipschitz constant:', nx) # Now make the taylor polynomial taylorxcoeffs = [5*S.pi/2, 1] + [0]*(nx-2) # These are the smooth tokens taylorxpoly = sum([t**i*v for i, v in zip(range(nx), taylorxcoeffs)]) # The theta' taylor polynomial print('θ(t) = ', taylorxpoly) # The guard function that needs the lipschitz constant def guard(): gt = (S.cos(taylorxpoly)+0.99) return gt.diff(t) gt = S.sympify('g(t)') tokens, n = getN({gt.diff(t): ([guard()], dict(), dict(), [t])}) # print(tokens) print('Number of terms for cos(%s)+0.99: %s' % (taylorxpoly, n)) # Now we do the example of the ode with taylor polynomial cosseries1 = S.fps(S.cos(taylorxpoly)+0.99, x0=0).polynomial(n=n) print('Guard taylor polynomial:', cosseries1, '\n') # print(S.simplify(cosseries1)) root = None try: root1 = S.nsolve(cosseries1, t, 0, dict=True)[0][t] root = root1 except ValueError: print('No root for g(t)=0') # Now the second one, this one fails # g(t) - 2*g(0) = 0 cosseries2 = S.fps(S.cos((5*S.pi/2) + t)-1.98, x0=0).polynomial(n=n) # print(S.simplify(cosseries2)) try: root2 = S.nsolve(cosseries2, t, 0, dict=True)[0][t] root = min(root, root2) except ValueError: print('No root for g(t)-2*g(0) = 0') print('guard Δt:', root)
90288d73717d02b966beb66396e0be16f68f55f5
12,117
from tvm.contrib import graph_executor def run_tvm_graph( coreml_model, target, device, input_data, input_name, output_shape, output_dtype="float32" ): """Generic function to compile on relay and execute on tvm""" if isinstance(input_data, list): shape_dict = {} dtype_dict = {} for i, e in enumerate(input_name): shape_dict[e] = input_data[i].shape dtype_dict[e] = input_data[i].dtype else: shape_dict = {input_name: input_data.shape} dtype_dict = {input_name: input_data.dtype} mod, params = relay.frontend.from_coreml(coreml_model, shape_dict) with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target, params=params) m = graph_executor.GraphModule(lib["default"](device)) # set inputs if isinstance(input_data, list): for i, e in enumerate(input_name): m.set_input(e, tvm.nd.array(input_data[i].astype(input_data[i].dtype))) else: m.set_input(input_name, tvm.nd.array(input_data.astype(input_data.dtype))) # execute m.run() # get outputs if isinstance(output_shape, list) and isinstance(output_dtype, list): tvm_output_list = [] for i, s in enumerate(output_shape): tvm_output = m.get_output(i, tvm.nd.empty((s), output_dtype[i])) tvm_output_list.append(tvm_output.numpy()) return tvm_output_list else: if not output_shape: tvm_output = m.get_output(0) else: tvm_output = m.get_output(0, tvm.nd.empty((output_shape), output_dtype)) return tvm_output.numpy()
391b3e0dcca3c1893da69a6ce1ac219f7c56dfa0
12,118
import math def detect_peaks(data, srate): """ obrain maximum and minimum values from blood pressure or pleth waveform the minlist is always one less than the maxlist """ ret = [] if not isinstance(data, np.ndarray): data = np.array(data) raw_data = np.copy(data) raw_srate = srate # resampling rate to 100Hz data = resample_hz(data, srate, 100) srate = 100 # upper and lower bound of the heart rate (Hz = /sec) # heart rate = hf * 60; fh = 200 / 60 # 3.3 fl = 30 / 60 # 0.5 # estimate hr y1 = band_pass(data, srate, 0.5 * fl, 3 * fh) # Divide the entire x into four regions and use the median of these # hf = [] # for(var i = 0; i < 4; i++) { # var subw = new Wav(srate, y1.vals.copy(data.length / 4 * i, data.length / 4 * (i+1))); # hf[i] = subw.estimate_heart_rate(fl, fh); # if(hf[i] == 0) { # console.log("HR estimation failed, assume 75"); # hf[i] = 75 / 60; # } # } # hf = hf.median(); # Whole heart freq estimation hf = estimate_heart_freq(y1, srate) if hf == 0: print("HR estimation failed, assume 75") hf = 75 / 60 # band pass filter again with heart freq estimation y2 = band_pass(data, srate, 0.5 * fl, 2.5 * hf) d2 = np.diff(y2) # detect peak in gradient p2 = detect_maxima(d2, 90) # detect real peak y3 = band_pass(data, srate, 0.5 * fl, 10 * hf) p3 = detect_maxima(y3, 60) # find closest p3 that follows p2 p4 = [] last_p3 = 0 for idx_p2 in p2: idx_p3 = 0 for idx_p3 in p3: if idx_p3 > idx_p2: break if idx_p3 != 0: if last_p3 != idx_p3: p4.append(idx_p3) last_p3 = idx_p3 # nearest neighbor and inter beat interval correction # p: location of detected peaks pc = [] # find all maxima before preprocessing m = detect_maxima(data, 0) m = np.array(m) # correct peaks location error due to preprocessing last = -1 for idx_p4 in p4: cand = find_nearest(m, idx_p4) if cand != last: pc.append(cand) last = cand ht = 1 / hf # beat interval (sec) # correct false negatives (FN) # Make sure if there is rpeak not included in the PC. i = -1 while i < len(pc): if i < 0: idx_from = 0 else: idx_from = pc[i] if i >= len(pc) - 1: idx_to = len(data)-1 else: idx_to = pc[i+1] # find false negative and fill it if idx_to - idx_from < 1.75 * ht * srate: i += 1 continue # It can not be within 0.2 of both sides idx_from += 0.2 * ht * srate idx_to -= 0.2 * ht * srate # Find missing peak and add it # find the maximum value from idx_from to idx_to idx_max = -1 val_max = 0 for j in range(np.searchsorted(m, idx_from), len(m)): idx_cand = m[j] if idx_cand >= idx_to: break if idx_max == -1 or val_max < data[idx_cand]: val_max = data[idx_cand] idx_max = idx_cand # There is no candidate to this FN. Overtake if idx_max != -1: # add idx_max and restart trom there pc.insert(i+1, idx_max) i -= 1 i += 1 # correct false positives (FP) i = 0 while i < len(pc) - 1: idx1 = pc[i] idx2 = pc[i+1] if idx2 - idx1 < 0.75 * ht * srate: # false positive idx_del = i + 1 # default: delete i+1 if 1 < i < len(pc) - 2: # minimize heart rate variability idx_prev = pc[i-1] idx_next = pc[i+2] # find center point distance d1 = abs(idx_next + idx_prev - 2 * idx1) d2 = abs(idx_next + idx_prev - 2 * idx2) if d1 > d2: idx_del = i else: idx_del = i+1 elif i == 0: idx_del = i elif i == len(pc) - 2: idx_del = i+1 pc.pop(idx_del) i -= 1 i += 1 # remove dupilcates i = 0 for i in range(0, len(pc) - 1): if pc[i] == pc[i+1]: pc.pop(i) i -= 1 i += 1 # find nearest peak in real data # We downsample x to srate to get maxidxs. ex) 1000 Hz -> 100 Hz # Therefore, the position found by maxidx may differ by raw_srate / srate. maxlist = [] ratio = math.ceil(raw_srate / srate) for maxidx in pc: idx = int(maxidx * raw_srate / srate) # extimated idx -> not precise maxlist.append(max_idx(raw_data, idx - ratio - 1, idx + ratio + 1)) # get the minlist from maxlist minlist = [] for i in range(len(maxlist) - 1): minlist.append(min_idx(raw_data, maxlist[i], maxlist[i+1])) return [minlist, maxlist]
ad327b10dd6bcecb3036ecfb5cdcf07defecf2ff
12,119
from typing import Tuple from typing import Dict def add_entity_to_watchlist(client: Client, args) -> Tuple[str, Dict, Dict]: """Adds an entity to a watchlist. Args: client: Client object with request. args: Usually demisto.args() Returns: Outputs. """ watchlist_name = args.get('watchlist_name') entity_type = args.get('entity_type') entity_name = args.get('entity_name') expiry_days = args.get('expiry_days') if 'expiry_days' in args else '30' response = client.add_entity_to_watchlist_request(watchlist_name, entity_type, entity_name, expiry_days) if 'successfull' not in response: raise Exception(f'Failed to add entity {entity_name} to the watchlist {watchlist_name}.\n' f'Error from Securonix is: {response}.') human_readable = f'Added successfully the entity {entity_name} to the watchlist {watchlist_name}.' return human_readable, {}, response
28270c3fa0985458a1fc18f5fd4d2c8661eae1dc
12,120
def is_base255(channels): """check if a color is in base 01""" if isinstance(channels, str): return False return all(_test_base255(channels).values())
e8e6176785303f8f1130c7e99f929ec183e145c5
12,121
def make_unrestricted_prediction(solution: SolverState) -> tuple[Role, ...]: """ Uses a list of true/false statements and possible role sets to return a rushed list of predictions for all roles. Does not restrict guesses to the possible sets. """ all_role_guesses, curr_role_counts = get_basic_guesses(solution) solved = recurse_assign(solution, all_role_guesses, curr_role_counts, False) switch_dict = get_switch_dict(solution) final_guesses = tuple(solved[switch_dict[i]] for i in range(len(solved))) if len(final_guesses) != const.NUM_ROLES: raise RuntimeError("Could not find unrestricted assignment of roles.") return final_guesses
2662979b0fdca524dcea368daf7b11283906ecbb
12,122
import argparse def get_args(): """Parse command-line arguments.""" parser = argparse.ArgumentParser(description="Expression aggregator") parser.add_argument( "-e", "--expressions", nargs="+", help="Expressions", required=True ) parser.add_argument( "-d", "--descriptors", nargs="+", help="Descriptors", required=True ) parser.add_argument("-s", "--source", help="Source", required=True) parser.add_argument( "-t", "--expression-type", help="Expression type", required=True ) parser.add_argument("-g", "--group-by", help="Group by", required=True) parser.add_argument("-a", "--aggregator", help="Aggregator") parser.add_argument("-b", "--box-plot-output", help="Box plot output file name") parser.add_argument( "-l", "--log-box-plot-output", help="Log box plot output file name" ) parser.add_argument( "-x", "--expressions-output", help="Expressions output file name" ) return parser.parse_args()
a33401b0407ca8538f09918c8ec9074ca21e2438
12,123
def computeFourteenMeVPoint(xs, E14='14.2 MeV', useCovariance=True, covariance=None): """ Compute the value of the cross section at 14.2 MeV. If the covariance is provided, the uncertainty on the 14.2 MeV point will be computed. :param xs: reference to the cross section :param E14: the 14 MeV point to use (in case you want to override the default of 14.2 MeV) :param useCovariance: use this to override covariance usage :type useCovariance: bool :param covariance: covariance to use when computing uncertainty on the spectral average. If None (default: None), no uncertainty is computed. :type covariance: covariance instance or None :rtype: PQU """ return computeValueAtAPoint(xs, E14, useCovariance=useCovariance, covariance=covariance)
4d3165518e227f0c1027d45507c6d67e1e27bf0b
12,124
def conn_reshape_directed(da, net=False, sep='-', order=None, rm_missing=False, fill_value=np.nan, to_dataframe=False, inplace=False): """Reshape a raveled directed array of connectivity. This function takes a DataArray of shape (n_pairs, n_directions) or (n_pairs, n_times, n_direction) where n_pairs reflects pairs of roi (e.g 'roi_1-roi_2') and n_direction usually contains bidirected 'x->y' and 'y->x'. At the end, this function reshape the input array so that rows contains the sources and columns the targets leading to a non-symmetric DataArray of shape (n_roi, n_roi, n_times). A typical use case for this function would be after computing the covariance based granger causality. Parameters ---------- da : xarray.DataArray Xarray DataArray of shape (n_pairs, n_times, n_directions) where actually the roi dimension contains the pairs (roi_1-roi_2, roi_1-roi_3 etc.). The dimension n_directions should contains the dimensions 'x->y' and 'y->x' sep : string | '-' Separator used to separate the pairs of roi names. order : list | None List of roi names to reorder the output. rm_missing : bool | False When reordering the connectivity array, choose if you prefer to reindex even if there's missing regions (rm_missing=False) or if missing regions should be removed (rm_missing=True) fill_value : float | np.nan Value to use for filling missing pairs (e.g diagonal) to_dataframe : bool | False Dataframe conversion. Only possible if the da input does not contains a time axis. Returns ------- da_out : xarray.DataArray DataArray of shape (n_roi, n_roi, n_times) See also -------- conn_covgc """ assert isinstance(da, xr.DataArray) if not inplace: da = da.copy() assert ('roi' in list(da.dims)) and ('direction' in list(da.dims)) if 'times' not in list(da.dims): da = da.expand_dims("times") # get sources, targets names and sorted full list sources, targets, roi_tot = _untangle_roi(da, sep) # transpose, reindex and reorder (if needed) da_xy, da_yx = da.sel(direction='x->y'), da.sel(direction='y->x') if net: da = xr.concat((da_xy - da_yx, da_xy - da_yx), 'roi') else: da = xr.concat((da_xy, da_yx), 'roi') da, order = _dataarray_unstack(da, sources, targets, roi_tot, fill_value, order, rm_missing) # dataframe conversion if to_dataframe: da = _dataframe_conversion(da, order) return da
bb6747cc47b263545fce219f8357d8773fb428bc
12,125
import shlex import subprocess def cmd_appetite(manifest, extra_params, num_threads=1, delete_logs=False): """Run appetite with defined params :param manifest: manifest to reference :param extra_params: extra params if needed :param num_threads: Number of threads to use :param delete_logs: Delete logs before running :return: output from appetite call """ if delete_logs: delete_log_dir() create_log() cmd = list(COMMON_CMD) + shlex.split("--num-conns %s --apps-manifest %s %s" % ( num_threads, manifest, extra_params)) return subprocess.check_call(cmd, cwd=SCRIPT_PATH, shell=False)
f22fdd1d436f616cac31517c0594d94416ef6366
12,126
def create_manager(user): """ Return a ManageDNS object associated with user (for history) """ if 'REVERSE_ZONE' in app.config: revzone = app.config['REVERSE_ZONE'] else: revzone = None return ManageDNS(nameserver=app.config['SERVER'], forward_zone=app.config['FORWARD_ZONE'], reverse_zone=revzone, user=user, key_name=key_name, key_hash=key_hash)
0832ce4353775a19cc015490f4febf6df6bd8f04
12,127
from datetime import datetime import requests import json import sys import time import operator def rank_urls(urls, year=None, filename=None): """ Takes a list of URLs and searches for them in Hacker News submissions. Prints or saves each URL and its total points to a given filename in descending order of points. Searches for submissions from all years, unless year is given. """ now = datetime.now() if year: if year > now.year: print("Please enter a valid year parameter (example: " + str(now.year) + ") or leave out for all time.") return None else: pass leaderboard = {} count = 0 for url in urls: query = 'http://hn.algolia.com/api/v1/search?query=' + url + '&restrictSearchableAttributes=url' r = requests.get(query) if r: data = json.loads(r.text) total_score = 0 for item in data['hits']: date = item['created_at'][:-5] date = datetime.strptime(date, '%Y-%m-%dT%H:%M:%S') now = datetime.now() if not year: total_score += item['points'] elif date.year != year: pass else: total_score += item['points'] count += 1 progress = (count / len(urls) ) * 100.00 sys.stdout.write(" Progress: %d%% \r" % (progress) ) sys.stdout.flush() leaderboard[url] = total_score time.sleep(1) # Limit to 1 api request per second sorted_leaderboard = reversed(sorted(leaderboard.items(), key=operator.itemgetter(1))) if filename: f = open(filename, 'w') for key, value in sorted_leaderboard: f.write(str(value) + "," + key + '\n') f.close() print('Results saved to ' + filename) else: for key, value in sorted_leaderboard: print(str(value) + "," + key)
80de668d98cfbcca8ca6aeae269d6d2a683ae2d3
12,128
def get_psi_part(v, q): """Return the harmonic oscillator wavefunction for level v on grid q.""" Hr = make_Hr(v + 1) return N(v) * Hr[v](q) * np.exp(-q * q / 2.0)
9d4d6a62b7ee434d5d92a694a4a2491fd8a94f97
12,129
import os def get_tempdir() -> str: """Get the directory where temporary files are stored.""" return next((os.environ[var] for var in ( 'XDG_RUNTIME_DIR', 'TMPDIR', 'TMP', 'TEMP' ) if var in os.environ), '/tmp')
95c90d9f297bbd76e1f083d07058db1b46c275ba
12,130
def get_pij(d, scale, i, optim = "fast"): """ Compute probabilities conditioned on point i from a row of distances d and a Gaussian scale (scale = 2*sigma^2). Vectorized and unvectorized versions available. """ if optim == "none": # # TO BE DONE # return get_pij(d, scale, i, optim = "fast") else: d_scaled = -d/scale d_scaled -= np.max(d_scaled) exp_D = np.exp(d_scaled) exp_D[i] = 0 return exp_D/np.sum(exp_D)
4a1ee1d91ba949789cc96d2ed1873197afbf4b67
12,131
import os import hashlib def hash_file(path): """ Returns the hash of a file. Based on https://stackoverflow.com/questions/22058048/hashing-a-file-in-python """ # Return error as hash, if file does not exist if not os.path.exists(path): return f"error hashing file, file does not exist: {path}" # BUF_SIZE is totally arbitrary, change for your app! BUF_SIZE = 65536 # lets read stuff in 64kb chunks! # Use sha1 sha1 = hashlib.sha1() # Read and hash file (with buffering) with open(path, "rb") as f: while True: data = f.read(BUF_SIZE) if not data: break sha1.update(data) # Return hash return sha1.hexdigest()
722afbe2b6dafa35fbd91b28b4b33d407057b562
12,132
import os import glob import itertools import re def get_section_names(target_dir, dir_name, ext="wav"): """ Get section name (almost equivalent to machine ID). target_dir : str base directory path dir_name : str sub directory name ext : str (default="wav) file extension of audio files return : section_names : list [ str ] list of section names extracted from the names of audio files """ # create test files query = os.path.abspath( "{target_dir}/{dir_name}/*.{ext}".format( target_dir=target_dir, dir_name=dir_name, ext=ext ) ) file_paths = sorted(glob.glob(query)) # extract section names section_names = sorted( list( set( itertools.chain.from_iterable( [re.findall("section_[0-9][0-9]", ext_id) for ext_id in file_paths] ) ) ) ) return section_names
1fea77ad452b936019201ff35fe8479a8ad7efd5
12,133
def get_user_input(prompt: str, current_setting: str): """ Get user input :param prompt: prompt to display :param current_setting: current value :return: """ if current_setting != '': print(f'-- Current setting: {current_setting}') use_current = '/return to use current' else: use_current = '' user_ip = '' while user_ip == '': user_ip = input(f'{prompt} [q to quit{use_current}]: ') if user_ip.lower() == 'q': break if user_ip == '' and current_setting != '': user_ip = current_setting return user_ip
358bd937db4ae111eb515385f0f61391a7ae665c
12,134
def class_is_u16_len(cls): """ Return True if cls_name is an object which uses initial uint16 length """ ofclass = loxi_globals.unified.class_by_name(cls) if not ofclass: return False if len(ofclass.members) < 1: return False m = ofclass.members[0] if not isinstance(m, ir.OFLengthMember): return False if m.oftype != "uint16_t": return False return True
f45a35e98ff0a2cf6d10ac31e5e31b501f7edcfd
12,135
import zlib def uploadfile(ticket_id): """ Anexa um arquivo ao ticket. """ if "file" not in request.files: return "arquivo inválido" filename = request.files.get("file").filename maxfilesize = int(cfg("attachments", "max-size")) blob = b"" filesize = 0 while True: chunk = request.files.get("file").file.read(4096) if not chunk: break chunksize = len(chunk) if filesize + chunksize > maxfilesize: return "erro: arquivo maior do que máximo permitido" filesize += chunksize blob += chunk log.debug(type(blob)) blob = zlib.compress(blob) username = current_user() with db_trans() as c: c.execute( """ insert into files ( ticket_id, name, user, size, contents ) values ( :ticket_id, :filename, :username, :filesize, :blob ) """, { "ticket_id": ticket_id, "filename": filename, "username": username, "filesize": filesize, "blob": blob, }, ) c.execute( """ update tickets set datemodified = datetime('now', 'localtime') where id = :ticket_id """, {"ticket_id": ticket_id}, ) return redirect("/ticket/%s" % ticket_id)
d6dae213ff1b6f48b1cd2efb739e52eba6531692
12,136
def split(data, train_ids, test_ids, valid_ids=None): """Split data into train, test (and validation) subsets.""" datasets = { "train": ( tuple(map(lambda x: x[train_ids], data[0])), data[1][train_ids], ), "test": (tuple(map(lambda x: x[test_ids], data[0])), data[1][test_ids]), } if valid_ids is not None: datasets["valid"] = ( tuple(map(lambda x: x[valid_ids], data[0])), data[1][valid_ids], ) else: datasets["valid"] = None return datasets
0156d39a5920c5ba7e3ab05a85358b1a960cf239
12,137
def parse_value_file(path): """return param: [(value type, value)]""" data = {} samples = [x.strip("\n").split("\t") for x in open(path)] for row in samples: parameter = row[0] values = [x for x in row[1:] if x != SKIP_VAL] if values != []: if parameter not in data: data[parameter] = [] data[parameter] += values return data
7dd51f21877ec8ce4a8a64c288a5e862ea0e2a52
12,138
import os def get_stop_words(stop_text, filename='ChineseStopWords.txt'): """读取指定停用词文件""" _fp = os.path.join(stopwords_path, filename) with open(_fp, 'r', encoding='utf-8') as f: lines = f.readlines() stop_words = [word.strip() for word in lines] if stop_text: input_stop_words = stop_text.strip().split('\n') if input_stop_words: stop_words.extend(input_stop_words) return stop_words
8c5355519e58ddcf82c87c9f357af614b9021188
12,139
def _is_comments_box(shape): """ Checks if this shape represents a Comments question; RECTANGLE with a green outline """ if shape.get('shapeType') != 'RECTANGLE': return False color = get_dict_nested_value(shape, 'shapeProperties', 'outline', 'outlineFill', 'solidFill', 'color', 'rgbColor') return 'blue' not in color and 'red' not in color and 'green' in color and color.get('green') == 1
5fa4abba6cc0db3552e90bd73ea9aa7659665ffe
12,140
import os def read_tree(path): """Returns a dict with {filepath: content}.""" if not os.path.isdir(path): return None out = {} for root, _, filenames in os.walk(path): for filename in filenames: p = os.path.join(root, filename) with open(p, 'rb') as f: out[os.path.relpath(p, path)] = f.read() return out
1c3c7be9723ac9f60ab570a7287b067dd2c5536e
12,141
def get_config(cfg, name): """Given the argument name, read the value from the config file. The name can be multi-level, like 'optimizer.lr' """ name = name.split('.') suffix = '' for item in name: assert item in cfg, f'attribute {item} not cfg{suffix}' cfg = cfg[item] suffix += f'.{item}' return cfg
4b0a8eedb057a26d67cd5c9f7698c33754b29249
12,142
def get_current_frame_content_entire_size(driver): # type: (AnyWebDriver) -> ViewPort """ :return: The size of the entire content. """ try: width, height = driver.execute_script(_JS_GET_CONTENT_ENTIRE_SIZE) except WebDriverException: raise EyesError('Failed to extract entire size!') return dict(width=width, height=height)
6df557ae5f628897a0d178695a13349787532168
12,143
def conv_slim_capsule(input_tensor, input_dim, output_dim, layer_name, input_atoms=8, output_atoms=8, stride=2, kernel_size=5, padding='SAME', **routing_args): """Builds a slim convolutional capsule layer. This layer performs 2D convolution given 5D input tensor of shape `[batch, input_dim, input_atoms, input_height, input_width]`. Then refines the votes with routing and applies Squash non linearity for each capsule. Each capsule in this layer is a convolutional unit and shares its kernel over the position grid and different capsules of layer below. Therefore, number of trainable variables in this layer is: kernel: [kernel_size, kernel_size, input_atoms, output_dim * output_atoms] bias: [output_dim, output_atoms] Output of a conv2d layer is a single capsule with channel number of atoms. Therefore conv_slim_capsule is suitable to be added on top of a conv2d layer with num_routing=1, input_dim=1 and input_atoms=conv_channels. Args: input_tensor: tensor, of rank 5. Last two dimmensions representing height and width position grid. input_dim: scalar, number of capsules in the layer below. output_dim: scalar, number of capsules in this layer. layer_name: string, Name of this layer. input_atoms: scalar, number of units in each capsule of input layer. output_atoms: scalar, number of units in each capsule of output layer. stride: scalar, stride of the convolutional kernel. kernel_size: scalar, convolutional kernels are [kernel_size, kernel_size]. padding: 'SAME' or 'VALID', padding mechanism for convolutional kernels. **routing_args: dictionary {leaky, num_routing}, args to be passed to the update_routing function. Returns: Tensor of activations for this layer of shape `[batch, output_dim, output_atoms, out_height, out_width]`. If padding is 'SAME', out_height = in_height and out_width = in_width. Otherwise, height and width is adjusted with same rules as 'VALID' in tf.nn.conv2d. """ with tf.variable_scope(layer_name): # convolution. return [batch_size, 1, 32, 8, 6, 6] kernel = variables.weight_variable(shape=[ kernel_size, kernel_size, input_atoms, output_dim * output_atoms ]) biases = variables.bias_variable([output_dim, output_atoms, 1, 1]) votes, votes_shape, input_shape = _depthwise_conv3d( input_tensor, kernel, input_dim, output_dim, input_atoms, output_atoms, stride, padding) # convolution End with tf.name_scope('routing'): logit_shape = tf.stack([ input_shape[0], input_dim, output_dim, votes_shape[2], votes_shape[3] ]) biases_replicated = tf.tile(biases, [1, 1, votes_shape[2], votes_shape[3]]) activations = _update_routing( votes=votes, biases=biases_replicated, logit_shape=logit_shape, num_dims=6, input_dim=input_dim, output_dim=output_dim, **routing_args) return activations
626719fa607c7e02e2315d5082e9536b995ab080
12,144
def p_op_mean0_update(prev_p_op_mean0: float, p_op_var0: float, op_choice: int): """0-ToM updates mean choice probability estimate""" # Input variable transforms p_op_var0 = np.exp(p_op_var0) # Update new_p_op_mean0 = prev_p_op_mean0 + p_op_var0 * ( op_choice - inv_logit(prev_p_op_mean0) ) # For numerical purposes, according to the VBA package new_p_op_mean0 = logit(inv_logit(new_p_op_mean0)) return new_p_op_mean0
2a66e0e6089813c8605e658bb68c103d2b07515d
12,145
from aiida.orm import QueryBuilder, Code from aiida.common.exceptions import NotExistent def get_last_code(entry_point_name): """Return a `Code` node of the latest code executable of the given entry_point_name in the database. The database will be queried for the existence of a inpgen node. If this is not exists and NotExistent error is raised. :param entry_point_name: string :return: the uuid of a inpgen `Code` node :raise: aiida.common.exceptions.NotExistent """ filters = {'attributes.input_plugin': {'==': entry_point_name}} builder = QueryBuilder().append(Code, filters=filters) builder.order_by({Code: {'ctime': 'asc'}}) results = builder.first() if not results: raise NotExistent(f'ERROR: Could not find any Code in the database with entry point: {entry_point_name}!') else: inpgen = results[0] return inpgen.uuid
801ef01075dccaf2d6d91c8bfcd9f038dc749ba7
12,146
def digamma(x): """Digamma function. Parameters ---------- x : array-like Points on the real line out : ndarray, optional Output array for the values of `digamma` at `x` Returns ------- ndarray Values of `digamma` at `x` """ return _digamma(x)
fb0eb21ee4255851aaa90bea1ad2b8729c7b0137
12,147
def get_time_index_dataset_from_file(the_file: h5py.File) -> h5py.Dataset: """Return the dataset for time indices from the H5 file object.""" return the_file[TIME_INDICES]
dfcd2017285ac252becbb2de7d1b4c4eb178534e
12,148
import os def get_database_connection(): """Возвращает соединение с базой данных Redis, либо создаёт новый, если он ещё не создан.""" global _database if _database is None: database_password = os.getenv("DB_PASSWORD", default=None) database_host = os.getenv("DB_HOST", default='localhost') database_port = os.getenv("DB_PORT", default=6379) _database = Client( host=database_host, port=database_port, password=database_password, decode_responses=True ) return _database
3417bc17a357a7bcd54131301f3963a10d76e027
12,149
def is_feature_enabled(feature_name): """A short-form method for server-side usage. This method evaluates and returns the values of the feature flag, using context from the server only. Args: feature_name: str. The name of the feature flag that needs to be evaluated. Returns: bool. The value of the feature flag, True if it's enabled. """ return _evaluate_feature_flag_value_for_server(feature_name)
65c3b74988d7eb145352d2835b90a60abedfeba1
12,150
def str_to_size(size_str): """ Receives a human size (i.e. 10GB) and converts to an integer size in mebibytes. Args: size_str (str): human size to be converted to integer Returns: int: formatted size in mebibytes Raises: ValueError: in case size provided in invalid """ if size_str is None: return None # no unit: assume mebibytes as default and convert directly if size_str.isnumeric(): return int(size_str) size_str = size_str.upper() # check if size is non-negative number if size_str.startswith('-'): raise ValueError( 'Invalid size format: {}'.format(size_str)) from None # decimal units are converted to bytes and then to mebibytes dec_units = ('KB', 'MB', 'GB', 'TB') for index, unit in enumerate(dec_units): # unit used is different: try next if not size_str.endswith(unit): continue try: size_int = int(size_str[:-2]) * pow(1000, index+1) except ValueError: raise ValueError( 'Invalid size format: {}'.format(size_str)) from None # result is returned in mebibytes return int(size_int / pow(1024, 2)) # binary units are just divided/multipled by powers of 2 bin_units = ('KIB', 'MIB', 'GIB', 'TIB') for index, unit in enumerate(bin_units): # unit used is different: try next if not size_str.endswith(unit): continue try: size_int = int(int(size_str[:-3]) * pow(1024, index-1)) except ValueError: raise ValueError( 'Invalid size format: {}'.format(size_str)) from None return size_int raise ValueError( 'Invalid size format: {}'.format(size_str)) from None
0051b7cf55d295a4fffcc41ed5b0d900243ef2da
12,151
def point_line_distance(point, line): """Distance between a point and great circle arc on a sphere.""" start, end = line if start == end: dist = great_circle_distance(point, start, r=1)/np.pi*180 else: dist = cross_track_distance(point, line, r=1) dist = abs(dist/np.pi*180) return dist
472b9134034fb0f0e03ad4964f97c2be7337db56
12,152
def uniq_by(array, iteratee=None): """This method is like :func:`uniq` except that it accepts iteratee which is invoked for each element in array to generate the criterion by which uniqueness is computed. The order of result values is determined by the order they occur in the array. The iteratee is invoked with one argument: ``(value)``. Args: array (list): List to process. iteratee (mixed, optional): Function to transform the elements of the arrays. Defaults to :func:`.identity`. Returns: list: Unique list. Example: >>> uniq_by([1, 2, 3, 1, 2, 3], lambda val: val % 2) [1, 2] .. versionadded:: 4.0.0 """ return list(iterunique(array, iteratee=iteratee))
c4398add1597a447f400bd6c100cc10eda4e63a4
12,153
def process_lvq_pak(dataset_name='lvq-pak', kind='all', numeric_labels=True, metadata=None): """ kind: {'test', 'train', 'all'}, default 'all' numeric_labels: boolean (default: True) if set, target is a vector of integers, and label_map is created in the metadata to reflect the mapping to the string targets """ untar_dir = interim_data_path / dataset_name unpack_dir = untar_dir / 'lvq_pak-3.1' if kind == 'train': data, target = read_space_delimited(unpack_dir / 'ex1.dat', skiprows=[0,1]) elif kind == 'test': data, target = read_space_delimited(unpack_dir / 'ex2.dat', skiprows=[0]) elif kind == 'all': data1, target1 = read_space_delimited(unpack_dir / 'ex1.dat', skiprows=[0,1]) data2, target2 = read_space_delimited(unpack_dir / 'ex2.dat', skiprows=[0]) data = np.vstack((data1, data2)) target = np.append(target1, target2) else: raise Exception(f'Unknown kind: {kind}') if numeric_labels: if metadata is None: metadata = {} mapped_target, label_map = normalize_labels(target) metadata['label_map'] = label_map target = mapped_target dset_opts = { 'dataset_name': dataset_name, 'data': data, 'target': target, 'metadata': metadata } return dset_opts
7d9aaed88fb20dc151c61d23760e05e77965838c
12,154
def StrToPtkns(path_string): """ The inverse of PtknsToStr(), this function splits a string like '/usr/local/../bin/awk' into ['usr','local','..','bin','awk']. For illustrative purposes only. Use text.split('/') directly instead.""" return orig_text.split('/')
c6259c2ae34f987d1e6cd8a23bec963c8cd4b466
12,155
def load_key(file, callback=util.passphrase_callback): # type: (AnyStr, Callable) -> EC """ Factory function that instantiates a EC object. :param file: Names the filename that contains the PEM representation of the EC key pair. :param callback: Python callback object that will be invoked if the EC key pair is passphrase-protected. """ with BIO.openfile(file) as bio: return load_key_bio(bio, callback)
72d47a88d80141b385f8212134fb682507ce47d4
12,156
import fnmatch def glob_path_match(path: str, pattern_list: list) -> bool: """ Checks if path is in a list of glob style wildcard paths :param path: path of file / directory :param pattern_list: list of wildcard patterns to check for :return: Boolean """ return any(fnmatch(path, pattern) for pattern in pattern_list)
7c21e8f1c441641990826cf1d6d29d4add40e9ca
12,157
def sample_df(df, col_name='family', n_sample_per_class=120, replace = False): """ samples the dataframe based on a column, duplicates only if the number of initial rows < required sample size """ samples = df.groupby(col_name) list_cls = df[col_name].unique() df_lst = [] for cls in list_cls: cls_df = samples.get_group(cls) if (cls_df.shape[0] < n_sample_per_class) and (replace==False): cls_sample = cls_df else: cls_sample = cls_df.sample(n=n_sample_per_class,replace=replace,random_state=42) df_lst.append(cls_sample) df_sampled = pd.concat(df_lst, sort=False) df_sampled = shuffle(df_sampled) return df_sampled
cc229e9cbd4a094b9a42893f15d99303f1f14c2d
12,158
import base64 def inventory_user_policies_header(encode): """generate output header""" if encode == 'on': return misc.format_line(( base64.b64encode(str("Account")), base64.b64encode(str("UserName")), base64.b64encode(str("PolicyName")), base64.b64encode(str("Policy")) )) else: return misc.format_line(( str("Account"), str("UserName"), str("PolicyName"), str("Policy") ))
80d170505c0f05e48c2854c9f5370d161de953fb
12,159
def fields_dict(cls): """ Return an ordered dictionary of ``attrs`` attributes for a class, whose keys are the attribute names. :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. :rtype: an ordered dict where keys are attribute names and values are `attr.Attribute`\\ s. This will be a `dict` if it's naturally ordered like on Python 3.6+ or an :class:`~collections.OrderedDict` otherwise. .. versionadded:: 18.1.0 """ if not isclass(cls): raise TypeError("Passed object must be a class.") attrs = getattr(cls, "__attrs_attrs__", None) if attrs is None: raise NotAnAttrsClassError( "{cls!r} is not an attrs-decorated class.".format(cls=cls) ) return ordered_dict(((a.name, a) for a in attrs))
863106132a8ce27c8cb12c8ace8f4204b43484c3
12,160
def cdlxsidegap3methods( client, symbol, timeframe="6m", opencol="open", highcol="high", lowcol="low", closecol="close", ): """This will return a dataframe of upside/downside gap three methods for the given symbol across the given timeframe Args: client (pyEX.Client): Client symbol (string): Ticker timeframe (string): timeframe to use, for pyEX.chart opencol (string): column to use to calculate highcol (string): column to use to calculate lowcol (string): column to use to calculate closecol (string): column to use to calculate Returns: DataFrame: result """ df = client.chartDF(symbol, timeframe) val = t.CDLXSIDEGAP3METHODS( df[opencol].values.astype(float), df[highcol].values.astype(float), df[lowcol].values.astype(float), df[closecol].values.astype(float), ) return pd.DataFrame( { opencol: df[opencol].values, highcol: df[highcol].values, lowcol: df[lowcol].values, closecol: df[closecol].values, "cdlxsidegap3methods": val, } )
f77f8e7404b2be942919a652facbfea412e962d3
12,161
def finditer(pattern, string, flags=0): """Return an iterator over all non-overlapping matches in the string. For each match, the iterator returns a match object. Empty matches are included in the result.""" return _pyre().finditer(pattern, string, flags)
ff84f88a200b469bbea010b04d4b3f36fd340c9c
12,162
def nufft_j(x, y, freq = None, period_max=1., period_min=.5/24, window=False, oversamp=10.): """ nufft_j(x, y, period_max=1., period_min=.5/24, window=False, oversamp=10.): Basic STFT algorithm for evenly sampled data """ srt = np.argsort(x) x = x[srt] # get sorted x, y arrays y = y[srt] if freq is None: # Get a good frequency sampling, based on scargle in IDL # freq = LombScargle(x,y).autofrequency() # minimum_frequency=1./period_max,maximum_frequency=1./period_min) freq = freq_grid(x,fmin=1./period_max,fmax=1./period_min,oversamp=oversamp) # create array to hold fft results fft = np.zeros_like(freq) if window: np.absolute(nufft.nufft3(x,y/y,freq*np.pi*2),out=fft) else: np.absolute(nufft.nufft3(x,y-np.nanmean(y),freq*np.pi*2),out=fft) return fft,freq
dc690bd294c28d8b70befc1463eaeed018bf98bf
12,163
import logging def logger(verbosity=levels['error'], log_file=None): """Create a logger which streams to the console, and optionally a file.""" # create/get logger for this instance logger = logging.getLogger(__name__) logger.setLevel(levels['debug']) fmt = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') # with stream (console) handle ch = logging.StreamHandler() ch.setLevel(verbosity) ch.setFormatter(fmt) logger.addHandler(ch) # optionally with file handle if log_file: log_file.setFormatter(fmt) logger.addHandler(log_file) return logger
da17765b4d52b388920873df85fadeeed262c2d7
12,164
import sys def head(input_file, in_format, nrows): """ Convert tables between formats, optionally modifying column names in the tables """ # Guess format if not specified: if in_format.upper() == "AUTO": in_format = utils.guess_format(input_file) # Read PARQUET: if in_format.upper() == "PARQUET": df = pd.read_parquet(input_file) print(df.head(nrows), file=sys.stdout) if in_format.upper() == "TSV" or in_format.upper() == "CSV": df = pd.read_csv( input_file, sep="\t" if in_format.upper() == "TSV" else ",", nrows=nrows ) print(df, file=sys.stdout) elif in_format.upper() == "HDF5": h = h5py.File(input_file, "r") dct = {k: h[k][:nrows] for k in h.keys()} h.close() df = pd.DataFrame.from_dict(dct) print(df, file=sys.stdout) return 0
9ed8b83ea91c48672f3f896cf1c8d1ec12100029
12,165
def getNamespacePermissions(paths): """Get L{Namespace}s and L{NamespacePermission}s for the specified paths. @param paths: A sequence of L{Namespace.path}s to get L{Namespace}s and L{NamespacePermission}s for. @return: A C{ResultSet} yielding C{(Namespace, NamespacePermission)} 2-tuples for the specified L{Namespace.path}s. """ store = getMainStore() return store.find((Namespace, NamespacePermission), NamespacePermission.namespaceID == Namespace.id, Namespace.path.is_in(paths))
cf6c9a898bdc08130702d4aeb6570790a9dc8edc
12,166
def plot(x, y, ey=[], ex=[], frame=[], kind="scatter", marker_option=".", ls="-", lw=1, label="", color="royalblue", zorder=1, alpha=1., output_folder="", filename=""): """ Erstellt einen Plot (plot, scatter oder errorbar). Parameters ---------- x : array-like x-Werte y : array-like y-Werte ey : array_like Fehler auf die y-Werte ex : array_like Fehler auf die x-Werte kind : string Die Art des plots Möglich sind "plot" (default), "scatter" und "errorbar". marker_option : string Definiert die Option marker bei Plottyp "plot" oder "scatter" sowie die Option fmt bei Plottyp "errorbar". ls : string linestyle lw : float linewidth zorder : int Die "Ebene" der zu plottenden Daten return frame """ #error arrays if len(ex)==1: ex = np.ones(len(x))*ex[0] elif ex==[]: ex = np.zeros(len(x)) if len(ey)==1: ey = np.ones(len(y))*ey[0] #plotting fig, plot = plt.subplots(1,1) if frame == [] else frame if kind=="plot": plot.plot(x, y, color=color, marker=marker_option, ls=ls, lw=lw, label=label, zorder=zorder, alpha=alpha) elif kind=="scatter": plot.scatter(x, y, color=color, marker=marker_option, lw=lw, label=label, zorder=zorder, alpha=alpha) elif kind=="errorbar": plot.errorbar(x, y, ey, ex, color=color, fmt=marker_option, ls="", lw=lw, label=label, zorder=zorder, alpha=alpha) elif kind=="bar": plot.bar(x, y, color=color, label=label, zorder=zorder, alpha=alpha) #saving plot if filename!="": fig.savefig(output_folder+filename,bbox_inches='tight',pad_inches=pad_inches) return [fig,plot]
038a12ab841a617bf1ca3106d5664f8942c9e259
12,167
def find_nominal_hv(filename, nominal_gain): """ Finds nominal HV of a measured PMT dataset Parameters ---------- filename: string nominal gain: float gain for which the nominal HV should be found Returns ------- nominal_hv: int nominal HV """ f = h5py.File(filename, "r") gains = [] hvs = [] keys = f.keys() for key in keys: gains.append(f[key]["fit_results"]["gain"][()]) hvs.append(int(key)) f.close() gains = np.array(gains) hvs = np.array(hvs) diff = abs(np.array(gains) - nominal_gain) nominal_hv = int(hvs[diff == np.min(diff)]) return nominal_hv
122c5c14314e1ad3521a67a7b9287969a471818d
12,168
def parse_match(field, tokens): """Parses a match or match_phrase node :arg field: the field we're querying on :arg tokens: list of tokens to consume :returns: list of match clauses """ clauses = [] while tokens and tokens[-1] not in (u'OR', u'AND'): token = tokens.pop() if token.startswith(u'"'): clauses.append(build_match_phrase(field, token[1:-1])) else: clauses.append(build_match(field, token)) return clauses
ac970f319b74317637c31265981ecebab6ca9611
12,169
def get_filesystem(namespace): """ Returns a patched pyfilesystem for static module storage based on `DJFS_SETTINGS`. See `patch_fs` documentation for additional details. The file system will have two additional properties: 1) get_url: A way to get a URL for a static file download 2) expire: A way to expire files (so they are automatically destroyed) """ if DJFS_SETTINGS['type'] == 'osfs': return get_osfs(namespace) elif DJFS_SETTINGS['type'] == 's3fs': return get_s3fs(namespace) else: raise AttributeError("Bad filesystem: " + str(DJFS_SETTINGS['type']))
ae00307c0c38a554bebe1bbd940ace0f2d154b47
12,170
def sym_normalize_adj(adj): """symmetrically normalize adjacency matrix""" adj = sp.coo_matrix(adj) degree = np.array(adj.sum(1)).flatten() d_inv_sqrt = np.power(np.maximum(degree, np.finfo(float).eps), -0.5) d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
a172ec18cd88ac8a50356453eb159c001b21d9b1
12,171
def prepare_label(input_batch, new_size): """Resize masks and perform one-hot encoding. Args: input_batch: input tensor of shape [batch_size H W 1]. new_size: a tensor with new height and width. Returns: Outputs a tensor of shape [batch_size h w 21] with last dimension comprised of 0's and 1's only. """ with tf.name_scope('label_encode'): input_batch = tf.image.resize_nearest_neighbor(input_batch, new_size) # as labels are integer numbers, need to use NN interp. input_batch = tf.squeeze(input_batch, squeeze_dims=[3]) # reducing the channel dimension. input_batch = tf.one_hot(input_batch, depth=n_classes) return input_batch
3cd049b0d610ed2cec79e17464a0b3d18baa0ab2
12,172
def find_index_halfmax(data1d): """ Find the two indices at half maximum for a bell-type curve (non-parametric). Uses center of mass calculation. :param data1d: :return: xmin, xmax """ # normalize data between 0 and 1 data1d = data1d / float(np.max(data1d)) # loop across elements and stops when found 0.5 for i in range(len(data1d)): if data1d[i] > 0.5: break # compute center of mass to get coordinate at 0.5 xmin = i - 1 + (0.5 - data1d[i - 1]) / float(data1d[i] - data1d[i - 1]) # continue for the descending slope for i in range(i, len(data1d)): if data1d[i] < 0.5: break # compute center of mass to get coordinate at 0.5 xmax = i - 1 + (0.5 - data1d[i - 1]) / float(data1d[i] - data1d[i - 1]) # display # import matplotlib.pyplot as plt # plt.figure() # plt.plot(src1d) # plt.plot(xmin, 0.5, 'o') # plt.plot(xmax, 0.5, 'o') # plt.savefig('./normalize1d.png') return xmin, xmax
2bc506075218b34d971beebd1ed6d08b0841aec9
12,173
from typing import Optional def format_autoupdate_jira_msg( message_body: str, header_body: Optional[str] = None ) -> str: """ Format a JIRA message with useful headers. An "Automated JIRA Update" title will be added, as well as either a URL link if a ``BUILD_URL`` env variable is present, or a note indicating a manual run with user id otherwise. Args: message_body: the body of the message header_body: a header to be added with ``h2`` tag Returns: a formatted message with headers """ message = "h2. {}".format(header_body) if header_body else "" message += "\n\nAutomated JIRA Update:\n\n{}\n\n{}".format( _build_source(), message_body ) return message
8470987c886c4c696ebd7537369b9baee9883e20
12,174
def _unescape_token(escaped_token): """Inverse of _escape_token(). Args: escaped_token: a unicode string Returns: token: a unicode string """ def match(m): if m.group(1) is None: return "_" if m.group(0) == "\\u" else "\\" try: return chr(int(m.group(1))) except (ValueError, OverflowError) as _: return "\u3013" # Unicode for undefined character. trimmed = escaped_token[:-1] if escaped_token.endswith("_") else escaped_token return _UNESCAPE_REGEX.sub(match, trimmed)
1e596373f64d2163e467dddf4851e60dba6faa00
12,175
def create_option_learner(action_space: Box) -> _OptionLearnerBase: """Create an option learner given its name.""" if CFG.option_learner == "no_learning": return KnownOptionsOptionLearner() if CFG.option_learner == "oracle": return _OracleOptionLearner() if CFG.option_learner == "direct_bc": return _DirectBehaviorCloningOptionLearner(action_space) if CFG.option_learner == "implicit_bc": return _ImplicitBehaviorCloningOptionLearner(action_space) if CFG.option_learner == "direct_bc_nonparameterized": return _DirectBehaviorCloningOptionLearner(action_space, is_parameterized=False) raise NotImplementedError(f"Unknown option_learner: {CFG.option_learner}")
5642b5c6713dcf3204a0bf98e4435cfb2874e1c6
12,176
def parse_foochow_romanized_phrase(phrase, allow_omit_ingbing = True): """Parse a dash-separated phrase / word in Foochow Romanized.""" syllables = phrase.strip().split('-') result = [] for syllable in syllables: try: parsed = FoochowRomanizedSyllable.from_string(syllable, allow_omit_ingbing) result.append(parsed) except: raise ValueError("%s is not a valid Foochow Romanized syllable.", syllable) return result
d9b5fa15ab11a596e14c7eecff2ce4fc7ef520ae
12,177
def _update(dict_merged: _DepDict, dict_new: _DepDict) -> _DepDict: """ Merge a dictionary `dict_new` into `dict_merged` asserting if there are conflicting (key, value) pair. """ for k, v in dict_new.items(): v = dict_new[k] if k in dict_merged: if v != dict_merged[k]: raise ValueError( "Key '%s' is assigned to different values '%s' and '%s'" % (k, v, dict_merged[k]) ) else: dict_merged[k] = v return dict_merged
8c96256dd96f0a75d8e8cde039c7193699bf763f
12,178
from datetime import datetime def date_convert(value): """ 日期字符串转化为数据库的日期类型 :param value: :return: """ try: create_date = datetime.strptime(value, '%Y/%m/%d').date() except Exception as e: create_date = datetime.now().date() return create_date
40d7a213a8aeed692940bbb285fdad1bbb5b65a6
12,179
def discriminator_txt2img_resnet(input_images, t_txt, is_train=True, reuse=False): """ 64x64 + (txt) --> real/fake """ # https://github.com/hanzhanggit/StackGAN/blob/master/stageI/model.py # Discriminator with ResNet : line 197 https://github.com/reedscot/icml2016/blob/master/main_cls.lua w_init = tf.random_normal_initializer(stddev=0.02) gamma_init=tf.random_normal_initializer(1., 0.02) df_dim = 64 # 64 for flower, 196 for MSCOCO s = 64 # output image size [64] s2, s4, s8, s16 = int(s / 2), int(s / 4), int(s / 8), int(s / 16) tl.layers.set_name_reuse(reuse) net_in = Input(input_images) net_h0 = Conv2d(df_dim, (4, 4), (2, 2), act=lambda x: tl.act.lrelu(x, 0.2), padding='SAME', W_init=w_init, name='d_h0/conv2d')(net_in) net_h1 = Conv2d(df_dim * 2, (4, 4), (2, 2), act=None, padding='SAME', W_init=w_init, b_init=None, name='d_h1/conv2d')(net_h0) net_h1 = BatchNorm(act=lambda x: tl.act.lrelu(x, 0.2), is_train=is_train, gamma_init=gamma_init, name='d_h1/batchnorm')(net_h1) net_h2 = Conv2d(df_dim * 4, (4, 4), (2, 2), act=None, padding='SAME', W_init=w_init, b_init=None, name='d_h2/conv2d')(net_h1) net_h2 = BatchNorm(act=lambda x: tl.act.lrelu(x, 0.2), is_train=is_train, gamma_init=gamma_init, name='d_h2/batchnorm')(net_h2) net_h3 = Conv2d(df_dim * 8, (4, 4), (2, 2), act=None, padding='SAME', W_init=w_init, b_init=None, name='d_h3/conv2d')(net_h2) net_h3 = BatchNorm(is_train=is_train, gamma_init=gamma_init, name='d_h3/batchnorm')(net_h3) net = Conv2d(df_dim * 2, (1, 1), (1, 1), act=None, padding='VALID', W_init=w_init, b_init=None, name='d_h4_res/conv2d')(net_h3) net = BatchNorm(act=lambda x: tl.act.lrelu(x, 0.2), is_train=is_train, gamma_init=gamma_init, name='d_h4_res/batchnorm')(net) net = Conv2d(df_dim * 2, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=None, name='d_h4_res/conv2d2')(net) net = BatchNorm(act=lambda x: tl.act.lrelu(x, 0.2), is_train=is_train, gamma_init=gamma_init, name='d_h4_res/batchnorm2')(net) net = Conv2d(df_dim * 8, (3, 3), (1, 1), act=None, padding='SAME', W_init=w_init, b_init=None, name='d_h4_res/conv2d3')(net) net = BatchNorm(is_train=is_train, gamma_init=gamma_init, name='d_h4_res/batchnorm3')(net) net_h4 = Elementwise(act=lambda x: tl.act.lrelu(x, 0.2), combine_fn=tf.add, name='d_h4/add')([net_h3, net]) # net_h4.outputs = tl.act.lrelu(net_h4.outputs, 0.2) if t_txt is not None: net_in2 = Input(t_txt) #net_txt = Dense(n_units=t_dim, act=lambda x: tl.act.lrelu(x, 0.2), W_init=w_init, name='d_reduce_txt/dense')(net_txt) net_txt = ExpandDims(1, name='d_txt/expanddim1')(net_in2) net_txt = ExpandDims(1, name='d_txt/expanddim2')(net_txt) net_txt = Tile([1, 4, 4, 1], name='d_txt/tile')(net_txt) net_h4_concat = Concat(concat_dim=3, name='d_h3_concat')([net_h4, net_txt]) # 243 (ndf*8 + 128 or 256) x 4 x 4 net_h4 = Conv2d(df_dim * 8, (1, 1), (1, 1), padding='VALID', W_init=w_init, b_init=None, name='d_h3/conv2d_2')(net_h4_concat) net_h4 = BatchNorm(act=lambda x: tl.act.lrelu(x, 0.2), is_train=is_train, gamma_init=gamma_init, name='d_h3/batch_norm_2')(net_h4) net_ho = Conv2d(1, (s16, s16), (s16, s16), act=tf.nn.sigmoid, padding='VALID', W_init=w_init, name='d_ho/conv2d')(net_h4) # 1 x 1 x 1 net_ho = Flatten()(net_ho) # logits = net_ho.outputs # net_ho.outputs = tf.nn.sigmoid(net_ho.outputs) return tl.models.Model(inputs=[net_in,net_in2], outputs=net_ho)
200d23ccffe631ea9bea2de5afa82a1794192a7b
12,180
import imghdr def get_img_content(session, file_url, extension=None, max_retry=3, req_timeout=5): """ Returns: (data, actual_ext) """ retry = max_retry while retry > 0: try: response = session.get(file_url, timeout=req_timeout) except Exception as e: print(f'Exception caught when downloading file {file_url}, ' f'error: {e}, remaining retry times: {retry - 1}') else: if response.status_code != 200: print(f'Response status code {response.status_code}, ' f'file {file_url}') break # get the response byte data = response.content if isinstance(data, str): print('Converting str to byte, later remove it.') data = data.encode(data) actual_ext = imghdr.what(extension, data) actual_ext = 'jpg' if actual_ext == 'jpeg' else actual_ext # do not download original gif if actual_ext == 'gif' or actual_ext is None: return None, actual_ext return data, actual_ext finally: retry -= 1 return None, None
156005420ebc1503d5cf7a194051b93d9fccb8ed
12,181
import urllib def nextbus(a, r, c="vehicleLocations", e=0): """Returns the most recent latitude and longitude of the selected bus line using the NextBus API (nbapi)""" nbapi = "http://webservices.nextbus.com" nbapi += "/service/publicXMLFeed?" nbapi += "command=%s&a=%s&r=%s&t=%s" % (c,a,r,e) xml = minidom.parse(urllib.urlopen(nbapi)) bus=xml.getElementsByTagName("vehicle") if bus: at = bus.attributes return(at["lat"].value, at["lon"].value) else: return (False, False)
13d1d26fcda1ad01e145dc1d1d0d4e5377efa576
12,182
def xml_translate(callback, value): """ Translate an XML value (string), using `callback` for translating text appearing in `value`. """ if not value: return value try: root = parse_xml(value) result = translate_xml_node(root, callback, parse_xml, serialize_xml) return serialize_xml(result) except etree.ParseError: # fallback for translated terms: use an HTML parser and wrap the term root = parse_html(u"<div>%s</div>" % value) result = translate_xml_node(root, callback, parse_xml, serialize_xml) # remove tags <div> and </div> from result return serialize_xml(result)[5:-6]
b95f61fd1f78d567f69bdae3f5d0a1599d7b5cdc
12,183
def check_sc_sa_pairs(tb, pr_sc, pr_sa, ): """ Check whether pr_sc, pr_sa are allowed pairs or not. agg_ops = ['', 'MAX', 'MIN', 'COUNT', 'SUM', 'AVG'] """ bS = len(pr_sc) check = [False] * bS for b, pr_sc1 in enumerate(pr_sc): pr_sa1 = pr_sa[b] hd_types1 = tb[b]['types'] hd_types11 = hd_types1[pr_sc1] if hd_types11 == 'text': if pr_sa1 == 0 or pr_sa1 == 3: # '' check[b] = True else: check[b] = False elif hd_types11 == 'real': check[b] = True else: raise Exception("New TYPE!!") return check
ded05192f26516e54e469bb1fe44ff6170ecea13
12,184
def translate_resource_args(func): """ Decorator that converts Issue and Project resources to their keys when used as arguments. """ @wraps(func) def wrapper(*args, **kwargs): arg_list = [] for arg in args: if isinstance(arg, (Issue, Project)): arg_list.append(arg.key) else: arg_list.append(arg) result = func(*arg_list, **kwargs) return result return wrapper
091c2bbc2875f32c643afe0a88ddb5980ff9f90c
12,185
def nan_jumps_dlc(files, max_jump=200): """Nan stretches in between large jumps, assuming most of the trace is correct""" # copy the data corrected_trace = files.copy() # get the column names column_names = corrected_trace.columns # run through the columns for column in column_names: # skip the index column if it's there if column == 'index': continue # find the jumps jump_length = np.diff(corrected_trace[column], axis=0) jump_location = np.argwhere(abs(jump_length) > max_jump) if jump_location.shape[0] == 0: continue jump_location = [el[0] for el in jump_location] # initialize a flag pair_flag = True # go through pairs of jumps for idx, jump in enumerate(jump_location[:-1]): # if this is the second member of a pair, skip if not pair_flag: # reset the pair flag pair_flag = True continue # if this jump and the next have the same sign, skip if (jump_length[jump]*jump_length[jump_location[idx+1]]) > 0: continue # nan the segment in between corrected_trace.loc[jump+1:jump_location[idx+1]+1, column] = np.nan # set the pair flag pair_flag = False return corrected_trace
5c06e6d020c4b85f2749d46f693dc29fd4f8326c
12,186
def index(): """View: Site Index Page""" return render_template("pages/index.html")
045c45082215bbc6888944386ba901af7412b0a6
12,187
from typing import Optional import aiohttp import urllib import hashlib async def get_latest_digest_from_registry( repository: str, tag: str, credentials: Optional[meadowrun.credentials.RawCredentials], ) -> str: """ Queries the Docker Registry HTTP API to get the current digest of the specified repository:tag. The output of this function should always match the output of `docker inspect --format='{{.RepoDigests}}' [repository]:[tag]` AFTER calling `docker pull [repository]:[tag]`. Example output is something like sha256:76eaa9e5bd357d6983a88ddc9c4545ef4ad64c50f84f081ba952c7ed08e3bdd6. Note that this hash is also part of the output when `docker pull` is run. This function gets the latest version of that hash without pulling the image first. The docker command line/client does not provide this capability (https://stackoverflow.com/questions/56178911/how-to-obtain-docker-image-digest-from-tag/56178979#56178979), so we have to resort to the Docker Registry HTTP API. Note that we could also use skopeo for this: https://github.com/containers/skopeo The functionality we're implementing is exactly the same as `skopeo inspect [repository]:[tag]` and then reading the "digest" field. """ # The correct implementation is to read the manifest for a repository/tag and # compute the sha256 hash of the content of the manifest. # # At the time of writing this comment, the accepted answers on the first couple # Google results on this topic were out of date, incomplete, or incorrect: # # https://stackoverflow.com/questions/39375421/can-i-get-an-image-digest-without-downloading-the-image/39376254#39376254 # https://stackoverflow.com/questions/41808763/how-to-determine-the-docker-image-id-for-a-tag-via-docker-hub-api/41830007#41830007 # https://ops.tips/blog/inspecting-docker-image-without-pull/ # # Part of the confusion seems to be that there are many different digests for the # sub-parts of the image (e.g. for different architectures, different layers, # etc.). We only care about the digest that we get from `docker inspect` (as # described above) because this is what we'll use to figure out if we have the # latest version of the image or not. Correctness can be easily verified using the # docker command line as described above. # # Reading the docker-content-digest header in the response is an alternative to # computing the hash ourselves, but this header is not in the responses from AWS # ECR. registry_domain, repository = get_registry_domain(repository) manifests_url = f"https://{registry_domain}/v2/{repository}/manifests/{tag}" headers = {"Accept": _MANIFEST_ACCEPT_HEADER_FOR_DIGEST} if credentials is None: basic_auth = None elif isinstance(credentials, meadowrun.credentials.UsernamePassword): basic_auth = aiohttp.BasicAuth(credentials.username, credentials.password) else: raise ValueError(f"Unexpected type of credentials {type(credentials)}") manifests_text: Optional[bytes] = None # First, try requesting the manifest without any authentication. It might work, and # if it doesn't, the response will tell us how the authentication should work. # TODO add logic to "remember" which repositories require what kinds of # authentication, as well as potentially tokens as well async with aiohttp.request("GET", manifests_url, headers=headers) as response: if response.ok: manifests_text = await response.read() else: # Regardless of the type of error, try again with authentication as long as # we have a www-authenticate header. response.headers is case insensitive: if "www-authenticate" not in response.headers: # we don't know how to authenticate, so just propagate the error response.raise_for_status() authentication_header = response.headers["www-authenticate"] authentication_header_error_message = ( "Don't know how to interpret authentication header " + authentication_header ) scheme, space, auth_params = authentication_header.partition(" ") if not space: raise ValueError(authentication_header_error_message) elif scheme.lower() == "basic": if basic_auth is None: raise ValueError( f"Basic auth is required to access {manifests_url} but no " "username/password was provided" ) # We've already set the basic_auth variable above, so we'll leave it as # is so that it gets used directly in the next request for the manifest # below. elif scheme.lower() == "bearer": # For bearer auth, we need to request a token. Parsing the # www-authenticate header should tell us everything we need to know to # construct the request for the token. Example of a www-authenticate # header is # `Bearer realm="https://auth.docker.io/token",service="registry.docker.io",scope="repository:library/python:pull"` # noqa E501 auth_params_parsed = urllib.request.parse_keqv_list( urllib.request.parse_http_list(auth_params) ) # a bit hacky, but we're going to use auth_params to create the query # string, so we remove realm from it because that's the only one we # don't need # TODO should this be case insensitive? realm = auth_params_parsed["realm"] del auth_params_parsed["realm"] token_request_url = ( f"{realm}?{urllib.parse.urlencode(auth_params_parsed)}" ) # Even if no username_password was provided (i.e. basic_auth is None) # it's worth trying this. E.g. DockerHub requires an anonymous token for # public repositories async with aiohttp.request( "GET", token_request_url, auth=basic_auth ) as token_response: if not token_response.ok: token_response.raise_for_status() # TODO should this be case insensitive? token = (await token_response.json())["token"] # Now we add the Bearer token to headers which will get used in the # next request for the manifest. We also need to unset basic_auth as # we've used that to get the token, and it should not be used in # subsequent requests. headers["Authorization"] = f"Bearer {token}" basic_auth = None else: raise ValueError(authentication_header_error_message) # now exactly one of basic_auth or headers["Authorization"] should be set async with aiohttp.request( "GET", manifests_url, headers=headers, auth=basic_auth ) as response_authenticated: if not response_authenticated.ok: response_authenticated.raise_for_status() manifests_text = await response_authenticated.read() if not manifests_text: raise ValueError( "Programming error: manifests_text should not be None/empty string" ) # compute the digest from the manifest text digest = hashlib.sha256(manifests_text).hexdigest() return f"sha256:{digest}" # TODO test case where image doesn't exist
95b0044d5c6e744f548891c1f78115eb40ddaf4c
12,188
def histogram(x, bins, bandwidth, epsilon=1e-10): """ Function that estimates the histogram of the input tensor. The calculation uses kernel density estimation which requires a bandwidth (smoothing) parameter. """ pdf, _ = marginal_pdf(x.unsqueeze(2), bins, bandwidth, epsilon) return pdf
bee459eb69daf41ccb0f2810d5e88139f57cad87
12,189
import re import os def file_deal(paths, set_list: list, list_search: list, list_enter: list, file_path: dict, clear_list: bool = False, pattern=r'^[.\n]*$', is_file=True, replace_str: str = '', names: dict = None): """ :param clear_list: is need clear the list :param paths: DirPicker path or FilePicker files :param set_list: the list save the keys :param list_search: the list to search :param list_enter: the list to show :param file_path: the dict of loaded files :param pattern: the pattern of the base_filename :param is_file: a bool of the load type bool True->FilePicker,False->DirPicker :param replace_str: the need replace string in the base filename :param names: the Chinese-base_name dict :return: if do not raise any error and worked bool->True,else bool->False """ try: if names is None: names = {} pattern_re = re.compile(pattern) if not is_file: dict_path = paths.copy() paths = paths.keys() num = len(paths) else: dict_path = {} num = len(set_list) if clear_list: set_list.clear() list_enter.clear() list_search.clear() num = 0 if not len(paths) == 0: path = filter(lambda x: pattern_re.match(os.path.basename(x)) is not None, paths) path = list(path) info_write = info_write_builder(is_file, dict_path, replace_str, set_list, file_path, list_enter, names, list_search) path_len = len(path) paths = zip(path, range(path_len)) paths = list(paths) num += len(list(map(info_write, list(paths)))) if path_len == 0: return False, '导入完成,无新增项!' else: return False, '导入失败,无导入项!' except (TypeError, KeyError, RuntimeError)as info: return False, '导入失败,发生错误!%s' % info else: return True, '导入成功! 成功导入%d个!' % num
a34dbfe7c968626aca5c68e6aa2c0287ebd7146f
12,190
def generate_kam( kam_path: str ) -> nx.DiGraph: """ Generates the knowledge assembly model as a NetworkX graph. :param kam_path: Path to the file containing the source, relationship and the target nodes of a knowledge assembly model (KAM). :return: KAM graph as a NetworkX DiGraph. """ # Read the file containing the kam file kam_df = pd.read_csv(kam_path, sep='\t', header=None) # Rename the column headers are Source, Relationship and Target kam_df.columns = ['Source', 'Relationship', 'Target'] # Map relationships between the nodes as either +1 or -1 based on the interaction rlsp_mapping = { 'activates': 1, 'inhibits': -1 } # Add the data to a directed graph kam = nx.DiGraph() for edge in kam_df.index: kam.add_edge( kam_df.at[edge, 'Source'], kam_df.at[edge, 'Target'], effect=rlsp_mapping[kam_df.at[edge, 'Relationship']] ) return kam
54f6e6cc0440a9b81cb48078030943013e599847
12,191
def toDrive(collection, folder, namePattern='{id}', scale=30, dataType="float", region=None, datePattern=None, extra=None, verbose=False, **kwargs): """ Upload all images from one collection to Google Drive. You can use the same arguments as the original function ee.batch.export.image.toDrive :param collection: Collection to upload :type collection: ee.ImageCollection :param folder: Google Drive folder to export the images to :type folder: str :param namePattern: pattern for the name. See make_name function :type namePattern: str :param region: area to upload. Defualt to the footprint of the first image in the collection :type region: ee.Geometry.Rectangle or ee.Feature :param scale: scale of the image (side of one pixel). Defults to 30 (Landsat resolution) :type scale: int :param maxImgs: maximum number of images inside the collection :type maxImgs: int :param dataType: as downloaded images **must** have the same data type in all bands, you have to set it here. Can be one of: "float", "double", "int", "Uint8", "Int8" or a casting function like *ee.Image.toFloat* :type dataType: str :param datePattern: pattern for date if specified in namePattern. Defaults to 'yyyyMMdd' :type datePattern: str :return: list of tasks :rtype: list """ # empty tasks list tasklist = [] # get region region = tools.geometry.getRegion(region) # Make a list of images img_list = collection.toList(collection.size()) n = 0 while True: try: img = ee.Image(img_list.get(n)) name = makeName(img, namePattern, datePattern, extra) name = name.getInfo() description = utils.matchDescription(name) # convert data type img = utils.convertDataType(dataType)(img) task = ee.batch.Export.image.toDrive(image=img, description=description, folder=folder, fileNamePrefix=name, region=region, scale=scale, **kwargs) task.start() if verbose: print("exporting {} to folder '{}' in GDrive".format(name, folder)) tasklist.append(task) n += 1 except Exception as e: error = str(e).split(':') if error[0] == 'List.get': break else: raise e return tasklist
2bf55de8894a063d2e74a462a3959753a1396c0a
12,192
def area(box): """Computes area of boxes. B: batch_size N: number of boxes Args: box: a float Tensor with [N, 4], or [B, N, 4]. Returns: a float Tensor with [N], or [B, N] """ with tf.name_scope('Area'): y_min, x_min, y_max, x_max = tf.split( value=box, num_or_size_splits=4, axis=-1) return tf.squeeze((y_max - y_min) * (x_max - x_min), axis=-1)
64e7a8e530d28a6c88f8a1c7fd2bb1b6d880617c
12,193
def read(fn): """ return a list of the operating systems and a list of the groups in the given fingerbank config file """ cfg = parse_config_with_heredocs(fn) return create_systems_and_groups(cfg)
900e70093e469527f20f7be6ed091edf58ff3ace
12,194
def decay_value(base_value, decay_rate, decay_steps, step): """ decay base_value by decay_rate every decay_steps :param base_value: :param decay_rate: :param decay_steps: :param step: :return: decayed value """ return base_value*decay_rate**(step/decay_steps)
c593f5e46d7687fbdf9760eb10be06dca3fb6f7b
12,195
def setup_flask_app(manager_ip='localhost', driver='', hash_salt=None, secret_key=None): """Setup a functioning flask app, when working outside the rest-service :param manager_ip: The IP of the manager :param driver: SQLA driver for postgres (e.g. pg8000) :param hash_salt: The salt to be used when creating user passwords :param secret_key: Secret key used when hashing flask tokens :return: A Flask app """ app = Flask(__name__) manager_config.load_configuration(from_db=False) with app.app_context(): app.config['SQLALCHEMY_DATABASE_URI'] = manager_config.db_url app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['ENV'] = 'production' set_flask_security_config(app, hash_salt, secret_key) Security(app=app, datastore=user_datastore) Migrate(app=app, db=db) db.init_app(app) app.app_context().push() return app
ca71e94dcfcc4949abc4782a74cd67ce1d089d06
12,196
import shutil def download_file(file_id, unique_id, credentials): """Downloads a file from google drive if user has been authenticated using oauth2 Args: file_id (str): [The google drive id of the file] unique_id (str): [The name of the video that is to be used for stored file] Returns: bool: [whether the file has been successfully downloaded or not] """ http = credentials.authorize(httplib2.Http()) service = discovery.build("drive", "v3", http=http) request = service.files().get_media(fileId=file_id) fh = BytesIO() # Initialise a downloader object to download the file # Downloads in chunks of 2MB downloader = MediaIoBaseDownload(fh, request, chunksize=2048000) done = False try: # Download the data in chunks while not done: status, done = downloader.next_chunk() fh.seek(0) # Write the received data to the file with open(f"./{videos_dir}/{unique_id}", "wb") as f: shutil.copyfileobj(fh, f) print("File Downloaded") # Return True if file Downloaded successfully return True except Exception as e: print(str(e)) # Return False if something went wrong print("Something went wrong.") return False
ae1f0e9648602737a295ac313f3984d31c51fc7e
12,197
def join_lines(new_lines, txt): """Joins lines, adding a trailing return if the original text had one.""" return add_ending('\n'.join(new_lines), txt)
097fccf3ce6a7a5aab9d4f470c35833af3f63836
12,198
def get_components_with_metrics(config): """ :type: config mycroft_holmes.config.Config """ storage = MetricsStorage(config=config) components = [] for feature_name, feature_spec in config.get_features().items(): feature_id = config.get_feature_id(feature_name) metrics = config.get_metrics_for_feature(feature_name) try: score = storage.get(feature_id, feature_metric='score') except MycroftMetricsStorageError: score = None component = { 'id': feature_id, # feature's metadata 'name': feature_name, 'docs': feature_spec.get('url'), 'repo': feature_spec.get('repo'), # fetch metrics and calculated score 'metrics': metrics, 'score': score or 0, # always an int, as we sort latter on # link to a feature's dashboard 'url': url_for('dashboard.feature', feature_id=feature_id, _external=True), } components.append(component) # sort components by score (descending) components = sorted(components, key=lambda item: item['score'], reverse=True) return components
478743f29620530d7c4d7ca916ec595fa7a1ab3b
12,199