content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import types def parse_container_args(field_type: type) -> types.Union[ParamType, types.Tuple[ParamType]]: """Parses the arguments inside a container type (lists, tuples and so on). Args: field_type (type): pydantic field type Returns: types.Union[ParamType, types.Tuple[ParamType]]: single click-compatible type or a tuple """ assert is_container(field_type), "Field type is not a container" args = types.get_args(field_type) # Early out for untyped containers: standard lists, tuples, List[Any] # Use strings when the type is unknown, avoid click's type guessing if len(args) == 0: return str # Early out for homogenous containers: Tuple[int], List[str] if len(args) == 1: return parse_single_arg(args[0]) # Early out for homogenous tuples of indefinite length: Tuple[int, ...] if len(args) == 2 and args[1] is Ellipsis: return parse_single_arg(args[0]) # Then deal with fixed-length containers: Tuple[str, int, int] return tuple(parse_single_arg(arg) for arg in args)
925ceab7886f47c41ed5b3189693db2a28c37db1
12,200
def decrypt_from_base64(ciphertext_bs64, decrypt_key: str , iv : str) -> str: """From base64 ciphertext decrypt to string. """ aes: AES_Turbe = AES_Turbe(decrypt_key,iv) content_str = aes.decrypt_from_base64(ciphertext_bs64) return content_str
67c4e1bb610b4a28d6fc563b910e86554779f1f2
12,201
def _resize_data(image, mask): """Resizes images to smaller dimensions.""" image = tf.image.resize_images(image, [480, 640]) mask = tf.image.resize_images(mask, [480, 640]) return image, mask
47961541bf903c8b84066766529bf28d268eaa36
12,202
def dist_Mpc_to_geo(dist): """convert distance from Mpc to geometric units (i.e., metres)""" return dist * Mpc
d023b80da73420f5499be0eb14f4d2e515e54627
12,203
def upload_to_bucket(file_path, filename): """ Upload file to S3 bucket """ s3_client = boto3.client('s3') success = False try: response = s3_client.upload_file(file_path, AWS_S3_BUCKET_NAME, filename) success = True except ClientError as e: logger.error('Error at %s', 'boto3.exceptions.ClientError', exc_info=e) return success
630937591307d9ec55fe606b2e199b1219139bcb
12,204
import os def osqueryd_log_parser(osqueryd_logdir=None, backuplogdir=None, maxlogfilesizethreshold=None, logfilethresholdinbytes=None, backuplogfilescount=None, enablediskstatslogging=False, topfile_for_mask=None, mask_passwords=False): """ Parse osquery daemon logs and perform log rotation based on specified parameters osqueryd_logdir Directory path where osquery result and snapshot logs would be created backuplogdir Directory path where hubble should create log file backups post log rotation maxlogfilesizethreshold Log file size threshold in bytes. If osquery log file size is greter than this value, then logs will only be roatated but not parsed logfilethresholdinbytes Log file size threshold in bytes. If osquery log file is greter than this value, then log rotation will be done once logs have been processed backuplogfilescount Number of log file backups to keep enablediskstatslogging Enable logging of disk usage of /var/log partition. Default is False topfile_for_mask This is the location of the top file from which the masking information will be extracted mask_passwords Defaults to False. If set to True, passwords mentioned in the return object are masked """ ret = [] if not osqueryd_logdir: osqueryd_logdir = __opts__.get('osquerylogpath') result_logfile = os.path.normpath(os.path.join(osqueryd_logdir, 'osqueryd.results.log')) snapshot_logfile = os.path.normpath(os.path.join(osqueryd_logdir, 'osqueryd.snapshots.log')) log.debug("Result log file resolved to: %s", result_logfile) log.debug("Snapshot log file resolved to: %s", snapshot_logfile) backuplogdir = backuplogdir or __opts__.get('osquerylog_backupdir') logfilethresholdinbytes = logfilethresholdinbytes or __opts__.get('osquery_logfile_maxbytes') maxlogfilesizethreshold = maxlogfilesizethreshold or __opts__.get( 'osquery_logfile_maxbytes_toparse') backuplogfilescount = backuplogfilescount or __opts__.get('osquery_backuplogs_count') if os.path.exists(result_logfile): logfile_offset = _get_file_offset(result_logfile) event_data = _parse_log(result_logfile, logfile_offset, backuplogdir, logfilethresholdinbytes, maxlogfilesizethreshold, backuplogfilescount, enablediskstatslogging) if event_data: ret += event_data else: log.warn("Specified osquery result log file doesn't exist: %s", result_logfile) if os.path.exists(snapshot_logfile): logfile_offset = _get_file_offset(snapshot_logfile) event_data = _parse_log(snapshot_logfile, logfile_offset, backuplogdir, logfilethresholdinbytes, maxlogfilesizethreshold, backuplogfilescount, enablediskstatslogging) if event_data: ret += event_data else: log.warn("Specified osquery snapshot log file doesn't exist: %s", snapshot_logfile) ret = _update_event_data(ret) if mask_passwords: log.info("Perform masking") _mask_object(ret, topfile_for_mask) return ret
96428f3984b688b3a55c5d5b37087fcec97c12f4
12,205
import os def get_filenames(data_dir, mode, valid_id, pred_id, overlap_step, patch_size): """Returns a list of filenames.""" if mode == 'train': train_files = [ os.path.join(data_dir, 'subject-%d.tfrecords' % i) for i in range(1, 11) if i != valid_id ] for f in train_files: assert os.path.isfile(f), \ ('Run generate_tfrecord.py to generate training files.') return train_files elif mode == 'valid': valid_file = os.path.join(data_dir, 'subject-%d-valid-%d-patch-%d.tfrecords' % (valid_id, overlap_step, patch_size)) assert os.path.isfile(valid_file), \ ('Run generate_tfrecord.py to generate the validation file.') return [valid_file] elif mode == 'pred': pred_file = os.path.join(data_dir, 'subject-%d-pred-%d-patch-%d.tfrecords' % (pred_id, overlap_step, patch_size)) assert os.path.isfile(pred_file), \ ('Run generate_tfrecord.py to generate the prediction file.') return [pred_file]
255a89254c860d7bbd7941da017e7e015406cf8d
12,206
def downsample_data( data, factor, hdr ): """Resample data and update the header appropriately If factor < 1, this is *upsampling*. Use this function to just return the data and hdr parts in case you want to do further operations prior to saving. order=3 appears to crash Python 64-bit on Windows when the image is very large (800x500x500) and the method is trilinear. Order=1 works. """ fraction = 1.0 / factor # ds_data = ndimage.interpolation.zoom(data, zoom=fraction, order=1) # default order=3 # order=3 default # order=1 for very high-resolution images (default crashes) # order=0 for nearest neighbour if len(data.shape) > 3: print(" Data shape is {0}. Only the first three dimensions will be considered! (The output will be 3D: data[:,:,:,0])".format(data.shape)) ds_data = ndimage.interpolation.zoom(data[:,:,:,0], zoom=fraction, order=0) else: ds_data = ndimage.interpolation.zoom(data, zoom=fraction, order=0) ds_hdr = copy.deepcopy(hdr) ds_hdr.set_data_shape(ds_data.shape) new_pixdims = hdr.structarr['pixdim'][1:4] * factor print("Pixdims old: {0}, new: {1}.".format(hdr.structarr['pixdim'][1:4], new_pixdims)) ds_hdr.structarr['pixdim'][1:4] = new_pixdims sform_old = hdr.get_sform() print sform_old resampling_affine = create_affine(trans=[factor,factor,factor], scale=[factor, factor, factor]) # Create the new sform matrix sform_new = sform_old.dot(resampling_affine) # Keep the exact-same translation elements sform_new[0:3,3] = sform_old[0:3,3] print sform_new ds_hdr.set_sform(sform_new) # hdr_new.set_sform(np.eye(4)) # hdr_new['srow_x'][0] = hdr_new['pixdim'][1] # hdr_new['srow_y'][1] = hdr_new['pixdim'][2] # hdr_new['srow_z'][2] = hdr_new['pixdim'][3] # hdr_new.get_sform() # hdr_new['srow_x'][3] = hdr_new['pixdim'][1] # hdr_new['srow_y'][3] = hdr_new['pixdim'][2] # hdr_new['srow_z'][3] = hdr_new['pixdim'][3] return ds_data, ds_hdr # End of downsample_data() definition
889e698531255b862fe407d5ce64a3ed54b44c44
12,207
def check_if_present(driver: webdriver.Firefox, selector: str): """ Checks if element is present on page by css selector """ return bool(driver.find_elements_by_css_selector(selector))
9cc4ebf92908ed8ef392cc20697734d553eb6db0
12,208
import glob import os def list_pdf_paths(pdf_folder): """ list of pdf paths in pdf folder """ return glob(os.path.join(pdf_folder, '*', '*', '*.pdf'))
793629d3fbbc9c072f1b1bedbd374e10a1d88781
12,209
def cmi(x, y, z, k=3, base=2): """Mutual information of x and y, conditioned on z x,y,z should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]] if x is a one-dimensional scalar and we have four samples """ assert len(x)==len(y), 'Lists should have same length.' assert k <= len(x) - 1, 'Set k smaller than num samples - 1.' intens = 1e-10 # Small noise to break degeneracy, see doc. x = [list(p + intens*nr.rand(len(x[0]))) for p in x] y = [list(p + intens*nr.rand(len(y[0]))) for p in y] z = [list(p + intens*nr.rand(len(z[0]))) for p in z] points = zip2(x,y,z) # Find nearest neighbors in joint space, p=inf means max-norm. tree = ss.cKDTree(points) dvec = [tree.query(point, k+1, p=float('inf'))[0][k] for point in points] a = avgdigamma(zip2(x,z), dvec) b = avgdigamma(zip2(y,z), dvec) c = avgdigamma(z,dvec) d = digamma(k) return (-a-b+c+d) / log(base)
b79a39dbe98202fedf4f572148cdce81c6608e3c
12,210
def connected_plate(): """Detects which plate from the PMA is connected to the device. Returns: FirmwareDeviceID: device ID of the connected plate. None if not detected """ for plate_id in ( FirmwareDeviceID.pt4_foundation_plate, FirmwareDeviceID.pt4_expansion_plate, ): status = __get_fw_device_status(plate_id) if status.get("connected") is True: return plate_id return None
4db471df81d63aa3c60f24b50fc25cef452db2d7
12,211
def islogin(_a=None): """ 是否已经登录,如果已经登录返回token,否则False """ if _a is None: global a else: a = _a x=a.get(DOMAIN+"/apps/files/desktop/own",o=True) t=a.b.find("input",{"id":"request_token"}) if t is None: t = a.b.find("input",{"id":"oc_requesttoken"}) if t is None: return False else: return t["value"]
235a4662ecca8c496b83aec5bc0408bbd8ae45ec
12,212
def discrete_coons_patch(ab, bc, dc, ad): """Creates a coons patch from a set of four or three boundary polylines (ab, bc, dc, ad). Parameters ---------- ab : list[[float, float, float] | :class:`~compas.geometry.Point`] The XYZ coordinates of the vertices of the first polyline. bc : list[[float, float, float] | :class:`~compas.geometry.Point`] The XYZ coordinates of the vertices of the second polyline. dc : list[[float, float, float] | :class:`~compas.geometry.Point`] The XYZ coordinates of the vertices of the third polyline. ad : list[[float, float, float] | :class:`~compas.geometry.Point`] The XYZ coordinates of the vertices of the fourth polyline. Returns ------- list[[float, float, float]] The points of the coons patch. list[list[int]] List of faces, with every face a list of indices into the point list. Notes ----- The vertices of the polylines are assumed to be in the following order:: b -----> c ^ ^ | | | | a -----> d To create a triangular patch, one of the input polylines should be None. (Warning! This will result in duplicate vertices.) For more information see [1]_ and [2]_. References ---------- .. [1] Wikipedia. *Coons patch*. Available at: https://en.wikipedia.org/wiki/Coons_patch. .. [2] Robert Ferreol. *Patch de Coons*. Available at: https://www.mathcurve.com/surfaces/patchcoons/patchcoons.shtml Examples -------- >>> """ if not ab: ab = [ad[0]] * len(dc) if not bc: bc = [ab[-1]] * len(ad) if not dc: dc = [bc[-1]] * len(ab) if not ad: ad = [dc[0]] * len(bc) n = len(ab) m = len(bc) n_norm = normalize_values(range(n)) m_norm = normalize_values(range(m)) array = [[0] * m for i in range(n)] for i, ki in enumerate(n_norm): for j, kj in enumerate(m_norm): # first function: linear interpolation of first two opposite curves lin_interp_ab_dc = add_vectors(scale_vector(ab[i], (1 - kj)), scale_vector(dc[i], kj)) # second function: linear interpolation of other two opposite curves lin_interp_bc_ad = add_vectors(scale_vector(ad[j], (1 - ki)), scale_vector(bc[j], ki)) # third function: linear interpolation of four corners resulting a hypar a = scale_vector(ab[0], (1 - ki) * (1 - kj)) b = scale_vector(bc[0], ki * (1 - kj)) c = scale_vector(dc[-1], ki * kj) d = scale_vector(ad[-1], (1 - ki) * kj) lin_interp_a_b_c_d = sum_vectors([a, b, c, d]) # coons patch = first + second - third functions array[i][j] = subtract_vectors(add_vectors(lin_interp_ab_dc, lin_interp_bc_ad), lin_interp_a_b_c_d) # create vertex list vertices = [] for i in range(n): vertices += array[i] # create face vertex list faces = [] for i in range(n - 1): for j in range(m - 1): faces.append([i * m + j, i * m + j + 1, (i + 1) * m + j + 1, (i + 1) * m + j]) return vertices, faces
19393f8eea5164e0f6cf89463dd3d68329c395d5
12,213
def w(shape, stddev=0.01): """ @return A weight layer with the given shape and standard deviation. Initialized with a truncated normal distribution. """ return tf.Variable(tf.truncated_normal(shape, stddev=stddev))
fd3d0bb6fb5565ce4ff5b4aafb80eccf711072db
12,214
def lr_mult(alpha): """Decreases the learning rate update by a factor of alpha.""" @tf.custom_gradient def _lr_mult(x): def grad(dy): return dy * alpha * tf.ones_like(x) return x, grad return _lr_mult
b5ab1c2b01025aee74c5f4c92b81eabf08c20de1
12,215
import PIL import io def get_png_string(mask_array): """Builds PNG string from mask array. Args: mask_array (HxW): Mask array to generate PNG string from. Returns: String of mask encoded as a PNG. """ # Convert the new mask back to an image. image = PIL.Image.fromarray(mask_array.astype('uint8')).convert('RGB') # Save the new image to a PNG byte string. byte_buffer = io.BytesIO() image.save(byte_buffer, format='png') byte_buffer.seek(0) return byte_buffer.read()
f44dd5417cb5250587926da939b5923921c62ead
12,216
def rotate90ccw(v): """Rotate 2d vector 90 degrees counter clockwise """ return (-(v[1]), v[0])
cde43efd01e9fff3002623437f99e521790e33f2
12,217
def GetListOfCellTestPointsNearestListOfPointsV5(inInputFilter, pointList): """for each point in the list, find the cell test point (e.g. center of cell bounding box) which is nearest the test point. Use MPI to work in parallel""" thisProcessNearestCellPointList, thisProcDistSqrdList = \ GetCellsClosestToPointsOnThisProcessFromParaViewFilterV5(inInputFilter, pointList) nearestCellList, distanceList = UseMpiToGetGlobalCellPointsClosestV5( inInputFilter, thisProcessNearestCellPointList, thisProcDistSqrdList) return nearestCellList
c4dc0fcdb9d85dbc2ce1654743284400ca11e3d6
12,218
def _BuildBaseMTTCmd(args, host): """Build base MTT cmd.""" remote_mtt_binary = _REMOTE_MTT_BINARY_FORMAT % host.context.user remote_cmd = [remote_mtt_binary] if args.very_verbose: remote_cmd += ['-vv'] elif args.verbose: remote_cmd += ['-v'] # We copy the mtt binary inside mtt_lab to remote host, # there is not need to update the mtt binary on the remote host. remote_cmd += ['--no_check_update'] return remote_cmd
7506a39b79c81bc3b279280e69820ccdbb8ed664
12,219
def get_service(credentials=get_credentials()): """Gets GMail service, given credentials""" return apiclient.discovery.build("gmail", "v1", credentials=credentials)
7f344f07cc2d78014381bd449d6655658f2e4881
12,220
def edb_client_server_info(edb: ElectrolyteDB) -> dict: """ Perform an operation that ensures that the `edb` fixture has a client that: - Is able to connect to the server (non-mock), or - Is a "convincing fake" (mock), so that test functions using `edb` can expect a realistic behavior Additionally, if this fixture is dispatched before "real" users (here this is done by using a `test__` prefix with two underscores), it avoids any first-use inconsistencies, such as e.g. the time spent to wait for a connection being counted as part of the duration of the first test for which the `edb` fixture is instantiated. """ return edb._client.server_info()
83e9d4bb7bf76e7ed5a73c69a4a2a617227526f8
12,221
def convert_to_int_list(dataframe: pd.Series) -> "list[list[int]]": """ Takes a dataframe with a string representation of a list of ints and converts that into a list of lists of ints """ result_list = [] for row in dataframe: result_list.append([int(x) for x in row[1:-1].split(", ")]) return result_list
0d0ed69db3af04a21a65d472c53580d8f88f50f0
12,222
def get_prism_daily_single(variable, date, return_path=False, **kwargs): """Download data for a single day Parameters ---------- variable : str Either tmean, tmax, tmin, or ppt date : str The date to download in the format YYYY-MM-DD dest_path : str, optional Folder to download to, defaults to the current working directory. return_path : bool, optional Returns the full path to the final bil file, default False keep_zip : bool, optional Keeps the originally downloaded zip file, default True """ daily = PrismDaily(variable=variable, min_date=date, max_date=date, **kwargs) daily.download() daily.close() if return_path: return daily._local_bil_filename(daily.dates[0])
5fe14da937452e040e2fcf7d38d04d1068f2bff8
12,223
import base64 import io def handle_filestreams(list_of_contents, list_of_names): """ Args: list_of_contents: list_of_names: """ if len(list_of_contents) == 1: content = list_of_contents[0] filename = list_of_names[0] else: raise Exception("Multiple files not supported") # TODO content_type, content_string = content.split(',') decoded = base64.b64decode(content_string) if 'csv' in filename: # Assume that the user uploaded a CSV file file = io.StringIO(decoded.decode('utf-8')) elif 'xls' in filename: # Assume that the user uploaded an excel file file = io.BytesIO(decoded) elif 'tsv' in filename: # Assume that the user uploaded an tsv file file = io.StringIO(decoded.decode('utf-8')) elif 'txt' in filename: # Assume that the user uploaded either a tsv or csv file file = io.StringIO(decoded.decode('utf-8')) else: raise IOError("Unable to read table file.") return file
3ab582bbf6d709d0ebcdb6f71825734f43e8bc86
12,224
def grid_count(grid, shape=None, interpolation='linear', bound='zero', extrapolate=False): """Splatting weights with respect to a deformation field (pull adjoint). Notes ----- {interpolation} {bound} Parameters ---------- grid : ([batch], *inshape, dim) tensor Transformation field. shape : sequence[int], default=inshape Output shape interpolation : int or sequence[int], default=1 Interpolation order. bound : BoundType, or sequence[BoundType], default='zero' Boundary conditions. extrapolate : bool or int, default=True Extrapolate out-of-bound data. Returns ------- output : ([batch], 1, *shape) tensor Spatting weights. """ dim = grid.shape[-1] grid_no_batch = grid.dim() == dim + 1 if grid_no_batch: grid = grid[None] if shape is None: shape = tuple(grid.shape[1:-1]) out = GridCount.apply(grid, shape, interpolation, bound, extrapolate) if grid_no_batch: out = out[0] return out
620713f2e234d1a2195fdebba5215a2c1f2493a3
12,225
def check_spf_record(lookup, spf_record): """ Check that all parts of lookup appear somewhere in the given SPF record, resolving include: directives recursively """ not_found_lookup_parts = set(lookup.split(" ")) _check_spf_record(not_found_lookup_parts, spf_record, 0) return not not_found_lookup_parts
831c6d07a91484ce6b96bdc507a8f31034193590
12,226
import pytz def local_tz2() -> pytz.BaseTzInfo: """ Second timezone for the second user """ return pytz.timezone("America/Los_Angeles")
d841f3ea06334540b8dca6fd2c2a2e823227fa37
12,227
def get_chemistry_info(sam_header, input_filenames, fail_on_missing=False): """Get chemistry triple information for movies referenced in a SAM header. Args: sam_header: a pysam.Samfile.header, which is a multi-level dictionary. Movie names are read from RG tags in this header. input_filenames: a list of bas, bax, or fofn filenames. fail_on_missing: if True, raise an exception if the chemistry information for a movie in the header cannot be found. If False, just log a warning. Returns: a list of strings that can be written as DS tags to RG entries in the header of a new SAM or BAM file. For example, ['BINDINGKIT:xxxx;SEQUENCINGKIT:yyyy;SOFTWAREVERSION:2.0'] Raises: ChemistryLoadingException if chemistry information cannot be found for a movie in the header and fail_on_missing is True. """ # First get the full list of ba[sx] files, reading through any fofn or xml # inputs bas_filenames = [] for filename in input_filenames: bas_filenames.extend(FofnIO.enumeratePulseFiles(filename)) # Then get the chemistry triple for each movie in the list of bas files triple_dict = {} for bas_filename in bas_filenames: bas_file = BasH5IO.BasH5Reader(bas_filename) movie_name = bas_file.movieName chem_triple = bas_file.chemistryBarcodeTriple triple_dict[movie_name] = chem_triple # Finally, find the movie names that appear in the header and create CO # lines with the chemistry triple if 'RG' not in sam_header: return [] rgds_entries = {} for rg_entry in sam_header['RG']: rg_id = rg_entry['ID'] rg_movie_name = rg_entry[MOVIENAME_TAG] try: rg_chem_triple = triple_dict[rg_movie_name] rgds_entries[rg_id] = rg_chem_triple except KeyError: err_msg = ("Cannot find chemistry information for movie {m}." .format(m=rg_movie_name)) if fail_on_missing: raise ChemistryLoadingException(err_msg) else: log.warning(err_msg) rgds_strings = format_rgds_entries(rgds_entries) return rgds_strings
4bfdd7f09061650c0e010f71cd00cbd44481c40f
12,228
import warnings import http def json_catalog(request, domain='djangojs', packages=None): """ Return the selected language catalog as a JSON object. Receives the same parameters as javascript_catalog(), but returns a response with a JSON object of the following format: { "catalog": { # Translations catalog }, "formats": { # Language formats for date, time, etc. }, "plural": '...' # Expression for plural forms, or null. } """ warnings.warn( "The json_catalog() view is deprecated in favor of the " "JSONCatalog view.", RemovedInDjango20Warning, stacklevel=2 ) locale = _get_locale(request) packages = _parse_packages(packages) catalog, plural = get_javascript_catalog(locale, domain, packages) data = { 'catalog': catalog, 'formats': get_formats(), 'plural': plural, } return http.JsonResponse(data)
f2ac449d11299471184f0ddaeac87d543e90b7a3
12,229
from typing import Dict from typing import Any def read_global_config() -> Dict[Text, Any]: """Read global Rasa configuration.""" # noinspection PyBroadException try: return rasa.utils.io.read_yaml_file(GLOBAL_USER_CONFIG_PATH) except Exception: # if things go south we pretend there is no config return {}
0287aa03a07b7ce5218f56237cd49d9ea18f8d5f
12,230
def get_uuid_hex(digest_size: int = 10) -> str: """Generate hex of uuid4 with the defined size.""" return blake2b(uuid4().bytes, digest_size=digest_size).hexdigest()
4ec853740b7f17bbf7cb90fd5e25c9d7719440c8
12,231
def crc16(data): """CRC-16-CCITT computation with LSB-first and inversion.""" crc = 0xffff for byte in data: crc ^= byte for bits in range(8): if crc & 1: crc = (crc >> 1) ^ 0x8408 else: crc >>= 1 return crc ^ 0xffff
2560f53c1f2b597d556a0b63462ef56f0c972db2
12,232
def _unlink_f(filename): """ Call os.unlink, but don't die if the file isn't there. This is the main difference between "rm -f" and plain "rm". """ try: os.unlink(filename) return True except OSError, e: if e.errno not in (errno.ENOENT, errno.EPERM, errno.EACCES,errno.EROFS): raise return False
f0014e7ab0dfb6db519198f1eb052d930542a63f
12,233
def get_member_expr_fullname(expr: MemberExpr) -> str: """Return the qualified name representation of a member expression. Return a string of form foo.bar, foo.bar.baz, or similar, or None if the argument cannot be represented in this form. """ if isinstance(expr.expr, NameExpr): initial = expr.expr.name elif isinstance(expr.expr, MemberExpr): initial = get_member_expr_fullname(expr.expr) else: return None return '{}.{}'.format(initial, expr.name)
2859751a977f028f0984e86422f31f388314414a
12,234
def _read_dino_waterlvl_metadata(f, line): """read dino waterlevel metadata Parameters ---------- f : text wrapper line : str line with meta dictionary keys meta_dic : dict (optional) dictionary with metadata Returns ------- meta : dict dictionary with metadata """ meta_keys = line.strip().split(",") meta_values = f.readline().strip().split(",") meta = {} for key, value in zip(meta_keys, meta_values): key = key.strip() if key in ["X-coordinaat", "Y-coordinaat"]: if key == "X-coordinaat": meta["x"] = float(value) elif key == "Y-coordinaat": meta["y"] = float(value) elif key == "Locatie": meta["locatie"] = value meta["name"] = value return meta
949535f4fc677a7d0afc70a76e377ccefcc8943f
12,235
def async_get_url( hass: HomeAssistant, *, require_ssl: bool = False, require_standard_port: bool = False, allow_internal: bool = True, allow_external: bool = True, allow_cloud: bool = True, allow_ip: bool = True, prefer_external: bool = False, prefer_cloud: bool = False, ) -> str: """Get a URL to this instance.""" order = [TYPE_URL_INTERNAL, TYPE_URL_EXTERNAL] if prefer_external: order.reverse() # Try finding an URL in the order specified for url_type in order: if allow_internal and url_type == TYPE_URL_INTERNAL: try: return _async_get_internal_url( hass, allow_ip=allow_ip, require_ssl=require_ssl, require_standard_port=require_standard_port, ) except NoURLAvailableError: pass if allow_external and url_type == TYPE_URL_EXTERNAL: try: return _async_get_external_url( hass, allow_cloud=allow_cloud, allow_ip=allow_ip, prefer_cloud=prefer_cloud, require_ssl=require_ssl, require_standard_port=require_standard_port, ) except NoURLAvailableError: pass # We have to be honest now, we have no viable option available raise NoURLAvailableError
1d4e13a8fa5d26bbc9132e85937a24d320136112
12,236
import os def validate_local_model(models_path: str, model_id: str) -> bool: """Validate local model by id. Args: models_path: Path to the models folder. model_id: Model id. """ model_correct = True model_path = os.path.join(models_path, model_id) if not os.path.exists(model_path): model_correct = False else: try: _ = get_model_type_name(models_path, model_id) except FileNotFoundError: model_correct = False return model_correct
9e081b5175ceb46d2caac57d0342f4660946d18e
12,237
def strip(prefix: Seq, seq: Seq, partial=False, cmp=NOT_GIVEN) -> Iter: """ If seq starts with the same elements as in prefix, remove them from result. Args: prefix: Prefix sequence to possibly removed from seq. seq: Sequence of input elements. partial: If True, remove partial matches with prefix. cmp: If given, uses as a comparation function between elements of prefix and sequence. It removes elements that cmp(x, y) returns True. Examples: >>> ''.join(strip("ab", "abcd")) 'cd' >>> strip(sk.repeat(3), range(6), partial=True, cmp=(X > Y)) sk.iter([3, 4, 5]) """ if partial: cmp = NOT_GIVEN.resolve(cmp, op.eq) return Iter(_strip_partial(iter(prefix), iter(seq), cmp=cmp)) elif cmp is NOT_GIVEN: return Iter(_strip_full(tuple(prefix), iter(seq))) else: return Iter(_strip_full_cmp(tuple(prefix), iter(seq), cmp))
8d2a9a62157e3b55adcc976d5c7693cb67513c92
12,238
def _read_unicode_table(instream, separator, startseq, encoding): """Read the Unicode table in a PSF2 file.""" raw_table = instream.read() entries = raw_table.split(separator)[:-1] table = [] for point, entry in enumerate(entries): split = entry.split(startseq) code_points = [_seq.decode(encoding) for _seq in split] # first entry is separate code points, following entries (if any) are sequences table.append([_c for _c in code_points[0]] + code_points[1:]) return table
e27e59b57d10cb20dd4ddc832c65cb8802984d44
12,239
from click.testing import CliRunner def runner(): """Provides a command-line test runner.""" return CliRunner()
82b75c8dcaa0105c623a1caea5b459c97e3e18fd
12,240
def matsubara_exponents(coup_strength, bath_broad, bath_freq, beta, N_exp): """ Calculates the exponentials for the correlation function for matsubara terms. (t>=0) Parameters ---------- coup_strength: float The coupling strength parameter. bath_broad: float A parameter characterizing the FWHM of the spectral density, i.e., the cavity broadening. bath_freq: float The cavity frequency. beta: float The inverse temperature. N_exp: int The number of exponents to consider in the sum. Returns ------- ck: ndarray A 1D array with the prefactors for the exponentials vk: ndarray A 1D array with the frequencies """ lam = coup_strength gamma = bath_broad w0 = bath_freq N_exp = N_exp omega = np.sqrt(w0 ** 2 - (gamma / 2) ** 2) a = omega + 1j * gamma / 2.0 aa = np.conjugate(a) coeff = (-4 * gamma * lam ** 2 / np.pi) * ((np.pi / beta) ** 2) vk = np.array([-2 * np.pi * n / (beta) for n in range(1, N_exp)]) ck = np.array( [ n / ( (a ** 2 + (2 * np.pi * n / beta) ** 2) * (aa ** 2 + (2 * np.pi * n / beta) ** 2) ) for n in range(1, N_exp) ] ) return coeff * ck, vk
4d6a1691234f12a5cbdec13b2520891c0f30eb77
12,241
def reverse(array): """Return `array` in reverse order. Args: array (list|string): Object to process. Returns: list|string: Reverse of object. Example: >>> reverse([1, 2, 3, 4]) [4, 3, 2, 1] .. versionadded:: 2.2.0 """ # NOTE: Using this method to reverse object since it works for both lists # and strings. return array[::-1]
5eb096d043d051d4456e08fae91fb52048686992
12,242
def compute_segregation_profile(gdf, groups=None, distances=None, network=None, decay='linear', function='triangular', precompute=True): """Compute multiscalar segregation profile. This function calculates several Spatial Information Theory indices with increasing distance parameters. Parameters ---------- gdf : geopandas.GeoDataFrame geodataframe with rows as observations and columns as population variables. Note that if using a network distance, the coordinate system for this gdf should be 4326. If using euclidian distance, this must be projected into planar coordinates like state plane or UTM. groups : list list of variables . distances : list list of floats representing bandwidth distances that define a local environment. network : pandana.Network (optional) A pandana.Network likely created with `segregation.network.get_osm_network`. decay : str (optional) decay type to be used in pandana accessibility calculation (the default is 'linear'). function: 'str' (optional) which weighting function should be passed to pysal.lib.weights.Kernel must be one of: 'triangular','uniform','quadratic','quartic','gaussian' precompute: bool Whether the pandana.Network instance should precompute the range queries.This is true by default, but if you plan to calculate several segregation profiles using the same network, then you can set this parameter to `False` to avoid precomputing repeatedly inside the function Returns ------- dict dictionary with distances as keys and SIT statistics as values Notes ----- Based on Sean F. Reardon, Stephen A. Matthews, David O’Sullivan, Barrett A. Lee, Glenn Firebaugh, Chad R. Farrell, & Kendra Bischoff. (2008). The Geographic Scale of Metropolitan Racial Segregation. Demography, 45(3), 489–514. https://doi.org/10.1353/dem.0.0019. Reference: :cite:`Reardon2008`. """ gdf = gdf.copy() gdf[groups] = gdf[groups].astype(float) indices = {} indices[0] = MultiInformationTheory(gdf, groups).statistic if network: if not gdf.crs['init'] == 'epsg:4326': gdf = gdf.to_crs(epsg=4326) groups2 = ['acc_' + group for group in groups] if precompute: maxdist = max(distances) network.precompute(maxdist) for distance in distances: distance = np.float(distance) access = calc_access(gdf, network, decay=decay, variables=groups, distance=distance, precompute=False) sit = MultiInformationTheory(access, groups2) indices[distance] = sit.statistic else: for distance in distances: w = Kernel.from_dataframe(gdf, bandwidth=distance, function=function) sit = SpatialInformationTheory(gdf, groups, w=w) indices[distance] = sit.statistic return indices
3598d7c72660860330847758fc744fcd1b1f40ce
12,243
def calculate_lbp_pixel(image, x, y): """Perform the LBP operator on a given pixel. Order and format: 32 | 64 | 128 ----+-----+----- 16 | 0 | 1 ----+-----+----- 8 | 4 | 2 :param image: Input image :type: numpy.ndarray :param x: Column pixel of interest :type: int :param y: Row pixel of interst :type: int :return: LBP value :rtype: numpy.ndarray """ center = image[x][y] binary_code = np.empty(8) binary_code[0] = threshold_pixel(image, center, x, y + 1) # Right binary_code[1] = threshold_pixel(image, center, x + 1, y + 1) # Bottom Right binary_code[2] = threshold_pixel(image, center, x + 1, y) # Bottom binary_code[3] = threshold_pixel(image, center, x + 1, y - 1) # Bottom Left binary_code[4] = threshold_pixel(image, center, x, y - 1) # Left binary_code[5] = threshold_pixel(image, center, x - 1, y - 1) # Top Left binary_code[6] = threshold_pixel(image, center, x - 1, y) # Top binary_code[7] = threshold_pixel(image, center, x - 1, y + 1) # Top Right weights = np.array([1, 2, 4, 8, 16, 32, 64, 128]) lbp_value = np.dot(binary_code, weights).astype(np.uint8) return lbp_value
14f6bd557355a71379b638e52f21d72ccd30a7cb
12,244
def test_gradient_sparse_var(): """ https://www.tensorflow.org/beta/guide/effective_tf2 """ target = tf.constant([[1., 0., 0.], [1., 0., 0.]]) v = tf.Variable([0.5, 0.5]) x = tx.Lambda([], fn=lambda _: tf.SparseTensor([[0, 0], [1, 1]], v, [2, 3]), n_units=3, var_list=v) assert isinstance(x(), tf.SparseTensor) assert len(x.trainable_variables) == 1 y = tx.Linear(x, n_units=3) # a graph without inputs needs to have missing inputs declared # otherwise it will try to add the inputs detected to inputs graph = tx.Graph.build(inputs=None, outputs=y) fn = graph.as_function() @tf.function def loss(labels): return tf.reduce_mean(tf.pow(labels - fn(), 2)) with tf.GradientTape() as tape: loss_val = loss(target) assert tx.same_shape(tape.gradient(loss_val, v), v.value())
e43a84a052313fecd11eca60a027f00385cd252f
12,245
def get_setup_and_moves(sgf_game, board=None): """Return the initial setup and the following moves from an Sgf_game. Returns a pair (board, plays) board -- boards.Board plays -- list of pairs (colour, move) moves are (row, col), or None for a pass. The board represents the position described by AB and/or AW properties in the root node. The moves are from the game's 'leftmost' variation. Raises ValueError if this position isn't legal. Raises ValueError if there are any AB/AW/AE properties after the root node. Doesn't check whether the moves are legal. If the optional 'board' parameter is provided, it must be an empty board of the right size; the same object will be returned. """ size = sgf_game.get_size() if board is None: board = boards.Board(size) else: if board.side != size: raise ValueError("wrong board size, must be %d" % size) if not board.is_empty(): raise ValueError("board not empty") root = sgf_game.get_root() nodes = sgf_game.main_sequence_iter() ab, aw, ae = root.get_setup_stones() if ab or aw: is_legal = board.apply_setup(ab, aw, ae) if not is_legal: raise ValueError("setup position not legal") colour, raw = root.get_raw_move() if colour is not None: raise ValueError("mixed setup and moves in root node") nodes.next() moves = [] for node in nodes: if node.has_setup_stones(): raise ValueError("setup properties after the root node") colour, raw = node.get_raw_move() if colour is not None: moves.append((colour, sgf_properties.interpret_go_point(raw, size))) return board, moves
a933c067baa49d8e6c7309f7762298244a192d2e
12,246
def help_text_metadata(label=None, description=None, example=None): """ Standard interface to help specify the required metadata fields for helptext to work correctly for a model. :param str label: Alternative name for the model. :param str description: Long description of the model. :param example: A concrete example usage of the model. :return dict: Dictionary of the help text metadata """ return { 'label': label, 'description': description, 'example': example }
a1fb9c9a9419fe7ce60ed77bc6fadc97ed4523f8
12,247
def conv1d_stack(sequences, filters, activations, name=None): """Convolve a jagged batch of sequences with a stack of filters. This is equivalent to running several `conv1d`s on each `sequences[i]` and reassembling the results as a `Jagged`. The padding is always 'SAME'. Args: sequences: 4-D `Jagged` tensor. filters: List of 3-D filters (one filter per layer). Must have odd width. activations: List of activation functions to apply after each layer, or None to indicate no activation. name: Optional name for this operation. Returns: `Jagged` convolution results. Raises: TypeError: If sequences is not Jagged. ValueError: If the filters or activations are invalid. """ if not isinstance(sequences, Jagged): raise TypeError('Expected Jagged sequences, got %s' % type(Jagged)) if len(filters) != len(activations): raise ValueError('Got %d filters != %d activations' % (len(filters), len(activations))) if not filters: return sequences with tf.name_scope(name, 'jagged_conv1d_stack') as name: # Compute maximum filter width filters = [tf.convert_to_tensor(f, name='filter') for f in filters] width = 0 for filt in filters: shape = filt.get_shape() if shape.ndims != 3 or shape[0] is None or shape[0].value % 2 == 0: raise ValueError('Expected known odd filter width, got shape %s' % shape) width = max(width, shape[0].value) between = width // 2 # Rounds down since width is odd # Add 'between' zeros between each sequence flat = sequences.flat sizes = flatten(sequences.sizes) size = tf.size(sizes) flat_shape = tf.shape(flat) flat_len = flat_shape[0] indices = (tf.range(flat_len) + repeats(between * tf.range(size), sizes)) padded_len = between * tf.nn.relu(size - 1) + flat_len flat = tf.unsorted_segment_sum(flat, indices, padded_len)[None] # Make a mask to reset between portions to zero if len(filters) > 1: mask = tf.unsorted_segment_sum( tf.ones(flat_shape[:1], dtype=flat.dtype), indices, padded_len) mask = mask[:, None] # Do each convolution for i, (filt, activation) in enumerate(zip(filters, activations)): if i: flat *= mask flat = tf.nn.conv1d(flat, filt, stride=1, padding='SAME') if activation is not None: flat = activation(flat) # Extract results and repackage as a Jagged flat = tf.squeeze(flat, [0]) flat = tf.gather(flat, indices, name=name) return Jagged(sequences.sizes, flat)
33248627280ea0c127d710128790e58e0ca5bb9a
12,248
def dh_mnthOfYear(value, pattern): """ Helper for decoding a single integer value. The value should be >=1000, no conversion, no rounding (used in month of the year) """ return dh_noConv(value, pattern, _formatLimit_MonthOfYear[0])
5dd1027a0713cb93ea6e3504f1a07517f228a037
12,249
from typing import Counter def build_team(datafile, salary_col, position_col, prediction_col, cap=60000, legal_teams=None): """ Construct teams from a set of prediction data :param str datafile: saved prediction data (pickle file) :param str salary_col: name of salary column :param str position_col: name of position column :param str prediction_col: name of prediction column to use :param list[str] legal_teams: an optional list of legal NBA teams for the game :return pd.DataFrame: prediction data for chosen team """ player_data = pd.read_pickle(datafile) # Load real names for later use player_data['name'] = player_data['bref_id'].apply(id2name) if legal_teams: player_data = player_data[player_data['Tm'].isin(legal_teams)] # Ditch any undefined rows for salary / position / prediction as they will break the solver player_data.dropna(subset=[salary_col, position_col, prediction_col], inplace=True) # Cast player cost column to integers; this will also break the solver! :) player_data[salary_col] = player_data[salary_col].astype(int) # an optimization: speed up computation by only keeping the best-projected two players at each (position, salary). # this should mean we only keep players we could potentially use # it is hypothetically true that this could burn us if we get hit by the "too many players from team X" consideration #grouped_player_data = player_data.groupby([salary_col, position_col], sort=False) # this actually figures out how many players we need at the given position and keeps only that many at each salary level #candidates = grouped_player_data.apply(lambda group: group.sort(prediction_col).tail(positions[group[position_col].iloc[0]])) # # more detailed, even more aggressive sketchier optimization: remove all players which are strictly worse than others # (all players for whom two players are better and at least as cheap -- or one for centers. I hard coded that to save time) # this could burn us pretty hard if we run into a team constraint in the end def dominators(row): return len(player_data[(player_data['predicted'] > row['predicted']) & (player_data['salary'] <= row['salary']) & (player_data['pos'] == row['pos'])]) player_data['dominators'] = player_data.apply(dominators, axis=1) candidates = player_data[(player_data['dominators'] == 0) | ((player_data['pos'] != 'C') & (player_data['dominators'] <= 1))] candidates.set_index('bref_id', inplace=True) while True: # because python doesn't have do... while best_team = best_vorp(data=candidates, cost_column=salary_col, value_column=prediction_col, type_column=position_col, required_types=positions, cap=cap, debug_print_fn=print) # Implement an additional constraint -- we can't have more than 4 players from the same team. # We'll actually be a little stricter and try to restrict it at 3 (see MAX_PLAYERS_PER_TEAM). teams_of_selection = Counter(candidates.loc[best_team, 'Tm'].values) most_common_team, count = teams_of_selection.popitem() if count <= MAX_PLAYERS_PER_TEAM: return candidates.loc[best_team] else: # Nope, this is an illegal team. Try to help us generate a real one by dropping the lowest-valued player # on the team from the list of possible candidates. players_on_most_common_team = [c for c in best_team if candidates.loc[c, 'Tm'] == most_common_team] team_players = candidates.loc[players_on_most_common_team].copy() team_players['value'] = team_players[prediction_col].divide(team_players[salary_col]) team_players.sort('value', inplace=True) worst_player = team_players.iloc[0].name print('Ideal team had %d players from %s. Banning player: %s' % (count, most_common_team, worst_player)) candidates = candidates.drop([worst_player])
c1ac67fe72926e2f97268e753d3d97d9f8169840
12,250
import traceback import six def serialize_remote_exception(failure_info): """Prepares exception data to be sent over rpc. Failure_info should be a sys.exc_info() tuple. """ tb = traceback.format_exception(*failure_info) failure = failure_info[1] kwargs = {} if hasattr(failure, 'kwargs'): kwargs = failure.kwargs # NOTE(matiu): With cells, it's possible to re-raise remote, remote # exceptions. Lets turn it back into the original exception type. cls_name = six.text_type(failure.__class__.__name__) mod_name = six.text_type(failure.__class__.__module__) if (cls_name.endswith(_REMOTE_POSTFIX) and mod_name.endswith(_REMOTE_POSTFIX)): cls_name = cls_name[:-len(_REMOTE_POSTFIX)] mod_name = mod_name[:-len(_REMOTE_POSTFIX)] data = { 'class': cls_name, 'module': mod_name, 'message': six.text_type(failure), 'tb': tb, 'args': failure.args, 'kwargs': kwargs } json_data = jsonutils.dumps(data) return json_data
549b996afc2b07b9e72f69cd2c6ddaee4010f5af
12,251
def build_eval_graph(features, model): """ builds evaluation graph """ _params = {} logger.debug("building evaluation graph: %s.", _params) with tf.variable_scope("loss"): loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=tf.expand_dims(features["sentiment"], axis=1), logits=model["logits"]) model = {"loss": loss, "eval_args": _params} return model
a63f88d30c817dfc648f6b774acfb78efd6db42c
12,252
import pprint def in_common(routes): """routes is a list of lists, each containing a route to a peer.""" r = [] branch = False for n in izip_any(*routes): #itertools.izip(*routes): # strip dead nodes f = [i for i in n if i != '*'] # ignore all dead nodes if len(f) == 0: continue c = [ (f.count(x), x) for x in f ] c.sort() if debug: pprint(c) top = c[-1][0] # majority wins if top > 2 and top > (len(f) * 0.50): f = [c[-1][1]] if len(set(f)) == 1: r.append(f[0]) else: # more than one unique node, the tree has branched branch = True break return (branch, r)
82858ea2abb2e8fd1ffaaefef3d07c9aeb29c61a
12,253
def process_polygon(coordinates): """Pass list of co-ordinates to Shapely Polygon function and get polygon object""" return Polygon(coordinates)
fe644dc41e7951a030df511bb7e76b2e74883cae
12,254
def split_function(vector, column, value): """ Split function """ return vector[column] >= value
c6129422fd5bf0b16229e6346adde5f50b203e7b
12,255
def blackwell(Sv, theta, phi, r, r0=10, r1=1000, tSv=-75, ttheta=702, tphi=282, wtheta=28 , wphi=52): """ Detects and mask seabed using the split-beam angle and Sv, based in "Blackwell et al (2019), Aliased seabed detection in fisheries acoustic data". Complete article here: https://arxiv.org/abs/1904.10736 Args: Sv (float): 2D numpy array with Sv data (dB) theta (float): 2D numpy array with the along-ship angle (degrees) phi (float): 2D numpy array with the athwart-ship angle (degrees) r (float): 1D range array (m) r0 (int): minimum range below which the search will be performed (m) r1 (int): maximum range above which the search will be performed (m) tSv (float): Sv threshold above which seabed is pre-selected (dB) ttheta (int): Theta threshold above which seabed is pre-selected (dB) tphi (int): Phi threshold above which seabed is pre-selected (dB) wtheta (int): window's size for mean square operation in Theta field wphi (int): window's size for mean square operation in Phi field Returns: bool: 2D array with seabed mask """ # delimit the analysis within user-defined range limits r0 = np.nanargmin(abs(r - r0)) r1 = np.nanargmin(abs(r - r1)) + 1 Svchunk = Sv[r0:r1, :] thetachunk = theta[r0:r1, :] phichunk = phi[r0:r1, :] # get blur kernels with theta & phi width dimensions ktheta = np.ones((wtheta, wtheta))/wtheta**2 kphi = np.ones((wphi , wphi ))/wphi **2 # perform mean square convolution and mask if above theta & phi thresholds thetamaskchunk = convolve2d(thetachunk, ktheta, 'same', boundary='symm')**2 > ttheta phimaskchunk = convolve2d(phichunk, kphi, 'same', boundary='symm')**2 > tphi anglemaskchunk = thetamaskchunk | phimaskchunk # if aliased seabed, mask Sv above the Sv median of angle-masked regions if anglemaskchunk.any(): Svmedian_anglemasked = log(np.nanmedian(lin(Svchunk[anglemaskchunk]))) if np.isnan(Svmedian_anglemasked): Svmedian_anglemasked = np.inf if Svmedian_anglemasked < tSv: Svmedian_anglemasked = tSv Svmaskchunk = Svchunk > Svmedian_anglemasked # label connected items in Sv mask items = nd.label(Svmaskchunk, nd.generate_binary_structure(2,2))[0] # get items intercepted by angle mask (likely, the seabed) intercepted = list(set(items[anglemaskchunk])) if 0 in intercepted: intercepted.remove(intercepted==0) # combine angle-intercepted items in a single mask maskchunk = np.zeros(Svchunk.shape, dtype=bool) for i in intercepted: maskchunk = maskchunk | (items==i) # add data above r0 and below r1 (removed in first step) above = np.zeros((r0, maskchunk.shape[1]), dtype=bool) below = np.zeros((len(r) - r1, maskchunk.shape[1]), dtype=bool) mask = np.r_[above, maskchunk, below] anglemask = np.r_[above, anglemaskchunk, below] # TODO remove # return empty mask if aliased-seabed was not detected in Theta & Phi else: mask = np.zeros_like(Sv, dtype=bool) return mask, anglemask
a4a8a925feaabad0002c36bc945aa74a99e30ade
12,256
def _excitation_operator( # pylint: disable=invalid-name edge_list: np.ndarray, p: int, q: int, h1_pq: float ) -> SparsePauliOp: """Map an excitation operator to a Pauli operator. Args: edge_list: representation of graph specifying neighboring qubits. p: First Fermionic-mode index. q: Second Fermionic-mode index. You must ensure that p < q. h1_pq: Numerical coefficient of the term. Returns: The result of the Fermionic to Pauli operator mapping. """ # pylint: disable=missing-raises-doc if p >= q: raise ValueError("Expected p < q, got p = ", p, ", q = ", q) b_a = _edge_operator_bi(edge_list, p) b_b = _edge_operator_bi(edge_list, q) a_ab = _edge_operator_aij(edge_list, p, q) return (-1j * 0.5 * h1_pq) * ((b_b & a_ab) + (a_ab & b_a))
0ae0ace12884c507977cf2e555a354c80f83e7ad
12,257
def send_message( message, node, username, password, resource, max_attempts=1 ): """ broadcast this message thru lvalert """ tmpfilename = "tmpfile.json" tmpfile = open(tmpfilename, "w") tmpfile.write( message ) tmpfile.close() cmd = "lvalert_send -a %s -b %s -r %s -n %s -m %d --file %s"%(username, password, resource, node, max_attempts, tmpfilename) return sp.Popen(cmd.split()).wait()
5ebec2f3487b431a6d1131b11c8ab2d672308b48
12,258
def create_bcs(field_to_subspace, Lx, Ly, solutes, V_boundary, enable_NS, enable_PF, enable_EC, **namespace): """ The boundary conditions are defined in terms of field. """ boundaries = dict(wall=[Wall()]) bcs = dict( wall=dict() ) bcs_pointwise = dict() noslip = Fixed((0., 0.)) # Navier-Stokes if enable_NS: bcs["wall"]["u"] = noslip bcs_pointwise["p"] = (0., "x[0] < DOLFIN_EPS && x[1] < DOLFIN_EPS") # Electrochemistry if enable_EC: bcs["wall"]["V"] = Fixed(V_boundary) return boundaries, bcs, bcs_pointwise
d1e72d30404ee68b877c6761a6309884e3054b6c
12,259
def get_response_rows(response, template): """ Take in a list of responses and covert them to SSE.Rows based on the column type specified in template The template should be a list of the form: ["str", "num", "dual", ...] For string values use: "str" For numeric values use: "num" For dual values: "dual" """ response_rows = [] # For each row in the response list for row in response: i = 0 this_row = [] if len(template) > 1: # For each column in the row for col in row: # Convert values to type SSE.Dual according to the template list if template[i] == "str": if col is None: col = "\x00" elif type(col) is not str: col = "{0:.5f}".format(col) this_row.append(SSE.Dual(strData=col)) elif template[i] == "num": this_row.append(SSE.Dual(numData=col)) elif template[i] == "dual": this_row.append(SSE.Dual(strData=col, numData=col)) i = i + 1 else: # Convert values to type SSE.Dual according to the template list if template[0] == "str": if row is None: row = "\x00" elif type(row) is not str: row = "{0:.5f}".format(row) this_row.append(SSE.Dual(strData=row)) elif template[0] == "num": this_row.append(SSE.Dual(numData=row)) elif template[0] == "dual": this_row.append(SSE.Dual(strData=row, numData=row)) # Group columns into a iterable and add to the the response_rows response_rows.append(iter(this_row)) # Values are then structured as SSE.Rows response_rows = [SSE.Row(duals=duals) for duals in response_rows] return response_rows
c3c3e4bf53929895959948836a77893b2f961221
12,260
def stations_within_radius(stations, centre, r): """function that returns a list of all stations (type MonitoringStation) within radius r of a geographic coordinate x.""" close_stations = [] for station in stations: if haversine(station.coord, centre) < float(r): close_stations.append(station) return close_stations
9877020f56f25435d1dad6fae32ebbae0e7cfdaf
12,261
import os import json def get_pack_display_name(pack_id: str) -> str: """ Gets the display name of the pack from the pack ID. :param pack_id: ID of the pack. :return: Name found in the pack metadata, otherwise an empty string. """ metadata_path = os.path.join(PACKS_FULL_PATH, pack_id, PACK_METADATA_FILE) if pack_id and os.path.isfile(metadata_path): with open(metadata_path, 'r') as json_file: pack_metadata = json.load(json_file) return pack_metadata.get('name') return ''
feac51303f2a2b99dd2890cfc9fade74b45324db
12,262
import os import tqdm def tflite_conversion(model, tflite_path, conversion_type="fp32"): """Performs tflite conversion (fp32, int8).""" # Prepare model for inference model = prepare_model_for_inference(model) create_directories([os.path.dirname(tflite_path)]) converter = tf.lite.TFLiteConverter.from_keras_model(model) def representative_dataset_gen(input_dim): calib_data = [] for data in tqdm(training_data.take(1000), desc="model calibration"): input_data = data[0] for i in range(input_data.shape[1] // input_dim): input_chunks = [ input_data[:, i * input_dim: (i + 1) * input_dim, :, ] ] for chunk in input_chunks: calib_data.append([chunk]) return lambda: [ (yield data) for data in tqdm(calib_data, desc="model calibration") ] if conversion_type == "int8": log("Quantizing Model") (training_data, training_num_steps) = get_data("train", overlap=True) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.inference_input_type = tf.int8 converter.inference_output_type = tf.int8 converter.representative_dataset = representative_dataset_gen(model.input_shape[1]) tflite_model = converter.convert() open(tflite_path, "wb").write(tflite_model)
9764243cfd037424a19bda35c2d20dff472851cf
12,263
import torch def jacobian(model, x, output_class): """ Compute the output_class'th row of a Jacobian matrix. In other words, compute the gradient wrt to the output_class. :param model: forward pass function. :param x: input tensor. :param output_class: the output_fz class we want to compute the gradients. :return: output_class'th row of the Jacobian matrix wrt x. """ xvar = replicate_input_withgrad(x) scores = model(xvar) # compute gradients for the class output_class wrt the input x # using backpropagation torch.sum(scores[:, output_class]).backward() return xvar.grad.detach().clone()
07364b8cc58d3ba51431d07e6bf5d164da7ab380
12,264
def render_face_orthographic(mesh, background=None): """ mesh location should be normalized :param mesh: :param background: :return: """ mesh.visual.face_colors = np.array([0.05, 0.1, 0.2, 1]) mesh = pyrender.Mesh.from_trimesh(mesh, smooth=False) # mesh = pyrender.Mesh.from_trimesh(mesh) scene.add(mesh, pose=np.eye(4)) camera_pose = np.eye(4) # camera_pose[0, 3] = 1 # camera_pose[1, 3] = 1 # camera_pose[2, 3] = -10 # camera_pose[0, 0] = 1 # camera_pose[1, 1] = -1 # camera_pose[2, 2] = -1 # # camera = pyrender.OrthographicCamera(xmag=1, ymag=1, zfar=100) camera_pose[0, 3] = 1 camera_pose[1, 3] = 1 camera_pose[2, 3] = 10 camera_pose[0, 0] = 1 camera_pose[1, 1] = 1 camera_pose[2, 2] = 1 camera = pyrender.OrthographicCamera(xmag=1, ymag=1, zfar=100) scene.add(camera, pose=camera_pose) light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=5.0) scene.add(light, pose=camera_pose) color, depth = r.render(scene) scene.clear() # print(color.shape) color = np.array(color) color = color[::-1] if background is not None: new_color = np.array(background) new_color[color != 255] = color[color != 255] color = new_color return color
21cc7adaaebec7d8114f8192ccdc133075a19bc3
12,265
def check_and_join(phrase, symbols=None, filter=None): """ Joins characters of ``phrase`` and if ``symbols`` is given, raises an error if any character in ``phrase`` is not in ``symbols``. Parameters ========== phrase String or list of strings to be returned as a string. symbols Iterable of characters allowed in ``phrase``. If ``symbols`` is ``None``, no checking is performed. Examples ======== >>> from sympy.crypto.crypto import check_and_join >>> check_and_join('a phrase') 'a phrase' >>> check_and_join('a phrase'.upper().split()) 'APHRASE' >>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True) 'ARAE' >>> check_and_join('a phrase!'.upper().split(), 'ARE') Traceback (most recent call last): ... ValueError: characters in phrase but not symbols: "!HPS" """ rv = ''.join(''.join(phrase)) if symbols is not None: symbols = check_and_join(symbols) missing = ''.join(list(sorted(set(rv) - set(symbols)))) if missing: if not filter: raise ValueError( 'characters in phrase but not symbols: "%s"' % missing) rv = translate(rv, None, missing) return rv
64ddcedf19ecba17b169e4bc3a3c205fe3192eb7
12,266
from typing import Optional from typing import Set def rigs_from_file(filepath: str, sensor_ids: Optional[Set[str]] = None) -> kapture.Rigs: """ Reads rigs from CSV file. :param filepath: input file path :param sensor_ids: input set of valid sensor ids. If a rig id collides one of them, raise error. If a sensor in rig is not in sensor_ids, it is ignored. :return: rigs """ # rig_id, sensor_id, qw, qx, qy, qz, tx, ty, tz rigs = kapture.Rigs() with open(filepath) as file: table = table_from_file(file) for rig_id, sensor_id, qw, qx, qy, qz, tx, ty, tz in table: if sensor_ids is not None and rig_id in sensor_ids: raise ValueError(f'collision between a sensor ID and rig ID ({rig_id})') rotation = float_array_or_none([qw, qx, qy, qz]) translation = float_array_or_none([tx, ty, tz]) pose = kapture.PoseTransform(rotation, translation) rigs[str(rig_id), sensor_id] = pose if sensor_ids is not None: # expunge all undesired sensors rig_ids = set(rigs) for rig_id in rig_ids: for sensor_id in set(rigs[rig_id]): if sensor_id not in sensor_ids and sensor_id not in rig_ids: logger.debug(f'dropping sensor {sensor_id} from rig {rig_id} because it is unknown sensor.') del rigs[rig_id][sensor_id] return rigs
c7fffcf28df54fb345b2638c02d79f40256cbb78
12,267
def drawLaneOnImage(img): """ Find and draw the lane lines on the image `img`. """ left_fit, right_fit, left_fit_m, right_fit_m, _, _, _, _, _ = findLines(img) output = drawLine(img, left_fit, right_fit) return cv2.cvtColor( output, cv2.COLOR_BGR2RGB )
aa42679c7ff8f90b906d8cf74af9207edeadc430
12,268
def enthalpy_diff(SA, CT, p_shallow, p_deep): """ Calculates the difference of the specific enthalpy of seawater between two different pressures, p_deep (the deeper pressure) and p_shallow (the shallower pressure), at the same values of SA and CT. This function uses the computationally-efficient 48-term expression for density in terms of SA, CT and p (McDougall et al., 2011). The output (enthalpy_diff_CT) is the specific enthalpy evaluated at (SA, CT, p_deep) minus the specific enthalpy at (SA, CT, p_shallow). Parameters ---------- SA : array_like Absolute Salinity [g/kg] CT : array_like Conservative Temperature [:math:`^\circ` C (ITS-90)] p_shallow : array_like lower sea pressure [dbar] p_deep : array_like upper sea pressure [dbar] Returns ------- enthalpy_diff : array_like difference of specific enthalpy [J/kg] (deep minus shallow) Notes ----- The 48-term equation has been fitted in a restricted range of parameter space, and is most accurate inside the "oceanographic funnel" described in McDougall et al. (2011). The GSW library function "infunnel(SA, CT, p)" is available to be used if one wants to test if some of one's data lies outside this "funnel". Examples -------- TODO References ---------- .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. See Eqns. (3.32.2) and (A.30.6). .. [2] McDougall T.J., P.M. Barker, R. Feistel and D.R. Jackett, 2011: A computationally efficient 48-term expression for the density of seawater in terms of Conservative Temperature, and related properties of seawater. """ SA = np.maximum(SA, 0) sqrtSA = np.sqrt(SA) a0 = (v21 + CT * (v22 + CT * (v23 + CT * (v24 + v25 * CT))) + SA * (v26 + CT * (v27 + CT * (v28 + CT * (v29 + v30 * CT))) + v36 * SA + sqrtSA * (v31 + CT * (v32 + CT * (v33 + CT * (v34 + v35 * CT)))))) a1 = v37 + CT * (v38 + CT * (v39 + v40 * CT)) + SA * (v41 + v42 * CT) a2 = v43 + CT * (v44 + v45 * CT + v46 * SA) a3 = v47 + v48 * CT b0 = (v01 + CT * (v02 + CT * (v03 + v04 * CT)) + SA * (v05 + CT * (v06 + v07 * CT) + sqrtSA * (v08 + CT * (v09 + CT * (v10 + v11 * CT))))) b1 = 0.5 * (v12 + CT * (v13 + v14 * CT) + SA * (v15 + v16 * CT)) b2 = v17 + CT * (v18 + v19 * CT) + v20 * SA b1sq = b1 * b1 sqrt_disc = np.sqrt(b1sq - b0 * b2) N = a0 + (2 * a3 * b0 * b1 / b2 - a2 * b0) / b2 M = a1 + (4 * a3 * b1sq / b2 - a3 * b0 - 2 * a2 * b1) / b2 A = b1 - sqrt_disc B = b1 + sqrt_disc delta_p = p_deep - p_shallow p_sum = p_deep + p_shallow part1 = b0 + p_shallow * (2 * b1 + b2 * p_shallow) part2 = (B + b2 * p_deep) * (A + b2 * p_shallow) part3 = (N * b2 - M * b1) / (b2 * (B - A)) # This function calculates enthalpy_diff using the computationally # efficient 48-term expression for density in terms of SA, CT and p. If one # wanted to compute the enthalpy difference using the full TEOS-10 Gibbs # function, the following lines of code will enable this. # pt = pt_from_CT(SA, CT) # t_shallow = pt_from_t(SA, pt, 0, p_shallow) # t_deep = pt_from_t(SA, pt, 0, p_deep) # enthalpy_diff = (enthalpy_t_exact(SA, t_deep, p_deep) - # enthalpy_t_exact(SA, t_shallow, p_shallow)) # or call the following, it is identical to the lines above. # enthalpy_diff = enthalpy_diff_CT_exact(SA, CT, p_shallow, p_deep) return db2Pascal * (delta_p * (a2 - 2 * a3 * b1 / b2 + 0.5 * a3 * p_sum) / b2 + (M / (2 * b2)) * np.log(1 + delta_p * (2 * b1 + b2 * p_sum) / part1) + part3 * np.log(1 + delta_p * b2 * (B - A) / part2))
4a7251f41b073127cf1a2882614986987f085c30
12,269
import numpy def ss(a, axis=0): ### taken from SciPy """Squares each value in the passed array, adds these squares, and returns the result. Parameters ---------- a : array axis : int or None Returns ------- The sum along the given axis for (a*a). """ a, axis = _chk_asarray(a, axis) return numpy.sum(a*a, axis)
75569fa96fd866f20b57c5f5c52a38e1b9663968
12,270
def Journaling_TypeInfo(): """Journaling_TypeInfo() -> RTTI""" return _DataModel.Journaling_TypeInfo()
24cdb273b6463874e71668a304af3a13305fff24
12,271
def _maven_artifact( group, artifact, version, ownership_tag = None, packaging = None, classifier = None, exclusions = None, neverlink = None, testonly = None, tags = None, flatten_transitive_deps = None, aliases = None): """Defines maven artifact by coordinates. Args: group: The Maven artifact coordinate group name (ex: "com.google.guava"). artifact: The Maven artifact coordinate artifact name (ex: "guava"). version: The Maven artifact coordinate version name (ex: "1.20.1"). ownership_tag: 3rd party dependency owner responsible for its maintenance. packaging:The Maven artifact coordinate packaging name (ex: "jar"). classifier: The Maven artifact coordinate classifier name (ex: "jdk11"). exclusions: Artifact dependencies to be excluded from resolution closure. neverlink: neverlink value to set, testonly: testonly value to set. tags: Target tags. flatten_transitive_deps: Define all transitive deps as direct deps. aliases: aliases that will point to this dep. """ maven_artifact = {} maven_artifact["group"] = group maven_artifact["artifact"] = artifact maven_artifact["version"] = version maven_artifact["aliases"] = aliases maven_artifact["tags"] = tags maven_artifact["flatten_transitive_deps"] = flatten_transitive_deps if packaging != None: maven_artifact["packaging"] = packaging if classifier != None: maven_artifact["classifier"] = classifier if exclusions != None: maven_artifact["exclusions"] = exclusions if neverlink != None: maven_artifact["neverlink"] = neverlink if testonly != None: maven_artifact["testonly"] = testonly if ownership_tag != None: maven_artifact["ownership_tag"] = ownership_tag return maven_artifact
9f97cd8cadfc3ad1365cb6d291634a9362fea4e8
12,272
import sys def docmdnf(cmd): """Execute a command.""" if flag_echo: sys.stderr.write("executing: " + cmd + "\n") if flag_dryrun: return 0 return u.docmdnf(cmd)
c21d06c34a913d62995447392dd62d2524b1253e
12,273
def get_anchors(n): """Get a list of NumPy arrays, each of them is an anchor node set""" m = int(np.log2(n)) anchor_set_id = [] for i in range(m): anchor_size = int(n / np.exp2(i + 1)) for _ in range(m): anchor_set_id.append(np.random.choice(n, size=anchor_size, replace=False)) return anchor_set_id
4adbaa291740ab3d9cb0a3d6b48c39665d8d5b06
12,274
def diag_gaussian_log_likelihood(z, mu=0.0, logvar=0.0): """Log-likelihood under a Gaussian distribution with diagonal covariance. Returns the log-likelihood for each dimension. One should sum the results for the log-likelihood under the full multidimensional model. Args: z: The value to compute the log-likelihood. mu: The mean of the Gaussian logvar: The log variance of the Gaussian. Returns: The log-likelihood under the Gaussian model. """ return -0.5 * (logvar + np.log(2*np.pi) + \ tf.square((z-mu)/tf.exp(0.5*logvar)))
7265103ddfc5c521fd9612524413cd15e237be9b
12,275
def _filter_option_to_config_setting(flt, setting): """ Encapsulates the logic for associating a filter database option with the filter setting from relay_config :param flt: the filter :param setting: the option deserialized from the database :return: the option as viewed from relay_config """ if setting is None: raise ValueError("Could not find filter state for filter {0}." " You need to register default filter state in projectoptions.defaults.".format(flt.spec.id)) is_enabled = setting != '0' ret_val = { 'is_enabled': is_enabled } # special case for legacy browser. # If the number of special cases increases we'll have to factor this functionality somewhere if flt.spec.id == FilterStatKeys.LEGACY_BROWSER: if is_enabled: if setting == '1': # old style filter ret_val['default_filter'] = True else: # new style filter, per legacy browser type handling # ret_val['options'] = setting.split(' ') ret_val['options'] = list(setting) return ret_val
41694d340285b722daf91fb0badeb1ec33eb0587
12,276
def get_svg(accession, **kwargs): """ Returns a HMM sequence logo in SVG format. Parameters ---------- accession : str Pfam accession for desired HMM. **kwargs : Additional arguments are passed to :class:`LogoPlot`. """ logoplot = plot.LogoPlot(accession, **kwargs) svg = logoplot.get_svg() return svg
952c6afa4d63f46be579cd70a4e2756b061b9f9b
12,277
def wl_to_en( l ): """ Converts a wavelength, given in nm, to an energy in eV. :param l: The wavelength to convert, in nm. :returns: The corresponding energy in eV. """ a = phys.physical_constants[ 'electron volt-joule relationship' ][ 0 ] # J return phys.Planck* phys.c/( a* l* 1e-9 )
a9d428d7aed3a6c88a1906e026649ee74f700c81
12,278
from typing import Optional def get_local_address_reaching(dest_ip: IPv4Address) -> Optional[IPv4Address]: """Get address of a local interface within same subnet as provided address.""" for iface in netifaces.interfaces(): for addr in netifaces.ifaddresses(iface).get(netifaces.AF_INET, []): iface = IPv4Interface(addr["addr"] + "/" + addr["netmask"]) if dest_ip in iface.network: return iface.ip return None
ee7061633d72c3b0ac578baf6119e5437395ce17
12,279
def atSendCmdTest(cmd_name: 'str', params: 'list'): """ 发送测试命令,方便调试 ATCore """ func_name = 'atSendCmdTest' atserial.ATraderCmdTest_send(cmd_name, params) res = recv_serial(func_name) atReturnChecker(func_name, res.result) return res.listResult
4cbe127ea7291893d64d8554c5a405c24085320a
12,280
def unlabeled_balls_in_unlabeled_boxes(balls, box_sizes): """ OVERVIEW This function returns a generator that produces all distinct distributions of indistinguishable balls among indistinguishable boxes, with specified box sizes (capacities). This is a generalization of the most common formulation of the problem, where each box is sufficiently large to accommodate all of the balls. It might be asked, 'In what sense are the boxes indistinguishable if they have different capacities?' The answer is that the box capacities must be considered when distributing the balls, but once the balls have been distributed, the identities of the boxes no longer matter. CONSTRUCTOR INPUTS n: the number of balls box_sizes: This argument is a list of length 1 or greater. The length of the list corresponds to the number of boxes. `box_sizes[i]` is a positive integer that specifies the maximum capacity of the ith box. If `box_sizes[i]` equals `n` (or greater), the ith box can accommodate all `n` balls and thus effectively has unlimited capacity. NOTE For `unlabeled_balls_in_unlabeled_boxes`, the order of the elements of the `box_sizes` list is unimportant because the code will sort it into non- increasing order before any other processing is done. """ if not isinstance(balls, int): raise TypeError("balls must be a non-negative integer.") if balls < 0: raise ValueError("balls must be a non-negative integer.") if not isinstance(box_sizes, (list, tuple)): raise ValueError("box_sizes must be a non-empty list or tuple.") capacity= 0 for size in box_sizes: if not isinstance(size, int): raise TypeError("box_sizes must contain only positive integers.") if size < 1: raise ValueError("box_sizes must contain only positive integers.") capacity+= size if capacity < balls: raise ValueError("The total capacity of the boxes is less than the " "number of balls to be distributed.") # Sort the box sizes so that the values decrease: box_sizes= sorted(box_sizes, reverse=True) return _unlabeled_balls_in_unlabeled_boxes(balls, box_sizes)
13743a7207f1d4fd2635f35c9eaef0a9acf53fa0
12,281
def get_version(): """Extract current version from __init__.py.""" with open("morphocell/__init__.py", encoding="utf-8") as fid: for line in fid: if line.startswith("__version__"): VERSION = line.strip().split()[-1][1:-1] break return VERSION
69a00c2e5544dfd8d86cdab8be53c17b73764aca
12,282
def get_neighbor_v4_by_id(obj_id): """Return an NeighborV4 by id. Args: obj_id: Id of NeighborV4 """ try: obj = NeighborV4.get_by_pk(id=obj_id) except NeighborV4NotFoundError as e: raise NeighborV4DoesNotExistException(str(e)) return obj
30b00e2fb1f954299a331ce6b198f1e5465122e5
12,283
from typing import Dict def get_resources_json_obj(resource_name: str) -> Dict: """ Get a JSON object of a specified resource. :param resource_name: The name of the resource. :returns: The JSON object (in the form of a dictionary). :raises Exception: An exception is raised if the specified resources does not exist. """ resource_map = _get_resources(_get_resources_json()["resources"]) if resource_name not in resource_map: raise Exception( "Error: Resource with name '{}' does not exist".format( resource_name ) ) return resource_map[resource_name]
ce625ecbaad0ec4cea93da78c9c213e37ffef3ed
12,284
def skip_if(predicate, reason=None): """Skip a test if predicate is true.""" reason = reason or predicate.__name__ def decorate(fn): fn_name = fn.__name__ def maybe(*args, **kw): if predicate(): msg = "'%s' skipped: %s" % (fn_name, reason) raise SkipTest(msg) else: return fn(*args, **kw) return update_wrapper(maybe, fn) return decorate
56089515f8cae4f977b1eac96a8de6c6ee59e711
12,285
from pyrap.measures import measures from pyrap.quanta import quantity as q def synthesized_uvw(ants, time, phase_dir, auto_correlations): """ Synthesizes new UVW coordinates based on time according to NRAO CASA convention (same as in fixvis) User should check these UVW coordinates carefully: if time centroid was used to compute original uvw coordinates the centroids of these new coordinates may be wrong, depending on whether data timesteps were heavily flagged. """ pytest.importorskip('pyrap') dm = measures() epoch = dm.epoch("UT1", q(time[0], "s")) ref_dir = dm.direction("j2000", q(phase_dir[0], "rad"), q(phase_dir[1], "rad")) ox, oy, oz = ants[0] obs = dm.position("ITRF", q(ox, "m"), q(oy, "m"), q(oz, "m")) # Setup local horizon coordinate frame with antenna 0 as reference position dm.do_frame(obs) dm.do_frame(ref_dir) dm.do_frame(epoch) ant1, ant2 = np.triu_indices(ants.shape[0], 0 if auto_correlations else 1) ant1 = ant1.astype(np.int32) ant2 = ant2.astype(np.int32) ntime = time.shape[0] nbl = ant1.shape[0] rows = ntime * nbl uvw = np.empty((rows, 3), dtype=np.float64) # For each timestep for ti, t in enumerate(time): epoch = dm.epoch("UT1", q(t, "s")) dm.do_frame(epoch) ant_uvw = np.zeros_like(ants) # Calculate antenna UVW positions for ai, (x, y, z) in enumerate(ants): bl = dm.baseline("ITRF", q([x, ox], "m"), q([y, oy], "m"), q([z, oz], "m")) ant_uvw[ai] = dm.to_uvw(bl)["xyz"].get_value()[0:3] # Now calculate baseline UVW positions # noting that ant1 - ant2 is the CASA convention base = ti*nbl uvw[base:base + nbl, :] = ant_uvw[ant1] - ant_uvw[ant2] return ant1, ant2, uvw
f3261545f85981d353a05acf3176bf0317ea4c86
12,286
from datetime import datetime def execute_pso_strategy(df, options, topology, retrain_params, commission, data_name, s_test, e_test, iters=100, normalization='exponential'): """ Execute particle swarm optimization strategy on data history contained in df :param df: dataframe with historical data :param options: dict with the following parameters - c1 - cognitive parameter with which the particle follows its personal best - c2 - social parameter with which the particle follows the swarm's global best position - w - parameter that controls the inertia of the swarm's movement :param commision: commission to be paid on each operation :param data_name: quote data name :param start_date: start date of simulation :param end_date: end date of simulation :return: - PSO_Cerebro - execution engine - PSO_Strategy - pso strategy instance """ print_execution_name("Estrategia: particle swar optimization") strategy_name = 'particle_swarm_optimization' info = { 'Mercado': data_name, 'Estrategia': strategy_name, 'Fecha inicial': s_test, 'Fecha final': e_test } # ------------ Obtenemos los conjuntos de train y test ------------ # s_test_date = datetime.strptime(s_test, '%Y-%m-%d') s_train = s_test_date.replace(year = s_test_date.year - 2) #s_train = s_test_date - timedelta(days=180) e_train = s_test_date - timedelta(days=1) gen_representation = GeneticRepresentation(df, s_train, e_train, s_test, e_test) # ------------ Fijamos hiperparámetros ------------ # n_particles = topology['particles'] num_neighbours = topology['neighbours'] minkowski_p_norm = 2 options['k'] = num_neighbours options['p'] = minkowski_p_norm dimensions=len(gen_representation.moving_average_rules)+2 if normalization == 'exponential': max_bound = 2.0 * np.ones(dimensions-2) min_bound = -max_bound elif normalization == 'l1': max_bound = 2.0 * np.ones(dimensions-2) min_bound = np.zeros(dimensions-2) max_bound = np.append(max_bound, [0.9, 0.0]) min_bound = np.append(min_bound, [0.0, -0.9]) bounds = (min_bound, max_bound) # Call instance of PSO optimizer = ps.single.LocalBestPSO(n_particles=n_particles, dimensions=dimensions, options=options, bounds=bounds, static=True) # Perform optimization kwargs={'from_date': s_train, 'to_date': e_train, 'normalization': normalization} best_cost, best_pos = optimizer.optimize(gen_representation.cost_function, iters=iters, n_processes=2, **kwargs) # Create an instance from CombinedSignalStrategy class and assign parameters PSO_Strategy = CombinedSignalStrategy w, buy_threshold, sell_threshold = get_split_w_threshold(best_pos) """ print("Umbral de compra: ", buy_threshold) print("Umbral de venta: ", sell_threshold) crosses = ["(" + str(cross[0]) + ", " + str(cross[1]) + ")" for cross in gen_representation.moving_average_rules] y_pos = np.arange(len(crosses)) plt.bar(y_pos, w) plt.xticks(y_pos, crosses) plt.xticks(rotation='vertical') plt.subplots_adjust(top=0.98, bottom=0.2, left=0.08, right=0.98, hspace=0.0, wspace=0.0) plt.show() """ PSO_Strategy.w = w PSO_Strategy.buy_threshold = buy_threshold PSO_Strategy.sell_threshold = sell_threshold PSO_Strategy.moving_average_rules = gen_representation.moving_average_rules PSO_Strategy.moving_averages = gen_representation.moving_averages_test PSO_Strategy.optimizer = optimizer PSO_Strategy.gen_representation = gen_representation PSO_Strategy.normalization = normalization PSO_Strategy.retrain_params = retrain_params df_test = gen_representation.df_test df_train = gen_representation.df_train PSO_Cerebro = execute_strategy(PSO_Strategy, df_test, commission, info, retrain_params) return PSO_Cerebro, PSO_Strategy
a9a4fffe335ab34ca584a4fe1d3b6116a2a7866c
12,287
def env_get(d, key, default, decoders=decoders, required=None): """ Look up ``key`` in ``d`` and decode it, or return ``default``. """ if required is None: required = isinstance(default, type) try: value = d[key] except KeyError: if required: raise return default dt = (default if default is None or isinstance(default, type) else type(default)) for decoder in decoders: if (decoder.decodes_to_type(dt) and decoder.decodes_from_value(value) ): try: return decoder.decode(value) except Exception as e: logger.error("%s couldn't convert %s: %s: %s", decoder.__class__.__name__, key, e.__class__.__name__, e) raise raise ValueError("no suitable env decoder for {}".format(key))
844c6ac9931af97bdc92da6d5014659c3600d50e
12,288
from sympy.functions.elementary.complexes import re, im from .add import Add from re import S def get_integer_part(expr: 'Expr', no: int, options: OPT_DICT, return_ints=False) -> \ tUnion[TMP_RES, tTuple[int, int]]: """ With no = 1, computes ceiling(expr) With no = -1, computes floor(expr) Note: this function either gives the exact result or signals failure. """ # The expression is likely less than 2^30 or so assumed_size = 30 result = evalf(expr, assumed_size, options) if result is S.ComplexInfinity: raise ValueError("Cannot get integer part of Complex Infinity") ire, iim, ire_acc, iim_acc = result # We now know the size, so we can calculate how much extra precision # (if any) is needed to get within the nearest integer if ire and iim: gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc) elif ire: gap = fastlog(ire) - ire_acc elif iim: gap = fastlog(iim) - iim_acc else: # ... or maybe the expression was exactly zero if return_ints: return 0, 0 else: return None, None, None, None margin = 10 if gap >= -margin: prec = margin + assumed_size + gap ire, iim, ire_acc, iim_acc = evalf( expr, prec, options) else: prec = assumed_size # We can now easily find the nearest integer, but to find floor/ceil, we # must also calculate whether the difference to the nearest integer is # positive or negative (which may fail if very close). def calc_part(re_im: 'Expr', nexpr: MPF_TUP): _, _, exponent, _ = nexpr is_int = exponent == 0 nint = int(to_int(nexpr, rnd)) if is_int: # make sure that we had enough precision to distinguish # between nint and the re or im part (re_im) of expr that # was passed to calc_part ire, iim, ire_acc, iim_acc = evalf( re_im - nint, 10, options) # don't need much precision assert not iim size = -fastlog(ire) + 2 # -ve b/c ire is less than 1 if size > prec: ire, iim, ire_acc, iim_acc = evalf( re_im, size, options) assert not iim nexpr = ire nint = int(to_int(nexpr, rnd)) _, _, new_exp, _ = ire is_int = new_exp == 0 if not is_int: # if there are subs and they all contain integer re/im parts # then we can (hopefully) safely substitute them into the # expression s = options.get('subs', False) if s: doit = True # use strict=False with as_int because we take # 2.0 == 2 for v in s.values(): try: as_int(v, strict=False) except ValueError: try: [as_int(i, strict=False) for i in v.as_real_imag()] continue except (ValueError, AttributeError): doit = False break if doit: re_im = re_im.subs(s) re_im = Add(re_im, -nint, evaluate=False) x, _, x_acc, _ = evalf(re_im, 10, options) try: check_target(re_im, (x, None, x_acc, None), 3) except PrecisionExhausted: if not re_im.equals(0): raise PrecisionExhausted x = fzero nint += int(no*(mpf_cmp(x or fzero, fzero) == no)) nint = from_int(nint) return nint, INF re_, im_, re_acc, im_acc = None, None, None, None if ire: re_, re_acc = calc_part(re(expr, evaluate=False), ire) if iim: im_, im_acc = calc_part(im(expr, evaluate=False), iim) if return_ints: return int(to_int(re_ or fzero)), int(to_int(im_ or fzero)) return re_, im_, re_acc, im_acc
6e00897786581134480a6d7fd16b559760a1a4e7
12,289
def inv_last_roundf(ns): """ ns -> States of nibbles Predict the states of nibbles after passing through the inverse last round of SomeCipher. Refer to `last_roundf()` for more details. """ return inv_shift_row(ns)
12561f9815ecad4cd08909be1e0c77dd61500cce
12,290
def get_screen(name, layer=None): """ :doc: screens Returns the ScreenDisplayable with the given `name` on layer. `name` is first interpreted as a tag name, and then a screen name. If the screen is not showing, returns None. This can also take a list of names, in which case the first screen that is showing is returned. This function can be used to check if a screen is showing:: if renpy.get_screen("say"): text "The say screen is showing." else: text "The say screen is hidden." """ if layer is None: layer = get_screen_layer(name) if isinstance(name, basestring): name = (name,) sl = renpy.exports.scene_lists() for tag in name: sd = sl.get_displayable_by_tag(layer, tag) if sd is not None: return sd for tag in name: sd = sl.get_displayable_by_name(layer, (tag,)) if sd is not None: return sd return None
a6496e453a80f1ad286bbe5201aba92fa922794b
12,291
import random import csv def generate_address_full(chance=None, variation=False, format=1): """ Function to generate the full address of the profile. Args: chance: Integer between 1-100 used for realistic variation. (not required) variation: Boolean value indicating whether variation is requested. (optional) format: String value used to indicate required format. (optional) Options include: -1 (Str value) -2 (List value) Returns: The return value. String/List value containing the full address. """ if not chance: chance = random.randint(1,100) csv_file = open(canadian_data_file_name, 'r') csv_reader = csv.reader(csv_file, delimiter=',') random_row = random.choice(list(csv_reader)) csv_file.close() if format == 1 or format == "1": return "%s %s, %s, %s, %s" % (generate_street_number(row=random_row),generate_street_name(chance=chance, variation=variation,row=random_row),generate_city(chance=chance, variation=variation,row=random_row),generate_province(chance=chance, variation=variation,row=random_row),generate_postal_code(chance=chance, variation=variation,row=random_row)) elif format == 2 or format == "2": address_list=[] address_list.append(generate_street_number(row=random_row)) address_list.append(generate_street_name(variation,row=random_row)) address_list.append(generate_city(variation,row=random_row)) address_list.append(generate_province(variation,row=random_row)) address_list.append(generate_postal_code(variation,row=random_row)) return address_list
364cbe0f033d0500014583c550beb36a6cb6db55
12,292
import urllib def binder_url(repo, branch="master", filepath=None): """ Build a binder url. If filepath is provided, the url will be for the specific file. Parameters ---------- repo: str The repository in the form "username/reponame" branch: str, optional The branch, default "master" filepath: str, optional The path to a file in the repo, e.g. dir1/dir2/notebook.ipynb Returns ------- str A binder url that will launch a notebook server """ if filepath is not None: fpath = urllib.parse.quote(filepath, safe="%") return resources.BINDER_URL_TEMPLATE_WITH_FILEPATH.format( repo, branch, fpath ) else: return resources.BINDER_URL_TEMPLATE_NO_FILEPATH.format(repo, branch)
f9ac9e28a1cc6b88bce788e63668f1e4a4b45f61
12,293
def _create_group_hub_without_avatar(_khoros_object, _api_url, _payload): """This function creates a group hub with only a JSON payload and no avatar image. .. versionadded:: 2.6.0 :param _khoros_object: The core :py:class:`khoros.Khoros` object :type _khoros_object: class[khoros.Khoros] :param _api_url: The API URL to utilize in the API request :type _api_url: str :param _payload: The JSON payload to be used in the API request :type _payload: dict :returns: The API response from the POST request :raises: :py:exc:`khoros.errors.exceptions.APIConnectionError`, :py:exc:`khoros.errors.exceptions.POSTRequestError` """ _headers = {'content-type': 'application/json'} _response = api.post_request_with_retries(_api_url, _payload, khoros_object=_khoros_object, headers=_headers) return _response
43222666b5a5f5dcec91a4fa1025278f84275e9c
12,294
def ulstrip(text): """ Strip Unicode extended whitespace from the left side of a string """ return text.lstrip(unicode_extended_whitespace)
191e0654cdab79778c64ec874bbc9b945b0ed4a3
12,295
def clone_dcm_meta(dcm): """ Copy an existing pydicom Dataset as a basis for saving another image :param dcm: the pydicom dataset to be copied :return: """ newdcm = pydi.Dataset() for k, v in dcm.items(): newdcm[k] = v newdcm.file_meta = mk_file_meta() newdcm.is_little_endian = True newdcm.is_implicit_VR = False newdcm.SOPInstanceUID = newdcm.file_meta.MediaStorageSOPInstanceUID newdcm.SOPClassUID = newdcm.file_meta.MediaStorageSOPClassUID return newdcm
e208ee11241b4194bb0d02357e625d0ee4f52d2e
12,296
import toml import itertools from pathlib import Path def load_plate(toml_path): """\ Parse a TOML-formatted configuration file defining how each well in a particular plate should be interpreted. Below is a list of the keys that are understood in the configuration file: 'xlsx_path' [string] The path to the XLSX file containing the plate reader data, relative to the configuration file itself. If not specified, this script will look for a file with the same name as the configuration file, but the '.xlsx' extension, e.g. 'abc.xlsx' if the config file is 'abc.toml'. 'template' [string] The path to another TOML file that should be interpreted as containing default values for all possible settings. 'notes' [string] A string that will be printed every time the file is visualized. This is meant to reminder the user of any details relating to this particular experiment (e.g. mistakes) that might affect interpretation of the data. The following keys relate to particular wells. Each of these keys can be specified in any of four kinds of block: [well.A1], [row.A], [col.1], and [plate]. The [well] block allows values to be set for individual wells ('A1' in this example). The [row] and [col] blocks allow values to be set for whole rows and columns ('A' and '1' in these examples). The [plate] block allows values to be set for the whole plate. The same value can be set multiple times, in which case the value from the most specific block will take precedence. """ def recursive_merge(layout, defaults, overwrite=False): for key, default in defaults.items(): if isinstance(default, dict): layout.setdefault(key, {}) recursive_merge(layout[key], default) else: if overwrite or key not in layout: layout[key] = default def do_load_paths(toml_path, expected_ext='.xlsx'): toml_path = Path(toml_path).resolve() layout = toml.load(str(toml_path)) # Resolve the path(s) to actual data. if 'path' in layout and 'paths' in layout: raise ValueError(f"{toml_path} specifies both 'path' and 'paths'") elif 'path' in layout: path = toml_path.parent / layout['path'] layout['paths'] = {'default': path} elif 'paths' in layout: layout['paths'] = { toml_path.parent / x for x in layout['paths'] } else: default_path = toml_path.with_suffix(expected_ext) if default_path.exists(): layout['paths'] = {'default': default_path} # Include a remote file if one is specified. if 'template' in layout: layout['template'] = toml_path.parent / layout['template'] template = do_load_paths(layout['template']) recursive_merge(layout, template) return layout layout = do_load_paths(toml_path) # Apply any row or column defaults. if 'well' not in layout: layout['well'] = {} rows = layout.get('row', {}) cols = layout.get('col', {}) # Create new wells implied by the 'row' and 'col' blocks. for row, col in itertools.product(rows, cols): layout['well'].setdefault(f'{row}{col}', {}) # Update any existing wells. for well in layout.get('well', {}): row, col = well[:1], well[1:] recursive_merge(layout['well'][well], rows.get(row, {})) recursive_merge(layout['well'][well], cols.get(col, {})) # Apply any plate-wide defaults. layout.setdefault('plate', {}), for well in layout.get('well', {}): recursive_merge(layout['well'][well], layout['plate']) # If the experiment has any notes, print them out. if 'notes' in layout: print(toml_path) print(layout['notes'].strip()) print() return layout
cc92a9dae783de915628984979119ca9d2b591a2
12,297
def reduce_entropy(X, axis=-1): """ calculate the entropy over axis and reduce that axis :param X: :param axis: :return: """ return -1 * np.sum(X * np.log(X+1E-12), axis=axis)
68a7d86bf0ad204d989fddceee9e4f75c77a4cb5
12,298
def compile_pbt(lr: float = 5e-3, value_weight: float = 0.5): """ my default: 5e-3 # SAI: 1e-4 # KataGo: per-sample learning rate of 6e-5, except 2e-5 for the first 5mm samples """ input_shape = (N, N, dual_net.get_features_planes()) model = dual_net.build_model(input_shape) opt = keras.optimizers.Adam(learning_rate=lr) model.compile(optimizer=opt, loss={ 'policy': 'categorical_crossentropy', 'value': custom_BCE_loss}, loss_weights={ 'policy': 0.50, 'value': value_weight}, metrics={ 'policy': keras.metrics.CategoricalAccuracy(name="move_acc"), }) return model
e625915c55a44a8c128431ae220401c451ee69a5
12,299