content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def distr_selectbox_names(): """ Accessing stats.name. """ names = ['alpha', 'anglit', 'arcsine', 'argus', 'beta', 'betaprime', 'bradford', 'burr', 'burr12', 'cauchy', 'chi', 'chi2', 'cosine', 'crystalball', 'dgamma', 'dweibull', 'erlang', 'expon', 'exponnorm', 'exponpow', 'exponweib', 'f', 'fatiguelife', 'fisk', 'foldcauchy', 'foldnorm', 'gamma', 'gausshyper', 'genexpon', 'genextreme', 'gengamma', #'gengamma', 'genhalflogistic', 'geninvgauss', 'genlogistic', 'gennorm', 'genpareto', 'gilbrat', 'gompertz', 'gumbel_l', 'gumbel_r', 'halfcauchy', 'halfgennorm', 'halflogistic', 'halfnorm', 'hypsecant', 'invgamma', 'invgauss', 'invweibull', 'johnsonsb', 'johnsonsu', 'kappa3', 'kappa4', #'kappa4', #'kappa4', #'kappa4', 'ksone', 'kstwo', 'kstwobign', 'laplace', 'laplace_asymmetric', 'levy', 'levy_l', 'levy_stable', 'loggamma', 'logistic', 'loglaplace', 'lognorm', 'loguniform', 'lomax', 'maxwell', 'mielke', 'moyal', 'nakagami', 'ncf', 'nct', 'ncx2', 'norm', 'norminvgauss', 'pareto', 'pearson3', 'powerlaw', 'powerlognorm', 'powernorm', 'rayleigh', 'rdist', 'recipinvgauss', 'reciprocal', 'rice', 'semicircular', 'skewnorm', 't', 'trapezoid', 'triang', 'truncexpon', 'truncnorm', #'truncnorm', 'tukeylambda', 'uniform', 'vonmises', 'vonmises_line', 'wald', 'weibull_max', 'weibull_min', 'wrapcauchy'] return names
5051cab27bf6497d3dfb4d4828daeaeefa528403
35,376
def read_file(filename): """Read filename; return contents as one string.""" with open(filename) as my_file: return my_file.read()
fa4b47085f5d3ace5c011fcda27e6ffa94c7085a
35,377
def remove_intercept_column(X: np.ndarray) -> np.ndarray: """ Remove the first column """ if len(X.shape) == 1: return X[1:] return X[:, 1:]
40b8bccab207e3293cca69ed99f641dbe4a17198
35,378
from typing import Tuple def get_user_configurations() -> Tuple[list, list]: """ Function that reads the $HOME/.pip folder and return two lists, containing filenames and absolute path from them. """ pip_config_path = UserPath.PIP_CONFIG_DIRECTORY.value config_filenames = read.get_user_configuration_files() config_filepaths = [pip_config_path + "/" + filename for filename in config_filenames] return config_filenames, config_filepaths
422f34ed175a31b3b3070154ecb0c38cd1ca19d9
35,379
def say(number): """ print out a number as words in North American English using short scale terms """ number = int(number) if number < 0 or number >= 1e12: raise ValueError if number == 0: return "zero" def quotient_and_remainder(number, divisor): """ return the integer quotient and remainder of dividing number by divisor """ divisor = int(divisor) remainder = number % divisor quotient = (number - remainder) // divisor return quotient, remainder def say_term(which, terms): """ return a term from a tuple of strings as a list of one element """ return terms[which : which + 1] def say_tens(number): """ return a string representing a number less than 100 in English """ terms = [] quotient, remainder = quotient_and_remainder(number, 10) if quotient == 1: terms += say_term(remainder, ("ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen")) else: if quotient: terms += say_term(quotient, ("units", "teens", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety")) if remainder: terms += say_term(remainder, ("zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine")) return '-'.join(terms) def say_hundreds(number, final=False): """ return a string representing a number less than 1000 in English """ terms = [] quotient, remainder = quotient_and_remainder(number, 100) if quotient: terms += [say_tens(quotient), "hundred"] if remainder: if quotient or final: terms += ["and"] terms += [say_tens(remainder)] return terms # now finally convert a number less than a million million terms = [] quotient, remainder = quotient_and_remainder(number, 1e9) if quotient: terms += say_hundreds(quotient) + ["billion"] quotient, remainder = quotient_and_remainder(remainder, 1e6) if quotient: terms += say_hundreds(quotient) + ["million"] quotient, remainder = quotient_and_remainder(remainder, 1e3) if quotient: terms += say_hundreds(quotient) + ["thousand"] if remainder: terms += say_hundreds(remainder, terms != []) return ' '.join(terms)
42b8d321c001c60e37f6bbd94bd2a3404ddf5c66
35,381
def get_s3_versions(bucket_name, key_name): """Get versioning information for a given key. :param bucket_name: the bucket's name :type bucket_name: string :param key_name: the key's name :type key_name: string :return: for each version, the version id and the last modified date :rtype: a list of tuples, where tuple[0] is a string and tuple[1] a `datetime` instance. **NB:** it assumes a versioned bucket. """ client = get_s3_resource() # may be worth comparing with # client.list_object_versions(prefix) versions = client.Bucket(bucket_name).\ object_versions.filter(Prefix=key_name) version_ids = [ ( v.get().get('VersionId'), v.get().get('LastModified') ) for v in versions if v.size is not None ] return version_ids
85fc1f51f69e4cc326f043be7c65d48df3343854
35,382
def indentitems(items, indent, level): """Recursively traverses the list of json lines, adds indentation based on the current depth""" res = "" indentstr = " " * (indent * level) for (i, item) in enumerate(items): if isinstance(item, list): res += indentitems(item, indent, level+1) else: islast = (i==len(items)-1) # no new line character after the last rendered line if level==0 and islast: res += indentstr + item else: res += indentstr + item + "\n" return res
91adea46ab0cda227167869235e5e54311ab199a
35,383
def dcg_at_k(r, k): """ Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider Returns: Discounted cumulative gain """ assert k >= 1 r = np.asfarray(r)[:k] != 0 if r.size: return np.sum( np.subtract(np.power(2, r), 1) / np.log2(np.arange(2, r.size + 2)) ) return 0.0
18b862b819170fb0c8049f57fe2c1448fc277260
35,384
def switch(parser, token): """ Switch tag. Usage:: {% switch meal %} {% case "spam" %}...{% endcase %} {% case "eggs" %}...{% endcase %} {% endswitch %} Note that ``{% case %}`` arguments can be variables if you like (as can switch arguments, buts that's a bit silly). """ # Parse out the arguments. args = token.split_contents() if len(args) != 2: raise template.TemplateSyntaxError("%s tag tags exactly 2 arguments." % args[0]) # Pull out all the children of the switch tag (until {% endswitch %}). childnodes = parser.parse(("endswitch",)) # Remove the {% endswitch %} node so it doesn't get parsed twice. parser.delete_first_token() # We just care about case children; all other direct children get ignored. casenodes = childnodes.get_nodes_by_type(CaseNode) return SwitchNode(args[1], casenodes)
f4522eaacbca83e17a604c57026a07abeea42fb7
35,385
import re def rm_noise(diff): """Filter out noise from diff text. Args: diff (str): diff text Returns: str: cleaned diff text """ result = diff patterns = ["\n", "\u0020+", "་+?"] for pattern in patterns: noise = re.search(pattern, diff) if noise: result = result.replace(noise[0], "") return result
8a139f22e30e3c98b1dfef3b47fa623db8b22a29
35,386
async def auth_relogin(sessionid: str = Form(...), clients: ClientStorage = Depends(get_clients)) -> str: """Relogin by username and password (with clean cookies) """ cl = clients.get(sessionid) result = cl.relogin() return result
829981336379e157f164beadffdbc5c576e095a1
35,387
def delete_qsession_command(session_id: str, cloud_request_id: str) -> dict: """ Delete a queued RTR session command by session ID and cloud request ID :param session_id: :param cloud_request_id: """ endpoint_url = '/real-time-response/entities/queued-sessions/command/v1' if helpers.is_expiring(BATCH_LIFE_TIME, BATCH_REQ_TIME): refresh_rtr_session() params = { 'session_id': session_id, 'cloud_request_id': cloud_request_id } response = http_request('DELETE', endpoint_url, params=params) return response
dd2bab4531d3a0523022e46245b6d41ef202684d
35,388
def dict_factory(cursor, row): """ convert sursor into dict """ result = {} for idx, col in enumerate(cursor.description): result[col[0]] = row[idx] return result
9de5c6252cb36961c645c9b43bd5f7a8a66b4deb
35,389
def variant_with_no_attributes(category): """Create a variant having no attributes, the same for the parent product.""" product_type = ProductType.objects.create( name="Test product type", has_variants=True, is_shipping_required=True ) product = Product.objects.create( name="Test product", price=Money(10, "USD"), product_type=product_type, category=category, ) variant = ProductVariant.objects.create(product=product, sku="123") return variant
9bf4f09456d00f638e99cc2b6218f54de627f193
35,390
def spec_resid(pars,wave,flux,err,models,spec): """ This helper function calculates the residuals between an observed spectrum and a Cannon model spectrum. Parameters ---------- pars : array Input parameters [teff, logg, feh, rv]. wave : array Wavelength array for observed spectrum. flux : array Observed flux array. err : array Uncertainties in the observed flux. models : list of Cannon models List of Cannon models to use spec : Spec1D The observed spectrum. Needed to run cannon.model_spectrum(). Outputs ------- resid : array Array of residuals between the observed flux array and the Cannon model spectrum. """ #m = cannon.model_spectrum(models,spec,teff=pars[0],logg=pars[1],feh=pars[2],rv=pars[3]) m = models(teff=pars[0],logg=pars[1],feh=pars[2],rv=pars[3]) if m is None: return np.repeat(1e30,len(flux)) resid = (flux-m.flux.flatten())/err return resid
d8ea49975717693ec8b6b4003e035e04a847c9b4
35,391
import calendar def timestamp_d_b_Y_H_M_S(value): """Convert timestamp string to time in seconds since epoch. Timestamps strings like '18 Jun 2013 12:00:00 GMT' are able to be converted by this function. Args: value: A timestamp string in the format '%d %b %Y %H:%M:%S GMT'. Returns: The time in seconds since epoch as an integer. Raises: ValueError: If timestamp is invalid. KeyError: If the abbrieviated month is invalid. Note: The timezone is ignored it is simply assumed to be UTC/GMT. """ d, b, Y, t, Z = value.split() H, M, S = t.split(":") return int(calendar.timegm(( int(Y), _months[b.lower()], int(d), int(H), int(M), int(S), 0, 0, 0 )))
20484ba19cf54c4b152763a5170568f18d0ca492
35,393
def constrained_fit( model_constructor, pdf_transform=False, default_rtol=1e-10, default_atol=1e-10, default_max_iter=int(1e7), learning_rate=1e-6, ): """ Wraps a series of functions that perform maximum likelihood fitting in the `two_phase_solver` method found in the `fax` python module. This allows for the calculation of gradients of the best-fit parameters with respect to upstream parameters that control the underlying model, i.e. the event yields (which are then parameterized by weights or similar). Args: model_constructor: Function that takes in the parameters of the observable, and returns a model object (and background-only parameters) Returns: constrained_fitter: Callable function that performs constrained fits. Differentiable :) """ adam_init, adam_update, adam_get_params = optimizers.adam(learning_rate) def make_model(hyper_pars): model_pars, constrained_mu = hyper_pars m, bonlypars = model_constructor(model_pars) bounds = m.config.suggested_bounds() constrained_mu = ( to_inf(constrained_mu, bounds[0]) if pdf_transform else constrained_mu ) exp_bonly_data = m.expected_data(bonlypars, include_auxdata=True) def expected_logpdf(pars): # maps pars to bounded space if pdf_transform = True return ( m.logpdf(to_bounded_vec(pars, bounds), exp_bonly_data) if pdf_transform else m.logpdf(pars, exp_bonly_data) ) def constrained_fit_objective(nuis_par): # NLL pars = jnp.concatenate([jnp.asarray([constrained_mu]), nuis_par]) return -expected_logpdf(pars)[0] return constrained_mu, constrained_fit_objective def constrained_bestfit_minimized(hyper_pars): mu, cnll = make_model(hyper_pars) def bestfit_via_grad_descent(i, param): # gradient descent _, np = param[0], param[1:] g = jax.grad(cnll)(np) np = adam_get_params(adam_update(i, g, adam_init(np))) param = jnp.concatenate([jnp.asarray([mu]), np]) return param return bestfit_via_grad_descent constrained_solver = twophase.two_phase_solver( param_func=constrained_bestfit_minimized, default_rtol=default_rtol, default_atol=default_atol, default_max_iter=default_max_iter, ) def constrained_fitter(init, hyper_pars): solve = constrained_solver(init, hyper_pars) return solve.value return constrained_fitter
4febeb404746bd233b7a936826380b5d5b9d49b1
35,394
import numpy def word2array(ft_names, word): """Converts `word` [[(value, feature),...],...] to a NumPy array Given a word consisting of lists of lists/sets of (value, feature) tuples, return a NumPy array where each row is a segment and each column is a feature. Args: ft_names (list): list of feature names (as strings) in order; this argument controls what features are included in the array that is output and their order vis-a-vis the columns of the array word (list): list of lists of feature tuples (output by FeatureTable.word_fts) Returns: ndarray: array in which each row is a segment and each column is a feature """ vdict = {'+': 1, '-': -1, '0': 0} def seg2col(seg): seg = dict([(k, v) for (v, k) in seg]) return [vdict[seg[ft]] for ft in ft_names] return numpy.array([seg2col(s) for s in word], order='F')
4305f7b85287f70ffc7cb9ade2c8c2663dc11659
35,395
from typing import List from typing import Sequence from typing import Dict from typing import Union import random def random_motif_search( sequences: List[Sequence], pattern_length: int, laplace: bool = True, ) -> Dict[str, Union[List[Sequence], Sequence, int]]: """Finds a motif matrix in a randomized search. Args: sequences: Collection of sequences that will be searched for patterns. pattern_length: Fixed length of patterns. laplace: If True then pseudocounts are added to the profile matrix to reduce its sparsity. Returns: A motif matrix for the given collection of sequences, as well as the consensus string and the motif score. """ num_seqs = len(sequences) last_pos = sequences[0].length - pattern_length + 1 motifs = [None] * num_seqs for i, seq in enumerate(sequences): start_pos = random.randrange(0, last_pos) end_pos = start_pos + pattern_length motifs[i] = Sequence(seq.sequence[start_pos:end_pos]) best_motifs = motifs best_motifs_results = find_consensus_motif( best_motifs, pattern_length, laplace=laplace, ) best_motifs_score = best_motifs_results["Score"] consensus_motif = best_motifs_results["Consensus"] while True: profile_matrix = find_consensus_motif( motifs, pattern_length, laplace=laplace, )["Matrix"] for i, seq in enumerate(sequences): motif_str = seq.most_probable_string(pattern_length, profile_matrix) motifs[i] = Sequence(motif_str) motif_results = find_consensus_motif( motifs, pattern_length, laplace=laplace, ) motifs_score = motif_results["Score"] if motifs_score < best_motifs_score: best_motifs = motifs best_motifs_score = motifs_score consensus_motif = Sequence(motif_results["Consensus"]) else: results = { "Motif matrix": best_motifs, "Score": best_motifs_score, "Consensus": consensus_motif, } return results
5b680f5d0015ce50298156a8e7e7755b2591ee6e
35,396
def get_tweet_sentiment(tweets): """ Uses the VADER SentimentIntensityAnalyzer from NLTK to classify tweet sentiment polarity. Takes in input a list of tweets (text-only, not JSON). Checks which party a tweet refers to and averages the score for all tweets for each party. Returns a dictionary of the parties and their average sentiment score (compound). """ scores = {"con": [], "lab": [], "lib": [], "snp": []} averages = {"con": [], "lab": [], "lib": [], "snp": []} sid = SentimentIntensityAnalyzer() for tweet in tweets: ss = sid.polarity_scores(tweet.replace("#", "")) # get the sentiment analysis scores for each tweet c_score = ss['compound'] # take the compound score, between -1 and 1 if any(word in tweet.lower() for word in CON_WORDS): scores['con'].append(c_score) if any(word in tweet.lower() for word in LAB_WORDS): scores['lab'].append(c_score) if any(word in tweet.lower() for word in LIB_WORDS): scores['lib'].append(c_score) if any(word in tweet.lower() for word in SNP_WORDS): scores['snp'].append(c_score) for party, score_list in scores.items(): if len(score_list) != 0: average = sum(score_list)/len(score_list) # average sentiment per party per tweet else: average = 0 averages[party] = average return averages
75edd974b667f1409f9261522c5dd5c338b5ae4b
35,397
def external(field): """ Mark a field as external. """ field._external = True return field
83de43305f9655aa2be9c6b7264552bd3e2783f7
35,399
from typing import Union from typing import IO from typing import Any from typing import Optional import yaml def from_file( file: Union[IO[str], str], *, app: Any = None, base_url: Optional[str] = None, method: Optional[Filter] = None, endpoint: Optional[Filter] = None, tag: Optional[Filter] = None, operation_id: Optional[Filter] = None, skip_deprecated_operations: bool = False, validate_schema: bool = True, force_schema_version: Optional[str] = None, data_generation_methods: DataGenerationMethodInput = DEFAULT_DATA_GENERATION_METHODS, code_sample_style: str = CodeSampleStyle.default().name, location: Optional[str] = None, **kwargs: Any, # needed in the runner to have compatible API across all loaders ) -> BaseOpenAPISchema: """Load Open API schema from a file descriptor, string or bytes. :param file: Could be a file descriptor, string or bytes. """ try: raw = yaml.load(file, StringDatesYAMLLoader) return from_dict( raw, app=app, base_url=base_url, method=method, endpoint=endpoint, tag=tag, operation_id=operation_id, skip_deprecated_operations=skip_deprecated_operations, validate_schema=validate_schema, force_schema_version=force_schema_version, data_generation_methods=data_generation_methods, code_sample_style=code_sample_style, location=location, ) except yaml.YAMLError as exc: raise SchemaLoadingError(YAML_LOADING_ERROR) from exc
3dc7ea5805fa82648c98878de02d6d37b6e432c2
35,400
def rand_score_choice(): """ 返回一个看似合理分布的成绩 :return: int """ score_choice = [randint(50, 80), randint(40, 60), randint(60, 80), randint(60, 80), randint(70, 90), randint(80, 100)] return choice(score_choice)
b34492746048c3ea42ab927b1d4be11bba810419
35,401
def getExactFreePlaceIndexForCoordinate(freePlaceMap, x, y): """ Returns the Exact Value for a given Coordinate on the FreePlaceMap :param freePlaceMap: The generated FreePlaceMap :param x: The X Coordinate on the FreePlaceMap :param y: The Y Coordinate on the FreePlaceMap :return: The Indexvalue on the FreePlaceMap """ if freePlaceMap is None or len(freePlaceMap) <= y or len(freePlaceMap[0]) <= x or x < 0 or y < 0: return None if freePlaceMap[y][x] != -1: return freePlaceMap[y][x] - 1 return None
4af9dec9163bd505f944f02db55a2dcfa80cb434
35,402
from typing import Optional async def get_bc_history(start_time: Optional[str] = None, end_time: Optional[str] = None, isp: Optional[str] = ''): """ ## **param**: start_time: 开始时间(可选参数) str 默认 当前时间前一月 end_time: 结束时间(可选参数) str 默认 当前时间 isp: 运营商(可选参数) str 默认 '', '移动'(测试) ## **return**: [ { "移动": { "省份": "天津市", "运营商": "移动", "上线上报比例": "46%", "下线上报比例": "55%", "访问上报比例": "36%", "日志符合规范比例": "100%", "日志正常加载比例": "100%", "日志正常查询比例": "51%", "外网代理上报比例": "0%", "公网IP上报比例": "100%", "公网IP准确性比例": "28%", "IMEI上报正确性比例": "99%", "IMSI上报正确性比例": "100%", "LAC上报正确性比例": "99%", "Ci上报正确性比例": "95%", "结果条数": "1940", "时间": "2021-07-28" } }, ... """ if start_time == None: start_time = get_before_month() if end_time == None: end_time = get_now_date() db = MySqLHelper() sql = """ SELECT province, isp, online_report_rate, offline_report_rate, access_report_rate, log_standard_rate, log_loading_rate, log_query_rate, extranet_report_rate, ip_report_rate, ip_accurate_rate, imei_correct_rate, imsi_correct_rate, lac_correct_rate, ci_correct_rate, total_nums, d_time FROM t_ipsy_bc WHERE """ if isp: sql += """ isp = '{}' AND d_time BETWEEN '{}' AND '{}' """.format(isp, start_time, end_time) else: sql += """ d_time BETWEEN '{}' AND '{}' """.format(start_time, end_time) print(sql) rows = db.selectall(sql=sql) data_list = [list(row) for row in rows] temp_data = data_processing(data_list, 2000) result = {} for item in temp_data: temp_dict = {} temp_dict['province'] = item[0] temp_dict['isp'] = item[1] temp_dict['online_report_rate'] = item[2] temp_dict['offline_report_rate'] = item[3] temp_dict['access_report_rate'] = item[4] temp_dict['log_standard_rate'] = item[5] temp_dict['log_loading_rate'] = item[6] temp_dict['log_query_rate'] = item[7] temp_dict['extranet_report_rate'] = item[8] temp_dict['ip_report_rate'] = item[9] temp_dict['ip_accurate_rate'] = item[10] temp_dict['imei_correct_rate'] = item[11] temp_dict['imsi_correct_rate'] = item[12] temp_dict['lac_correct_rate'] = item[13] temp_dict['ci_correct_rate'] = item[14] temp_dict['total_nums'] = item[15] temp_dict['d_time'] = item[16] if item[1] not in result.keys(): temp_list = result.setdefault(item[1], []) temp_list.append(temp_dict) else: result[item[1]].append(temp_dict) return comm_ret(data = result)
11dd27f17f4ba61fcd01332bff6a520a8373c415
35,403
def get_member_class(resource): """ Returns the registered member class for the given resource. :param resource: registered resource :type resource: class implementing or instance providing or subclass of a registered resource interface. """ reg = get_current_registry() if IInterface in provided_by(resource): member_class = reg.getUtility(resource, name='member-class') else: member_class = reg.getAdapter(resource, IMemberResource, name='member-class') return member_class
50278b01b11760ccd38025389c2558737d73c7a4
35,404
def split_on_text(row): """Spliting original text into million character blocks for Spacy""" val = round(row['original_text_length'] / 1000000) final_texts = [] count = 1000000 counter = 0 for i in range(0, val): if (count + 1000000) > row['original_text_length']: final_texts.append(row.text[count:]) else: final_texts.append(row.text[counter:count]) counter = counter + 1000000 count = count + 1000000 return final_texts
678377650df3ca49cfb0d4404382589e32e3c6ae
35,405
def make_child_node(parent_node, action, state): """ Construct an child search node """ return SearchNode(state, parent_node, action)
4f7f0d91cbf7384c81c801adb1273e3c9c7c2916
35,407
def get_number(number): """ Repeats back a number to you --- operationId: getPetsById parameters: - name: number in: path type: string description: the number responses: 200: description: Hello number! """ return "Hello {}!".format(number)
22d6c8a7a5b3a8ff946e4dccaf5876134a0293cd
35,408
def get_user_by_id(uid, session=None): """Get user by id.""" with session_scope() as session: return session.query(User)\ .filter(User.id == uid)\ .first().to_json()
6273d51340b837bf12afa6eb3c77a03af88eacba
35,409
def make_grayscale(img: np.ndarray) -> np.ndarray: """Turns BGR image into grayscale.""" if len(img.shape) == 3 and img.shape[2] == 3: return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: return img
7fd184948d671ce501dc3a6e9396de0a5601d9a7
35,410
def GetKM3NeTOMGelAbsorptionLength(): """ A function to return the absorption length the gel of an KM3NeT OM Note: The file hit-ini_optic.f has three different datasets for this absorption length! However in the file hit.f it always is initialized with the same (gel_id=1). Thus this one is implemented here. """ # Data copied from the km3 file hit-ini_optic.f # GEL WACKER (default) al_gel_default_reverse = [100.81, # at 610 nm 99.94, # at 600 nm 99.89, 96.90, 96.42, 94.36, 89.09, 90.10, 86.95, 85.88, 84.49, 81.08, 78.18, 76.48, 74.55, 72.31, 68.05, 66.91, 64.48, 62.53, 59.38, 56.64, 53.29, 48.96, 45.71, 41.88, 37.14, 30.49, 23.08, 15.60, 8.00, 0.00 # at 300 nm ] # Apply units al_gel_default_reverse = [ (i * I3Units.cm) for i in al_gel_default_reverse] al_gel_default_reverse.reverse() # reverse the list (in-place) return I3CLSimFunctionFromTable(300.*I3Units.nanometer, 10.*I3Units.nanometer, al_gel_default_reverse)
2fc250b636a3d20baac3a3a28de4604132fe2ab1
35,411
def align_frontiers_on_bars(frontiers, bars): """ Aligns the frontiers of segments to the closest bars (in time). The idea is that frontiers generally occurs on downbeats, and that realigning the estimation could improve perfomance for low tolerances scores. Generally used for comparison with techniques which don't align their segmentation on bars. Parameters ---------- frontiers : list of float Time of the estimated frontiers. bars : list of tuple of float The bars of the signal. Returns ------- frontiers_on_bars : list of floats Frontiers, realigned on bars. """ frontiers_on_bars = [] i = 1 for frontier in frontiers: while i < len(bars) - 1 and bars[i][1] < frontier: i+=1 if i == len(bars) - 1: frontiers_on_bars.append(frontier) else: if bars[i][1] - frontier < frontier - bars[i][0]: frontiers_on_bars.append(bars[i][1]) else: frontiers_on_bars.append(bars[i][0]) return frontiers_on_bars
ef1f3d62a36065f64d31c4e4d7f6ce07045e2e5e
35,412
def sudo_command(cmd, user=None, password=None, extraopts=None): """Run a command with sudo and return the output, a tuple of (stdout, stderr). """ proc = sudo(cmd, user=user, password=password, extraopts=extraopts) return process.run_process(proc)
605372faca312b95f3c62244dde371e7550b72cc
35,413
def FK42FK5Matrix(t=None): """ ---------------------------------------------------------------------- Purpose: Create a matrix to precess from B1950 in FK4 to J2000 in FK5 following to Murray's (1989) procedure. Input: t, a Besselian epoch as epoch of observation. Returns: Transformation matrix M as in XYZfk5 = M * XYZfk4 Reference: Murray, C.A. The Transformation of coordinates between the systems B1950.0 and J2000.0, and the principal galactic axis referred to J2000.0, Astronomy and Astrophysics (ISSN 0004-6361), vol. 218, no. 1-2, July 1989, p. 325-329. Poppe P.C.R.,, Martin, V.A.F., Sobre as Bases de Referencia Celeste SitientibusSerie Ciencias Fisicas Notes: Murray precesses from B1950 to J2000 using a precession matrix by Lieske. Then applies the equinox correction and ends up with a transformation matrix X(0) as given in this function. In Murray's article it is proven that using the procedure as described in the article, r_fk5 = X(0).r_fk4 for extra galactic sources where we assumed that the proper motion in FK5 is zero. This procedure is independent of the epoch of observation. Note that the matrix is not a rotation matrix. FK4 is not an inertial coordinate frame (because of the error in precession and the motion of the equinox. This has consequences for the proper motions. e.g. a source with zero proper motion in FK5 has a fictious proper motion in FK4. This affects the actual positions in a way that the correction is bigger if the epoch of observation is further away from 1950.0 The focus of this library is on data of which we do not have information about the proper motions. So for positions of which we allow non zero proper motion in FK5 one needs to supply the epoch of observation ---------------------------------------------------------------------- """ r11 = 0.9999256794956877; r12 = -0.0111814832204662; r13 = -0.0048590038153592 r21 = 0.0111814832391717; r22 = 0.9999374848933135; r23 = -0.0000271625947142 r31 = 0.0048590037723143; r32 = -0.0000271702937440; r33 = 0.9999881946023742 if t != None: # i.e. we also assuming that v != 0 in FK5 !! jd = epochBessel2JD(t) T = (jd-2433282.423)/36525.0 # t-1950 in Julian centuries = F^-1.t1 from Murray (1989) r11 += -0.0026455262*T/1000000.0 r12 += -1.1539918689*T/1000000.0 r13 += 2.1111346190*T/1000000.0 r21 += 1.1540628161*T/1000000.0 r22 += -0.0129042997*T/1000000.0 r23 += 0.0236021478*T/1000000.0 r31 += -2.1112979048*T/1000000.0 r32 += -0.0056024448*T/1000000.0 r33 += 0.0102587734*T/1000000.0 return n.matrix( ([r11,r12,r13],[r21,r22,r23],[r31,r32,r33]) )
711ae31af8d6b0e55d940a3dd75cdc724c46e80c
35,414
def _rec_superdense(packet): """ Receives a superdense qubit and decodes it. Args: packet (Packet): The packet in which to receive. Returns: dict: A dictionary consisting of decoded superdense message and sequence number """ receiver = packet.receiver sender = packet.sender payload = packet.payload host_receiver = network.get_host(receiver) q1 = host_receiver.get_data_qubit(sender, payload.id, wait=WAIT_TIME) q2 = host_receiver.get_epr(sender, payload.id, wait=WAIT_TIME) assert q1 is not None and q2 is not None if packet.await_ack: _send_ack(packet.sender, packet.receiver, packet.seq_num) return {'sender': packet.sender, 'message': _decode_superdense(q1, q2), SEQUENCE_NUMBER: packet.seq_num}
f8f20554170b0549d71d0ed666dbea987148791f
35,415
def _high_bit(value): """returns index of highest bit, or -1 if value is zero or negative""" return value.bit_length() - 1
1bd783593ae7d5b15cc56c8a8db5c86798fd8c9f
35,416
import re from bs4 import BeautifulSoup def parse_round(bsoup, rnd, gid, airdate): """Parses and inserts the list of clues from a whole round.""" round_id = "jeopardy_round" if rnd == 1 else "double_jeopardy_round" r = bsoup.find(id=round_id) # The game may not have all the rounds if not r: return False # The list of categories for this round categories = [c.get_text() for c in r.find_all("td", class_="category_name")] # The x_coord determines which category a clue is in # because the categories come before the clues, we will # have to match them up with the clues later on. x = 0 for a in r.find_all("td", class_="clue"): is_missing = True if not a.get_text().strip() else False if not is_missing: value = a.find("td", class_=re.compile("clue_value")).get_text().lstrip("D: $") text = a.find("td", class_="clue_text").get_text() answer = BeautifulSoup(a.find("div", onmouseover=True).get("onmouseover"), "lxml") answer = answer.find("em", class_="correct_response").get_text() insert([gid, airdate, rnd, categories[x], value, text, answer]) x = 0 if x == 5 else x + 1 return True
19cc79523de901ae773f5c808795c8c160291310
35,417
def on_end_validation(func): """ The :func:`on_end_validation` decorator is used to initialise a :class:`.Callback` with :meth:`~.Callback.on_end_validation` calling the decorated function Example: :: >>> import torchbearer >>> from torchbearer import Trial >>> from torchbearer.callbacks import on_end_validation # Example callback running at the end of each validation pass. >>> @on_end_validation ... def print_callback(state): ... print('Finished validating.') >>> trial = Trial(None, callbacks=[print_callback]).for_steps(1).for_val_steps(1).run() Finished validating. Args: func (function): The function(state) to *decorate* Returns: Callback: Initialised callback with :meth:`~.Callback.on_end_validation` calling func """ return bind_to(Callback.on_end_validation)(func)
d58ac5f6cb4e2da08480e5ac9a18ec425b5f4946
35,418
from typing import Any from typing import List def transpose_checker( attrs: Any, args: List[relay.expr.Expr], op_name: str ) -> bool: # pylint: disable=unused-variable """Check if transpose is supported by TensorRT.""" if get_tensorrt_use_implicit_batch_mode() and int(attrs.axes[0]) != 0: logger.info(f"{op_name}: can't modify batch dimension.") return False return True
fb5a3d0cbade224d269a1ca5bc54d86cff9ca6a1
35,419
from pathlib import Path def project_root() -> Path: """Returns project root folder.""" return Path(__file__).parent
7296e26ab57a3adcbde65df7ed5f1976ff3b84ca
35,420
def qual(obj): """ Return fully qualified name of a class. """ return u'{}.{}'.format(obj.__class__.__module__, obj.__class__.__name__)
5b9779935b84a8bb3653cc9fc2c627dda5dd0e7f
35,421
def treefactorial(high: int, low: int=None) -> int: """Pure Python factorial, no imports by Daniel Fischer @stackoverflow.com Daniel Fischer says algorithm is old. """ if high < 2: return 1 if low is None: return treefactorial(high, 1) if low + 1 < high: mid: int= (low + high) // 2 return treefactorial(mid, low)*treefactorial(high, mid + 1) if low == high: return low return low*high
eda784b853ca7305d4206a54b911c1b10e645587
35,422
import math def squarish_factors(x): """Returns the closest pair of factors of x. Parameters ---------- x : int Examples -------- >>> squarish_factors(20) (5, 4) >>> squarish_factors(36) (6, 6) >>> squarish_factors(53) (53, 1) >>> squarish_factors(0) (0, 0) """ if is_square(x): sr = int(math.sqrt(x)) return sr, sr mid = math.floor(math.sqrt(x)) for d in range(mid,0,-1): if x%d == 0: return int(x/d),d # if the above loop completes, there's a problem raise ValueError("X must be a positive integer.")
a5d7cb9983d86d755622fd4bc9e495d7271d7719
35,425
def get_evidence(row: pd.Series) -> Evidence: """Return evidence for a Statement. Parameters ---------- row : Currently investigated row of the dataframe. Returns ------- : Evidence object with the source_api, the PMID and the original sentence. """ pmid = str(row['id']) if row['id'] else None evidence = Evidence(source_api='gnbr', pmid=pmid, text=row['sentence'], text_refs={'PMID': pmid}) return evidence
bc54b6850957a7ab4a1e37289f17f04fc24ee25d
35,426
def config_bgp(dut, **kwargs): """ config_bgp(dut = DUT1, router_id = '9.9.9.9', local_as='100', neighbor ='192.168.3.2', remote_as='200', config = 'yes', config_type_list =["neighbor"]) config_bgp(dut = DUT1, local_as='100', remote_as='200', neighbor ='2001::2', config = 'yes', config_type_list =["neighbor"] config_bgp(dut = DUT1, local_as='100',config = 'yes',config_type_list =["redist"], redistribute ='connected') config_bgp(dut = DUT1, local_as='100', neighbor ='192.168.3.2',config = 'yes',config_type_list =["bfd"]) config_bgp(dut = DUT1, local_as='100', neighbor ='192.168.3.2',config = 'yes',config_type_list =["bfd","redist"], redistribute ='connected') config_bgp(dut = DUT1, local_as='100', neighbor ='192.168.3.2', config = 'yes', password ='broadcom' ,config_type_list =["pswd"]) config_bgp(dut = DUT1, local_as='100', neighbor ='192.168.3.2',config = 'no', password ='broadcom' ,config_type_list =["pswd"]) config_bgp(dut = DUT1, local_as='100', neighbor ='192.168.3.2', config = 'yes', update_src ='2.2.2.1', config_type_list =["update_src"]) config_bgp(dut = DUT1, local_as='100', neighbor ='192.168.3.2', config = 'no', update_src ='2.2.2.1', config_type_list =["update_src"]) config_bgp(dut = DUT1, local_as='100',config = 'yes',config_type_list =["max_path_ibgp"], max_path_ibgp ='8') config_bgp(dut = DUT1, local_as='100',config = 'no',config_type_list =["max_path_ibgp"], max_path_ibgp ='8') config_bgp(dut = DUT1, local_as='100',config = 'yes',addr_family ='ipv6', config_type_list =["max_path_ibgp"], max_path_ibgp ='8') config_bgp(dut = DUT1, local_as='100',config = 'no',addr_family ='ipv6', config_type_list =["max_path_ibgp"], max_path_ibgp ='8') config_bgp(dut = DUT1, local_as='100',config = 'yes',addr_family ='ipv6', config_type_list =["max_path_ebgp"], max_path_ebgp ='20') config_bgp(dut = DUT1, local_as='100', neighbor ='192.168.3.2',config ='yes', config_type_list =["routeMap"], routeMap ='map123', diRection='out') config_bgp(dut = DUT1, local_as='100', neighbor ='192.168.3.2',config ='no', config_type_list =["routeMap"], routeMap ='map123', diRection='out') config_bgp(dut = DUT1, local_as='100', neighbor ='2001::20', addr_family ='ipv6',config = 'yes', config_type_list =["routeMap"], routeMap ='map123', diRection='out') config_bgp(dut = DUT1, local_as='100',config = 'no', removeBGP='yes', config_type_list =["removeBGP"]) config_bgp(dut = dut1,local_as = '100', neighbor = '20.20.20.2', config = 'yes', config_type_list =["nexthop_self"]) config_bgp(dut = dut1,local_as = '100', neighbor = '20.20.20.2', config = 'yes', config_type_list =["ebgp_mhop"],ebgp_mhop ='2') """ cli_type = get_cfg_cli_type(dut, **kwargs) st.log('Configure BGP') config = kwargs.get('config', "yes") vrf_name = kwargs.get('vrf_name', "default") router_id = kwargs.get('router_id','') config_type_list = kwargs.get('config_type_list', None) neighbor = kwargs.get('neighbor', None) local_as = kwargs.get('local_as', None) remote_as = kwargs.get('remote_as', None) peergroup = kwargs.get('peergroup', '') #pswd = kwargs.get('pswd', None) #activate = kwargs.get('activate', None) #nexthop_self = kwargs.get('nexthop_self', None) addr_family = kwargs.get('addr_family', 'ipv4') keepalive = kwargs.get('keepalive', '') holdtime = kwargs.get('holdtime', '') conf_peers = kwargs.get('conf_peers', '') conf_identf = kwargs.get('conf_identf', '') update_src = kwargs.get('update_src', None) update_src_intf = kwargs.get("update_src_intf", "") if "update_src_intf" in config_type_list else "" interface = kwargs.get('interface', None) connect = kwargs.get('connect', None) ebgp_mhop = kwargs.get('ebgp_mhop', None) #failover = kwargs.get('failover', None) shutdown = kwargs.get('shutdown', None) #max_path = kwargs.get('max_path', None) redistribute = kwargs.get('redistribute', None) network = kwargs.get('network', None) password = kwargs.get('password', None) max_path_ibgp = kwargs.get('max_path_ibgp', None) max_path_ebgp = kwargs.get('max_path_ebgp', None) routeMap = kwargs.get('routeMap', None) distribute_list = kwargs.get('distribute_list', None) filter_list = kwargs.get('filter_list', None) prefix_list = kwargs.get('prefix_list', None) #import_vrf = kwargs.get('import_vrf', None) import_vrf_name = kwargs.get('import_vrf_name', None) #fast_external_failover = kwargs.get('fast_external_failover', None) bgp_bestpath_selection = kwargs.get('bgp_bestpath_selection', None) removeBGP = kwargs.get('removeBGP', 'no') diRection = kwargs.get('diRection', 'in') weight = kwargs.get('weight', None) config_cmd = "" if config.lower() == 'yes' else "no" my_cmd ='' if cli_type == "vtysh": if 'local_as' in kwargs and removeBGP != 'yes': if vrf_name != 'default': my_cmd = 'router bgp {} vrf {}\n'.format(local_as, vrf_name) else: my_cmd = 'router bgp {}\n'.format(local_as) if router_id != '': my_cmd += '{} bgp router-id {}\n'.format(config_cmd, router_id) if keepalive != '' and holdtime != '': my_cmd += '{} timers bgp {} {}\n'.format(config_cmd, keepalive, holdtime) if config_cmd == '': if peergroup != '': my_cmd += 'neighbor {} peer-group\n'.format(peergroup) if conf_peers != '': my_cmd += '{} bgp confederation peers {}\n'.format(config_cmd, conf_peers) if conf_identf != '': my_cmd += '{} bgp confederation identifier {}\n'.format(config_cmd, conf_identf) for type1 in config_type_list: if type1 == 'neighbor': my_cmd += '{} neighbor {} remote-as {}\n'.format(config_cmd, neighbor, remote_as) elif type1 == 'shutdown': my_cmd += '{} neighbor {} shutdown\n'.format(config_cmd, neighbor) elif type1 == 'failover': my_cmd += '{} bgp fast-external-failover\n'.format(config_cmd) elif type1 == 'router_id': st.log("Configuring the router-id on the device") elif type1 == 'fast_external_failover': st.log("Configuring the fast_external_failover") my_cmd += '{} bgp fast-external-failover\n'.format(config_cmd) elif type1 == 'bgp_bestpath_selection': st.log("Configuring bgp default bestpath selection") my_cmd += '{} bgp bestpath {}\n'.format(config_cmd,bgp_bestpath_selection) elif type1 == 'activate': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} neighbor {} activate\n'.format(config_cmd, neighbor) elif type1 == 'nexthop_self': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} neighbor {} next-hop-self\n'.format(config_cmd, neighbor) elif type1 == 'pswd': my_cmd += '{} neighbor {} password {}\n'.format(config_cmd, neighbor, password) elif type1 == 'update_src' or type1 == 'update_src_intf': if update_src != None: my_cmd += '{} neighbor {} update-source {}\n'.format(config_cmd, neighbor, update_src) elif update_src_intf != None: my_cmd += '{} neighbor {} update-source {}\n'.format(config_cmd, neighbor, update_src_intf) elif type1 == 'interface': my_cmd += '{} neighbor {} interface {}\n'.format(config_cmd, neighbor, interface) elif type1 == 'connect': my_cmd += '{} neighbor {} timers connect {}\n'.format(config_cmd, neighbor, connect) elif type1 == 'ebgp_mhop': my_cmd += '{} neighbor {} ebgp-multihop {}\n'.format(config_cmd, neighbor, ebgp_mhop) elif type1 == 'peergroup': my_cmd += '{} neighbor {} remote-as {}\n'.format(config_cmd, peergroup, remote_as) if config_cmd == '': if interface: my_cmd += 'neighbor {} interface peer-group {}\n'.format(neighbor, peergroup) else: my_cmd += 'neighbor {} peer-group {}\n'.format(neighbor, peergroup) if config_cmd == 'no': my_cmd += '{} neighbor {} peer-group\n'.format(config_cmd, peergroup) elif type1 == 'bfd': if peergroup: my_cmd += '{} neighbor {} bfd\n'.format(config_cmd, peergroup) elif interface != '' and interface != None: my_cmd += '{} neighbor {} bfd\n'.format(config_cmd, interface) else: my_cmd += '{} neighbor {} bfd\n'.format(config_cmd, neighbor) elif type1 == 'max_path_ibgp': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} maximum-paths ibgp {}\n'.format(config_cmd, max_path_ibgp) my_cmd += 'exit\n' elif type1 == 'max_path_ebgp': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} maximum-paths {}\n'.format(config_cmd, max_path_ebgp) my_cmd += 'exit\n' elif type1 == 'redist': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} redistribute {}\n'.format(config_cmd, redistribute) my_cmd += 'exit\n' elif type1 == 'network': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} network {}\n'.format(config_cmd, network) my_cmd += 'exit\n' elif type1 == 'import-check': my_cmd += '{} bgp network import-check\n'.format(config_cmd) elif type1 == 'import_vrf': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} import vrf {} \n'.format(config_cmd, import_vrf_name) my_cmd += 'exit\n' elif type1 == 'routeMap': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} neighbor {} route-map {} {}\n'.format(config_cmd, neighbor, routeMap, diRection) my_cmd += 'exit\n' elif type1 == 'distribute_list': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} neighbor {} distribute-list {} {}\n'.format(config_cmd, neighbor, distribute_list, diRection) my_cmd += 'exit\n' elif type1 == 'filter_list': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} neighbor {} filter-list {} {}\n'.format(config_cmd, neighbor, filter_list, diRection) my_cmd += 'exit\n' elif type1 == 'prefix_list': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} neighbor {} prefix-list {} {}\n'.format(config_cmd, neighbor, prefix_list, diRection) my_cmd += 'exit\n' elif type1 == 'default_originate': my_cmd += 'address-family {} unicast\n'.format(addr_family) if 'routeMap' in kwargs: my_cmd += '{} neighbor {} default-originate route-map {}\n'.format(config_cmd, neighbor, routeMap) else: my_cmd += '{} neighbor {} default-originate\n'.format(config_cmd, neighbor) my_cmd += 'exit\n' elif type1 == 'removePrivateAs': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} neighbor {} remove-private-AS\n'.format(config_cmd, neighbor) my_cmd += 'exit\n' elif type1 == 'multipath-relax': my_cmd += '{} bgp bestpath as-path multipath-relax \n'.format(config_cmd) elif type1 == 'remote-as': my_cmd += '{} neighbor {} interface remote-as {}\n'.format(config_cmd,interface,remote_as) elif type1 == 'weight': my_cmd += 'address-family {} unicast\n'.format(addr_family) my_cmd += '{} neighbor {} weight {}\n'.format(config_cmd, neighbor, weight) elif type1 == 'removeBGP': st.log("Removing the bgp config from the device") else: st.log('Invalid BGP config parameter: {}'.format(type1)) output = st.config(dut, my_cmd, type=cli_type) if "% Configure the peer-group first" in output: st.error(output) return False if "% Specify remote-as or peer-group commands first" in output: st.error(output) return False if vrf_name != 'default' and removeBGP == 'yes': my_cmd = '{} router bgp {} vrf {}'.format(config_cmd, local_as, vrf_name) st.config(dut, my_cmd, type=cli_type) elif vrf_name == 'default' and removeBGP == 'yes': if 'local_as' in kwargs: my_cmd = '{} router bgp {}'.format(config_cmd,local_as) else: my_cmd = '{} router bgp'.format(config_cmd) st.config(dut, my_cmd, type=cli_type) elif cli_type == "klish": commands = list() neigh_name = get_interface_number_from_name(neighbor) if interface: intf_name = get_interface_number_from_name(interface) shutdown = kwargs.get("shutdown", None) if "shutdown" in config_type_list else None activate = kwargs.get("activate", None) if "activate" in config_type_list else None nexthop_self = kwargs.get("nexthop_self", True) if "nexthop_self" in config_type_list else None pswd = True if "pswd" in config_type_list else False update_src = kwargs.get("update_src", "") if "update_src" in config_type_list else "" update_src_intf = get_interface_number_from_name(update_src_intf) bfd = True if "bfd" in config_type_list else False route_map = True if "routeMap" in config_type_list else False default_originate = True if "default_originate" in config_type_list else False removePrivateAs = True if "removePrivateAs" in config_type_list else False no_neighbor = "no" if kwargs.get("config") == "no" else "" sub_list = ["neighbor", "routeMap", "shutdown", "activate", "nexthop_self", "pswd", "update_src", "bfd", "default_originate", "removePrivateAs", "no_neigh","remote-as","filter_list", "prefix_list", "distribute_list", "weight", "keepalive", "holdtime", "ebgp_mhop","peergroup","update_src_intf","connect"] if 'local_as' in kwargs and removeBGP != 'yes': if vrf_name != 'default': my_cmd = 'router bgp {} vrf {}'.format(local_as, vrf_name) else: my_cmd = 'router bgp {}'.format(local_as) commands.append(my_cmd) if router_id: my_cmd = '{} router-id {}'.format(config_cmd, router_id) commands.append(my_cmd) if peergroup: my_cmd = '{} peer-group {}'.format(config_cmd, peergroup) commands.append(my_cmd) commands.append("exit") # if conf_peers: # my_cmd += '{} bgp confederation peers {}\n'.format(config_cmd, conf_peers) # if conf_identf != '': # my_cmd += '{} bgp confederation identifier {}\n'.format(config_cmd, conf_identf) config_default_activate = True config_remote_as = True for type1 in config_type_list: if type1 in sub_list: if neigh_name and not peergroup: if isinstance(neigh_name, dict): my_cmd = "neighbor interface {} {}".format(neigh_name["type"],neigh_name["number"]) else: my_cmd = "neighbor {}".format(neigh_name) commands.append(my_cmd) if peergroup: my_cmd_peer = '{} peer-group {}'.format(config_cmd, peergroup) if 'peergroup' in config_type_list: if isinstance(neigh_name, dict): my_cmd = "{} neighbor interface {} {}".format(no_neighbor, neigh_name["type"], neigh_name["number"]) else: my_cmd = "{} neighbor {}".format(no_neighbor, neigh_name) if neigh_name: commands.append(my_cmd) commands.append(my_cmd_peer) commands.append('exit') neigh_name = None activate = True commands.append(my_cmd_peer) if config_remote_as and remote_as: if interface and not peergroup: my_cmd = "neighbor interface {} {}".format(intf_name['type'], intf_name['number']) commands.append(my_cmd) my_cmd = '{} remote-as {}'.format(config_cmd, remote_as) commands.append(my_cmd) config_remote_as = False if config_default_activate and (activate or neigh_name): # show ip bgp summary will list # v4 neighbor only if activate is done for v4 address family # v6 neighbor only if activate is done for v4 address family # both v4 and v6 neighbor only if activate is done for both address families # There is a defect for this issue - 20468 if config_cmd == "": my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} activate'.format(config_cmd) commands.append(my_cmd) commands.append("exit") if addr_family == "ipv6": my_cmd = 'address-family ipv4 unicast' commands.append(my_cmd) my_cmd = '{} activate'.format(config_cmd) commands.append(my_cmd) commands.append("exit") config_default_activate = False # Avoid disable of neighbor unless config=no and config_type_list contains activate elif activate and config_cmd == "no": my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} activate'.format(config_cmd) commands.append(my_cmd) commands.append("exit") activate = None if shutdown: my_cmd = '{} shutdown'.format(config_cmd) commands.append(my_cmd) shutdown = None elif route_map: my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} route-map {} {}'.format(config_cmd, routeMap, diRection) commands.append(my_cmd) commands.append("exit") route_map = False elif filter_list: my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} filter-list {} {}'.format(config_cmd, filter_list, diRection) commands.append(my_cmd) commands.append("exit") filter_list = None elif prefix_list: my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} prefix-list {} {}\n'.format(config_cmd, prefix_list, diRection) commands.append(my_cmd) commands.append("exit") prefix_list = None elif distribute_list: my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} prefix-list {} {}\n'.format(config_cmd, distribute_list, diRection) commands.append(my_cmd) commands.append("exit") distribute_list = None elif default_originate: my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) if 'routeMap' in kwargs: my_cmd = '{} default-originate route-map {}'.format(config_cmd, routeMap) else: my_cmd = '{} default-originate'.format(config_cmd) commands.append(my_cmd) commands.append("exit") default_originate = False elif removePrivateAs: my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} remove-private-AS'.format(config_cmd) commands.append(my_cmd) commands.append("exit") removePrivateAs = False elif weight: my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} weight {}'.format(config_cmd, weight) commands.append(my_cmd) commands.append("exit") weight = None elif keepalive and holdtime: if isinstance(neigh_name, dict): my_cmd = "{} neighbor interface {} {}".format(no_neighbor, neigh_name["type"], neigh_name["number"]) else: my_cmd = "{} neighbor {}".format(no_neighbor, neigh_name) my_cmd = '{} timers {} {}'.format(config_cmd, keepalive, holdtime) commands.append(my_cmd) keepalive = 0 holdtime = 0 elif nexthop_self: my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} next-hop-self'.format(config_cmd) commands.append(my_cmd) commands.append("exit") nexthop_self = None elif pswd: password = "" if config_cmd== 'no' else password my_cmd = '{} password {}'.format(config_cmd, password) commands.append(my_cmd) pswd = False elif update_src: if isinstance(neigh_name, dict): my_cmd = "{} neighbor interface {} {}".format(no_neighbor, neigh_name["type"], neigh_name["number"]) else: my_cmd = "{} neighbor {}".format(no_neighbor, neigh_name) my_cmd = '{} update-source {}'.format(config_cmd, update_src) commands.append(my_cmd) update_src = None elif update_src_intf: if isinstance(neigh_name, dict): my_cmd = "{} neighbor interface {} {}".format(no_neighbor, neigh_name["type"], neigh_name["number"]) else: my_cmd = "{} neighbor {}".format(no_neighbor, neigh_name) if isinstance(update_src_intf, dict): my_cmd = '{} update-source interface {} {}'.format(config_cmd, update_src_intf['type'],update_src_intf['number']) commands.append(my_cmd) update_src_intf = None elif ebgp_mhop: if isinstance(neigh_name, dict): my_cmd = "{} neighbor interface {} {}".format(no_neighbor, neigh_name["type"], neigh_name["number"]) else: my_cmd = "{} neighbor {}".format(no_neighbor, neigh_name) my_cmd = '{} ebgp-multihop {}'.format(config_cmd, ebgp_mhop) commands.append(my_cmd) ebgp_mhop = None elif bfd: if interface and remote_as: my_cmd = "neighbor interface {}".format(interface) commands.append(my_cmd) elif neighbor and not interface and remote_as: my_cmd = "neighbor {}".format(neighbor) commands.append(my_cmd) my_cmd = "remote-as {}".format(remote_as) commands.append(my_cmd) my_cmd = '{} bfd'.format(config_cmd) commands.append(my_cmd) bfd = False elif connect: my_cmd = '{} timers connect {}'.format(config_cmd, connect) commands.append(my_cmd) connect = None st.log('config_bgp command_list: {}'.format(commands)) #come back to router bgp context commands.append("exit") # elif type1 == 'failover': # my_cmd += '{} bgp fast-external-failover\n'.format(config_cmd) # elif type1 == 'router_id': # st.log("Configuring the router-id on the device") elif type1 == 'fast_external_failover': st.log("Configuring the fast_external_failover") my_cmd = '{} fast-external-failover'.format(config_cmd) commands.append(my_cmd) elif type1 == 'bgp_bestpath_selection': st.log("Configuring bgp default bestpath selection") my_cmd = '{} bestpath {}'.format(config_cmd, bgp_bestpath_selection) commands.append(my_cmd) # elif type1 == 'interface': # my_cmd += '{} neighbor {} interface {}\n'.format(config_cmd, neighbor, interface) # elif type1 == 'connect': # my_cmd += '{} neighbor {} timers connect {}\n'.format(config_cmd, neighbor, connect) elif type1 == 'max_path_ibgp': my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} maximum-paths ibgp {}'.format(config_cmd, max_path_ibgp) commands.append(my_cmd) commands.append("exit") elif type1 == 'max_path_ebgp': my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) if config_cmd == '' or config_cmd == 'yes': my_cmd = '{} maximum-paths {}'.format(config_cmd, max_path_ebgp) else: my_cmd = '{} maximum-paths'.format(config_cmd) commands.append(my_cmd) commands.append("exit") elif type1 == 'redist': my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} redistribute {}'.format(config_cmd, redistribute) commands.append(my_cmd) commands.append("exit") elif type1 == 'network': my_cmd = 'address-family {} unicast'.format(addr_family) commands.append(my_cmd) my_cmd = '{} network {}'.format(config_cmd, network) commands.append(my_cmd) commands.append("exit") elif type1 == 'import-check': my_cmd = '{} network import-check'.format(config_cmd) commands.append(my_cmd) elif type1 == 'import_vrf': my_cmd = 'address-family {} unicast\n'.format(addr_family) commands.append(my_cmd) my_cmd = '{} import vrf {}'.format(config_cmd, import_vrf_name) commands.append(my_cmd) commands.append("exit") elif type1 == 'multipath-relax': my_cmd = '{} bestpath as-path multipath-relax'.format(config_cmd) commands.append(my_cmd) elif type1 == 'removeBGP': st.log("Removing the bgp config from the device") elif type1 == 'router_id': st.log("Configuring the router-id on the device") elif type1 == 'peer_group': st.log("Configuring the peer_group on the device") else: st.log('Invalid BGP config parameter') if config_cmd == 'no' and 'neighbor' in config_type_list and neigh_name and not peergroup: if isinstance(neigh_name, dict): my_cmd = "{} neighbor interface {} {}".format(config_cmd, neigh_name["type"],neigh_name["number"]) else: my_cmd = "{} neighbor {}".format(config_cmd, neigh_name) commands.append(my_cmd) # commands.append("exit") #go back to config terminal prompt if removeBGP != 'yes': commands.append('exit\n') if commands: cli_output = st.config(dut, commands, type=cli_type, skip_error_check=True) fail_on_error(cli_output) if vrf_name != 'default' and removeBGP == 'yes': my_cmd = '{} router bgp vrf {}'.format(config_cmd, vrf_name) cli_output = st.config(dut, my_cmd, type=cli_type, skip_error_check=True) fail_on_error(cli_output) elif vrf_name == 'default' and removeBGP == 'yes': my_cmd = '{} router bgp'.format(config_cmd) cli_output = st.config(dut, my_cmd, type=cli_type, skip_error_check=True) fail_on_error(cli_output) elif cli_type in ["rest-patch", "rest-put"]: shutdown = kwargs.get("shutdown", None) if "shutdown" in config_type_list else None activate = kwargs.get("activate", None) if "activate" in config_type_list else None nexthop_self = kwargs.get("nexthop_self", True) if "nexthop_self" in config_type_list else None pswd = True if "pswd" in config_type_list else False update_src = kwargs.get("update_src", "") if "update_src" in config_type_list else "" update_src_intf = get_interface_number_from_name(update_src_intf) bfd = True if "bfd" in config_type_list else False route_map = True if "routeMap" in config_type_list else False default_originate = True if "default_originate" in config_type_list else False removePrivateAs = True if "removePrivateAs" in config_type_list else False #no_neighbor = "no" if kwargs.get("config") == "no" else "" sub_list = ["neighbor", "routeMap", "shutdown", "activate", "nexthop_self", "pswd", "update_src", "bfd", "default_originate", "removePrivateAs", "no_neigh", "remote-as", "filter_list", "prefix_list", "distribute_list", "weight", "keepalive", "holdtime", "ebgp_mhop", "peergroup", "update_src_intf", "connect"] bgp_data = dict() bgp_data["openconfig-network-instance:bgp"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["config"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"] = list() bgp_data["openconfig-network-instance:bgp"]["global"]["route-selection-options"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["confederation"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["use-multiple-paths"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["dynamic-neighbor-prefixes"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["dynamic-neighbor-prefixes"][ "dynamic-neighbor-prefixe"] = list() bgp_data["openconfig-network-instance:bgp"]["global"]["openconfig-bgp-ext:bgp-ext-route-reflector"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["openconfig-bgp-ext:global-defaults"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["openconfig-bgp-ext:update-delay"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["openconfig-bgp-ext:max-med"] = dict() bgp_data["openconfig-network-instance:bgp"]["neighbors"] = dict() bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"] = list() bgp_data["openconfig-network-instance:bgp"]["peer-groups"] = dict() bgp_data["openconfig-network-instance:bgp"]["peer-groups"]["peer-group"] = list() delete_urls = [] # All the delete URLS should be appended to this list # neigh_name = get_interface_number_from_name(neighbor) family = kwargs.get('family', None) if family == "ipv4": afi_safi_name = "openconfig-bgp-types:IPV4_UNICAST" else: afi_safi_name = "openconfig-bgp-types:IPV6_UNICAST" if 'local_as' in kwargs and removeBGP != 'yes': bgp_data["openconfig-network-instance:bgp"]["global"]["config"]["as"] = kwargs.get("local_as") if router_id: bgp_data["openconfig-network-instance:bgp"]["global"]["config"]["router-id"] = router_id if peergroup: # print(bgp_data) peer_data = dict() peer_data.update({'peer-group-address': peergroup}) bgp_data["openconfig-network-instance:bgp"]["peer-groups"]["peer-group"].append(peer_data) peer_data['config'] = dict() peer_data["config"].update({'peer-group-address': peergroup}) config_default_activate = True config_remote_as = True neigh_data_sub = dict() for type1 in config_type_list: if type1 in sub_list: if neighbor and not peergroup: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) if peergroup: peer_data = dict() peer_data.update({'peer-group-address': peergroup}) bgp_data["openconfig-network-instance:bgp"]["peer-groups"]["peer-group"].append(peer_data) peer_data['config'] = dict() peer_data["config"].update({'peer-group-address': peergroup}) if 'peergroup' in config_type_list: # if isinstance(neigh_name, dict): if activate and config_cmd == "no": url = st.get_datastore(dut, "rest_urls")['bgp_del_neighbor_config'] delete_urls.append(url.format("default", neighbor)) if delete_urls: for url in delete_urls: # delete_rest(dut, rest_url=url) if not delete_rest(dut, rest_url=url): st.error("neighbor is failed") else: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) if neighbor: neigh_data1 = dict() neigh_data1["afi-safis"] = dict() neigh_data1["afi-safis"]["afi-safi"] = list() neigh_data1_sub = dict() neigh_data1_sub.update({"afi-safi-name": afi_safi_name}) neigh_data1_sub["config"] = dict() neigh_data1_sub["config"].update({"afi-safi-name": "afi-safi-name", "enabled": True}) neigh_data1.update(neigh_data1_sub) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data1) if config_remote_as and remote_as: if interface and not peergroup: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor, "peer-type": remote_as}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) config_remote_as = False if config_default_activate and (activate or neighbor): if config_cmd == "": family = kwargs.get('family', None) if family == "ipv4": afi_safi_name = "openconfig-bgp-types:IPV4_UNICAST" else: afi_safi_name = "openconfig-bgp-types:IPV6_UNICAST" afi_data = dict() afi_data.update({"afi-safi-name": afi_safi_name}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) afi_data['config'] = dict() afi_data.update({"afi-safi-name": afi_safi_name, "enabled": True}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) elif activate and config_cmd == "no": url = st.get_datastore(dut, "rest_urls")['bgp_del_neighbor_config'] delete_urls.append(url.format("default", neighbor)) if delete_urls: for url in delete_urls: if not delete_rest(dut, rest_url=url.format("default", neighbor)): st.error("neighbor is failed") activate = None if shutdown: neigh_data["config"].update({"enabled": False}) shutdown = None elif route_map: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) neigh_data["afi-safis"] = dict() neigh_data["afi-safis"]["afi-safi"] = list() neigh_data_sub = dict() neigh_data_sub.update({"afi-safi-name": "afi-safi-name"}) neigh_data_sub["config"] = dict() neigh_data_sub["config"].update({"afi-safi-name": "afi-safi-name"}) neigh_data["afi-safis"]["afi-safi"].append(neigh_data_sub) neigh_data_sub["apply-policy"] = dict() neigh_data_sub["apply-policy"]["config"] = dict() neigh_data_sub["apply-policy"]["config"].update({"import-policy": ["route-map"]}) route_map = False elif filter_list: neigh_data_sub["openconfig-bgp-ext:filter-list"] = dict() neigh_data_sub["openconfig-bgp-ext:filter-list"]["config"] = dict() neigh_data_sub["openconfig-bgp-ext:filter-list"]["config"].update({"import-policy": "filter-list"}) filter_list = None elif prefix_list: neigh_data_sub["openconfig-bgp-ext:prefix-list"] = dict() neigh_data_sub["openconfig-bgp-ext:prefix-list"]["config"] = dict() neigh_data_sub["openconfig-bgp-ext:prefix-list"]["config"].update({"import-policy": "prefix-list"}) prefix_list = None elif distribute_list: neigh_data_sub["openconfig-bgp-ext:prefix-list"] = dict() neigh_data_sub["openconfig-bgp-ext:prefix-list"]["config"] = dict() neigh_data_sub["openconfig-bgp-ext:prefix-list"]["config"].update({"import-policy": "prefix-list"}) distribute_list = None elif default_originate: afi_data = dict() afi_data.update({"afi-safi-name": afi_safi_name}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) afi_data['config'] = dict() afi_data["ipv4-unicast"] = dict() afi_data["ipv4-unicast"]["config"] = dict() afi_data.update({"afi-safi-name": afi_safi_name, "enabled": True}) if 'routeMap' in kwargs: afi_data["ipv4-unicast"]["config"].update({"send-default-route": True, "openconfig-bgp-ext:default-policy-name": "routeMap"}) else: afi_data["ipv4-unicast"]["config"].update({"send-default-route": True}) default_originate = False elif removePrivateAs: neigh_data_sub["openconfig-bgp-ext:remove-private-as"] = dict() neigh_data_sub["openconfig-bgp-ext:remove-private-as"]["config"] = dict() neigh_data_sub["openconfig-bgp-ext:remove-private-as"]["config"].update({"enabled": True}) removePrivateAs = False elif weight: afi_data = dict() afi_data.update({"afi-safi-name": afi_safi_name}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) afi_data['config'] = dict() afi_data.update({"afi-safi-name": afi_safi_name, "enabled": True}) neigh_data = dict() neigh_data["afi-safis"] = dict() neigh_data["afi-safis"]["afi-safi"] = list() neigh_data_sub = dict() neigh_data_sub.update({"afi-safi-name": afi_safi_name}) neigh_data["afi-safis"]["afi-safi"].append(neigh_data_sub) neigh_data_sub['config'] = dict() neigh_data_sub['config'].update( {"afi-safi-name": afi_safi_name, "enabled": True, "openconfig-bgp-ext:weight": 0}) neigh_data["afi-safis"]["afi-safi"].append(neigh_data_sub) bgp_data["openconfig-network-instance:bgp"]["global"]["neighbors"]["neighbor"].append(neigh_data) weight = None elif keepalive and holdtime: if isinstance(neighbor, dict): url = st.get_datastore(dut, "rest_urls")['bgp_del_neighbor_config'] delete_urls.append(url.format("default", neighbor)) if delete_urls: for url in delete_urls: if not delete_rest(dut, rest_url=url.format("default", neighbor)): st.error("neighbor is failed") else: url = st.get_datastore(dut, "rest_urls")['bgp_del_neighbor_config'] delete_urls.append(url.format("default", neighbor)) if delete_urls: for url in delete_urls: if not delete_rest(dut, rest_url=url.format("default", neighbor)): st.error("neighbor is failed") neigh_data["timers"] = dict() neigh_data["timers"]["config"] = dict() neigh_data["timers"]["config"].update({"hold-time": holdtime, "keepalive-interval": keepalive}) keepalive = 0 holdtime = 0 elif nexthop_self: afi_data = dict() afi_data.update({"afi-safi-name": afi_safi_name}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) afi_data['config'] = dict() afi_data.update({"afi-safi-name": afi_safi_name, "enabled": True}) neigh_data = dict() neigh_data.update({"neighbor-address": "string"}) neigh_data["afi-safis"] = dict() neigh_data["afi-safis"]["afi-safi"] = list() neigh_data_sub = dict() neigh_data_sub.update({"afi-safi-name": afi_safi_name}) neigh_data_sub["openconfig-bgp-ext:next-hop-self"] = dict() neigh_data_sub["openconfig-bgp-ext:next-hop-self"]["config"] = dict() neigh_data_sub["openconfig-bgp-ext:next-hop-self"]["config"].update( {"enabled": True, "force": True}) neigh_data["afi-safis"]["afi-safi"].append(neigh_data_sub) bgp_data["openconfig-network-instance:bgp"]["global"]["neighbors"]["neighbor"].append(neigh_data) nexthop_self = None elif pswd: password = "" if config_cmd == 'no' else password if password: neigh_data["openconfig-bgp-ext:auth-password"] = dict() neigh_data["openconfig-bgp-ext:auth-password"]["config"] = dict() neigh_data["openconfig-bgp-ext:auth-password"]["config"].update({"password": password}) else: url = st.get_datastore(dut, "rest_urls")['bgp_del_neighbor_config'] delete_urls.append(url.format("default", neighbor)) if delete_urls: for url in delete_urls: if not delete_rest(dut, rest_url=url.format("default", neighbor)): st.error("neighbor is failed") pswd = False elif update_src: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) update_src = None elif update_src_intf: if neighbor: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) else: url = st.get_datastore(dut, "rest_urls")['bgp_del_neighbor_config'] delete_urls.append(url.format("default", neighbor)) if delete_urls: for url in delete_urls: if not delete_rest(dut, rest_url=url.format("default", neighbor)): st.error("neighbor is failed") if update_src_intf: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor}) neigh_data["transport"] = dict() neigh_data["transport"]["config"] = dict() neigh_data.update({"local-address": update_src_intf}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) update_src_intf = None elif ebgp_mhop: if neighbor: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) else: url = st.get_datastore(dut, "rest_urls")['bgp_del_neighbor_config'] delete_urls.append(url.format("default", neighbor)) if delete_urls: for url in delete_urls: if not delete_rest(dut, rest_url=url.format("default", neighbor)): st.error("neighbor is failed") neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor}) neigh_data["ebgp-multihop"] = dict() neigh_data["ebgp-multihop"]["config"] = dict() neigh_data.update({"multihop-ttl": ebgp_mhop}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) ebgp_mhop = None elif bfd: if interface and remote_as: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) elif neighbor and not interface and remote_as: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) neigh_data["config"].update({"neighbor-address": neighbor, "peer-type": remote_as}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) neigh_data["openconfig-bfd:enable-bfd"] = dict() neigh_data["openconfig-bfd:enable-bfd"]["config"] = dict() neigh_data.update({"enabled": True}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) bfd = False elif connect: peer_data = dict() peer_data.update({'peer-group-address': peergroup}) bgp_data["openconfig-network-instance:bgp"]["peer-groups"]["peer-group"].append(peer_data) peer_data['timers'] = dict() peer_data['timers']["config"] = dict() peer_data.update({"connect-retry": 10}) connect = None elif type1 == 'fast_external_failover': bgp_data["openconfig-network-instance:bgp"]["global"]["config"].update( {"openconfig-bgp-ext:fast-external-failover": True}) elif type1 == 'bgp_bestpath_selection': bgp_data["openconfig-network-instance:bgp"]["global"]["route-selection-options"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["route-selection-options"]["config"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["route-selection-options"]["config"].update( {"external-compare-router-id": True}) elif type1 == 'max_path_ibgp': afi_data = dict() afi_data.update({"afi-safi-name": afi_safi_name}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) afi_data['config'] = dict() afi_data.update({"afi-safi-name": afi_safi_name, "enabled": True}) afi_data["use-multiple-paths"] = dict() afi_data["use-multiple-paths"]["ibgp"] = dict() afi_data["use-multiple-paths"]["ibgp"]["config"] = dict() afi_data["use-multiple-paths"]["ibgp"]["config"].update({"maximum-paths": type1}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) elif type1 == 'max_path_ebgp': afi_data = dict() afi_data.update({"afi-safi-name": afi_safi_name}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) afi_data['config'] = dict() afi_data.update({"afi-safi-name": 'afi-safi-name'}) if config_cmd == '' or config_cmd == 'yes': afi_data["use-multiple-paths"] = dict() afi_data["use-multiple-paths"]["ebgp"] = dict() afi_data["use-multiple-paths"]["ebgp"]["config"] = dict() afi_data["use-multiple-paths"]["ebgp"]["config"].update({"maximum-paths": type1}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) else: bgp_data["openconfig-network-instance:bgp"]["global"]["use-multiple-paths"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["use-multiple-paths"]["ebgp"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["use-multiple-paths"]["ebgp"][ "config"] = dict() bgp_data["openconfig-network-instance:bgp"]["global"]["use-multiple-paths"]["ebgp"][ "config"].update({"allow-multiple-as": True}) elif type1 == 'redist': afi_data = dict() afi_data.update({"afi-safi-name": afi_safi_name}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) afi_data['config'] = dict() afi_data.update({"afi-safi-name": afi_safi_name}) # my_cmd = '{} redistribute {}'.format(config_cmd, redistribute) # SW defect is there elif type1 == 'network': afi_data = dict() afi_data.update({"afi-safi-name": afi_safi_name}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) afi_data['config'] = dict() afi_data.update({"afi-safi-name": afi_safi_name}) afi_data["openconfig-bgp-ext:network-config"] = dict() afi_data["openconfig-bgp-ext:network-config"]["network"] = list() obe_data = dict() obe_data.update({"prefix": "string"}) obe_data["config"] = dict() obe_data.update({"prefix": "network"}) afi_data["openconfig-bgp-ext:network-config"]["network"].append(obe_data) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) elif type1 == 'import-check': bgp_data["openconfig-network-instance:bgp"]["global"]["config"].update({"openconfig-bgp-ext:network-import-check": True}) elif type1 == 'import_vrf': afi_data = dict() afi_data.update({"afi-safi-name": afi_safi_name}) bgp_data["openconfig-network-instance:bgp"]["global"]["afi-safis"]["afi-safi"].append(afi_data) afi_data['config'] = dict() afi_data.update({"afi-safi-name": afi_safi_name}) afi_data["openconfig-bgp-ext:import-network-instance"] = dict() afi_data["openconfig-bgp-ext:import-network-instance"]["config"] = dict() afi_data["openconfig-bgp-ext:import-network-instance"]["config"].update({"name": "import_vrf"}) elif type1 == 'multipath-relax': bgp_data["openconfig-network-instance:bgp"]["global"]["use-multiple-paths"] = dict() ump_data = dict() ump_data["ebpg"] = dict() ump_data["ebpg"]["config"] = dict() ump_data["ebpg"]["config"].update({"allow-multiple-as": True}) bgp_data["openconfig-network-instance:bgp"]["global"]["use-multiple-paths"].update(ump_data) elif type1 == 'removeBGP': st.log("Removing the bgp config from the device") elif type1 == 'router_id': st.log("Configuring the router-id on the device") elif type1 == 'peer_group': st.log("Configuring the peer_group on the device") else: st.log('Invalid BGP config parameter') if config_cmd == 'no' and 'neighbor' in config_type_list and neighbor and not peergroup: #if isinstance(neigh_name, dict): if neighbor and config_cmd == "no": url = st.get_datastore(dut, "rest_urls")['bgp_del_neighbor_config'] if delete_urls: for url in delete_urls: delete_rest(dut, rest_url=url.format("default", neighbor)) if not delete_rest(dut, rest_url=url.format("default", neighbor)): st.error("neighbor is failed") else: neigh_data = dict() neigh_data.update({"neighbor-address": neighbor}) neigh_data["config"] = dict() neigh_data["config"].update({"neighbor-address": neighbor}) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data) if neighbor: neigh_data1 = dict() neigh_data1["afi-safis"] = dict() neigh_data1["afi-safis"]["afi-safi"] = list() neigh_data1_sub = dict() neigh_data1_sub.update({"afi-safi-name": afi_safi_name}) neigh_data1_sub["config"] = dict() neigh_data1_sub["config"].update({"afi-safi-name": "afi-safi-name", "enabled": True}) neigh_data1.update(neigh_data1_sub) bgp_data["openconfig-network-instance:bgp"]["neighbors"]["neighbor"].append(neigh_data1) if vrf_name != 'default' and removeBGP == 'yes': bgp_data["openconfig-network-instance:bgp"]["global"]["config"].update({"as": 0}) else: st.log("Unsupported CLI TYPE - {}".format(cli_type)) return False
744e96daded519308dfc7a5c3d665ba94cfc6bc5
35,428
def get_single_notification(session, notification_id): """Helper method to extract a single notification from notification table.""" return session.execute(text("""SELECT * FROM public.notification WHERE id='{0}'""".format(notification_id))).fetchone()
9041a3c91806764379997d79c5355cc84463f57c
35,429
import re def register(): """Registration form handler.""" def fail_validate(msg): flask.flash(msg, 'danger') return flask.redirect(flask.url_for('home')) username = request.form.get('username', '') if not re.match(r'[A-Za-z0-9_]+$', username): return fail_validate('Invalid username.') if models.User.query.get(username): return fail_validate('User exists.') user = models.User() user.username = username user.password = request.form.get('password') user.email = request.form.get('email', '') if models.User.query.filter(models.User.email == user.email).count(): return fail_validate('User exists with that email address.') models.db.session.add(user) models.db.session.commit() session['user'] = user.username return flask.redirect(flask.url_for('catalog'))
940f0478e17a4e02abdd6c8fded7d683a5c93f34
35,430
def default_reply(event, message): """Default function called to reply to bot commands.""" return event.unotice(message)
3c83d8abaea0f4c968db25fff51185bb6c32d26e
35,431
async def list_products(): """API for listing all the products.""" return await paginate(ProductGinoModel.query)
7befee2e20a2b849bbde7ddee521b8b935f6930d
35,432
def shortest_path_between_atoms(gra, key1, key2): """ shortest path between a pair of atoms """ return shortest_path_between_groups(gra, [key1], [key2])
0af0439794db7d6a2025fe28782ceff2da6575f3
35,433
import copy def _safe_divide(num, denom, replace=0): """Safe division when elements in the denominator might be zeros. Returns the division of the numerator by the denominator, but replaces results which have a zero in the denominator by a specified value. The default is to replace bad divisions with zeros. """ #consider moving to a utility module; copy over tests from colorunittests.py num = _to_npa(num) denom = _to_npa(denom) assert(num.shape == denom.shape) zero_flag = denom == 0.0 if zero_flag.any(): denom_copy = copy.copy(denom) denom_copy[zero_flag] = 1.0 div = num / denom_copy div[zero_flag] = replace else: div = num / denom return div
14a1f42104b98dccf865de7e6c3e17892f8aeb65
35,434
def making_change(amt: int, coins: list) -> int: """Iterative implementation of the making change algorithm. :param amt (int) : Amount, in cents, to be made into change. :param coins (list) : List of coin denominations :return (int) : Number of different combinations of change. """ # calc[i] represents the number of ways to get to amount i calc = [0] * (amt + 1) # 1 way to get zero calc[0] = 1 # Pick all coins one by one and update calc[] values after the # index greater than or equal to the value of the picked coin for coin_val in coins: for j in range(coin_val, amt + 1): calc[j] += calc[j - coin_val] return calc[amt]
188496f5db4252fa27f153d0a0379031847c669d
35,435
from io import StringIO def pdf_to_text(pdf): """Return extracted text from PDF. Warning: This function can be slow... up to 300ms per page This function does not perform optical character recognition. Args: pdf: bytestring of PDF file Returns: str of text extracted from `pdf` contents. """ # make input and output buffers in_buffer = StringIO.StringIO(pdf) out_buffer = StringIO.StringIO() # configure pdf parser parser = pdfparser.PDFParser(in_buffer) doc = pdfparser.PDFDocument() parser.set_document(doc) doc.set_parser(parser) doc.initialize(password='') rsrcmgr = pdfinterp.PDFResourceManager() laparams = layout.LAParams() # convert pdf to text device = converter.TextConverter( rsrcmgr, outfp=out_buffer, codec='utf-8', laparams=laparams) interpreter = pdfinterp.PDFPageInterpreter(rsrcmgr, device) for page in doc.get_pages(): interpreter.process_page(page) return out_buffer.getvalue()
46f1b186a73a929f3053b35f94428e30804ab907
35,436
def pendulum_sunny(p): """sunny constraint for gravity Pendulum""" return np.abs(p[:, 1])<0.5
85fa7f94e803aac0d291030837f048d933283035
35,437
def PGetSkyModel (inUVSelfCal): """ Return the member sky model returns ImageMosaic inUVSelfCal = Python UVSelfCal object """ ################################################################ # Checks if not PIsA(inUVSelfCal): raise TypeError("inUVSelfCal MUST be a Python Obit UVSelfCal") # out = SkyModel.SkyModel("None") out.me = Obit.UVSelfCalGetSkyModel(inUVSelfCal.me) return out # end PGetSkyModel
d1dc418e46074958684c04b7431ee84ec0260f4b
35,438
def CGaussFilter_DImage_getGaussianFuncValue(dX, dY, dSigma): """CGaussFilter_DImage_getGaussianFuncValue(dX, dY, dSigma) -> double""" return _ImageFilters.CGaussFilter_DImage_getGaussianFuncValue(dX, dY, dSigma)
eeaf4dd66c795b6803efae2a386301c04e3e05b6
35,439
def get_credstash_config(key): """Retrieves a single secret from AWS via credstash, assumes the string returned is a list of newline-separated export statements export FOO='some-hush-hush-info-here' export BAR='some-other-secret-here' and parses these lines into a configuration dictionary. Args: key: A string naming the credstash secret to retrieve, which can optionally include a version number. Returns: A dict with keys for each of of the environment variables described in the secret's contents. The dict keys will be returned in upper case, as a convention. {'FOO': 'some-hush-hush-info-here' 'BAR': 'some-other-secret-here'} Blank lines, lines that do not start with 'export ', and lines that do not contain '=' are ignored. The returned dictionary might be empty, so use safe methods to .get() the keys you were expecting to find in it. Raises: credstash.ItemNotFound: provided key not found by credstash SyntaxError: parsing of secret failed ValueError: parsing of secret failed """ try: raw_secrets = credstash.getSecret(key) except credstash.ItemNotFound: raise # assume raw secret is a multiline string of export statements e.g. # export FOO=bar\nexport BAZ=goo try: # get the interesting, non-blank, parsable-looking lines into a list parsed_secrets = [ line.replace("export ", "") for line in raw_secrets.split("\n") if line.startswith("export ") and "=" in line ] # parse those KEY=value lines into a dict, splitting only on first '=' config_secrets = {} config_secrets = dict(line.split("=", 1) for line in parsed_secrets) # make sure all keys are uppercase upper_config_secrets = {} for k, val in config_secrets.items(): upper_config_secrets[k.upper()] = val except (SyntaxError, ValueError): raise return upper_config_secrets
afa2a858098860edc6179a046302119eee305b49
35,440
from typing import List def aggregate_stats(stats: List[deephol_stat_pb2.ProofStat] ) -> deephol_stat_pb2.ProofAggregateStat: """Merge a list of proof log statistics. Args: stats: List of individual proof log statistics. Returns: Aggregated proof statistics. """ result = deephol_stat_pb2.ProofAggregateStat() for stat in stats: merge_stat(result, stat) return result
f15be64b3a2d8fb811aeeea2ccd57f5baa092e63
35,441
from typing import Optional from typing import Mapping from typing import Any from typing import List from pathlib import Path def get_requires_for_build_wheel( config_settings: Optional[Mapping[str, Any]] = None ) -> List[str]: """ Returns an additional list of requirements for building, as PEP508 strings, above and beyond those specified in the pyproject.toml file. When C-extension build is needed, setuptools should be required, otherwise just return an empty list. """ meta = Metadata(Path("pyproject.toml")) if meta.build: return ["setuptools>=40.8.0"] else: return []
3681a08ec22887baa4aafac592059512442913a3
35,443
def fisher(high_vals: pd.Series, low_vals: pd.Series, length: int = 14) -> pd.DataFrame: """Fisher Transform Parameters ---------- high_vals: pd.Series High values low_vals: pd.Series Low values length: int Length for indicator window Returns ---------- df_ta: pd.DataFrame Dataframe of technical indicator """ # Daily return pd.DataFrame(ta.fisher(high=high_vals, low=low_vals, length=length).dropna())
9d6c8ff0d76c6121f418768503b68e7b596dcc89
35,444
def is_extension_supported(request, extension_alias): """Check if a specified extension is supported. :param request: django request object :param extension_alias: neutron extension alias """ extensions = list_extensions(request) for extension in extensions: if extension['alias'] == extension_alias: return True else: return False
f8886d992724ef4ad0aa9c9c9ac25361b489d7dd
35,445
def _linear_wcs_fit(params, lon, lat, x, y, w_obj): # pragma: no cover """ Objective function for fitting linear terms. Parameters ---------- params : array 6 element array. First 4 elements are PC matrix, last 2 are CRPIX. lon, lat: array Sky coordinates. x, y: array Pixel coordinates w_obj: `~astropy.wcs.WCS` WCS object """ cd = params[0:4] crpix = params[4:6] w_obj.wcs.cd = ((cd[0], cd[1]), (cd[2], cd[3])) w_obj.wcs.crpix = crpix lon2, lat2 = w_obj.wcs_pix2world(x, y, 0) resids = np.concatenate((lon-lon2, lat-lat2)) resids[resids > 180] = 360 - resids[resids > 180] resids[resids < -180] = 360 + resids[resids < -180] return resids
ac20744d7c52112290711a02a5c14a64d9525108
35,446
from imblearn.over_sampling import RandomOverSampler def resample(feature_index, labels, balance='auto'): """use oversampling to balance class, after split of training set.""" ros = RandomOverSampler(ratio=balance) feature_index = np.array(feature_index).reshape(-1, 1) resampled_index, _ = ros.fit_sample(feature_index, labels) resampled_index = [i for nested in resampled_index for i in nested] return resampled_index
4a061fe44da53caf6263a66042398562ac8149f0
35,447
from typing import Callable def dal_resolver(ctx, request_path): """ This function resolves a dal method call to its underlying service """ service_or_method = None for (path, service_or_method) in resolve(ctx, request_path): if not ( service_or_method and isinstance(service_or_method, (Callable, Service)) ): raise DalMethodError(path=path) if not service_or_method: raise DalMethodError(request_path) return service_or_method
3d5fb3bd019988ec43ca3d4514c8df2f7935287d
35,448
import re import operator import itertools def guess_key_size(ciphertext, max_key_size=40): """Given sentence xored with short key, guess key size From: http://trustedsignal.blogspot.com/2015/06/xord-play-normalized-hamming-distance.html Args: ciphertext(string) max_key_size(int) Returns: list: sorted list of tuples (key_size, probability), note that most probable key size not necessary have the largest probability """ if not max_key_size: max_key_size = len(ciphertext)/4 result = {} for key_size in range(1, max_key_size): blocks = re.findall('.' * key_size, ciphertext, re.DOTALL) if len(blocks) < 2: break diff = i = 0 while i < len(blocks) - 1: if len(blocks[i]) != len(blocks[i + 1]): # not full-length block break diff += hamming_distance(blocks[i], blocks[i + 1]) i += 1 result[key_size] = diff / float(i) # average result[key_size] /= float(key_size) # normalize result = sorted(list(result.items()), key=operator.itemgetter(1)) # now part from given link, case one # gcd12 = gcd(result[0][0], result[1][0]) # gcd13 = gcd(result[0][0], result[2][0]) # gcd23 = gcd(result[1][0], result[2][0]) # print gcd12, gcd13, gcd23 # if (gcd12 != 1) and (gcd12 in [x[0] for x in result[:5]]): # if (gcd12 == gcd13 and gcd12 == gcd23) or (gcd12 == result[0][0] or gcd12 == result[1][0]): # #remove key_size == gcd12 from result list and add it to the beginning # for x in result: # if x[0] == gcd12: # result.remove(x) # break # result[0] == (gcd12, 1.0) # from link, case two; yep, black magic it is gcd_frequencies = defaultdict(lambda: 0) for gcd_pairs in itertools.combinations(result[:10], 2): gcd_tmp = gcd(gcd_pairs[0][0], gcd_pairs[1][0]) gcd_frequencies[gcd_tmp] += 1 gcd_frequencies = sorted(list(gcd_frequencies.items()), key=operator.itemgetter(1), reverse=True) key_sizes = [x[0] for x in result[:10]] distances = [x[1] for x in result[:10]] for guessed_most_probable_key_size in gcd_frequencies[:5]: if guessed_most_probable_key_size[0] != 1 and guessed_most_probable_key_size[1] != 0 and \ guessed_most_probable_key_size[0] in key_sizes: gmks_position = result[key_sizes.index(guessed_most_probable_key_size[0])] if gmks_position[1] < max(distances): result.remove(gmks_position) result = [gmks_position] + result log.info("Guessed key size: {}".format(result)) return result
99977ba81ebcb2f2e581164753f7ab363a9fd2e9
35,449
def AddWorkerpoolCreateArgs(parser): """Set up all the argparse flags for creating a workerpool. Args: parser: An argparse.ArgumentParser-like object. Returns: The parser argument with workerpool flags added in. """ return AddWorkerpoolArgs(parser, update=False)
db86e56ee95feb4b71cf2e209820e85e2985c688
35,450
def table_dispatch(kind, table, body): """Call body with table[kind] if it exists. Raise an error otherwise.""" if kind in table: return body(table[kind]) else: raise BaseException, "don't know how to handle a histogram of kind %s" % kind
18d827baeabbca8d27848ea87a067328fe82d16a
35,451
def compute_dot_sim_matrix(node_features): """Compute edge scores with dot product.""" sim = tf.matmul(node_features, tf.transpose(node_features, perm=[1, 0])) return sim
7eb1e67a01f29d064f9e21ffdbdaf516b42b35a4
35,452
import pickle def load_param_file(filename): """ Loads a saved parameter dictionary from filename. """ return pickle.load(open(filename))
1a6de4fba9f55bf6cbd108f4613f3778094ab410
35,453
def strip_block_comments(text: str) -> str: """ Remove any block-style comments from a text. """ return strip_comments(text, [(COMMENT_BLOCK_PATTERN, None)])
4389bb137aa3fde7a033113646327920118911ca
35,455
import torch def optim_solver(grad, diff, radius, device, gamma=2): """ Solver for the optimization problem presented in Proposition 1 in https://arxiv.org/abs/2002.12718 """ lamda, mhlnbs_dis = compute_mahalanobis_distance(grad, diff, radius, device, gamma) lamda_lower_limit = range_lamda_lower(grad).detach().cpu().numpy() nu_upper_limit = range_nu_upper(grad, mhlnbs_dis, radius, gamma).detach().cpu().numpy() #num of values of lamda and nu samples in the allowed range num_rand_samples = 40 final_lamda = torch.zeros((grad.shape[0],1)) #Solve optim for each example in the batch for idx in range(lamda.shape[0]): #Optim corresponding to mahalanobis dis < radius if lamda[idx] == 1: min_left = np.inf best_lam = 0 for k in range(num_rand_samples): val = np.random.uniform(low = lamda_lower_limit[idx], high = 0) left_val = check_right_part1(val, grad[idx], diff[idx], radius, device) if left_val < min_left: min_left = left_val best_lam = val final_lamda[idx] = best_lam #Optim corresponding to mahalanobis dis > gamma * radius elif lamda[idx] == 2: min_left = np.inf best_lam = np.inf for k in range(num_rand_samples): val = np.random.uniform(low = 0, high = nu_upper_limit[idx]) left_val = check_right_part2(val, grad[idx], diff[idx], radius, device, gamma) if left_val < min_left: min_left = left_val best_lam = val final_lamda[idx] = 1.0/best_lam else: final_lamda[idx] = 0 final_lamda = final_lamda.to(device) for j in range(diff.shape[0]): diff[j,:] = diff[j,:]/(1+final_lamda[j]*grad[j,:]) return diff
20971bea92ca13caa4df6204e24750c616fd4805
35,456
def send_sms(domain, contact, phone_number, text, metadata=None, logged_subevent=None): """ Sends an outbound SMS. Returns false if it fails. """ if phone_number is None: return False if isinstance(phone_number, int): phone_number = str(phone_number) phone_number = clean_phone_number(phone_number) msg = get_sms_class()( domain=domain, phone_number=phone_number, direction=OUTGOING, date=get_utcnow(), backend_id=None, location_id=get_location_id_by_contact(domain, contact), text = text ) if contact: msg.couch_recipient = contact.get_id msg.couch_recipient_doc_type = contact.doc_type if domain and contact and is_commcarecase(contact): backend_name = contact.get_case_property('contact_backend_id') backend_name = backend_name.strip() if isinstance(backend_name, str) else '' if backend_name: try: backend = SQLMobileBackend.load_by_name(SQLMobileBackend.SMS, domain, backend_name) except BadSMSConfigException as e: if logged_subevent: logged_subevent.error(MessagingEvent.ERROR_GATEWAY_NOT_FOUND, additional_error_text=str(e)) return False msg.backend_id = backend.couch_id add_msg_tags(msg, metadata) return queue_outgoing_sms(msg)
751111ce8db4d07d1021b30cd295b7062b6209a4
35,457
def u_diff(Exact, U_pred, x, t, nu, beta, rho, seed, layers, N_f, L, source, lr, u0_str, system, path, relative_error = False): """Visualize abs(u_pred - u_exact).""" fig = plt.figure(figsize=(9, 5)) ax = fig.add_subplot(111) if relative_error: h = ax.imshow(np.abs(Exact.T - U_pred.T)/np.abs(Exact.T), interpolation='nearest', cmap='binary', extent=[t.min(), t.max(), x.min(), x.max()], origin='lower', aspect='auto') else: h = ax.imshow(np.abs(Exact.T - U_pred.T), interpolation='nearest', cmap='binary', extent=[t.min(), t.max(), x.min(), x.max()], origin='lower', aspect='auto') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.10) cbar = fig.colorbar(h, cax=cax) cbar.ax.tick_params(labelsize=15) line = np.linspace(x.min(), x.max(), 2)[:,None] ax.set_xlabel('t', fontweight='bold', size=30) ax.set_ylabel('x', fontweight='bold', size=30) ax.legend( loc='upper center', bbox_to_anchor=(0.9, -0.05), ncol=5, frameon=False, prop={'size': 15} ) ax.tick_params(labelsize=15) plt.savefig(f"{path}/udiff_{system}_nu{nu}_beta{beta}_rho{rho}_Nf{N_f}_{layers}_L{L}_seed{seed}_source{source}_{u0_str}_lr{lr}.pdf", bbox_inches='tight') return None
cd08143e645da60be284520af4db8f6f1eef4be8
35,458
def boundary_condition(): """ Factory associated with DirichletBC. """ return DirichletBC()
d547a86687bab9f2c87ca28f0f1eb5429f4892d7
35,460
def upgrade_available(): """ Detect if a new kernel version is available in the repositories. Returns True if a new kernel is available, False otherwise. CLI Example: .. code-block:: bash salt '*' kernelpkg.upgrade_available """ return _LooseVersion(latest_available()) > _LooseVersion(latest_installed())
95d7f6558d060f64066a56b38336981a515e1dba
35,461
def ss_error(observed_values, estimated_values): """Sum of squared error function.""" sse = np.sum((observed_values - estimated_values) ** 2) return sse
f049643ac58e3cac2fc436b75508976121adaff7
35,463
def _generate_gherkin_feature_files( gherkin_templates: list, properties_list: list[dict] ) -> list[TemplateOutputFile]: """ Compile templates with variable properties information. Args: gherkin_templates: templates to generate against. (Should only be one template) properties_list: a list of template property dictionaries Returns: list of template information dictionaries """ def generate_file(properties: dict) -> TemplateOutputFile: feature_name = properties.get("feature").get("name") generated_file = generate_template(gherkin_template, properties) generated_file.file_name = _create_gherkin_feature_file_name(feature_name) generated_file.overwrite = False return generated_file # This plugin produces only gherkin feature file and so it only needs one template gherkin_template = None if len(gherkin_templates) != 1: raise GenerateGherkinException( f"Unexpected number of templates loaded {len(gherkin_templates)}, \ expecting only gherkin feature file template. Loaded templates: {gherkin_templates}" ) else: gherkin_template = gherkin_templates[0] return list(map(generate_file, properties_list))
37c833b85df5c9ed01cab3a9f9f38304808c2ab3
35,464
import base64 def _get_base64(data: str) -> str: """Base 64 encodes data.""" ebytes = base64.b64encode(data.encode("utf-8")) estring = str(ebytes, "utf-8") return estring
a7bd3080dba077077d96602eb35142db32b003de
35,466
from datetime import datetime def parse_datetime(value): """Parses a string(ISO_8601) and return a datetime.datetime base UTC, or parse datetime.datetime base other timezone and return a datetime.datetime base UTC timezone """ if isinstance(value, datetime.datetime): if not value.tzinfo: value = value.replace(tzinfo=LocalTimeZone) return value.astimezone(UTC) match = datetime_re.match(value) if match: kw = match.groupdict() if kw['microsecond']: kw['microsecond'] = kw['microsecond'].ljust(6, '0') tzinfo = kw.pop('tzinfo') tz = UTC offset = 0 if tzinfo == 'Z': offset = 0 elif tzinfo is not None: offset_mins = int(tzinfo[-2:]) if len(tzinfo) > 3 else 0 offset = 60 * int(tzinfo[1:3]) + offset_mins if tzinfo[0] == '-': offset = -offset else: tz = LocalTimeZone kw = {k: int(v) for k, v in kw.items() if v is not None} kw['tzinfo'] = tz dt = datetime.datetime(**kw) dt += datetime.timedelta(minutes=offset) return dt.astimezone(UTC)
271556ab449bef15461a8d5086187724c9492d2f
35,467
def _dev_http_archive_impl(ctx): """Implementation of the http_archive rule.""" if not ctx.attr.url and not ctx.attr.urls: fail("At least one of url and urls must be provided") if ctx.attr.build_file and ctx.attr.build_file_content: fail("Only one of build_file and build_file_content can be provided.") all_urls = [] if ctx.attr.urls: all_urls = ctx.attr.urls if ctx.attr.url: all_urls = [ctx.attr.url] + all_urls env_key = "BAZEL_" + ctx.name.upper() + "_PATH" if env_key in ctx.os.environ: repo_path = ctx.os.environ[env_key] script_path = ctx.path(Label("@com_intel_plaidml//bzl:dev_repo.py")) result = ctx.execute([ ctx.which("python"), script_path, repo_path, ctx.path("."), ], quiet = False) if not result.return_code == 0: fail("dev_http_archive failure: %s\n" % result.stderr) workspace_and_buildfile(ctx) return update_attrs(ctx.attr, _dev_http_archive_attrs.keys(), {}) download_info = ctx.download_and_extract( all_urls, "", ctx.attr.sha256, ctx.attr.type, ctx.attr.strip_prefix, ) workspace_and_buildfile(ctx) return update_attrs(ctx.attr, _dev_http_archive_attrs.keys(), {"sha256": download_info.sha256})
53d363db0af163965bc4b3b8331cf89bf91a1518
35,468
def setSortGroups(sortGroups=None): """ Return the sorting groups, either user defined or from the default list """ if sortGroups is None: # Default groups return [('-inf', '+inf'), ('-inf', 100), (101, '+inf')] else: sortGroups.insert(0, ('-inf', '+inf')) return sortGroups
f2e8cff00fe70627e81dcc0ce576f56e4d289228
35,469
def attach_clipped_regions_to_surface(surface, clipped, center): """Check the connectivty of a clipped surface, and attach all sections which are not closest to the center of the clipping plane. Args: surface (vtkPolyData): clipped (vtkPolyData): The clipped segments of the surface. center (list): The center of the clipping point Returns: surface (vtkPolyData): The surface where only one segment has been removed. """ connectivity = vtk_compute_connectivity(clipped, mode="All") if connectivity.GetNumberOfPoints() == 0: return surface region_id = get_point_data_array("RegionId", connectivity) distances = [] regions = [] for i in range(int(region_id.max() + 1)): regions.append(vtk_compute_threshold(connectivity, "RegionId", lower=i - 0.1, upper=i + 0.1, source=0)) locator = get_vtk_point_locator(regions[-1]) region_point = regions[-1].GetPoint(locator.FindClosestPoint(center)) distances.append(get_distance(region_point, center)) # Remove the region with the closest distance regions.pop(distances.index(min(distances))) # Add the other regions back to the surface surface = vtk_merge_polydata(regions + [surface]) surface = vtk_clean_polydata(surface) surface = vtk_triangulate_surface(surface) return surface
0ddb832a8fa29c7167301d8dde116734e59268da
35,470
def ubuntu_spec(**kwargs): """Ubuntu specs.""" # Setup vars from kwargs builder = kwargs['data']['builder'] builder_spec = kwargs['data']['builder_spec'] distro = kwargs['data']['distro'] version = kwargs['data']['version'] bootstrap_cfg = 'preseed.cfg' # https://github.com/mrlesmithjr/packer-builder/issues/83 if builder == 'qemu': boot_wait = '5s' else: boot_wait = '30s' builder_spec.update( { 'boot_command': [ '<enter><wait><f6><esc>', '<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>', '<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>', '<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>', '<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>', '<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>', '<bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs><bs>', '<bs><bs><bs><bs><bs><bs>', '<wait>', '/install/vmlinuz', '<wait>', ' initrd=/install/initrd.gz', '<wait>', ' auto=true', '<wait>', ' priority=critical', '<wait>', ' url=http://{{ .HTTPIP }}:{{ .HTTPPort }}/'f'{distro}-{version}-{bootstrap_cfg}', # noqa: E501 '<wait>', '<enter>' ], 'boot_wait': f'{boot_wait}', 'shutdown_command': 'sudo /sbin/halt -h -p' } ) return bootstrap_cfg, builder_spec
fca2605c5b10f86519ef5ca952ab340e1f5560f2
35,471
def ds_as_cds(dataset): """ Converts Vega dataset into Bokeh ColumnDataSource data """ if len(dataset) == 0: return {} data = {k: [] for k, v in dataset[0].items()} for item in dataset: for k, v in item.items(): data[k].append(v) data = {k: np.asarray(v) for k, v in data.items()} return data
41db6678bedfd23bbf43aaf281d9d7c0afd87ee6
35,472
def genPubKey(privkey): """ 生成公钥 """ bio=BIO.MemoryBuffer(privkey) key=EVP.load_key_bio(bio, util.no_passphrase_callback) return key.get_rsa().as_pem()
d750b136c2d79ff83261d3ac3ae104cc72d30428
35,473
def CI_calc(mean, SE, CV=1.96): """ Calculate confidence interval. :param mean: mean of data :type mean: float :param SE: standard error of data :type SE: float :param CV: critical value :type CV:float :return: confidence interval as tuple """ try: CI_down = mean - CV * SE CI_up = mean + CV * SE return (CI_down, CI_up) except Exception: return ("None", "None")
be548e1ac1313f9e25428f4925399be27949f8ef
35,474
def bivecvec_invariants(q): """Calculates rotation-invariant attributes of a (vector, trivector) quantity. Returns a 2D output: the norm of the vector and the trivector. """ result = [custom_norm(q[..., :3]), q[..., 3:4]] return tf.concat(result, axis=-1)
43beda8a485ad56c5e7ba764dbd15757edd9653b
35,475
from typing import Optional from typing import Sequence def resolve_margins(margins: Optional[Sequence[float]]) -> Tuple4f: """ Returns the box margins in CSS like order: top, right, bottom, left. """ if margins is None: return 0, 0, 0, 0 count = len(margins) if count == 4: # CSS: top, right, bottom, left return margins[0], margins[1], margins[2], margins[3] elif count == 3: # CSS: top, right, bottom, left=right return margins[0], margins[1], margins[2], margins[1] elif count == 2: # CSS: top, right, bottom=top, left=right return margins[0], margins[1], margins[0], margins[1] elif count == 1: # CSS: top, right=top, bottom=top, left=top return margins[0], margins[0], margins[0], margins[0]
9411f7064b78247c73a6f7701fe916ce9a78b85a
35,477
def check_cookie_auth(api_key, required_scopes): """ Although OpenAPI explicitly supports JWT - we don't enforce this - simply use it as a quick way to mock the behaviour of a more advanced system :param api_key: :param required_scopes: :return: the decoded security token """ try: return jwt.decode(api_key, __JWT_SECRET, algorithms=[__JWT_ALGORITHM]) except Exception as e: raise Unauthorized()
29c502a4895b7dfcbe1002bd6d6c7739a3718b96
35,478
from typing import Any async def validate_input( hass: core.HomeAssistant, data: dict[str, Any] ) -> dict[str, Any]: """Validate the user input allows us to connect.""" session = async_get_clientsession(hass, verify_ssl=data[CONF_VERIFY_SSL]) protocol = "https" if data[CONF_SSL] else "http" url = f"{protocol}://{data[CONF_HOST]}" sma = pysma.SMA(session, url, data[CONF_PASSWORD], group=data[CONF_GROUP]) # new_session raises SmaAuthenticationException on failure await sma.new_session() device_info = await sma.device_info() await sma.close_session() return device_info
23687106fb590105dc412d1a1d90ea6958be0828
35,479
def resize_cube(cube, shape): """Return resized cube with the define shape""" zoom = [float(x) / y for x, y in zip(shape, cube.shape)] resized = sp.ndimage.zoom(cube, zoom) assert resized.shape == shape return resized
491272f81b02f1b92c0c4f886b956f3b8e48efc2
35,480
import torch def load_image_from_cifar(image_id): """This is to load the image from CIFAR numpy and pre-process. :param image_id: An integer as the image id to load from CIFAR. :return img: A PyTorch Tensor. """ image = CIFAR[image_id] image = image / 255.0 # Normalize image = torch.from_numpy(image) image = image.unsqueeze(0) # Change from 3D to 4D image = image.float() image = Variable(image, volatile=True) return image
d235df286f0629312ff39967845b0b744eb8d531
35,481
def valueToCharacter(value): """ Returns the respective character for a value. Returns 'highest' character if no match is found Args: value ([int]): Value that should be mapped to a character Returns: [char]: Respective character for the given value """ for bar_threshold in BAR_CHARACTERS: if(value < bar_threshold): return BAR_CHARACTERS[bar_threshold] return BAR_CHARACTERS[100]
c5df1d0185f0ab775eda8f573253d399824cbb98
35,482
import gc def pickle_loads(inbox): """ Deserializes the first element of the input using the pickle protocol. """ gc.disable() obj = cPickle.loads(inbox[0]) gc.enable() return obj
38ce6a33b3313d97ffa021dde93d68e0387d1f69
35,483
def NOT_TENSOR_FILTER(arg_value): """Only keeps a value if it is not a Tensor or SparseTensor.""" return not arg_value.is_tensor and not arg_value.is_sparse_tensor
14eb28c1824f58bd7ef6ad1da96922891114fe5a
35,484
def rod_3D(x, gm=None, median=None, scaler1=None, scaler2=None): """Find ROD scores for 3D Data. note that gm, scaler1 and scaler2 will be returned "as they are" and without being changed if the model has been fit already. Parameters ---------- x : array-like, 3D data points. gm: list (default=None), the geometric median median: float (default=None), MAD median scaler1: obj (default=None), MinMaxScaler of Angles group 1 scaler2: obj (default=None), MinMaxScaler of Angles group 2 Returns ------- decision_scores, gm, scaler1, scaler2 """ # find the geometric median if it is not already fit gm = geometric_median(x) if gm is None else gm # find its norm and center data around it norm_ = np.linalg.norm(gm) _x = x - gm # calculate the scaled angles between the geometric median and each data point vector v_norm = np.linalg.norm(_x, axis=1) gammas, scaler1, scaler2 = scale_angles( np.arccos(np.clip(np.dot(_x, gm) / (v_norm * norm_), -1, 1)), scaler1=scaler1, scaler2=scaler2) # apply the ROD main equation to find the rotation costs costs = np.power(v_norm, 3) * np.cos(gammas) * np.square(np.sin(gammas)) # apply MAD to calculate the decision scores decision_scores, median = mad(costs, median=median) return decision_scores, list(gm), median, scaler1, scaler2
df3347689aef695ff9ab1a8b8853310f14ff9828
35,485
def check_if_neighbors_match(src_neighbor, trg_neighbor): """Check if any source and target neighbors match and return matches Args: src_neighbor (list): Source Neighbor List trg_neighbor (list): Target Neighbor List Returns: list: Matching of neighbors. """ matching = {} for current_neighbor_index in range(len(src_neighbor)): # Looking for matches if int(trg_neighbor[src_neighbor[current_neighbor_index]]) == current_neighbor_index: matching[current_neighbor_index] = src_neighbor[current_neighbor_index] return matching
c4d91ffca1f175e9964ca67c8b2200b1848b56d9
35,486
def build_torch_optimizer_for_bert(model, opt): """ no_decay = ["bias", "LayerNorm.weight"] encoder_params = [ { "params": [p for n, p in model.encoder.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, { "params": [p for n, p in model.encoder.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, } ] decoder_params = [ { "params": [p for n, p in model.decoder.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, { "params": [p for n, p in model.decoder.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }] etc_params = [p for p in model.generator.parameters() if p.requires_grad] + [p for p in model.separator.parameters() if p.requires_grad] """ encoder_params = [p for p in model.encoder.parameters() if p.requires_grad] # decoder_params = [p for n, p in model.decoder.named_parameters() if p.requires_grad and 'cross' not in n] # etc_params = [p for n, p in model.decoder.named_parameters() if p.requires_grad and 'cross' in n] + [p for p in model.generator.parameters() if p.requires_grad] + [p for p in model.separator.parameters() if p.requires_grad] decoder_params = [p for n, p in model.decoder.named_parameters() if p.requires_grad] etc_params = [p for p in model.generator.parameters() if p.requires_grad] + [p for p in model.separator.parameters() if p.requires_grad] betas = [opt.adam_beta1, opt.adam_beta2] encoder_lr = opt.learning_rate if opt.enc_learning_rate == 0.0 else opt.enc_learning_rate decoder_lr = opt.learning_rate if opt.dec_learning_rate == 0.0 else opt.dec_learning_rate etc_lr = opt.learning_rate if opt.etc_learning_rate == 0.0 else opt.etc_learning_rate if opt.optim == 'sgd': if len(encoder_params) > 0 and len(decoder_params) > 0: optimizer = { "encoder": optim.SGD(encoder_params, lr=encoder_lr), "decoder": optim.SGD(decoder_params, lr=decoder_lr), "etc": optim.SGD(etc_params, lr=etc_lr) } elif len(decoder_params) > 0: optimizer = { "decoder": optim.SGD(decoder_params, lr=decoder_lr), "etc": optim.SGD(etc_params, lr=etc_lr) } else: optimizer = { "etc": optim.SGD(etc_params, lr=etc_lr) } elif opt.optim == 'adagrad': if len(encoder_params) > 0 and len(decoder_params) > 0: optimizer = { "encoder": optim.Adagrad( encoder_params, lr=encoder_lr, initial_accumulator_value=opt.adagrad_accumlator_init), "decoder": optim.Adagrad( decoder_params, lr=decoder_lr, initial_accumulator_value=opt.adagrad_accumlator_init), "etc": optim.Adagrad( etc_params, lr=etc_lr, initial_accumulator_value=opt.adagrad_accumlator_init) } elif len(decoder_params) > 0: optimizer = { "decoder": optim.Adagrad( decoder_params, lr=decoder_lr, initial_accumulator_value=opt.adagrad_accumlator_init), "etc": optim.Adagrad( etc_params, lr=etc_lr, initial_accumulator_value=opt.adagrad_accumlator_init) } else: optimizer = { "etc": optim.Adagrad( etc_params, lr=etc_lr, initial_accumulator_value=opt.adagrad_accumlator_init) } elif opt.optim == 'adadelta': if llen(encoder_params) > 0 and len(decoder_params) > 0: optimizer = { "encoder": optim.Adadelta(encoder_params, lr=encoder_lr), "decoder": optim.Adadelta(decoder_params, lr=decoder_lr), "etc": optim.Adadelta(etc_params, lr=etc_lr) } elif len(decoder_params) > 0: optimizer = { "decoder": optim.Adadelta(decoder_params, lr=decoder_lr), "etc": optim.Adadelta(etc_params, lr=etc_lr) } else: optimizer = { "etc": optim.Adadelta(etc_params, lr=etc_lr) } elif opt.optim == 'adam': if len(encoder_params) > 0 and len(decoder_params) > 0: optimizer = { "encoder": optim.Adam(encoder_params, lr=encoder_lr, betas=betas, eps=1e-12), "decoder": optim.Adam(decoder_params, lr=decoder_lr, betas=betas, eps=1e-12), "etc": optim.Adam(etc_params, lr=etc_lr, betas=betas, eps=1e-12) } elif len(decoder_params) > 0: optimizer = { "decoder": optim.Adam(decoder_params, lr=decoder_lr, betas=betas, eps=1e-12), "etc": optim.Adam(etc_params, lr=etc_lr, betas=betas, eps=1e-12) } else: optimizer = { "etc": optim.Adam(etc_params, lr=etc_lr, betas=betas, eps=1e-12) } else: raise ValueError("Invalid optimizer type: " + opt.optim) return optimizer
20672e152874d51908855afcf46b26d0a4f5501e
35,487
def docker_compose(command): """ Run a docker-compose command :param command: Command you want to run """ with env.cd(env.project_dir): return env.run("docker-compose -f {file} {command}".format(file=env.compose_file, command=command))
9e51fdacb42057ab607ec00b563db4973ede7e96
35,488