content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def _get_event_id(oracle_cursor): # -> (int)
"""gets the event_id to be used for updating the NR history
:oracle_conn : a Cx_Oracle connection to the NRO database
:returns (int): a valid NRO event_id to be used for updating NRO records
"""
oracle_cursor.execute("""select event_seq.NEXTVAL from dual""")
row = oracle_cursor.fetchone()
event_id = int(row[0])
oracle_cursor.execute("""
INSERT INTO event (event_id, event_type_cd, event_timestamp)
VALUES (:event_id, 'SYST', sysdate)
""",
event_id=event_id
)
return event_id
|
ee524bb3c4819e9cb614219900be4695219d046f
| 35,489 |
import pickle
def broken_model():
"""Create a non-functional model object."""
r = MockRedis()
r.set("1.2.0", pickle.dumps("lol"))
return lambda: r
|
a1dee18e86f61263f629b8b20ceb75e0f55585d3
| 35,491 |
def _envFile(self, s, *args, **kw):
"""Same as Environmet.File but without expanding $VAR logic
"""
if SCons.Util.is_Sequence(s):
result=[]
for e in s:
result.append(self.fs.File((e,) + args, kw))
return result
return self.fs.File((s,) + args, kw)
|
9d388255faaa71705dc555c0d3349ef0f334c86d
| 35,492 |
def xception_model(num_classes, pretrained=True, **kwargs):
"""Constructs a xception model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
encoder = AlignedXception(num_classes=1000)
# encoder = pretrainedmodels.models.xception()
if pretrained:
state_dict = model_zoo.load_url(
pretrained_settings['xception']['imagenet']['url'],
model_dir='models')
for name, weights in state_dict.items():
if 'pointwise' in name:
state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1)
encoder.load_state_dict(state_dict)
model = RetinaNet(encoder=encoder, num_classes=num_classes, **kwargs)
return model
|
f9b3167d0f569230119904eb10c6a0627c44da1d
| 35,493 |
def lwdown(atemp,clouds):
"""Call signature::
lwd = lwdown(atemp,clouds)
estimate downward (incoming) radiation in long wave wave band from air
temperature according to Parkinson and Washington (1979), A Large-Scale
Numerical Model of Sea Ice, JGR, 84(C1), 311-337.
INPUT: atemp :: air temperature in Kelvin
clouds :: fractional cloud cover, range: [0 1]
OUTPUT: lwd :: down ward long wave radiation (positive down)
Author: Martin Losch, Dec 2006 (rewritten for python in Mar 2015)
"""
# some constants
stefanBoltzmann = 5.670e-8 # W/m^2/K^4
# first long wave downward radiation (eq. 5 of P&W, who cite Idso and
# Jackson, 1969)
lwd = stefanBoltzmann*atemp**4 \
* ( 1- 0.261*np.exp(-7.77e-4*(273-atemp)**2)) \
* ( 1 + 0.275 * clouds )
return lwd
|
b80838371a14363dd0f78dc329718e408882a1ff
| 35,494 |
def render_volume(workspace, cutoff=None, solid_color=(1., 1., 1.), style='surface', origin=(0., 0., 0.),
window_size=(1920, 1200), opacity=1., background=(0.3, 0.3, 0.3), show_grid=True, plot_directly=True,
show_axes=True, show_outline=True, cmap='gray', add_to_plot=None, notebook=False):
""" Volume render using Pyvista Threshold filter
:param workspace: domain
:type workspace: Workspace or ndarray
:param cutoff: specifying the values to render
:type cutoff: tuple(int, int), optional
:param solid_color: if set to None, the material is colored by the matrix's values. Otherwise, a solid color can be specified (e.g. for white (1., 1., 1.))
:type solid_color: tuple(float, float, float), optional
:param style: specifying the representation style ('surface', 'edges', 'wireframe', 'points')
:type style: string, optional
:param origin: origin of the data as
:type origin: tuple(float, float, float), optional
:param window_size: with the popup window size
:type window_size: tuple(int, int), optional
:param opacity: opacity of volume
:type opacity: float, optional
:param background: color of the background from (0., 0., 0.) (black) to (1., 1., 1.) (white)
:type: background: tuple(float, float, float)
:param show_grid: show the grid with the size of the sides
:type show_grid: bool, optional
:param plot_directly: whether to return a Plotter object (to make further changes to it) or show the plot directly
:type plot_directly: bool, optional
:param show_axes: show orientation axis in the bottom left corner
:type show_axes: bool, optional
:param show_outline: show the bounding box outline of the domain
:type show_outline: bool, optional
:param cmap: matplotlib colormap to use (overwritten by solid_color if specified)
:type cmap: str, optional
:param add_to_plot: pass an already existing plotter object to add on top of this plot
:type add_to_plot: pyvista.Plotter, optional
:param notebook: plotting interactively in a jupyter notebook (overwrites show_grid to False)
:type notebook: bool, optional
:return: None is plot_directly is True, otherwise a plotter object
:rtype: pyvista.Plotter object or None
:Example
>>> import pumapy as puma
>>> ws_volume = puma.import_3Dtiff(puma.path_to_example_file("200_fiberform.tif"), 1.3e-6)
>>> puma.render_volume(ws_volume)
"""
if cutoff is None:
solid_color = None
r = Renderer(add_to_plot, "threshold", workspace, cutoff, solid_color, style, origin, window_size, opacity,
background, show_grid, plot_directly, show_axes, show_outline, cmap, None, notebook)
return r.render()
|
6bddc01d467041170cdd42e9f2d4f0334fe2e151
| 35,495 |
def cutoff_list(a,feature=int(0)):
"""
for list a, apply function cutoff to each element
"""
for i in range(len(a)):
a[i]=cutoff(a[i],feature=feature)
return a
|
fe13bf9cc4f097b22911e247ed6ab468552a365b
| 35,496 |
def carla_location_to_pose(carla_location):
"""
Convert a carla location to a icv pose
See carla_location_to_icv_point() for details.
pose quaternion remains zero.
:param carla_location: the carla location
:type carla_location: carla.Location
:return: a icv pose
:rtype: geometry_msgs.msg.Pose
"""
icv_pose = Pose()
icv_pose.position = carla_location_to_icv_point(carla_location)
return icv_pose
|
60e3a0cf2075d0d1cdfe631225a8de21718b068f
| 35,497 |
def estimate_biases(model_dat, ymdat):
"""numerical optimize modification indicators for equations, one at a time"""
tau = model_dat["xdat"].shape[1]
biases = zeros(model_dat["ndim"])
biases_std = zeros(model_dat["ndim"])
for bias_ind in range(model_dat["ndim"]):
# compute biases
bias, hess_i, sse = optimize_biases(model_dat, bias_ind, ymdat)
biases[bias_ind] = bias
# compute biases_std
resvar = sse / (tau - 1)
bias_std = (2 * resvar * (1 / hess_i)) ** (1 / 2)
biases_std[bias_ind] = bias_std
return biases, biases_std
|
513f79d37426f6dc3889ee4de0b9c510273bfabe
| 35,498 |
import logging
def find_bad_positions(coverage_matrix, target_folder = None, trait = None, samplename = None,
trait_cutoff = None, whitelist = None):
"""
Walk through all bases and find contigous regions of bases that fail the coverage/strandbias cutoff
Create an output file of these regions
If a base an expected variant (recorded in a ExpectedVariants instance ('whitelist'), record the trait to the instance)
Return the updated whitelist
"""
region = None
last_gene = None
last_pos = 0
last_gene = None
total_bases = 0
bad_bases = 0
sample = samplename
bad_output_name = target_folder + sample + "_failed_regions_%s_cutoff_%s.csv" % (trait, trait_cutoff)
bad_output = open(bad_output_name, "w")
if trait == "strandbias":
output_header = ["gene", "chrom", "start", "stop", "mean_strand_bias", "size"]
elif trait == "coverage":
output_header = ["gene", "chrom", "start", "stop", "mean_coverage", "size"]
bad_output.write("\t".join(output_header) + "\n")
for index, pandas_dict in coverage_matrix.iterrows():
chrompos, chrom, dp, gene, minus_dp, plus_dp, pos, start, stop, strand_ratio = pandas_dict
row = [chrom, start, stop, gene, ".", "NA", (pos-start), strand_ratio]
row = "\t".join([str(x) for x in row])
start = int(start)
stop = int(stop)
pos = int(pos)
if whitelist:
if whitelist.dict.get(chrompos):
whitelist.add_coverage(chrompos, dp)
whitelist.add_strand_ratio(chrompos, strand_ratio)
##########################################################
pass_check = False
if trait == "coverage":
if dp > trait_cutoff:
pass_check = True
elif trait == "strandbias":
if strand_ratio < trait_cutoff:
pass_check = True
total_bases += 1
if not pass_check:
bad_bases += 1
##########################################################
if gene != last_gene or last_pos != (pos - 1):
if region:
result = region.print_output()
bad_output.write(result + "\n")
region = None
elif not pass_check:
if region:
region.add_row(row)
else:
region = CoverageCheckClasses.BadRegion(row)
else:
if region:
result = region.print_output()
bad_output.write(result + "\n")
region = None
last_chrom = chrom
last_pos = pos
last_gene = gene
bad_output.close()
######################################################################
good_bases = total_bases - bad_bases
pass_percent = 100 * round( good_bases / float(total_bases), 3)
if trait == "strandbias":
sampleinfo.add_strandbias(sample, [pass_percent, good_bases, total_bases])
logging.info( "%s percent (%s/%s) of positions in %s have a strand bias below the threshold (%s:1)."
% (pass_percent, good_bases, total_bases, sample, trait_cutoff) )
elif trait == "coverage":
sampleinfo.add_coverage(sample, [pass_percent, good_bases, total_bases])
logging.info( "%s percent (%s/%s) of positions in %s have at least the minimum coverage of %sX."
% (pass_percent, good_bases, total_bases, sample, trait_cutoff) )
return whitelist
|
02fbcb688fc763a414805c3c898027c14b12b9f0
| 35,500 |
def s_norm(p_string, uppercase=False):
"""
Filters out all punctuation, normalizes the casing to either
lowercase or uppercase of all letters, and removes extraneous
whitespace between characters. That is, all whitespace will
be replaced by a single space character separating the words.
:param p_string
The string to normalize.
:param uppercase
Whether to make the resulting string uppercase. By default,
the resulting string will be all lowercase.
"""
nopunct = s_liftpunct(p_string)
if uppercase:
nopunct = nopunct.upper()
else:
nopunct = nopunct.lower()
return ' '.join(nopunct.split())
|
69519ddfb2fd58bab3b6db9695946a168ce3eec4
| 35,501 |
def _venv_changed(session: nox.sessions.Session) -> bool:
"""Return True if the installed session is different to that specified in the lockfile."""
result = False
if _venv_populated(session):
expected = _file_content(_session_lockfile(session))
actual = _file_content(_session_cachefile(session))
result = actual != expected
return result
|
a5723d9e3f5f71f3f7b83dc0bfa6ed659c9dca13
| 35,502 |
import random
def greedy_policy(A, s, Q, epsilon = None):
"""在给定一个状态下,从行为空间A中选择一个行为a,使得Q(s,a) = max(Q(s,))
考虑到多个行为价值相同的情况
"""
max_q, a_max_q = -float('inf'), []
for a_opt in A:
q = get_dict(Q, s, a_opt)
if q > max_q:
max_q = q
a_max_q = [a_opt]
elif q == max_q:
a_max_q.append(a_opt)
return random.choice(a_max_q)
|
12ae83e3c28e6d65d4b3cc81aa712657c82834c3
| 35,503 |
def login_user(cursor, username):
""" create new session for user with username, return session key """
userid = get_userid(cursor, username)
key = token_urlsafe()
cursor.execute(
"REPLACE INTO sessions ('userid', 'key') VALUES (?, ?)",
(userid, key)
)
return key
|
b507aa966608a372df785b3e7d3c8a1a26c2d23a
| 35,504 |
def tapisize(fieldKeyName):
"""Transforms a string into a Tapis query parameter
"""
return fieldKeyName.lower()
|
cc8032a6cc9e822193430134bb33da8aef74cf06
| 35,505 |
def get_minions(returner):
"""
Return a list of all minions
CLI Example:
.. code-block:: bash
salt '*' ret.get_minions mysql
"""
returners = salt.loader.returners(__opts__, __salt__)
return returners["{0}.get_minions".format(returner)]()
|
f4dd2a96884ddfc356b3214b89bfd1da96e15a40
| 35,506 |
from typing import Union
import torch
def nx_second_order_proximity(
G: Union[nx.Graph, nx.DiGraph],
node_ids: Union[Tensor, ndarray, list],
whole_graph_proximity: bool = True,
to_batch: bool = False,
distance_metric: str = "cosine",
norm_rows_in_sample: bool = False,
norm_rows: bool = True,
) -> Tensor:
"""
Takes a networkx graph G and generates second-order node proximities, also known
as structural equivalence relations.
Nodes are similar, if they share similar ties to alters.
Diagonal elements are set to zero.
Note that this includes non-PyTorch operations!
Parameters
----------
G : Union[nx.Graph,nx.DiGraph]
Input graph
node_ids : Union[Tensor,ndarray,list]
List of nodes. Must exist in G.
whole_graph_proximity : bool, optional
If True, similarities between nodes in node_ids is computed based
on all alters in the graph (including those not in node_ids)
If False, similarities are only calculated based on nodes contained in
node_ids.
ATTN: Note that if True, ordering of rows reflects G.nodes
if False, ordering reflects node_ids supplied (subnetwork)
by default True
to_batch : bool, optional
If true, will remove the row entries of nodes not in node_list
If norm_rows is True, will also re-norm the rows, by default True
distance_metric : str, optional
Any distance metric from scipy.spatial.distance that works
without parameter, by default 'cosine'
norm_rows_in_sample : bool, optional
If True, distances are scaled such that the highest distance is 1.
This implies that distances depend on the sample provided, by default False
norm_rows: bool, optional
If True, distances are scaled for each node, such that sum(a_ij)=1
This does not take into account the similarity to itself, a_ii, which is always 0.
Returns
-------
ndarray
Similarity matrix of dimension len(node_ids)^2
"""
if isinstance(node_ids, list):
node_ids = np.array(node_ids)
if isinstance(node_ids, Tensor):
node_ids = node_ids.numpy()
if whole_graph_proximity:
adjacency_matrix = np.zeros([len(G.nodes), len(G.nodes)])
similarity_matrix = np.zeros([len(node_ids), len(G.nodes)])
else:
adjacency_matrix = np.zeros([len(node_ids), len(node_ids)])
similarity_matrix = np.zeros([len(node_ids), len(node_ids)])
if whole_graph_proximity:
adjacency_matrix = nx.adjacency_matrix(G, weight="weight").todense()
else:
G_sub = G.subgraph(node_ids)
for i, node in enumerate(node_ids):
for j, (alter, datadict) in enumerate(G_sub[node].items()):
if hasattr(datadict, "weight"):
weight = datadict["weight"]
else:
weight = 1
adjacency_matrix[i, j] = weight
similarity_matrix = pdist(adjacency_matrix, metric=distance_metric)
similarity_matrix = 1 - squareform(similarity_matrix)
similarity_matrix = similarity_matrix - np.eye(
similarity_matrix.shape[0], similarity_matrix.shape[1]
)
if norm_rows_in_sample:
similarity_matrix = similarity_matrix / np.max(
similarity_matrix
) # Norm max similarity within the sample to 1
if norm_rows and not to_batch:
similarity_matrix = row_norm(similarity_matrix)
similarity_matrix = np.nan_to_num(similarity_matrix, copy=False)
if whole_graph_proximity:
selection = np.searchsorted(np.array(G.nodes), node_ids)
assert (
np.array(G.nodes)[selection] == node_ids
).all(), "Internal error, subsetting nodes"
similarity_matrix = similarity_matrix[selection, :]
if to_batch:
similarity_matrix = whole_graph_rows_to_batch(
similarity_matrix, selection, norm_rows=norm_rows
)
return torch.as_tensor(similarity_matrix)
|
1eb2e37e0d52b0428843f71adc901a02c62eadb5
| 35,507 |
def calculate_average_resolution(sizes):
"""Returns the average dimensions for a list of resolution tuples."""
count = len(sizes)
horizontal = sum([x[0] for x in sizes]) / count
vertical = sum([x[1] for x in sizes]) / count
return (horizontal, vertical)
|
06dac1834989df96ce7bff88c435dd4067bfccbd
| 35,508 |
def is_enum0(*args):
"""
is_enum0(F) -> bool
Is the first operand a symbolic constant (enum member)?
@param F (C++: flags_t)
"""
return _ida_bytes.is_enum0(*args)
|
137b34efa475738ff3a9d1633822f1a1c7a0ca32
| 35,509 |
def view(image, ui_collapsed=False, annotations=True, interpolation=True,
cmap=cm.viridis, mode='v', shadow=True, slicing_planes=False, gradient_opacity=0.2):
"""View the image.
Creates and returns an ipywidget to visualize the image.
The image can be 2D or 3D.
The type of the image can be an numpy.array, itk.Image,
vtk.vtkImageData, imglyb.ReferenceGuardingRandomAccessibleInterval, or
something that is NumPy array-like, e.g. a Dask array.
Parameters
----------
image : array_like, itk.Image, or vtk.vtkImageData
The 2D or 3D image to visualize.
ui_collapsed : bool, optional, default: False
Collapse the native widget user interface.
annotations : bool, optional, default: True
Display annotations describing orientation and the value of a
mouse-position-based data probe.
interpolation: bool, optional, default: True
Linear as opposed to nearest neighbor interpolation for image slices.
cmap: string, optional, default: 'Viridis (matplotlib)'
Colormap. Some valid values available at itkwidgets.cm.*
mode: 'x', 'y', 'z', or 'v', optional, default: 'v'
Only relevant for 3D images.
Viewing mode:
'x': x-plane
'y': y-plane
'z': z-plane
'v': volume rendering
shadow: bool, optional, default: True
Use shadowing in the volume rendering.
slicing_planes: bool, optional, default: False
Enable slicing planes on the volume rendering.
gradient_opacity: float, optional, default: 0.2
Gradient opacity for the volume rendering, in the range (0.0, 1.0].
Returns
-------
viewer : ipywidget
Display by placing at the end of a Jupyter cell or calling
IPython.display.display. Query or set properties on the object to change
the visualization or retrieve values created by interacting with the
widget.
"""
viewer = Viewer(image=image, ui_collapsed=ui_collapsed,
annotations=annotations, interpolation=interpolation, cmap=cmap,
mode=mode, shadow=shadow, slicing_planes=slicing_planes,
gradient_opacity=gradient_opacity)
return viewer
|
5c71f27ba46258ad97dade0cab04fbf65e8e3c22
| 35,510 |
import click
def install_chute(ctx, chute, node, follow, version):
"""
Install a chute from the store.
CHUTE must be the name of a chute in the store. NODE must be the
name of a node that you control.
"""
client = ControllerClient()
result = client.install_chute(chute, node, select_version=version)
click.echo(util.format_result(result))
if follow:
result2 = client.follow_chute(chute, node)
click.echo(util.format_result(result2))
click.echo("Streaming messages until the update has completed.")
click.echo("Ending output with Ctrl+C will not cancel the update.\n")
ctx.invoke(watch_update_messages, node_id=result['router_id'], update_id=result['_id'])
return result
|
90781fc0c9d4cca877f44b9b93be2c8d075fa4a3
| 35,511 |
from pathlib import Path
def create_folder(subfolder: str,
folder: str) -> None:
"""
Function for creating folder structure for saved stationdata
"""
path_to_create = Path(folder, subfolder)
Path(path_to_create).mkdir(parents=True, exist_ok=True)
return None
|
e50052d22cb8385e1c3a83caa643ec0d0289d1b0
| 35,512 |
def locate_spikes_peakutils(
data, fps=58.21, thresh=0.7, min_dist=None, max_allowed_firing_rate=1
) -> np.ndarray:
"""
Find spikes from a dF/F matrix using the peakutils package.
The fps parameter is used to calculate the minimum allowed distance \
between consecutive spikes, and to disqualify cells which had no
evident dF/F peaks, which result in too many false-positives.
:param float max_allowed_firing_rate: Maximal number of spikes per second
that are considered viable.
"""
assert len(data.shape) == 2 and data.shape[0] > 0
if min_dist is None:
min_dist = int(fps)
else:
min_dist = int(min_dist)
all_spikes: np.ndarray = np.zeros_like(data)
nan_to_zero = np.nan_to_num(data)
max_spike_num = int(data.shape[1] // fps) * max_allowed_firing_rate
for row, cell in enumerate(nan_to_zero):
peaks = peakutils.indexes(cell, thres=thresh, min_dist=min_dist)
num_of_peaks = len(peaks)
if (num_of_peaks > 0) and (num_of_peaks < max_spike_num):
all_spikes[row, peaks] = 1
return all_spikes
|
e32c8ebc8024b4547592769744051b6d30897851
| 35,514 |
def has_valuable(camera):
"""Function checks if the camera sees any valuable.
@param camera: webots camera object to use for the recognition
@returns True if a valuable is detected, False otherwise
"""
# Check if camera has recogniton and is enabled
if not camera.hasRecognition() or camera.getRecognitionSamplingPeriod() == 0:
# the camera was not enabled or has not recognition
return "No recognition on camera"
# If the camera has recognition enabled, get the list of objects, and check if any of them are valuables
return (
len(VALUABLE_SET & {t.get_model() for t in camera.getRecognitionObjects()}) > 0
)
|
5ff65e4dc52abbcd42700168fb7aa26e83aa2aab
| 35,515 |
def _partition_fold(v,data):
"""
partition the data ready for cross validation
Inputs:
v: (int) cross validation parameter, number of cross folds
data: (np.array) training data
Outputs:
list of partitioned indicies
"""
partition = []
for i in range(v):
if i==v-1:
partition.append(range(int(i*len(data)/5),len(data)))
else:
partition.append(range(int(i*len(data)/5),int(i*len(data)/5+(len(data)/5))))
return partition
|
fc833b5120c5d8e479af1758f86e0541c5d7d87c
| 35,516 |
def get_distance(m, M, Av=0):
"""
calculate distance [in pc] from extinction-corrected magnitude
using the equation: d=10**((m-M+5-Av)/5)
Note: m-M=5*log10(d)-5+Av
see http://astronomy.swin.edu.au/cosmos/I/Interstellar+Reddening
Parameters
---------
m : apparent magnitude
M : absolute magnitude
Av : extinction (in V band)
"""
assert (m is not None) & (str(m) != "nan")
assert (M is not None) & (str(M) != "nan")
distance = 10 ** (0.2 * (m - M + 5 - Av))
return distance
|
b4773065d7cf1bc793400ac344c4ca7a580f8567
| 35,517 |
def get_csr_as_text(csr_filename):
"""Convert CSR file to plaintext with OpenSSL."""
return _run_openssl(['req', '-in', csr_filename, '-noout', '-text']).decode('utf-8')
|
f08d1d914b992474e2c51406bab58f2f2ad37c6c
| 35,518 |
def rename_entry(*args):
"""
rename_entry(ord, name, flags=0x0) -> bool
Rename entry point.
@param ord: ordinal number of the entry point (C++: uval_t)
@param name: name of entry point. If the specified location already
has a name, the old name will be appended to a repeatable
comment. (C++: const char *)
@param flags: See AEF_* (C++: int)
@return: success
"""
return _ida_entry.rename_entry(*args)
|
d70cd7b42b8e6b4e748c7c2599a46859dd5f6059
| 35,520 |
from typing import Iterable
from typing import Tuple
def split_file_to_annotations_and_definitions(lines: Iterable[str]) -> Tuple[EnumLines, EnumLines, EnumLines]:
"""Enumerate a line iterable and splits into 3 parts."""
enum_lines = sanitize_file_lines(lines)
metadata, definitions, statements = multi_split_by(enum_lines, [_predicate_1, _predicate_2])
return metadata, definitions, statements
|
64a5f6f4d32f80d90f1247472564ae04e902ae1d
| 35,521 |
def _SafeCreateLogoutURL(mr):
"""Make a logout URL w/ a detailed continue URL, otherwise use a short one."""
try:
return users.create_logout_url(mr.current_page_url)
except users.RedirectTooLongError:
if mr.project_name:
return users.create_logout_url('/p/%s' % mr.project_name)
else:
return users.create_logout_url('/')
|
06ee47ba38abb660096bace71704ddd0becd465a
| 35,522 |
from typing import Tuple
from typing import Dict
def random_speech_to_text(
draw
) -> st.SearchStrategy[Tuple[SpeechToTextGen, Dict]]:
"""Generates different speech_to_text functions."""
kwargs = draw(random_speech_to_text_kwargs())
return speech_to_text(**kwargs), kwargs
|
035d905aba274f1083daae07e2492f9ae84cd21f
| 35,523 |
def line_neighbor_score(mat, idx, line_width=1, distance_range=(20, 40), window_size=5,
line_trick='min', neighbor_trick='mean', metric='diff'):
"""
:math: enrichment-score = line-trick(line) - neighbor-trick(neighbor)
:param idx: (int) stripe location index
:param mat: (2D ndarray) line matrix
:param distance_range: (int) only consider this range off the diagonal
:param line_width: (int) stripe width (# of bins)
:param window_size: (int) size of the window for calculating enrichment
:param line_trick: (str) 'min' or 'med'
:param neighbor_trick: (str) 'mean' or 'med'
:param metric: (str) 'diff' or 'ratio'
"""
half = int(line_width // 2)
x1, x2 = idx - half, idx - half + line_width
new_mat = np.zeros((distance_range[1] - distance_range[0],))
for j in range(distance_range[0], distance_range[1]):
if j < window_size + half or j >= mat.shape[1] - window_size - half:
continue
y = j - distance_range[0]
if line_trick == 'min':
line_score = min(np.mean(mat[x1:x2, j - window_size - half:j - half]),
np.mean(mat[x1:x2, j + 1 + half:j + window_size + half + 1]))
else:
line_score = np.median(np.concatenate(
[mat[x1:x2, j - window_size - half:j - half],
mat[x1:x2, j + 1 + half:j + window_size + half + 1]]
))
if neighbor_trick == 'mean':
neighbor_score = max(np.mean(mat[idx-window_size:x1, j-window_size-half:j+window_size+half+1]),
np.mean(mat[x2+1:idx+window_size+1, j-window_size-half:j+window_size+half+1]))
else:
neighbor_score = max(np.median(mat[idx-window_size:x1, j-window_size-half:j+window_size+half+1]),
np.median(mat[x2+1:idx+window_size+1, j-window_size-half:j+window_size+half+1]))
if metric == 'diff':
new_mat[y] = line_score - neighbor_score
else:
new_mat[y] = (line_score / neighbor_score - 1) if neighbor_score != 0 else line_score
return new_mat
|
a3b4a49479c5bcf7f12e4bb23affda942ec3670e
| 35,524 |
def plugin_name_to_layerapi2_label(plugin_name):
"""Get a layerapi2 label from a plugin name.
Args:
plugin_name (string): the plugin name from which we create the label.
Returns:
(string): the layerapi2 label.
"""
return "plugin_%s@%s" % (plugin_name, MFMODULE_LOWERCASE)
|
c91a5c463e3b15e324c049e9557a2711031dcb95
| 35,525 |
def unscii(font_name):
"""
Given a font name, return a font object for usage.
"""
return UnsciiFont(font_name)
|
41a8a03417d1d231cbd2bf99b09d8efd98afcd8c
| 35,526 |
def get_environ_dict():
"""Return a dictionary of all environment keys/values."""
return {
'os.environ': _get_os_environ_dict((
'AUTH_DOMAIN',
'CURRENT_CONFIGURATION_VERSION',
'CURRENT_MODULE_ID',
'CURRENT_VERSION_ID',
'DEFAULT_VERSION_HOSTNAME',
'FEDERATED_IDENTITY',
'FEDERATED_PROVIDER',
'GAE_LOCAL_VM_RUNTIME',
'HTTP_HOST',
'HTTP_PROXY',
'HTTP_X_APPENGINE_HTTPS',
'HTTP_X_APPENGINE_QUEUENAME',
'HTTP_X_ORIGINAL_HOST',
'HTTP_X_ORIGINAL_SCHEME',
'SERVER_NAME',
'SERVER_PORT',
'SERVER_SOFTWARE',
'USER_IS_ADMIN',
)),
'app_identity': _get_app_identity_dict((
'get_service_account_name',
'get_application_id',
'get_default_version_hostname',
)),
'modules': _get_modules_dict((
'get_current_module_name',
'get_current_version_name',
'get_current_instance_id',
'get_modules',
'get_versions',
'get_default_version',
'get_hostname',
)),
'namespace_manager': _get_namespace_manager_dict((
'get_namespace',
'google_apps_namespace',
)),
}
|
056b8499db4dbc14db904eb5f1c01ed49ae39a18
| 35,527 |
def k_from_a_ea(a, e_a, temp, r_gas):
"""
convert using "alternate" form of Arrhenius eq
:param a: pre-exponential factor
:param e_a: activation energy with units consistent with given r_gas
:param temp: temperature in K
:param r_gas: universal gas constant in units consistent with e_a and temps
"""
return a * np.exp(-e_a/(r_gas*temp))
|
79415b8ee583e03282d7ab02b5e255d611e5677f
| 35,528 |
def extract_source_info(df_adverse_ev):
""" Find information about who submitted the report """
qual_list = []
for i in range(0,len(df_adverse_ev)):
if df_adverse_ev.iloc[i]['primarysource'] is not None:
col_names = list(df_adverse_ev.iloc[i]['primarysource'].keys())
if 'qualification' in col_names:
qual_list.append(pd.to_numeric(df_adverse_ev.iloc[i]['primarysource']['qualification']))
else:
qual_list.append(np.nan)
else:
qual_list.append(np.nan)
df_adverse_ev['source'] = qual_list
df_adverse_ev = df_adverse_ev.drop(['primarysource'], axis=1)
return df_adverse_ev
|
246571a57467b03ed5f5bd2456108e4b93ec136f
| 35,530 |
import json
def load_base_models_json(filename="base_models.json"):
"""Load base models json to allow selecting pre-trained model.
Args:
filename (str) - filename for the json file with pre-trained models
Returns:
base_models - python dict version of JSON key-value pairs
"""
with open(filename) as json_file:
base_models = json.load(json_file)
return base_models
|
c17f123e192b94e6f87938bca10822ea785e2d91
| 35,531 |
def _parsedatetime_parse(date_string):
"""Parse the given date_string using the parsedatetime module."""
# for more details on how the parsedatetime.Calendar.parse function works, see:
# https://github.com/bear/parsedatetime/blob/830775dc5e36395622b41f12317f5e10c303d3a2/parsedatetime/__init__.py#L1779
cal = parsedatetime.Calendar()
parsed_date = cal.parse(date_string)
return parsed_date
|
a8ce67294d9c035c0777a2d1c0a4fe6e43f65154
| 35,532 |
def BFMM(
source,
target = None,
charge = None,
dipole1 = None,
dipole2 = None,
compute_source_velocity = False,
compute_source_analytic_gradient = False,
compute_source_anti_analytic_gradient = False,
compute_target_velocity = False,
compute_target_analytic_gradient = False,
compute_target_anti_analytic_gradient = False,
array_source_velocity = None,
array_source_analytic_gradient = None,
array_source_anti_analytic_gradient = None,
array_target_velocity = None,
array_target_analytic_gradient = None,
array_target_anti_analytic_gradient = None,
precision = 4,
):
"""
Pythonic interface for Biharmonic FMM
Wraps the function:
bfmm2dparttarg
Parameters:
source (required), float(2, ns): location of sources
target (optional), float(2, nt): location of targets
charge (optional), complex(ns): charges at source locations
dipole1 (optional), complex(ns): dipole1 at source locations
dipole2 (optional), complex(ns): dipole2 at source locations
compute_#_* (optional), bool: whether to compute * at # locations
array_#_* (optional), complex(n): preallocated arrays for result
n = ns for #=source, nt for #=target
if these arrays are not provided, are not of the correct size, not
of the correct type, or not fortran contiguous, new arrays for
the results will be allocated at runtime
precision (optional), float: precision, see documentation for FMM
Returns:
Dictionary:
'ier': (integer) output code
0: successful completion of code
4: failure to allocate memory for tree
8: failure to allocate memory for FMM workspaces
16: failure to allocate memory for multipole/local
expansions
'source': (quantities computed at source locations)
'u' : complex(ns), potential
'u_analytic_gradient' : complex(ns), analytic gradient
'u_anti_analytic_gradient' : complex(ns), anti-analytic gradient
'target': (quantities computed at target locations):
same as above, but for target related things
ns replaced by nt, in the shapes
Some notes about the output:
2) If array_#_* is provided and was acceptable, the code:
"array_#_* is output['#']['*']"
will return True
If the array was provided but incorrect, then the code
will return False
3) Entries of the dictionary will only exist if they were asked for
i.e. if no 'source' quantities were requested, the 'source'
dictionary will not exist
"""
source, _, ns = check_array(source, (2,None), float, 'source', True)
charge, ifcharge = check_array(charge, (ns,), complex, 'charge')
dipole1, ifdipole1 = check_array(dipole1, (ns,), complex, 'dipole1')
dipole2, ifdipole2 = check_array(dipole2, (ns,), complex, 'dipole2')
if (ifdipole1 or ifdipole2) and not (ifdipole1 and ifdipole2):
raise Exception('If one of the dipoles is set, than the other must \
also be set.')
ifdipole = ifdipole1
vel, ifvel = check_output(array_source_velocity,
compute_source_velocity, (ns,), complex)
grada, ifgrada = check_output(array_source_analytic_gradient,
compute_source_analytic_gradient, (ns,), complex)
gradaa, ifgradaa = check_output(array_source_anti_analytic_gradient,
compute_source_anti_analytic_gradient, (ns,), complex)
target, iftarget, nt = check_array(target, (2,None), float, 'target', True)
if not iftarget:
if compute_target_velocity or compute_target_analytic_gradient \
or compute_target_anti_analytic_gradient:
raise Exception('If asking for a target quanitity, \
target must be given')
veltarg, ifveltarg = check_output(array_target_velocity,
compute_target_velocity, (nt,), complex)
gradatarg, ifgradatarg = check_output(array_target_analytic_gradient,
compute_target_analytic_gradient, (nt,), complex)
gradaatarg, ifgradaatarg = check_output(array_target_anti_analytic_gradient,
compute_target_anti_analytic_gradient, (nt,), complex)
ier = int(0)
iprec = initialize_precision(precision)
bhfmm2dparttarg(ier, iprec, ns, source, ifcharge, charge, ifdipole, dipole1,
dipole2, ifvel, vel, ifgrada, grada, ifgradaa, gradaa, nt, target,
ifveltarg, veltarg, ifgradatarg, gradatarg, ifgradaatarg, gradaatarg)
output = {}
any_source = compute_source_velocity or compute_source_analytic_gradient \
or compute_source_anti_analytic_gradient
if any_source:
source_output = {}
if compute_source_velocity:
source_output['u'] = vel
if compute_source_analytic_gradient:
source_output['u_analytic_gradient'] = grada
if compute_source_anti_analytic_gradient:
source_output['u_anti_analytic_gradient'] = gradaa
output['source'] = source_output
any_target = compute_target_velocity or compute_target_analytic_gradient \
or compute_target_anti_analytic_gradient
if any_target:
target_output = {}
if compute_target_velocity:
target_output['u'] = veltarg
if compute_target_analytic_gradient:
target_output['u_analytic_gradient'] = gradatarg
if compute_target_anti_analytic_gradient:
target_output['u_anti_analytic_gradient'] = gradaatarg
output['target'] = target_output
output['ier'] = ier
return output
|
e1fbce824777c1d260e1e83a8a8fe7b1b2d05886
| 35,535 |
def get_dihedrals(a, b, c, d):
"""
A function that gets dihedral angles between two residues.
See set_neighbors6D for usage.
"""
b0 = -1.0*(b - a)
b1 = c - b
b2 = d - c
b1 /= np.linalg.norm(b1, axis=-1)[:,None]
v = b0 - np.sum(b0*b1, axis=-1)[:,None]*b1
w = b2 - np.sum(b2*b1, axis=-1)[:,None]*b1
x = np.sum(v*w, axis=-1)
y = np.sum(np.cross(b1, v)*w, axis=-1)
return np.arctan2(y, x)
|
91897e67e7d73eeb60dc73b2ba45e1aaeec5c470
| 35,537 |
def iexact(self, compiler, connection):
"""A method to extend Django IExact class. Case-insensitive exact match.
If the value provided for comparison is None, it will be interpreted as
an SQL NULL.
:type self: :class:`~django.db.models.lookups.IExact`
:param self: the instance of the class that owns this method.
:type compiler: :class:`~django_spanner.compiler.SQLCompilerst`
:param compiler: The query compiler responsible for generating the query.
Must have a compile method, returning a (sql, [params])
tuple. Calling compiler(value) will return a quoted
`value`.
:type connection: :class:`~google.cloud.spanner_dbapi.connection.Connection`
:param connection: The Spanner database connection used for the current
query.
:rtype: tuple[str, str]
:returns: A tuple of the SQL request and parameters.
"""
lhs_sql, params = self.process_lhs(compiler, connection)
rhs_sql, rhs_params = self.process_rhs(compiler, connection)
params.extend(rhs_params)
rhs_sql = self.get_rhs_op(connection, rhs_sql)
# Wrap the parameter in ^ and $ to restrict the regex to an exact match.
if self.rhs_is_direct_value() and params and not self.bilateral_transforms:
params[0] = "^(?i)%s$" % params[0]
else:
# lhs_sql is the expression/column to use as the regular expression.
# Use concat to make the value case-insensitive.
lhs_sql = "CONCAT('^(?i)', " + lhs_sql + ", '$')"
if not self.rhs_is_direct_value() and not params:
# If rhs is not a direct value and parameter is not present we want
# to have only 1 formatable argument in rhs_sql else we need 2.
rhs_sql = rhs_sql.replace("%%s", "%s")
# rhs_sql is REGEXP_CONTAINS(%s, %%s), and lhs_sql is the column name.
return rhs_sql % lhs_sql, params
|
ebe51c6b8c34a0cc1746169e8fe6e8eb79e01152
| 35,538 |
import json
def load_data_from_json(jsonfile):
"""Load the data contained in a .json file and return the corresponding Python object.
:param jsonfile: The path to the .json file
:type jsonfile: str
:rtype: list or dict
"""
jsondata = open(jsonfile).read()
data = json.loads(jsondata)
return data
|
f0f7a0620be8ffcd15a57fd561dda8525866faa3
| 35,539 |
def grpc_check(fpath):
"""
Check whether grpc service is enabled in this .proto file.
Note: only proto file with the following form will pass our check.
service MyService {
rpc MethodA(XXX) returns (XXX) {
rpc MethodB(XXX)
returns (XXX) {
}
}
"""
if not fpath.endswith(".proto"):
return False
grpc_found = False
with open(fpath) as fin:
kw1_found = False
kw2_found = False
for line in fin:
line = line.strip()
if kw1_found and kw2_found:
if PATT_RET_ONLY.match(line):
grpc_found = True
break
elif kw1_found:
if PATT_RPC_RET.match(line):
kw2_found = True
grpc_found = True
break
if PATT_RPC_ONLY.match(line):
kw2_found = True
elif PATT_SERVICE.match(line):
kw1_found = True
return grpc_found
|
17a1539f8913bb35d2e89f31d7f48acbc1f35b54
| 35,540 |
def bb_intersection_over_union(boxA, boxB):
"""
Computes IoU (Intersection over Union for 2 given bounding boxes)
Args:
boxA (list): A list of 4 elements holding bounding box coordinates (x1, y1, x2, y2)
boxB (list): A list of 4 elements holding bounding box coordinates (x1, y1, x2, y2)
Returns:
iou (float): Overlap between 2 bounding boxes in terms of overlap
"""
# determine the (x, y)-coordinates of the intersection rectangle
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# compute the area of intersection rectangle
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
# compute the area of both the rectangles
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
# compute the intersection over union by taking the intersection area and dividing it by the sum of both boxes
# intersection area / areas - the intersection area
iou = interArea / float(boxAArea + boxBArea - interArea)
# return the intersection over union value
return iou
|
290d625dd3ed7ab37ecf3aa7f39a3b1727cecec0
| 35,541 |
def area(boxlist, axis=-1):
"""Computes area of boxes.
Args:
boxlist: BoxList holding N boxes
scope: name scope.
Returns:
a tensor with shape [N] representing box areas.
"""
with tf.name_scope('Area'):
x_min, y_min, x_max, y_max = tf.split(value=boxlist, num_or_size_splits=4, axis=axis)
heights = tf.maximum(0.0, y_max - y_min)
widths = tf.maximum(0.0, x_max - x_min)
return tf.squeeze(heights * widths, axis=axis)
|
6c0e791b021d5196651c0b1830019f23840596fd
| 35,543 |
def _MatrixTriangularSolveGrad(op, grad):
"""Gradient for MatrixTriangularSolve."""
a = op.inputs[0]
adjoint_a = op.get_attr("adjoint")
lower_a = op.get_attr("lower")
c = op.outputs[0]
grad_b = linalg_ops.matrix_triangular_solve(
a, grad, lower=lower_a, adjoint=not adjoint_a)
if adjoint_a:
grad_a = -math_ops.matmul(c, grad_b, adjoint_b=True)
else:
grad_a = -math_ops.matmul(grad_b, c, adjoint_b=True)
if lower_a:
grad_a = array_ops.matrix_band_part(grad_a, -1, 0)
else:
grad_a = array_ops.matrix_band_part(grad_a, 0, -1)
return (grad_a, grad_b)
|
3faac87370dd9dfa589174976c7dd6bed76e4628
| 35,544 |
from typing import Dict
from typing import Any
def list_persons_command(client: Client, args: Dict[str, Any]) -> CommandResults:
"""Get persons list from TOPdesk.
Args:
client: The client to preform command on.
args: The arguments of the persons command.
Return CommadResults of list of persons.
"""
persons = client.get_list_with_query(list_type="persons",
start=args.get('start', None),
page_size=args.get('page_size', None),
query=args.get('query', None))
if len(persons) == 0:
return CommandResults(readable_output='No persons found')
headers = ['Id', 'Name', 'Telephone', 'JobTitle', 'Department', 'City',
'BranchName', 'Room']
readable_persons = []
for person in persons:
readable_person = {
'Id': person.get('id', None),
'Name': person.get('dynamicName', None),
'Telephone': person.get('phoneNumber', None),
'JobTitle': person.get('jobTitle', None),
'Department': person.get('department', None),
'City': person.get('city', None),
'BranchName': person.get('branch', {}).get('name', None) if person.get('branch') else None,
'Room': person.get('location', {}).get('room', None) if person.get('location') else None
}
readable_persons.append(readable_person)
readable_output = tableToMarkdown(f'{INTEGRATION_NAME} persons',
readable_persons,
headers=headers,
removeNull=True)
return CommandResults(
readable_output=readable_output,
outputs_prefix=f'{INTEGRATION_NAME}.Person',
outputs_key_field='Id',
outputs=capitalize_for_outputs(persons),
raw_response=persons
)
|
8fb8c1065b433e7821fa46d64332c2238d502f7f
| 35,545 |
def group_user_delete(user, group):
"""Delete an user from a certain group"""
if not pagure_config.get("ENABLE_USER_MNGT", True):
flask.abort(404)
if not pagure_config.get("ENABLE_GROUP_MNGT", False):
flask.abort(404)
form = pagure.forms.ConfirmationForm()
if form.validate_on_submit():
try:
pagure.lib.query.delete_user_of_group(
flask.g.session,
username=user,
groupname=group,
user=flask.g.fas_user.username,
is_admin=pagure.utils.is_admin(),
)
flask.g.session.commit()
pagure.lib.git.generate_gitolite_acls(project=None, group=group)
flask.flash(
"User `%s` removed from the group `%s`" % (user, group)
)
except pagure.exceptions.PagureException as err:
flask.g.session.rollback()
flask.flash("%s" % err, "error")
return flask.redirect(
flask.url_for("ui_ns.view_group", group=group)
)
except SQLAlchemyError: # pragma: no cover
flask.g.session.rollback()
flask.flash(
"Could not remove user `%s` from the group `%s`."
% (user.user, group),
"error",
)
_log.exception(
"Could not remove user `%s` from the group `%s`."
% (user.user, group)
)
return flask.redirect(flask.url_for("ui_ns.view_group", group=group))
|
bc813bb31aed7798a59b117f7e1fb984f96dfc3b
| 35,546 |
def repair_follow_organization_view(request):
"""
Process the new or edit organization forms
:param request:
:return:
"""
# admin, analytics_admin, partner_organization, political_data_manager, political_data_viewer, verified_volunteer
authority_required = {'verified_volunteer'}
if not voter_has_authority(request, authority_required):
return redirect_to_sign_in_page(request, authority_required)
follow_organization_entries_updated = 0
follow_organization_entries_not_updated = 0
google_civic_election_id = request.GET.get('google_civic_election_id', 0)
state_code = request.GET.get('state_code', "")
# find entries without a voter_linked_organization_we_vote_id
follow_organization_list = []
try:
organization_query = FollowOrganization.objects.all()
organization_query = organization_query.filter(
(Q(voter_linked_organization_we_vote_id__isnull=True) | Q(voter_linked_organization_we_vote_id=''))
)
follow_organization_list = list(organization_query)
except Exception as e:
pass
voter_manager = VoterManager()
for follow_organization in follow_organization_list:
voter_linked_organization_we_vote_id = \
voter_manager.fetch_linked_organization_we_vote_id_from_local_id(follow_organization.voter_id)
if positive_value_exists(voter_linked_organization_we_vote_id):
try:
follow_organization.voter_linked_organization_we_vote_id = voter_linked_organization_we_vote_id
follow_organization.save()
follow_organization_entries_updated += 1
except Exception as e:
follow_organization_entries_not_updated += 1
return HttpResponseRedirect(reverse('organization:organization_list', args=()))
|
38a78fdc21ab6c9b0a06e8447462fe5580e3df1c
| 35,547 |
def vect3_add(v1, v2):
"""
Adds two 3d vectors.
v1, v2 (3-tuple): 3d vectors
return (3-tuple): 3d vector
"""
return (v1[0]+v2[0], v1[1]+v2[1], v1[2]+v2[2])
|
b43fde71f0cc5e927879a2b6942c60de8ac6cc79
| 35,548 |
import multiprocessing
def get_task_pool(thread=False):
"""
Get a new task pool, which is either a single-thread or process pool depending on the current config.
Returns:
A new :class:`multiprocessing.pool.Pool` instance.
"""
if thread or not config['app_multicore'] or config['enable_backtest'] and config['backtest_multicore']:
task_pool = multiprocessing.pool.ThreadPool(processes=1)
else:
processes = config['backtest_processes'] if config['enable_backtest'] else config['app_processes']
task_pool = multiprocessing.Pool(processes=processes)
task_pool.daemon = True
return task_pool
|
515ae5c2ac167df1eb0f4ba2c3d4795a9830e3eb
| 35,550 |
def get_date(article: ElementTree) -> int:
"""
Extracts the year of the article. If ArticleDate exist use its year
otherwise use the year form JournalIssue
"""
d = article.find("ArticleDate")
if d is not None:
return int(d.find("Year").text)
d = article.find("Journal").find("JournalIssue").find("PubDate")
y = d.find("Year")
if y is not None:
return int(y.text)
return int(d.find("MedlineDate").text.split(" ")[0].split("-")[0])
|
3ca2f13d234df411e904195d9d1c08534ada1cea
| 35,551 |
def split(column, pattern=''):
"""
Splits str around pattern (pattern is a regular expression)
> pattern is a string representation of the regular expression
"""
return _with_expr(exprs.StringSplit, column, pattern)
|
d091a5e89adf0d5de994b9a11c1c856cea5a8494
| 35,552 |
def precut(layers, links, all_terms, user_info):
"""
This function cuts terms in layers if they do not exist inside
the accuracy file of model 1.
It also cuts all links if one of the terms inside does not exist
inside the accuracy file of model 1.
Finaly it cuts all terms taht do not exist inside the accuracy
file of model 1.
:return:
Cut layers, links (edges) and terms are returned.
"""
new_layers = []
for layer in layers:
new_layer = []
for node in layer:
if node in user_info:
new_layer.append(node)
if len(new_layer) != 0:
new_layers.append(new_layer)
else:
new_layer = []
new_links = set()
for link in links:
if link[0] in user_info and link[1] in user_info:
new_links.add(link)
new_all_terms = {}
for term in all_terms:
if term in user_info:
new_all_terms[term] = all_terms[term]
return new_layers, new_links, new_all_terms
|
cf04eec77d01ad931f7654a3743baaf51aad53fa
| 35,554 |
def computeMeanStd_binned_old( inDatas, valCol, binCol, binMin, binMax, binCount ):
"""Compute binned stats for a set of tables"""
sums = np.zeros( binCount )
sumsSq = np.zeros_like( sums )
counts = np.zeros_like( sums )
bins = np.linspace( binMin, binMax, binCount+1 )
binSize = ( binMax - binMin ) / binCount
for d_idx, d in enumerate( inDatas ):
dbg( 'd_idx d binSize' )
dbg( 'd[binCol]' )
for i in range( binCount ):
binBot = bins[i]
binTop = bins[i+1]
dbg( 'binBot binTop' )
# theIdx = ( (binTop - d[ binCol ]) < binSize ) & ( ( binTop - d[ binCol ] ) > 0 )
theIdx = ( binBot < d[ binCol ].values ) & ( d[ binCol ].values <= binTop )
dbg( 'binBot binTop' )
DotData( names = ('rows',), Columns = theIdx.nonzero() ).saveToSV( 'nz%02d.tsv' % i )
#rowsStr = ','.join(map(str,list(theIdx.nonzero())))
#print 'binnedRows=', rowsStr
hereVals = d[ theIdx ][ valCol ]
DotData( names = ( 'temp', ), Columns = ( hereVals, ) ).saveToSV( 'temp2%2d.tsv' % i )
dbg( '"BEF" theIdx.sum() i bins[i] bins[i+1] len(hereVals)' )
counts[i] += len( hereVals )
sums[i] += np.sum( hereVals )
sumsSq[i] += np.sum( hereVals * hereVals )
dbg( '"AFT" i bins[i] bins[i+1] len(hereVals)' )
if False:
# fast version
binsHere = np.digitize( d[ binCol ], bins ) - 1
dbg( 'len(binsHere) binsHere' )
np.clip( binsHere, 0, binCount-1, out = binsHere );
dbg( 'binsHere' )
counts += np.bincount( binsHere, minlength = binCount )
sums += np.bincount( binsHere, weights = d[ valCol ], minlength = binCount )
sumsSq += np.bincount( binsHere, weights = d[ valCol ] * d[ valCol ], minlength = binCount )
countsOrig = counts.astype( int )
counts[ counts == 0 ] = np.nan
means = sums / counts
stds = sumsSq / counts - means * means
return pd.DataFrame( dict( binBeg = bins[:-1],
binEnd = bins[1:],
counts = countsOrig, sums = sums, sumsSq = sumsSq,
means = means, stds = stds ) )
|
195fc421b3091725e629e05e27c64a862c7fc31b
| 35,555 |
def Compute7(surface, multiple=False):
"""
Computes an AreaMassProperties for a surface.
Args:
surface (Surface): Surface to measure.
Returns:
AreaMassProperties: The AreaMassProperties for the given Surface or None on failure.
"""
url = "rhino/geometry/areamassproperties/compute-surface"
if multiple: url += "?multiple=true"
args = [surface]
if multiple: args = [[item] for item in surface]
response = Util.ComputeFetch(url, args)
return response
|
f844f43b372ac2c8f124c27e346f9805583c3240
| 35,556 |
from typing import Optional
from typing import Union
def instantiate(config: Optional[Union[str, ClassDescription]], *args, **extra_kwargs):
"""Instantiates class given by `config.cls` with
optional args given by `config.args`
"""
try:
if config is None:
return None
elif type(config) is str:
cls = _locate(config)
return cls()
else:
cls = _locate(config['cls'])
kwargs = config.get('args', dict())
return cls(
*args,
**extra_kwargs,
**kwargs
)
except:
logger.exception(f"Could not instantiate from config {config}")
raise
|
c0f8f951212bb157b4ee8805615f83bad82db8e2
| 35,557 |
async def get_hm_generic_entity(
central_unit: CentralUnit, address: str, parameter: str
) -> GenericEntity | None:
"""Return the hm generic_entity."""
hm_device = get_hm_device(central_unit, address)
assert hm_device
hm_entity = hm_device.entities.get((address, parameter))
assert hm_entity
return hm_entity
|
25f2845951d7ab34155b7ee2347a8438b115a1eb
| 35,558 |
def dists2corners_numpy(a):
"""
:param a: dist ndarray, shape = (*, h, w, 4=(t, r, b, l))
:return a: Box ndarray, shape is (*, h, w, 4=(xmin, ymin, xmax, ymax))
"""
assert a.ndim >= 3, 'must be greater than 3d'
h, w, _ = a.shape[-3:]
# shape = (*, h, w, 4=(xmin, ymin, xmax, ymax))
ret = np.zeros_like(a)
widths, heights = np.meshgrid(np.arange(w), np.arange(h))
# shape = (h, w, 1)
widths, rights, lefts = np.broadcast_arrays(widths, a[..., 1], a[..., 3])
heights, tops, bottoms = np.broadcast_arrays(heights, a[..., 0], a[..., 2])
xmin = np.expand_dims(widths - lefts, axis=-1) # xmin
ymin = np.expand_dims(heights - tops, axis=-1) # ymin
xmax = np.expand_dims(widths + rights, axis=-1) # xmax
ymax = np.expand_dims(heights + bottoms, axis=-1) # ymax
ret[..., ::2] = np.clip(np.concatenate((xmin, xmax), axis=-1), 0, w)
ret[..., 1::2] = np.clip(np.concatenate((ymin, ymax), axis=-1), 0, h)
return ret
|
3f20df4cb3bc8ab1f1a595e64514e7b722fd07a1
| 35,559 |
def cryptowatch_ohlc_data_for_pair(Pair):
"""gets ohlc data from cryptowatch, and return a dict of dataframes"""
exchanges = list(Pair.markets)
data = {}
for ex in exchanges:
data[ex] = cryptowatch_ohlc(Pair.name, ex, Pair.period, Pair.start, Pair.end)
return data
|
4f482ae1575d68e193321db0c2bd7346d4bf0950
| 35,560 |
from io import StringIO
def to_string_stream(x):
"""
For modules that require a encoding as ``str`` in both Python 2 and
Python 3, we can't just encode automatically.
"""
if PY2 and isinstance(x, text_type):
x = x.encode('utf-8')
return StringIO(x)
|
8fd36bab988410881a560d27d4e8d54d36f58634
| 35,561 |
def run_epoch(model, data, optimizer):
"""
Run a train and validation epoch and return average bpd for each.
"""
traindata, valdata = data
model.train()
train_bpd = epoch_iter(model, traindata, optimizer)
model.eval()
val_bpd = epoch_iter(model, valdata, optimizer)
return train_bpd, val_bpd
|
5f441470347818e1c4f0fcdd67467100920bd6a0
| 35,563 |
def special_loss(logits, labels):
"""
This loss (and the rest of the training procedure) was taken from Philipp
Kraehenbuehl's code.
"""
mask = labels != 255
labels1 = tf.clip_by_value(labels, 0, 1)
lz = tf.nn.softplus(-tf.abs(logits)) * mask
return tf.reduce_sum(lz + (tf.to_float(logits > 0) - labels1) * logits * mask, 1)
|
2dd1d3c967cf653a719ff993ff0b2de2d90404e2
| 35,564 |
def tobs():
"""Return a list of all tobs for the most active station as a list of JSON"""
# Query most active station
station_list = session.query(Measurement.station, func.count('*')).group_by(Measurement.station).order_by(func.count(Measurement.station).desc()).all()
mostactive=station_list[0][0]
# Query the last 12 months of temperature observation data for this station and plot the results as a histogram
mostactive_latestdate = session.query(Measurement).filter(Measurement.station==mostactive).order_by(Measurement.date.desc()).limit(1)
for value in mostactive_latestdate:
latestdate = value.date
#Converting the date to from str format to date format to calculate the date 1 year ago
converted_activedate = dt.datetime.strptime(latestdate, "%Y-%m-%d")
# Calculate the date 1 year ago from the last data point of the most active station in the database
date_one_activeyear = converted_activedate - dt.timedelta(days=365)
temp_data = session.query(Measurement.tobs).filter(Measurement.station==mostactive).filter(Measurement.date >= date_one_activeyear).order_by(Measurement.date).all()
# Create a list from the row data
all_tobs = []
for tobs in temp_data:
tobs_dict = {}
tobs_dict["tobs"] = tobs
all_tobs.append(tobs_dict)
return jsonify(all_tobs)
|
ad7461c3dacf715fee38a4fcdc292e58b2c48d2a
| 35,565 |
from scipy.special import lambertw
def prox_max_entropy(X, step, gamma=1, type="relative"):
"""Proximal operator for maximum entropy regularization.
g(x) = gamma sum_i x_i ln(x_i)
has the analytical solution of gamma W(1/gamma exp((X-gamma)/gamma)), where
W is the Lambert W function.
If type == 'relative', the penalty is expressed in units of the function value;
if type == 'absolute', it's expressed in units of the variable `X`.
"""
assert type in ["relative", "absolute"]
if type == "relative":
gamma_ = _step_gamma(step, gamma)
else:
gamma_ = gamma
# minimize entropy: return gamma_ * np.real(lambertw(np.exp((X - gamma_) / gamma_) / gamma_))
above = X > 0
X[above] = gamma_ * np.real(lambertw(np.exp(X[above] / gamma_ - 1) / gamma_))
return X
|
7d5f1525ad1b7c413bad03b3aeba7b0af2e163ee
| 35,567 |
def phase_vocode(audio_data: np.ndarray, speed: float) -> np.ndarray:
"""Applies phase vocoding to a 'np.ndarray' representing WAV data."""
reader = ArrayReader(audio_data.transpose())
writer = ArrayWriter(reader.channels)
phasevocoder(reader.channels, speed=speed).run(reader, writer)
return writer.data.transpose()
|
e6d4d7e874c3f18c2c2a065b03d04d5e11d1963e
| 35,568 |
def partion_data_in_two(dataset, dataset_labels, in_sample_labels, oos_labels):
"""Partition dataset into in-distribution and OODs by labels.
Args:
dataset: the text from text_to_rank
dataset_labels: dataset labels
in_sample_labels: a list of newsgroups which the network will/did train on
oos_labels: the complement of in_sample_labels; these newsgroups the network
has never seen
Returns:
the dataset partitioned into in_sample_examples, in_sample_labels,
oos_examples, and oos_labels in that order
"""
_dataset = dataset[:] # aliasing safeguard
_dataset_labels = dataset_labels
in_sample_idxs = np.zeros(np.shape(_dataset_labels), dtype=bool)
ones_vec = np.ones(np.shape(_dataset_labels), dtype=int)
for label in in_sample_labels:
in_sample_idxs = np.logical_or(in_sample_idxs,
_dataset_labels == label * ones_vec)
oos_sample_idxs = np.zeros(np.shape(_dataset_labels), dtype=bool)
for label in oos_labels:
oos_sample_idxs = np.logical_or(oos_sample_idxs,
_dataset_labels == label * ones_vec)
return _dataset[in_sample_idxs], _dataset_labels[in_sample_idxs], _dataset[
oos_sample_idxs], _dataset_labels[oos_sample_idxs]
|
df3eda7d64c9060c6a8f1d45dbf5a0d5cd3c2436
| 35,570 |
def check_and_update_generation_args(args):
"""
checks all generation commandline arguments. Since these arguments are all lists and shorthand can be used, we expand them to match the expected length
for instance, [1.0] becomes [1.0 1.0] if all other generation arguments are of length 2
"""
hyperparameters = ['num_outputs', 'temperature', 'top_k', 'top_p', 'repetition_penalty', 'num_beams', 'num_beam_groups', 'diversity_penalty', 'no_repeat_ngram_size']
max_hyperparameter_len = max([len(getattr(args, h)) for h in hyperparameters])
valid_len = [1, max_hyperparameter_len]
for h in hyperparameters:
if (len(getattr(args, h)) not in valid_len):
logger.error('Hyperparameters should either have the same number of values as others or have exactly one value.')
# If only one value is provided, use the same value for all samples
setattr(args, h, getattr(args, h) * (max_hyperparameter_len // len(getattr(args, h))))
logger.info('Will output %d sequences for each input.', sum(args.num_outputs))
return args
|
3d569b70b6ea4651af9cef0b7eafada1352b54a1
| 35,571 |
def category_condition_disable(request, structure_slug, category_slug,
condition_id, structure):
"""
Disables a condition from a category
:type structure_slug: String
:type category_slug: String
:type condition_id: Integer
:type structure: OrganizationalStructure (from @is_manager)
:param structure_slug: structure slug
:param category_slug: category slug
:param condition_id: condition id
:param structure: structure object (from @is_manager)
:return: render
"""
category = get_object_or_404(TicketCategory,
organizational_structure=structure,
slug=category_slug)
condition = get_object_or_404(TicketCategoryCondition,
pk=condition_id,
category=category)
if condition.is_active:
condition.is_active = False
condition.save(update_fields = ['is_active'])
messages.add_message(request, messages.SUCCESS,
_("Clausola {} disattivata con successo").format(condition))
# log action
logger.info('[{}] manager of structure {}'
' {} disabled a condition'
' for category {}'.format(timezone.localtime(),
structure,
request.user,
category))
else:
messages.add_message(request, messages.ERROR,
_("Clausola {} già disattivata").format(condition))
return redirect('uni_ticket:manager_category_detail',
structure_slug=structure_slug,
category_slug=category_slug)
|
87457c5b851bc791ec0e28d01100084948b9b58b
| 35,572 |
def stitch_image_pair(img_a, img_b, stitch_direc):
"""Function to stitch image B to image A in the mentioned direction
Args:
img_a (numpy array): of shape (H, W, C) with opencv representation of image A (i.e C: B,G,R)
img_b (numpy array): of shape (H, W, C) with opencv representation of image B (i.e C: B,G,R)
stitch_direc (int): 0 for vertical and 1 for horizontal stitching
Returns:
stitched_image (numpy array): stitched image with maximum content of image A and image B after cropping
to remove the black space
"""
img_a_gray = cv2.cvtColor(img_a, cv2.COLOR_BGR2GRAY)
img_b_gray = cv2.cvtColor(img_b, cv2.COLOR_BGR2GRAY)
matches_a, matches_b = get_matches(img_a_gray, img_b_gray, num_keypoints=1000, threshold=0.8)
h_mat = compute_homography_ransac(matches_a, matches_b)
if stitch_direc == 0:
canvas = cv2.warpPerspective(img_b, h_mat, (img_a.shape[1], img_a.shape[0] + img_b.shape[0]))
canvas[0:img_a.shape[0], :, :] = img_a[:, :, :]
x_start, y_start, x_end, y_end = get_crop_points(h_mat, img_a, img_b, 0)
else:
canvas = cv2.warpPerspective(img_b, h_mat, (img_a.shape[1] + img_b.shape[1], img_a.shape[0]))
canvas[:, 0:img_a.shape[1], :] = img_a[:, :, :]
x_start, y_start, x_end, y_end = get_crop_points(h_mat, img_a, img_b, 1)
stitched_img = canvas[y_start:y_end,x_start:x_end,:]
return stitched_img
|
cc8143a3e9ebdae9a01c79a31a8fb7753bf0e2ee
| 35,573 |
def as_composite(identifier: str) -> str:
"""
Translate the identifier of a mapry composite to a composite name in Python.
:param identifier: mapry identifier of a composite
:return: translated to a Python identifier of a composite
>>> as_composite(identifier='Some_URL_class')
'SomeURLClass'
"""
return mapry.naming.ucamel_case(identifier=identifier)
|
9e08c59acc60fbdb4ca4667f9d6b06502d521083
| 35,574 |
def find_saturation(freq, saturation_values, attenuation):
"""
Return a saturation value based on the frequency and amount of attenuation
:param int freq: the freq of interest, in Hz
:param saturation_values: a dict containing the saturation values (keys are frequencies)
:param attenuation: the amount of attenuation applied
:returns: the closest saturation value corresponding to the frequency
"""
sat_freqs = saturation_values.keys()
closest_index = np.abs(np.subtract(sat_freqs, freq)).argmin()
closest_freq = sat_freqs[closest_index]
next_freq = sat_freqs[min(closest_index + 1, len(sat_freqs) - 1)]
freq_diff = (next_freq - closest_freq)
if freq_diff == 0:
saturation = saturation_values[closest_freq]
else:
variance = abs(freq - closest_freq) / freq_diff
closest_sat = saturation_values[closest_freq]
saturation = closest_sat + abs(closest_sat - saturation_values[next_freq]) * variance
saturation += attenuation
return saturation
|
a7f54ef3d80d0c1fbb5e51172812f2e4088dae1e
| 35,575 |
def lstm_temporal(x, h0, Wx, Wh, b):
"""
Forward pass for an LSTM over an entire sequence of data. We assume an input
sequence composed of T vectors, each of dimension D. The LSTM uses a hidden
size of H, and we work over a minibatch containing N sequences. After running
the LSTM forward, we return the hidden states for all timesteps.
Note that the initial cell state is passed as input, but the initial cell
state is set to zero. Also note that the cell state is not returned; it is
an internal variable to the LSTM and is not accessed from outside.
Inputs:
- x: Input data of shape (N, T, D)
- h0: Initial hidden state of shape (N, H)
- Wx: Weights for input-to-hidden connections, of shape (D, 4H)
- Wh: Weights for hidden-to-hidden connections, of shape (H, 4H)
- b: Biases of shape (4H,)
Returns a tuple of:
- h: Hidden states for all timesteps of all sequences, of shape (N, T, H)
"""
N, T, _ = x.shape
_, H = h0.shape
c = np.zeros([N, 0, H])
h = np.zeros([N, 0, H])
for t in range(T):
h_step, c_step = lstm_step(x[:, t, :], h[:, t - 1, :]
if t > 0 else h0, c[:, t - 1, :]
if t > 0 else np.zeros((N, H)), Wx, Wh,
b) # pylint: disable=line-too-long
h_step = h_step.reshape(N, 1, H)
c_step = c_step.reshape(N, 1, H)
h = np.append(h, h_step, axis=1)
c = np.append(c, c_step, axis=1)
return h
|
04cd724d1fb7a996986b97d33b5a38ecefaf8185
| 35,576 |
from numpy.distutils.cpuinfo import cpu
import psutil
from typing import OrderedDict
import platform
def get_info_hardware():
"""Create a dictionary for CPU information."""
def _cpu_freq():
"""psutil can return `None` sometimes, esp. in Travis."""
func = "psutil.cpu_freq: "
try:
hz = psutil.cpu_freq()
except IOError:
return (func + "IOError",) * 3 # See psutil issue #1071
except AttributeError:
return (func + "AttributeError",) * 3 # See psutil issue #1006
except NotImplementedError:
return (
func + "NotImplementedError",
) * 3 # on occigen (cluster cines)
if hz is None:
return (func + "None",) * 3 # See psutil issue #981
else:
ret = []
for h in hz:
try:
h = f"{h:.3f}"
except TypeError:
pass
ret.append(h)
return ret
try:
# Keys are specific to Linux distributions only
info_hw = filter_modify_dict(
cpu.info[0],
[
"uname_m",
"address sizes",
"bogomips",
"cache size",
"model name",
"cpu cores",
"siblings",
],
[
"arch",
"address_sizes",
"bogomips",
"cache_size",
"cpu_name",
"nb_cores",
"nb_siblings",
],
)
info_hw["cpu_MHz_actual"] = []
for d in cpu.info:
info_hw["cpu_MHz_actual"].append(float(d["cpu MHz"]))
except KeyError as e:
print("KeyError with", e)
info_hw = OrderedDict()
hz_current, hz_min, hz_max = _cpu_freq()
info_hw_alt = OrderedDict(
(
("arch", platform.machine()),
("cpu_name", platform.processor()),
("nb_procs", psutil.cpu_count()),
("cpu_MHz_current", hz_current),
("cpu_MHz_min", hz_min),
("cpu_MHz_max", hz_max),
)
)
info_hw = update_dict(info_hw, info_hw_alt)
return info_hw
|
33d6dc139218d1e45907bb58100cdc95300d8785
| 35,577 |
from pathlib import Path
def read_main_results_file():
"""Return a Series where each row is one of the COMSOL Main results"""
results_filepath = Path(MAIN_RESULTS_FILENAME)
results_series = pd.read_table(results_filepath,
sep=" ",
squeeze=True,
index_col=0,
header=None)
results_series.index.name = None
results_series.name = "COMSOL Main Results"
return results_series
|
b5f66df57cd89763af2d95fb22039c49a71f22c5
| 35,578 |
def games_per_time_period(df, days_per_period=7):
"""Return list of describing n matches played each time period in days, from start to end of dataframe"""
# define start and end dates to observe
start = df['date'].min()
# end is specified as 6 days after recorded final date of play, so pd.date_range behaves as we want for players with under 7 days of play
end = pd.to_datetime(df['date'].max())
end = end.strftime('%Y-%m-%d') # back to string
# list end dates of each time period starting from first recorded day
dates = [date.strftime('%Y-%m-%d') # format all pandas datetime values as string
for date
in pd.date_range(start=start, end=end)] # periodise between dates by specified unit
# get match counts per time period
counts = []
periods = []
while len(dates) > 0:
start = dates[0]
end = dates[days_per_period - 1] if len(dates) >= days_per_period else dates[len(dates) - 1]
period = df[(df['date'] >= start) & (df['date'] <= end)]
count = len(period)
periods.append((start, end))
counts.append(count)
del dates[:days_per_period]
return counts
|
e0e327b8cdc8b04f2fde826cef90585e7e7be4cb
| 35,581 |
def get_image_dims(image_data, check_is_rgb=False):
"""Decodes image and return its height and width.
Args:
image_data: Bytes data representing encoded image.
check_is_rgb: Whether to check encoded image is RGB.
Returns:
Decoded image size as a tuple of (height, width)
Raises:
ValueError: If check_is_rgb is set and input image has other format.
"""
image = read_image(image_data)
if check_is_rgb and image.mode != 'RGB':
raise ValueError('Expects RGB image data, gets mode: %s' % image.mode)
width, height = image.size
return height, width
|
745ff6dccc5c7ebb6052abc142e0b8a0ceda269a
| 35,582 |
def open_mic_stream(pa, device_index, device_name):
""" Open microphone stream from first best microphone device. """
if not device_index and device_name:
device_index = find_input_device(device_name)
stream = pa.open(format=FORMAT, channels=CHANNELS, rate=RATE,
input=True, input_device_index=device_index,
frames_per_buffer=INPUT_FRAMES_PER_BLOCK)
return stream
|
8e69211e4aab87ca684a5ebf8ba222e2551f6734
| 35,583 |
def color_threshold(img):
"""
RGB color space threshold
:param img: Undistorted image
:return: Thresholded binary image
Ref: Course notes
"""
yellow = select_yellow(img)
white = select_white(img)
combined_binary = np.zeros_like(yellow)
combined_binary[(yellow >= 1) | (white >= 1)] = 1
return combined_binary
|
f11ddf7e452d7b8891562500819e41f9ea30bf0f
| 35,584 |
def perturb_box(box, min_iou=0.5, sigma_factor=0.1, rng=None):
""" Perturb the input box by adding gaussian noise to the co-ordinates
args:
box - input box
min_iou - minimum IoU overlap between input box and the perturbed box
sigma_factor - amount of perturbation, relative to the box size. Can be either a single element, or a list of
sigma_factors, in which case one of them will be uniformly sampled. Further, each of the
sigma_factor element can be either a float, or a tensor
of shape (4,) specifying the sigma_factor per co-ordinate
returns:
array - the perturbed box
"""
if rng is None:
rng = np.random
if isinstance(sigma_factor, list):
# If list, sample one sigma_factor as current sigma factor
c_sigma_factor = rng.choice(sigma_factor)
else:
c_sigma_factor = sigma_factor
if not isinstance(c_sigma_factor, np.ndarray):
c_sigma_factor = c_sigma_factor * np.ones(4)
perturb_factor = np.sqrt(box[2] * box[3]) * c_sigma_factor
# multiple tries to ensure that the perturbed box has iou > min_iou with the input box
for i_ in range(100):
c_x = box[0] + 0.5 * box[2]
c_y = box[1] + 0.5 * box[3]
c_x_per = rng.normal(c_x, perturb_factor[0])
c_y_per = rng.normal(c_y, perturb_factor[1])
w_per = rng.normal(box[2], perturb_factor[2])
h_per = rng.normal(box[3], perturb_factor[3])
if w_per <= 1:
w_per = box[2] * rand_uniform(0.15, 0.5, rng)[0]
if h_per <= 1:
h_per = box[3] * rand_uniform(0.15, 0.5, rng)[0]
box_per = np.round(
np.array(
[c_x_per - 0.5 * w_per, c_y_per - 0.5 * h_per, w_per, h_per]))
if box_per[2] <= 1:
box_per[2] = box[2] * rand_uniform(0.15, 0.5, rng)
if box_per[3] <= 1:
box_per[3] = box[3] * rand_uniform(0.15, 0.5, rng)
box_iou = iou(np.reshape(box, (1, 4)), np.reshape(box_per, (1, 4)))
# if there is sufficient overlap, return
if box_iou > min_iou:
return box_per, box_iou
# else reduce the perturb factor
perturb_factor *= 0.9
return box_per, box_iou
|
5ad15e766123f887e6cfc19b818efe4542e06148
| 35,585 |
def smootherstep(a, b, x):
"""Improved S-curve interpolation function.
Based on reference implementation of the improved algorithm proposed by
Ken Perlin that is available at https://en.wikipedia.org/wiki/Smoothstep
"""
x = clamp((x - a)/(b - a), 0.0, 1.0)
return x*x*x*(x*(x*6 - 15) + 10);
|
6fa2e8694f2171f0e73aa19042aad2c69384a9e7
| 35,586 |
def _clean_conargs(**conargs):
"""Clean connection arguments"""
conargs['metadata'] = [x.strip() for x in conargs['metadata'].split(',') if x.strip()]
return conargs
|
f5942f750949ab674bd99778e79ea35c2d0bb775
| 35,587 |
import json
def select_customer():
"""Select customers from customer_name."""
cursor = mysql.cursor(MySQLdb.cursors.DictCursor)
TRN = request.form['TRN']
cursor.execute('''SELECT *
FROM Customer
WHERE TRN=%s''', (TRN,))
data = cursor.fetchone()
if data:
return json.jsonify(data)
return json.jsonify({})
|
8353a0d9bbcea731dd1ce0e2f031c22be5b673fe
| 35,588 |
def is_date(string):
"""
Returns whether the string can be interpreted as a date from
using Python's dateutil.parser library. If it can parse, it will
return true, and false otherwise.
"""
try:
parse(string, fuzzy=False)
return True
except ValueError:
return False
|
d07ad17c8d3a24b28e21b42c0907e6e2c281f8d2
| 35,589 |
def rosin_rammler(nbins, d50, md_total, sigma, rho_p, rho):
"""
This function is deprecated: Use psf.rosin_rammler() instead.
Return the volume size distribution from the Rosin Rammler distribution
Returns the fluid particle diameters in the selected number of bins on
a volume basis from the Rosin Rammler distribution with parameters
k = -ln(0.5) and alpha = 1.8.
Parameters
----------
nbins : int
Desired number of size bins in the particle volume size distribution
d50 : float
Volume mean particle diameter (m)
md_total : float
Total particle mass flux (kg/s)
sigma : float
Interfacial tension between the phase undergoing breakup and the
ambient receiving continuous phase (N/m)
rho_p : float
Density of the phase undergoing breakup (kg/m^3)
rho : float
Density of the ambient receiving continuous phase (kg/m^3)
Returns
-------
de : ndarray
Array of particle sizes at the center of each bin in the distribution
(m)
md : ndarray
Total mass flux of particles corresponding to each bin (kg/s)
Notes
-----
This method computes the un-truncated volume size distribution from the
Rosin-Rammler distribution and then enforces that all particle sizes
be less than the maximum stable size by moving mass in larger sizes to
the maximum stable size bin.
References
----------
Johansen, Brandvik, and Farooq (2013), "Droplet breakup in subsea oil
releases - Part 2: Predictions of droplet size distributions with and
without injection of chemical dispersants." Marine Pollution Bulletin,
73: 327-335. doi:10.1016/j.marpolbul.2013.04.012.
"""
# Get the maximum stable size
dmax = de_max(sigma, rho_p, rho)
# Define the parameters of the distribution
k = np.log(0.5)
alpha = 1.8
de, V_frac = psf.rosin_rammler(nbins, d50, k, alpha)
# Compute the mass fraction for each diameter
md = V_frac * md_total
# Truncate the distribution at the maximum stable droplet size
imax = -1
for i in range(len(de)):
if de[i] > dmax:
if imax < 0:
imax = i
de[i] = dmax
else:
md[imax] += md[i]
md[i] = 0.
# Return the particle size distribution
return (de, md)
|
3807c8c965caae492a3fecf6e803685cf7315710
| 35,591 |
def _get_layer(layer_idx, nn, for_pres):
""" Returns a tuple representing the layer label. """
if nn.layer_labels[layer_idx] in ['ip', 'op']:
fill_colour = _IPOP_FILLCOLOR
elif nn.layer_labels[layer_idx] in ['softmax', 'linear']:
fill_colour = _DECISION_FILLCOLOR
else:
fill_colour = _FILLCOLOR
label = nn.get_layer_descr(layer_idx, for_pres)
return (str(layer_idx), {'label': label, 'shape': 'rectangle', 'fillcolor': fill_colour,
'style': 'filled', 'fontname': _LAYER_FONT})
|
74ea378c5490eaf3c1e2cf7ab2413a55566725ea
| 35,592 |
from resistics.sampling import to_timedelta
def inc_duration(win_size: int, olap_size: int, fs: float) -> RSTimeDelta:
"""
Get the increment between window start times
If the overlap size = 0, then the time increment between windows is simply
the window duration. However, when there is an overlap, the increment
between window start times has to be adjusted by the overlap size
Parameters
----------
win_size : int
The window size in samples
olap_size : int
The overlap size in samples
fs : float
The sample frequency Hz
Returns
-------
RSTimeDelta
The duration of the window
Examples
--------
>>> from resistics.window import inc_duration
>>> increment = inc_duration(128, 32, 128)
>>> print(increment)
0:00:00.75
>>> increment = inc_duration(128*3600, 128*60, 128)
>>> print(increment)
0:59:00
"""
return to_timedelta(1 / fs) * float(win_size - olap_size)
|
bdf754e3b1ace20cac1f99ef19dd04727594d710
| 35,593 |
def get_nearest(kd_node, point, dim, dist_func, return_distances=False, i=0, best=None):
"""
Find the closest neighbour of a point in a list of points using a KD-Tree.
Based on a recipe from code.activestate.com
"""
if kd_node:
dist = dist_func(point, kd_node[2])
dx = kd_node[2][i] - point[i]
if not best:
best = [dist, kd_node[2]]
elif dist < best[0]:
best[0], best[1] = dist, kd_node[2]
i = (i + 1) % dim
# Goes into the left branch, and then the right branch if needed
get_nearest(
kd_node[dx < 0], point, dim, dist_func, return_distances, i, best)
if dx * dx < best[0]:
get_nearest(
kd_node[dx >= 0], point, dim, dist_func, return_distances, i, best)
return best if return_distances else best[1]
|
480ac80404d16cb8ed4de9093a56326b15ad56b9
| 35,594 |
def plot_estimated_vs_simulated_edges(
graph,
sp_Graph,
lrn=None,
max_res_nodes=None,
lamb=1.0
):
"""Function to plot estimated vs simulated edge weights to look for significant deviations
"""
assert lamb >= 0.0, "lambda must be non-negative"
assert type(lamb) == float, "lambda must be float"
# both variables below are long range nodes but lrn is from the simulated and max_res_nodes is from the empirical
assert type(lrn) == list, "lrn must be a list of int 2-tuples"
assert type(max_res_nodes) == list, "max_res_nodes must be a list of int 2-tuples"
# getting edges from the simulated graph
idx = [list(graph.edges).index(val) for val in lrn]
sim_edges = np.append(np.array([graph[val[0]][val[1]]["w"] for i, val in enumerate(graph.edges) if i not in idx]),
np.array([graph[val[0]][val[1]]["w"] for i, val in enumerate(graph.edges) if i in idx]))
idx = [list(sp_Graph.edges).index(val) for val in max_res_nodes]
w_plot = np.append(sp_Graph.w[[i for i in range(len(sp_Graph.w)) if i not in idx]], sp_Graph.w[idx])
X = sm.add_constant(sim_edges)
mod = sm.OLS(w_plot[range(len(graph.edges))], X)
res = mod.fit()
muhat, betahat = res.params
# getting index of long range edges
lre_idx = [list(graph.edges).index(val) for val in lrn]
fig = plt.figure(dpi=100)
ax = fig.add_subplot()
ax.scatter(sim_edges, w_plot[range(len(sim_edges))],
marker=".", alpha=1, zorder=0, color="grey", s=3)
ax.scatter(sim_edges[-len(lrn)::], w_plot[-len(lrn)::],
marker=".", alpha=1, zorder=0, color="black", s=10)
x_ = np.linspace(np.min(sim_edges), np.max(sim_edges), 20)
ax.plot(x_, muhat + betahat * x_, zorder=2, color="orange", linestyle='--', linewidth=1)
ax.text(0.8, 0.05, "R²={:.4f}".format(res.rsquared), transform=ax.transAxes)
ax.text(0.8, 0.15, "$\lambda$={:.3}".format(lamb), transform=ax.transAxes)
ax.set_xlabel("simulated edge weights")
ax.set_ylabel("estimated edge weights")
return(None)
|
7921715ccedaa192f291b228e9b12963ae8789dd
| 35,595 |
def index_shape(geometry: Column, resolution: Column):
"""
Generate an H3 spatial index for an input GeoJSON geometry column.
This function accepts GeoJSON `Point`, `LineString`, `Polygon`, `MultiPoint`, `MultiLineString`, and `MultiPolygon`
input features, and returns the set of H3 cells at the specified resolution which completely cover them
(could be more than one cell for a substantially large geometry and substantially granular resolution).
The schema of the output column will be `T.ArrayType(T.StringType())`, where each value in the array is an H3 cell.
This spatial index can then be used for bucketing, clustering, and joins in Spark via an `explode()` operation.
"""
return _index_shape(geometry, resolution)
|
a921f58eb31f24c3bbfb7b0b4e013b75ec2ad0f4
| 35,596 |
def mat_mul(
input_tensor, weight_tensor, activation=None, activation_params=None,
name="mat_mul"):
"""Compute a matrix multiplication for `input_tensor` and `weight_tensor`.
Args:
input_tensor: A 2D `Tensor`. Shaped as `NC`, where `N` is batch size and `C`
is number of channels.
weight_tensor: A 2D `Tensor`. Shaped as `NC` or `CN`, where `N` is number of
neurons and `C` is the same as in `input_tensor`.
activation/activation_params: Activation function to use (optional).
name: Operator name (optional).
"""
input_tensor, weight_tensor = common.check_and_add_layout_transform(
name=name, op=types_pb2.InnerProduct,
input_tensors=[input_tensor, weight_tensor])
weight_layout = weight_tensor.shape.layout
actIdx = 1 if weight_layout == types_pb2.NC else 0
neuronIdx = 0 if weight_layout == types_pb2.NC else 1
assert (len(input_tensor.shape.dims) == 2
and len(weight_tensor.shape.dims) == 2
and input_tensor.shape.dims[1] == weight_tensor.shape.dims[actIdx])
output_tensor_dims = [
input_tensor.shape.dims[0], weight_tensor.shape.dims[neuronIdx]
]
params = node_pb2.Params()
if activation is not None:
params.act_params.CopyFrom(
activation_ops.to_proto(activation, activation_params))
return common.add_node(
name=name, op=types_pb2.InnerProduct,
input_tensors=[input_tensor, weight_tensor],
output_tensors_dims=[output_tensor_dims],
output_tensor_layout=types_pb2.NC, params=params)[0]
|
f4b7755d6701438cd622837c976958dc511aa591
| 35,597 |
def get_events(wrapper, student: str = None, time: str = None) -> dict:
"""
list events
"""
start, end = get_dates(time)
event_data = wrapper.get_events(start_date=start,
end_date=end,
login=student)
return event_data
|
b682190334646889770c723693941da8c251db68
| 35,598 |
def merge_preclusters_ld(preclusters):
"""
Bundle together preclusters that satisfy the two criteria at the same time:
* 1. gwas_snp of clusterA is within ld_snps of clusterB (in LD)
* 2. (p-value of gwas_snp of clusterB * 10-3) <= p-value of gwas_snp of clusterA (<= p-value of gwas_snp of clusterB)
Args:
* [ Cluster ]
Returntype: [ Cluster ]
"""
# sort preclusters by the order of p-value of GWAS SNPs, from lowest to highest
preclusters.sort(key=lambda cluster: cluster.gwas_snps[0].pvalue)
# create a vaiable for the status of each precluster whether it has been grouped with any other
group_status = [False] * len(preclusters)
merged_clusters = []
# clusterA - take its gwas_snp for checking
for i,clusterA in enumerate(preclusters[ :-1]):
# generate temp_cluster
if group_status[i]:
where_is_A = [n for n,cluster in enumerate(merged_clusters) if clusterA.gwas_snps[0].snp.rsID in [gwas_snp.snp.rsID for gwas_snp in cluster.gwas_snps]]
assert len(where_is_A), 'clusterA should be in one place only in merged_clusters'
temp_cluster = merged_clusters.pop(where_is_A[0])
else:
temp_cluster = None
# get the index of what to be merged with clusterA
what_to_merge = []
# clusterB - take its ld_snps and p-value of gwas_snp for comparison
for k,clusterB in enumerate(preclusters[i + 1: ]):
k = k + i + 1
# two have the posibility to be merged only when they are from the same chromosome
if clusterB.ld_snps[0].chrom == clusterA.ld_snps[0].chrom:
# first, check p-value
if clusterB.gwas_snps[0].pvalue * 1e-3 <= clusterA.gwas_snps[0].pvalue:
# secondly, check ld_snps
if clusterA.gwas_snps[0].snp.rsID in [ld_snp.rsID for ld_snp in clusterB.ld_snps]:
# thirdly, check whether in temp_cluster
if temp_cluster is None:
what_to_merge += [k]
else:
if clusterB.gwas_snps[0].snp.rsID not in [gwas_snp.snp.rsID for gwas_snp in temp_cluster.gwas_snps]:
what_to_merge += [k]
# no more following clusters will meet the criterion, so break out of clusterB's for-loop
else:
break
# if nothing to merge, put temp_cluster back
if len(what_to_merge) == 0:
if temp_cluster is not None:
merged_clusters.append(temp_cluster)
# if something to merge, do merge_clusters
else:
clusters_to_merge = []
# for any has been merged with clusters other than clusterA, get that merged one and merge it with clusterA
if any(group_status[m] for m in what_to_merge):
for n in set(n for m in what_to_merge if group_status[m] for n,cluster in enumerate(merged_clusters) if preclusters[m].gwas_snps[0].snp.rsID in [gwas_snp.snp.rsID for gwas_snp in cluster.gwas_snps]):
clusters_to_merge.append(merged_clusters.pop(n))
# for any has not been merged with others, get it to merge with clusterA
for m in what_to_merge:
if not group_status[m]:
clusters_to_merge.append(preclusters[m])
temp_cluster = merge_clusters([clusterA if temp_cluster is None else temp_cluster] + clusters_to_merge)
merged_clusters.append(temp_cluster)
# update the status of these clusters after merging
for m in [i] + what_to_merge:
group_status[m] = True
# add those ungrouped clusters into merged_clusters
clusters = merged_clusters + [preclusters[n] for n,s in enumerate(group_status) if not s]
return clusters
|
64b0a82181df9afa352a796d4943b8392bb742d7
| 35,599 |
def construct_system(sp, scale=1.0):
"""Construct systems according to job statepoint.
Parameters
----------
sp: dict (from job.sp)
Dictionary contains information necessary to construct a system.
Stored as state of job. The dictionary should resemble:
{"molecule": str,
"engine": str,
"replica": int,
"temperature": float (in K),
"pressure": float (in kPa),
"ensemble": str,
"N_liquid": int,
"N_vap": int,
"box_L_liq": int (nm),
"box_L_vap", int (nm),
"init_liq_den": float (g/cm3),
"init_vap_den": float (g/cm3),
"mass": float (g/mol),
"forcefield_name": str,
"cutoff_style": str,
"r_cut": float (in nm)}
scale : float, default 1.0
Scale factor by which to scale the box. Useful for system initialization
if a shrink step makes equilibration easier.
Returns
-------
[filled_liq_box, filled_vap_box]
Return list of system as specified.
"""
# Update this dict as new recipes are made
molecule_dict = {
"methaneUA": MethaneUA(),
"pentaneUA": PentaneUA(),
"benzeneUA": None,
"waterSPC/E": WaterSPC(),
"ethanolAA": None,
}
molecule = molecule_dict[sp["molecule"]]
molecule.name = sp["molecule"]
liq_box = mb.Box([sp["box_L_liq"] * scale] * 3)
filled_liq_box = mb.fill_box(
compound=[molecule], n_compounds=[sp["N_liquid"]], box=liq_box
)
if sp["box_L_vap"] and sp["N_vap"]:
vap_box = mb.Box([sp["box_L_vap"] * scale] * 3)
filled_vap_box = mb.fill_box(
compound=[molecule], n_compounds=[sp["N_vap"]], box=vap_box
)
return [filled_liq_box, filled_vap_box]
else:
return [filled_liq_box, None]
|
c0f610b527d7d4873d72e46438a9a9b67931f379
| 35,600 |
def _tile_images(imgs, tile_shape, concatenated_image, margin_color=None):
"""Concatenate images whose sizes are same.
@param imgs: image list which should be concatenated
@param tile_shape: shape for which images should be concatenated
@param concatenated_image: returned image. if it is None, new image will be created.
"""
x_num, y_num = tile_shape
one_width = imgs[0].shape[1]
one_height = imgs[0].shape[0]
if concatenated_image is None:
concatenated_image = np.zeros((one_height * y_num, one_width * x_num, 3),
dtype=np.uint8)
if margin_color is not None:
concatenated_image[:, :] = margin_color
for y in range(y_num):
for x in range(x_num):
i = x + y * x_num
if i >= len(imgs):
pass
else:
concatenated_image[y*one_height:(y+1)*one_height,x*one_width:(x+1)*one_width,] = imgs[i]
return concatenated_image
|
0698245a08ce2115fe7154d07f8ccdfb228aca28
| 35,601 |
def true_positive_rate(y_true, y_pred):
"""Returns True Positive Rate.
Wrapper function of metrics_K()
Args:
y_true (Tensorflow Tensor): Array of 'true' 0s and 1s
y_pred (Tensorflow Tensor): Array of predicted 0s and 1s
Returns:
specificity_loss (Tensor): True Positive Rate ([0:1])
"""
TP, TN, FP, FN, TPR, SPC, FPR, ACC, MCC = metrics_K(y_true, y_pred)
return TPR
|
602138bec793f4c80dabf12db987fd75769920f6
| 35,602 |
def create_camera_widget(name):
"""Create a camera control widget"""
obj = create_widget(name)
if not obj.data.vertices:
verts = [(0.275136, 0, -0.275136), (0.359483, 0, -0.148903),
(0.389102, 0, 0), (0.359483, 0, 0.148903),
(0.275136, 0, 0.275136), (0.148903, 0, 0.359483),
(-1.94818e-07, 0, 0.389102), (-1.17505e-07, 0, -0.389102),
(0.148903, 0, -0.359483), (0.663549, 0, -0.0936016),
(0.663549, 0, 0.0936016), (0.497656, 0, 0.0936016),
(0.497656, 0, -0.0936017), (0.663549, 0, 0.173501),
(0.663549, 0, -0.173501), (0.875195, 0, 0),
(-0.148903, 0, 0.359483), (-0.148903, 0, -0.359483),
(-0.275136, 0, -0.275136), (-0.359483, 0, -0.148903),
(-0.389102, 0, 0), (-0.359483, 0, 0.148903),
(-0.275136, 0, 0.275136), (1.03426e-07, 0, 0.875195),
(0.173502, 0, 0.663549), (-0.173501, 0, 0.663549),
(0.0936017, 0, 0.497656), (-0.0936016, 0, 0.497656),
(-0.0936016, 0, 0.663549), (0.0936017, 0, 0.663549),
(-0.0936015, 0, -0.663549), (0.0936017, 0, -0.663549),
(0.0936017, 0, -0.497656), (-0.0936016, 0, -0.497656),
(0.173502, 0, -0.663549), (-0.173501, 0, -0.663549),
(9.42269e-08, 0, -0.875195), (-0.875195, 0, 0),
(-0.663549, 0, 0.173501), (-0.663549, 0, -0.173502),
(-0.497656, 0, 0.0936015), (-0.497656, 0, -0.0936018),
(-0.663549, 0, -0.0936018), (-0.663549, 0, 0.0936015),
]
edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (7, 8), (0, 8),
(10, 11), (9, 12), (11, 12), (10, 13), (9, 14), (13, 15), (14, 15),
(16, 22), (17, 18), (18, 19), (19, 20), (20, 21), (21, 22), (7, 17),
(6, 16), (23, 24), (23, 25), (24, 29), (25, 28), (26, 29), (27, 28),
(31, 32), (30, 33), (32, 33), (31, 34), (30, 35), (34, 36), (35, 36),
(37, 38), (37, 39), (38, 43), (39, 42), (40, 41), (40, 43), (41, 42),
(27, 26)]
mesh = obj.data
mesh.from_pydata(verts, edges, [])
mesh.update()
return obj
|
8cdac505c83a9a90bd6f7c4a415850a9d20d0646
| 35,603 |
def query_related(uri, filter=None, limit=20):
"""
Query for terms that are related to a term, or list of terms, according
to the mini version of ConceptNet Numberbatch.
"""
if uri.startswith('/c/'):
query = uri
elif uri.startswith('/list/') and uri.count('/') >= 3:
try:
_, _list, language, termlist = uri.split('/', 3)
query = []
term_pieces = termlist.split(',')
for piece in term_pieces:
if '@' in piece:
term, weight = piece.split('@')
weight = float(weight)
else:
term = piece
weight = 1.
query.append(('/c/{}/{}'.format(language, term), weight))
except ValueError:
return error(
{'@id': uri}, 400,
"Couldn't parse this term list: %r" % uri
)
else:
return error(
{'@id': uri}, 404,
'%r is not something that I can find related terms to.' % uri
)
found = VECTORS.similar_terms(query, filter=filter, limit=limit)
related = [
{'@id': key, 'weight': round(float(weight), 3)}
for (key, weight) in found.items()
]
response = {
'@id': uri,
'related': related
}
return response
|
18b2908bbe8559388b52697b515e8b1ad23bb3c5
| 35,604 |
import numpy
def chain(pairs):
"""
Generate chain from location pairs.
"""
table, chain = [], []
for i in numpy.unique(numpy.array(pairs).flatten()):
if chain == []:
chain.append(i)
value = i
continue
if i == value + 1:
chain.append(i)
value = i
continue
table.append(chain)
chain = []
chain.append(i)
value = i
else:
table.append(chain)
return table
|
01c55e204d56cbef9e08bd509422846bb844c7fe
| 35,605 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.