content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
from typing import List
from typing import Union
from typing import Optional
import importlib
def search_import(
method: str, modules: List[Union[str, ModuleType]]
) -> Optional[object]:
"""
Method has to check if any of `modules` contains
`callable` object with name `method_name`
and return list of such objects
args:
method - name of object (method) we wanna find
modules - where to search. Given by str or Module object.
return: first found object (method)
"""
for module in modules:
try:
if isinstance(module, ModuleType):
mod = module
elif isinstance(module, str):
# get module by string name
mod = importlib.import_module(module)
else:
raise TypeError('Must be list of strings or ModuleType')
# get method from module by string name
met = getattr(mod, method, None)
if met:
return met
except ImportError: # import_module can fail
continue
return None
|
14cd9d6c02081915a1de394b041d80c7b6cc518b
| 35,606 |
def retrieve_context_connectivity_service_end_point_capacity_total_size_total_size(uuid, local_id): # noqa: E501
"""Retrieve total-size
Retrieve operation of resource: total-size # noqa: E501
:param uuid: ID of uuid
:type uuid: str
:param local_id: ID of local_id
:type local_id: str
:rtype: CapacityValue
"""
return 'do some magic!'
|
7b154007da10064cfd6ed72e4fa6c883697955df
| 35,607 |
def identity(n):
"""
Creates a n x n identity matrix.
"""
I = zeroes(n, n)
for i in range(n):
I.g[i][i] = 1.0
return I
|
3c59a042f91dfe8778a9676436a26d14b8db1ed9
| 35,608 |
def mnist_test_labels_file():
"""
Train images of MNSIT.
:return: filepath
:rtype: str
"""
return data_file('mnist/test_labels', HDF5_EXT)
|
48bd7426fd89f4f2f8319c7c3cba4a62ab33813d
| 35,610 |
def is_eval_epoch(cur_epoch):
"""Determines if the model should be evaluated at the current epoch."""
return cfg.TRAIN.EVAL_PERIOD != -1 and (
(cur_epoch + 1) % cfg.TRAIN.EVAL_PERIOD == 0 or
(cur_epoch + 1) == cfg.OPTIM.MAX_EPOCH
)
|
41f5375aab3147371eaf7862dcc5b2919e47f46a
| 35,611 |
from datetime import datetime
def utc_now_to_file_str():
"""
Format UTC now to _YYYYmmdd_HHMMSS
:return:
"""
return datetime.datetime.strftime(datetime.datetime.utcnow(), '_%Y%m%d_%H%M%S')
|
3f41612f871d6a5bd2b55156e9a418e5baee52cb
| 35,612 |
from typing import Union
from typing import cast
def intersect1d(
pda1: groupable, pda2: groupable, assume_unique: bool = False
) -> Union[pdarray, groupable]:
"""
Find the intersection of two arrays.
Return the sorted, unique values that are in both of the input arrays.
Parameters
----------
pda1 : pdarray/Sequence[pdarray, Strings, Categorical]
Input array/Sequence of groupable objects
pda2 : pdarray/List
Input array/sequence of groupable objects
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
Returns
-------
pdarray/groupable
Sorted 1D array/List of sorted pdarrays of common and unique elements.
Raises
------
TypeError
Raised if either pda1 or pda2 is not a pdarray
RuntimeError
Raised if the dtype of either pdarray is not supported
See Also
--------
unique, union1d
Notes
-----
ak.intersect1d is not supported for bool or float64 pdarrays
Examples
--------
# 1D Example
>>> ak.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])
# Multi-Array Example
>>> a = ak.arange(5)
>>> b = ak.array([1, 5, 3, 4, 2])
>>> c = ak.array([1, 4, 3, 2, 5])
>>> d = ak.array([1, 2, 3, 5, 4])
>>> multia = [a, a, a]
>>> multib = [b, c, d]
>>> ak.intersect1d(multia, multib)
[array([1, 3]), array([1, 3]), array([1, 3])]
"""
if isinstance(pda1, pdarray) and isinstance(pda2, pdarray):
if pda1.size == 0:
return pda1 # nothing in the intersection
if pda2.size == 0:
return pda2 # nothing in the intersection
if (pda1.dtype == int and pda2.dtype == int) or (
pda1.dtype == akuint64 and pda2.dtype == akuint64
):
repMsg = generic_msg(
cmd="intersect1d", args="{} {} {}".format(pda1.name, pda2.name, assume_unique)
)
return create_pdarray(cast(str, repMsg))
if not assume_unique:
pda1 = cast(pdarray, unique(pda1))
pda2 = cast(pdarray, unique(pda2))
aux = concatenate((pda1, pda2), ordered=False)
aux_sort_indices = argsort(aux)
aux = aux[aux_sort_indices]
mask = aux[1:] == aux[:-1]
int1d = aux[:-1][mask]
return int1d
elif (isinstance(pda1, list) or isinstance(pda1, tuple)) and (
isinstance(pda2, list) or isinstance(pda2, tuple)
):
multiarray_setop_validation(pda1, pda2)
if not assume_unique:
ag = GroupBy(pda1)
ua = ag.unique_keys
bg = GroupBy(pda2)
ub = bg.unique_keys
else:
ua = pda1
ub = pda2
# Key for deinterleaving result
isa = concatenate(
(ones(ua[0].size, dtype=akbool), zeros(ub[0].size, dtype=akbool)), ordered=False
)
c = [concatenate(x, ordered=False) for x in zip(ua, ub)]
g = GroupBy(c)
if assume_unique:
# need to verify uniqueness, otherwise answer will be wrong
if (g.sum(isa)[1] > 1).any():
raise ValueError("Called with assume_unique=True, but first argument is not unique")
if (g.sum(~isa)[1] > 1).any():
raise ValueError("Called with assume_unique=True, but second argument is not unique")
k, ct = g.count()
in_union = ct == 2
return [x[in_union] for x in k]
else:
raise TypeError(
f"Both pda1 and pda2 must be pdarray, List, or Tuple. Received {type(pda1)} and {type(pda2)}"
)
|
a5408d3e738d88fb76e355ec9acf8a26e3c6b5aa
| 35,614 |
def less_or_equal(left: ValueOrExpression, right: ValueOrExpression) -> Expression:
"""
Constructs a *less than or equal to* expression.
"""
return Comparison(
operators.ComparisonOperator.LE, ensure_expr(left), ensure_expr(right)
)
|
f790a117516c1ecd90fdcc289e56050449a106c4
| 35,615 |
def build_birnn_multifeature_coattention_model(
voca_dim, time_steps, num_feature_channels, num_features, feature_dim, output_dim, model_dim, atten_dim, mlp_dim,
item_embedding=None, rnn_depth=1, mlp_depth=1,
drop_out=0.5, rnn_drop_out=0., rnn_state_drop_out=0.,
trainable_embedding=False, gpu=False, return_customized_layers=False):
"""
Create A Bidirectional Attention Model.
:param voca_dim: vocabulary dimension size.
:param time_steps: the length of input
:param output_dim: the output dimension size
:param model_dim: rrn dimension size
:param mlp_dim: the dimension size of fully connected layer
:param item_embedding: integer, numpy 2D array, or None (default=None)
If item_embedding is a integer, connect a randomly initialized embedding matrix to the input tensor.
If item_embedding is a matrix, this matrix will be used as the embedding matrix.
If item_embedding is None, then connect input tensor to RNN layer directly.
:param rnn_depth: rnn depth
:param mlp_depth: the depth of fully connected layers
:param num_feature_channels: the number of attention channels, this can be used to mimic multi-head attention mechanism
:param drop_out: dropout rate of fully connected layers
:param rnn_drop_out: dropout rate of rnn layers
:param rnn_state_drop_out: dropout rate of rnn state tensor
:param trainable_embedding: boolean
:param gpu: boolean, default=False
If True, CuDNNLSTM is used instead of LSTM for RNN layer.
:param return_customized_layers: boolean, default=False
If True, return model and customized object dictionary, otherwise return model only
:return: keras model
"""
if model_dim % 2 == 1:
model_dim += 1
if item_embedding is not None:
inputs = models.Input(shape=(time_steps,), dtype='int32', name='input0')
x1 = inputs
# item embedding
if isinstance(item_embedding, np.ndarray):
assert voca_dim == item_embedding.shape[0]
x1 = layers.Embedding(
voca_dim, item_embedding.shape[1], input_length=time_steps,
weights=[item_embedding, ], trainable=trainable_embedding,
mask_zero=False, name='embedding_layer0'
)(x1)
elif utils.is_integer(item_embedding):
x1 = layers.Embedding(
voca_dim, item_embedding, input_length=time_steps,
trainable=trainable_embedding,
mask_zero=False, name='embedding_layer0'
)(x1)
else:
raise ValueError("item_embedding must be either integer or numpy matrix")
else:
inputs = models.Input(shape=(time_steps, voca_dim), dtype='float32', name='input0')
x1 = inputs
inputs1 = list()
for fi in range(num_feature_channels):
inputs1.append(models.Input(shape=(num_features, feature_dim), dtype='float32', name='input1' + str(fi)))
feature_map_layer = layers.TimeDistributed(
layers.Dense(model_dim, name="feature_map_layer", activation="sigmoid"), name="td_feature_map_layer"
)
x2s = list(map(
lambda input_: feature_map_layer(input_),
inputs1
))
if gpu:
# rnn encoding
for i in range(rnn_depth):
x1 = layers.Bidirectional(
layers.CuDNNLSTM(int(model_dim / 2), return_sequences=True),
name='bi_lstm_layer' + str(i))(x1)
x1 = layers.BatchNormalization(name='rnn_batch_norm_layer' + str(i))(x1)
x1 = layers.Dropout(rnn_drop_out, name="rnn_dropout_layer" + str(i))(x1)
else:
# rnn encoding
for i in range(rnn_depth):
x1 = layers.Bidirectional(
layers.LSTM(int(model_dim / 2), return_sequences=True, dropout=rnn_drop_out,
recurrent_dropout=rnn_state_drop_out),
name='bi_lstm_layer' + str(i))(x1)
x1 = layers.BatchNormalization(name='rnn_batch_norm_layer' + str(i))(x1)
coatten_layer = clayers.CoAttentionWeight(name="coattention_weights_layer")
featnorm_layer1 = clayers.FeatureNormalization(name="normalized_coattention_weights_layer1", axis=1)
featnorm_layer2 = clayers.FeatureNormalization(name="normalized_coattention_weights_layer2", axis=2)
focus_layer1 = layers.Dot((1, 1), name="focus_layer1")
focus_layer2 = layers.Dot((2, 1), name="focus_layer2")
pair_layer1 = layers.Concatenate(axis=-1, name="pair_layer1")
pair_layer2 = layers.Concatenate(axis=-1, name="pair_layer2")
compare_layer1 = layers.TimeDistributed(layers.Dense(model_dim, activation="relu"), name="compare_layer1")
compare_layer2 = layers.TimeDistributed(layers.Dense(model_dim, activation="relu"), name="compare_layer2")
flatten_layer = layers.Flatten(name="flatten_layer")
xs = list()
for x2_ in x2s:
xs += _coatten_compare_aggregate(
coatten_layer, featnorm_layer1, featnorm_layer2,
focus_layer1, focus_layer2, pair_layer1, pair_layer2,
compare_layer1, compare_layer2,
flatten_layer,
x1, x2_)
x = layers.Concatenate(axis=1, name="concat_feature_layer")(xs)
# MLP Layers
for i in range(mlp_depth - 1):
x = layers.Dense(mlp_dim, activation='selu', kernel_initializer='lecun_normal', name='selu_layer' + str(i))(x)
x = layers.AlphaDropout(drop_out, name='alpha_layer' + str(i))(x)
outputs = layers.Dense(output_dim, activation="softmax", name="softmax_layer0")(x)
model = models.Model([inputs] + inputs1, outputs)
if return_customized_layers:
return model, {'CoAttentionWeight': clayers.CoAttentionWeight,
"FeatureNormalization": clayers.FeatureNormalization}
return model
|
f212f748323136ec994035d8b71d330f5e02b601
| 35,617 |
def splitext(value):
"""
Return a filename sans extension. Alias to os.splitext.
"""
return pathsplitext(value)[0]
|
b5a72e03895e32903ac912d8e1527d659b377bd9
| 35,618 |
def normspec(*specs, smooth=False, span=13, order=1):
"""
Normalize a series of 1D signals.
**Parameters**\n
*specs: list/2D array
Collection of 1D signals.
smooth: bool | False
Option to smooth the signals before normalization.
span, order: int, int | 13, 1
Smoothing parameters of the LOESS method (see ``scipy.signal.savgol_filter()``).
**Return**\n
normalized_specs: 2D array
The matrix assembled from a list of maximum-normalized signals.
"""
nspec = len(specs)
specnorm = []
for i in range(nspec):
spec = specs[i]
if smooth:
spec = savgol_filter(spec, span, order)
if type(spec) in (list, tuple):
nsp = spec / max(spec)
else:
nsp = spec / spec.max()
specnorm.append(nsp)
# Align 1D spectrum
normalized_specs = np.asarray(specnorm)
return normalized_specs
|
9fa751fe0cfada0114ba071135399a1ea8a461c5
| 35,619 |
import pickle
def load():
"""
Load the bibmanager database of BibTeX entries.
Returns
-------
List of Bib() entries. Return an empty list if there is no database
file.
Examples
--------
>>> import bibmanager.bib_manager as bm
>>> bibs = bm.load()
"""
try:
with open(u.BM_DATABASE, 'rb') as handle:
return pickle.load(handle)
except:
# TBD: I think I'm not defaulting to this case anymore, I should
# let it break if the input file does not exist
return []
|
501adedfb1bb5a4203351ea5ab0acd3e9b495780
| 35,620 |
def repeat_n_m(v):
"""Repeat elements in a vector .
Returns a vector with the elements of the vector *v* repeated *n* times,
where *n* denotes the position of the element in *v*. The function can
be used to order the coefficients in the vector according to the order of
spherical harmonics. If *v* is a matrix, it is treated as a stack of
vectors residing in the last index and broadcast accordingly.
Parameters
----------
v : (,N+1) numpy.ndarray
Input vector or stack of input vectors.
Returns
-------
: (,(N+1)**2) numpy.ndarray
Vector or stack of vectors containing repetated values.
"""
krlist = [np.tile(v, (2*i+1, 1)).T for i, v in enumerate(v.T.tolist())]
return np.squeeze(np.concatenate(krlist, axis=-1))
|
e26cec345f4ed88a64d85452f518b5d497dc0f1e
| 35,621 |
def contingency(cont_table=None, alpha=0.05, precision=4):
"""
Check RULE of FIVE before running the test
>>> return chi2, p, dof, ex
"""
chi2, p, dof, ex = stats.chi2_contingency(cont_table, correction=False)
chi2_cv = stats.chi2.ppf(1 - alpha, dof)
flag = False
if p < alpha:
flag = True
result = f"""======= Tests of Independence: Contingency Table =======
chi2 Statistics = {chi2:.{precision}f}
chi2 critical value = {chi2_cv:.{precision}f}
Degree of freedom = {dof}
p-value = {p:.{precision}f} ({inter_p_value(p)})
Reject H_0 (dependent) → {flag}
Expected Frequency:
{ex}
"""
print(result)
return chi2, p, dof, ex
|
3006636096be34032de612b1272cd508ae312b42
| 35,622 |
def smp_dict():
"""Returns a dictionary containing typical options for a generic Sample object"""
out = base_dict()
out['mro']['current'] = ['Sample']
out['name']['current'] = 'Sample'
ao(out, 'idx', 'Integer', attr=['Hidden'])
ao(out, 'ii', 'Integer', attr=['Hidden'])
ao(out, 'initialDimension', 'Float', 0., name='Initial Dimension')
return out
|
7ef58042c2826591f2fb5ba21b055f334528b157
| 35,623 |
def setup():
"""
Connect to the Arango database and Elasticsearch.
Returns
-------
Connection, Database, list
1. The connection to Elasticsearch
2. The ArangoDB database that holds the collection
3. The list of fields that are take over from ArangoDB to Elasticsearch
Raises
------
ConfigError
If a required entry is missing in the config file.
DBError
If the connection to the ArangoDB server failed or the database
or the collection can not be found.
SearchError
If the connection to the Elasticsearch server failed.
"""
if not "es_hosts" in config:
raise ConfigError("Setting missing in config file: 'es_hosts'.")
conn = connections.create_connection(hosts=config["es_hosts"])
if not conn.ping():
raise SearchError("Connection to the Elasticsearch server failed.")
try:
arangoconn = connect(config)
db = select_db(config, arangoconn)
except (ConfigError, DBError) as e:
logger.error(e)
raise e
return conn, db, config["fields"]
|
f140a72a1e05d34a810bb7ef8ea3ae855c0307f6
| 35,625 |
def test_timedelta_tests():
"""These test cases are taken from CPython's Lib/test/datetimetester.py"""
# Create compatibility functions so rest of test can be pasted with minimal
# changes
def eq(a, b):
assert a == b
def td(days=0, seconds=0, microseconds=0):
return TimeDelta(days=days, seconds=seconds, microseconds=microseconds)
a = td(7) # One week
b = td(0, 60) # One minute
c = td(0, 0, 1000) # One millisecond
eq(a+b+c, td(7, 60, 1000))
eq(a-b, td(6, 24*3600 - 60))
eq(b.__rsub__(a), td(6, 24*3600 - 60))
eq(-a, td(-7))
eq(+a, td(7))
eq(-b, td(-1, 24*3600 - 60))
eq(-c, td(-1, 24*3600 - 1, 999000))
eq(abs(a), a)
eq(abs(-a), a)
eq(td(6, 24*3600), a)
eq(td(0, 0, 60*1000000), b)
eq(a*10, td(70))
eq(a*10, 10*a)
eq(a*10, 10*a)
eq(b*10, td(0, 600))
eq(10*b, td(0, 600))
eq(b*10, td(0, 600))
eq(c*10, td(0, 0, 10000))
eq(10*c, td(0, 0, 10000))
eq(c*10, td(0, 0, 10000))
eq(a*-1, -a)
eq(b*-2, -b-b)
eq(c*-2, -c+-c)
eq(b*(60*24), (b*60)*24)
eq(b*(60*24), (60*b)*24)
eq(c*1000, td(0, 1))
eq(1000*c, td(0, 1))
eq(a//7, td(1))
eq(b//10, td(0, 6))
eq(c//1000, td(0, 0, 1))
eq(a//10, td(0, 7*24*360))
eq(a//3600000, td(0, 0, 7*24*1000))
eq(a/0.5, td(14))
eq(b/0.5, td(0, 120))
eq(a/7, td(1))
eq(b/10, td(0, 6))
eq(c/1000, td(0, 0, 1))
eq(a/10, td(0, 7*24*360))
eq(a/3600000, td(0, 0, 7*24*1000))
# Multiplication by float
us = td(microseconds=1)
eq((3*us) * 0.5, 2*us)
eq((5*us) * 0.5, 2*us)
eq(0.5 * (3*us), 2*us)
eq(0.5 * (5*us), 2*us)
eq((-3*us) * 0.5, -2*us)
eq((-5*us) * 0.5, -2*us)
# Issue #23521
# Note: TimeDelta differs in output here from timedelta because integer
# number of microseconds is used.
eq(td(seconds=1) * 0.123456, td(microseconds=123456))
eq(td(seconds=1) * 0.6112295, td(microseconds=611230))
# Division by int and float
eq((3*us) / 2, 2*us)
eq((5*us) / 2, 2*us)
eq((-3*us) / 2.0, -2*us)
eq((-5*us) / 2.0, -2*us)
eq((3*us) / -2, -2*us)
eq((5*us) / -2, -2*us)
eq((3*us) / -2.0, -2*us)
eq((5*us) / -2.0, -2*us)
for i in range(-10, 10):
eq((i*us/3)//us, round(i/3))
for i in range(-10, 10):
eq((i*us/-3)//us, round(i/-3))
# Issue #23521
eq(td(seconds=1) / (1 / 0.6112295), td(microseconds=611230))
# Issue #11576
eq(td(999999999, 86399, 999999) - td(999999999, 86399, 999998),
td(0, 0, 1))
eq(td(999999999, 1, 1) - td(999999999, 1, 0),
td(0, 0, 1))
|
dc61cd77621a3e8a7b1ffd9999a147c84af1da59
| 35,626 |
def shorten_line(line: Line, intersections: list[Matchstick], gw: GameWindow) -> Line:
"""
Shorten a line so that it fits nicely within the row and doesn't get too close to adjacent sticks when drawn
:param line: the line to shorten
:param intersections: the sticks that the line intersects with
:param gw: the game window
:return: the shortened line
"""
# Get the smallest and largest x coordinates of the intersected sticks
smallest_stick_x = get_min_x(intersections)
largest_stick_x = get_max_x(intersections)
# All the sticks are on the same row, so they all have the same y coordinates
y_low = intersections[0].v_pos - gw.stick_length / 2
y_high = intersections[0].v_pos + gw.stick_length / 2
# Adjust the x and y coordinates
new_line = chop_y(line, y_low, y_high)
new_line = chop_x(new_line, smallest_stick_x - gw.h_spacing/3, largest_stick_x + gw.h_spacing/3)
return new_line
|
381c70da0e5ee740e1c563e033d851e920e62702
| 35,627 |
def uprev_overlays(overlays, build_targets=None, chroot=None, output_dir=None):
"""Uprev the given overlays.
Args:
overlays (list[str]): The list of overlay paths.
build_targets (list[build_target_lib.BuildTarget]|None): The build targets
to clean in |chroot|, if desired. No effect unless |chroot| is provided.
chroot (chroot_lib.Chroot|None): The chroot to clean, if desired.
output_dir (str|None): The path to optionally dump result files.
Returns:
list[str] - The paths to all of the modified ebuild files. This includes the
new files that were added (i.e. the new versions) and all of the removed
files (i.e. the old versions).
"""
assert overlays
manifest = git.ManifestCheckout.Cached(constants.SOURCE_ROOT)
uprev_manager = uprev_lib.UprevOverlayManager(
overlays,
manifest,
build_targets=build_targets,
chroot=chroot,
output_dir=output_dir)
uprev_manager.uprev()
return uprev_manager.modified_ebuilds
|
0190e28ff270596cd2829c7956044a4af69fb328
| 35,628 |
import math
def find_closest_pucker(phi, theta, pucker_dict):
"""
Calculated based on cord length:
delta_x = sin(phi2) * cos(theta2) - cos(ph1)*cos(theta1)
delta_y = sin(phi2) * sin(theta2) - cos(phi1)*sin(theta1)
delta_z = cos(phi2) - cos(phi1)
chord_length = sqrt( delta_x^2 + delta_y^2 + delta_z^2)
(aka norm of the vectors)
central angle (aka delta_sigma) = 2 * arcsin( chord / 2)
d = r * delta_sigma
:param phi: phi of the pucker to identify
:param theta: second CP parameter of the pucker to identify
:param pucker_dict: dictionary of names and CP params of IUPAC puckers
:return: closest_pucker: (string) closest IUPAC pucker name
"""
closest_pucker = None
closest_dist = np.inf
xyz = angles_to_xyz(phi, theta)
for pucker in pucker_dict:
chord = np.linalg.norm(xyz-pucker_dict[pucker][XYZ])
current_dist = 2. * math.asin(chord / 2.)
if current_dist < closest_dist:
closest_dist = current_dist
closest_pucker = pucker
if closest_pucker is None:
warning("Did not find a closest pucker. Check puckering dictionary.")
return closest_pucker
|
224395dad4514062e6e065e8506c64e06832bb9d
| 35,629 |
def signal_ramp(k_start):
"""Signal generator for a ramp signal
Parameters
----------
k_start : SignalUserTemplate
the sampling index as returned by counter() at which the ramp starts increasing.
Returns
-------
SignalUserTemplate
the output signal
Details
-------
y[k] = { 0 for k < k_start
{ k-k_start for k >= k_start
"""
k = dy.counter()
active = dy.int32(k_start) <= k
linearRise = dy.convert( (k - dy.int32(k_start) ), dy.DataTypeFloat64(1) )
activation = dy.convert( active, dy.DataTypeFloat64(1) )
return activation * linearRise
|
045d1e8530993e47c9da2bbfb38105c86007ba37
| 35,630 |
def pooling_layer(inputs, pooling=constants.MAXPOOL, pool_size=2, strides=2,
name=None):
"""
Args:
inputs: (4d tensor) input tensor of shape
[batch_size, height, width, n_channels]
pooling: (Optional, {AVGPOOL, MAXPOOL}, defaults to MAXPOOL) Type of
pooling to be used, which is always of stride 2
and pool size 2.
pool_size: (Optional, defaults to 2) pool size of pooling operation
strides: (Optional, defaults to 2) strides of pooling operation
name: (Optional, defaults to None) A name for the operation.
"""
errors.check_valid_value(
pooling, 'pooling', [constants.AVGPOOL, constants.MAXPOOL])
if pooling == constants.AVGPOOL:
outputs = tf.layers.average_pooling2d(
inputs=inputs, pool_size=pool_size, strides=strides, name=name)
else: # MAXPOOL
outputs = tf.layers.max_pooling2d(
inputs=inputs, pool_size=pool_size, strides=strides, name=name)
return outputs
|
856c4c9c378d11764f2885defe433d1b9ec85814
| 35,631 |
import types
def test_equal_ImageDecoderSlice_ImageDecoder():
"""
Comparing results of pipeline: (ImageDecoder -> Slice), with the same operation performed by fused operator
"""
batch_size =128
eii = ExternalInputIterator(128)
pos_size_iter = iter(eii)
class NonFusedPipeline(Pipeline):
def __init__(self, batch_size, num_threads, device_id, num_gpus):
super(NonFusedPipeline, self).__init__(batch_size,
num_threads,
device_id)
self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus)
self.input_crop_pos = ops.ExternalSource()
self.input_crop_size = ops.ExternalSource()
self.input_crop = ops.ExternalSource()
self.decode = ops.ImageDecoder(device='mixed', output_type=types.RGB)
self.slice = ops.Slice(device = 'gpu')
def define_graph(self):
jpegs, labels = self.input()
self.crop_pos = self.input_crop_pos()
self.crop_size = self.input_crop_size()
images = self.decode(jpegs)
slice = self.slice(images, self.crop_pos, self.crop_size)
return (slice, labels)
def iter_setup(self):
(crop_pos, crop_size) = pos_size_iter.next()
self.feed_input(self.crop_pos, crop_pos)
self.feed_input(self.crop_size, crop_size)
class FusedPipeline(Pipeline):
def __init__(self, batch_size, num_threads, device_id, num_gpus):
super(FusedPipeline, self).__init__(batch_size,
num_threads,
device_id)
self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus)
self.input_crop_pos = ops.ExternalSource()
self.input_crop_size = ops.ExternalSource()
self.input_crop = ops.ExternalSource()
self.decode = ops.ImageDecoderSlice(device = 'mixed', output_type = types.RGB)
def define_graph(self):
jpegs, labels = self.input()
self.crop_pos = self.input_crop_pos()
self.crop_size = self.input_crop_size()
images = self.decode(jpegs, self.crop_pos, self.crop_size)
return (images, labels)
def iter_setup(self):
(crop_pos, crop_size) = pos_size_iter.next()
self.feed_input(self.crop_pos, crop_pos)
self.feed_input(self.crop_size, crop_size)
nonfused_pipe = NonFusedPipeline(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1)
nonfused_pipe.build()
nonfused_pipe_out = nonfused_pipe.run()
fused_pipe = FusedPipeline(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1)
fused_pipe.build()
fused_pipe_out = fused_pipe.run()
for i in range(batch_size):
nonfused_pipe_out_cpu = nonfused_pipe_out[0].as_cpu()
fused_pipe_out_cpu = fused_pipe_out[0].as_cpu()
assert(np.sum(np.abs(nonfused_pipe_out_cpu.at(i)-fused_pipe_out_cpu.at(i)))==0)
|
6dc72175560dba39d54a03da9aaaca67e6cf16c9
| 35,632 |
from typing import Union
def count_tiles(reader_or_writer: Union[BioReader, BioWriter]) -> int:
""" Returns the number of tiles in a BioReader/BioWriter.
"""
tile_size = TILE_SIZE_2D if reader_or_writer.Z == 1 else TILE_SIZE_3D
num_tiles = (
len(range(0, reader_or_writer.Z, tile_size)) *
len(range(0, reader_or_writer.Y, tile_size)) *
len(range(0, reader_or_writer.X, tile_size))
)
return num_tiles
|
1e70208c4269dc9cbee3d6926283a78554fcac44
| 35,633 |
import re
def fn(groups, lsv_fn):
"""Regular expression did not contain a match"""
field, pattern = groups
route_regex = re.compile(pattern)
return lambda data: route_regex.search(str(lsv_fn(data, field))) == None
|
65667e58af7e9e6bb4e38d28b267d60e9bc6bd46
| 35,634 |
import glob
import random
def airq_data_loader(normalize="none"):
"""Function to load the Air Quality dataset into TF dataset objects
The data is loaded, normalized, padded, and a mask channel is generated to indicate missing observations
The raw csv files can be downloaded from:
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
Args:
normalize: The type of data normalizatino to perform ["none", "mean_zero", "min_max"]
"""
all_files = glob.glob("./data/air_quality/*.csv")
column_list = ["year", "month", "day", "hour", "PM2.5", "PM10", "SO2", "NO2", "CO", "O3", "TEMP", "PRES", "DEWP", "RAIN", "WSPM", "station"]
feature_list = ["PM2.5", "PM10", "SO2", "NO2", "CO", "O3", "TEMP", "PRES", "DEWP", "WSPM"]
sample_len = 24 *28 *1 # 2 months worth of data
all_stations = []
for file_names in all_files:
station_data = pd.read_csv(file_names)[column_list]
all_stations.append(station_data)
all_stations = pd.concat(all_stations, axis=0, ignore_index=True)
df_sampled = all_stations[column_list].groupby(['year', 'month', 'station'])
signals, signal_maps = [], []
inds, valid_inds, test_inds = [], [], []
z_ls, z_gs = [], []
for i, sample in enumerate(df_sampled):
if len(sample[1]) < sample_len:
continue
# Determine training indices for different years
if sample[0][0] in [2013, 2014, 2015, 2017]:
inds.extend([i] )
elif sample[0][0] in [2016]: # data from 2016 is used for testing, because we have fewer recordings for the final year
test_inds.extend([i])
x = sample[1][feature_list][:sample_len].astype('float32')
sample_map = x.isna().astype('float32')
z_l = sample[1][['day', 'RAIN']][:sample_len]
x = x.fillna(0)
z_g = np.array(sample[0])
signals.append(np.array(x))
signal_maps.append(np.array(sample_map))
z_ls.append(np.array(z_l))
z_gs.append(np.array(z_g))
signals_len = np.zeros((len(signals),)) + sample_len
signals = np.stack(signals)
signal_maps = np.stack(signal_maps)
z_ls = np.stack(z_ls)
z_gs = np.stack(z_gs)
random.shuffle(inds)
train_inds = inds[:int(len(inds)*0.85)]
valid_inds = inds[int(len(inds)*0.85):]
train_signals, valid_signals, test_signals, normalization_specs = normalize_signals(signals, signal_maps,
(train_inds, valid_inds, test_inds),
normalize)
# plot a random sample
ind = np.random.randint(0, len(train_inds))
f, axs = plt.subplots(nrows=train_signals.shape[-1], ncols=1, figsize=(18 ,14))
for i, ax in enumerate(axs):
ax.plot(train_signals[ind, :, i])
ax.set_title(feature_list[i])
plt.tight_layout()
plt.savefig('./data/air_quality/sample.pdf')
trainset = tf.data.Dataset.from_tensor_slices((train_signals, signal_maps[train_inds], signals_len[train_inds],
z_ls[train_inds], z_gs[train_inds])).shuffle(10).batch(10)
validset = tf.data.Dataset.from_tensor_slices(
(valid_signals, signal_maps[valid_inds], signals_len[valid_inds], z_ls[valid_inds], z_gs[valid_inds])).shuffle(10).batch(10)
testset = tf.data.Dataset.from_tensor_slices(
(test_signals, signal_maps[test_inds], signals_len[test_inds], z_ls[test_inds], z_gs[test_inds])).shuffle(10).batch(10)
return trainset, validset, testset, normalization_specs
|
c70217ed045633d39b7758bfc00ede6aaa483c58
| 35,635 |
def get_living_neighbors(i, j, generation):
"""
returns living neighbors around the cell
"""
living_neighbors = 0 # count for living neighbors
neighbors = [(i-1, j), (i+1, j), (i, j-1), (i, j+1),
(i-1, j+1), (i-1, j-1), (i+1, j+1), (i+1, j-1)]
for k, l in neighbors:
if 0 <= k < len(generation) and 0 <= l < len(generation[0]):
if generation[k][l] == 1:
living_neighbors += 1
return living_neighbors
|
437229b8152c3b2ce5b90ef6ddef83daa5c24a85
| 35,636 |
def hook_makeOutline(VO, blines):
"""Return (tlines, bnodes, levels) for Body lines blines.
blines is either Vim buffer object (Body) or list of buffer lines.
"""
Z = len(blines)
tlines, bnodes, levels = [], [], []
tlines_add, bnodes_add, levels_add = tlines.append, bnodes.append, levels.append
for i in xrange(Z):
if not blines[i].startswith('+'):
continue
bline = blines[i]
m = headline_match(bline)
if not m:
continue
lev = len(m.group(1))
head = bline[2+lev:].strip()
tline = ' %s|%s' %('. '*(lev-1), head)
tlines_add(tline)
bnodes_add(i+1)
levels_add(lev)
return (tlines, bnodes, levels)
|
b755b6580e983f5758bb301318b862bab083a240
| 35,637 |
def domain_min():
""" Variable evaluator that represents the minimum value in the current domain
of the variable chosen by the search.
Returns:
An evaluator of integer variable
"""
return CpoFunctionCall(Oper_domain_min, Type_IntVarEval, ())
|
9dadab36bac75053e5b62012c27a9e1a1c484af7
| 35,639 |
def StrToList(val):
""" Takes a string and makes it into a list of ints (<= 8 bits each)"""
return [ord(c) for c in val]
|
79ee38dc4952b677896a77379c3cccca8f74eb2c
| 35,640 |
def our_completion_DFA(states, alphabet, transitions,
initialState, finalStates):
""" For every transition (from, to, c) adds every transition
(from, to, s') where s' represents c plus every other symbol """
table = powerset_table(alphabet)
new_alphabet = alphabet.union([str(i) for i in range(len(table))])
new_transitions = []
for from_s, to_s, c in transitions:
for i,pairs in enumerate(table):
if c in pairs and (from_s, to_s, str(i)) not in new_transitions:
new_transitions.append( (from_s, to_s, str(i)) )
return (states, new_alphabet, transitions + new_transitions,
initialState, finalStates)
|
851b96bd218cda81197c636f942488404a11654e
| 35,641 |
def createCopy(source):
"""Link the source set to the destination
If one does not find the value in the destination set,
search will go on to the source set to get the value.
Value from source are copy-on-write. i.e. any try to
modify one of them will end up putting the modified value
in the destination set.
"""
return source.createCopy()
|
0cd045dff53f0dcda2b9b3d86d595fb6d4b7bd25
| 35,642 |
import torch
def generate_data(network_list, data_set, Lb, Ub, total_data_num, NUM):
"""
NUM为需要生成的数据量
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = "cpu"
# 网络使用
total_predicts_data = []
for k in range(len(data_set)):
model = network_list[k]
data_num = data_set[k].shape[0]
T = torch.as_tensor(np.random.rand(int(NUM * data_num / total_data_num)).reshape(-1, 1) * 1.5 - 0.75, dtype=torch.float32).to(device)
predicts_data_list = []
predicts = model(T)
count = 0
for i in range(model.raw_dim):
if i in model.outputParameter_index_list:
predicts_data = predicts[:, [count]]
count += 1
else:
predicts_data = torch.ones(T.shape[0], 1) * float(np.mean((data_set[k])[:, [i]]))
predicts_data_list.append(predicts_data.cpu().detach().numpy())
predicts_data_list = np.hstack(predicts_data_list)
total_predicts_data.append(predicts_data_list)
total_predicts_data = np.vstack(total_predicts_data)
total_predicts_data = total_predicts_data * (Ub - Lb) + Lb
return total_predicts_data
|
9e13ec3d722930883fdde7874731d7325f2f987a
| 35,644 |
from typing import Any
def convert_audio(
in_sound: ArrayLike, in_rate: int, *, out_rate: int, out_format: DTypeLike, out_channels: int
) -> NDArray[Any]:
"""Convert an audio sample into a format supported by this device.
Returns the converted array. This might be a reference to the input array if no conversion was needed.
Args:
in_sound: The input ArrayLike sound sample. Input format and channels are derived from the array.
in_rate: The samplerate of the input array.
out_rate: The samplerate of the output array.
out_format: The output format of the converted array.
out_channels: The number of audio channels of the output array.
.. versionadded:: 13.6
.. seealso::
:any:`AudioDevice.convert`
"""
in_array: NDArray[Any] = np.asarray(in_sound)
if len(in_array.shape) == 1:
in_array = in_array[:, np.newaxis]
if not len(in_array.shape) == 2:
raise TypeError(f"Expected a 1 or 2 ndim input, got {in_array.shape} instead.")
cvt = ffi.new("SDL_AudioCVT*")
in_channels = in_array.shape[1]
in_format = _get_format(in_array.dtype)
out_sdl_format = _get_format(out_format)
if _check(lib.SDL_BuildAudioCVT(cvt, in_format, in_channels, in_rate, out_sdl_format, out_channels, out_rate)) == 0:
return in_array # No conversion needed.
# Upload to the SDL_AudioCVT buffer.
cvt.len = in_array.itemsize * in_array.size
out_buffer = cvt.buf = ffi.new("uint8_t[]", cvt.len * cvt.len_mult)
np.frombuffer(ffi.buffer(out_buffer[0 : cvt.len]), dtype=in_array.dtype).reshape(in_array.shape)[:] = in_array
_check(lib.SDL_ConvertAudio(cvt))
out_array: NDArray[Any] = (
np.frombuffer(ffi.buffer(out_buffer[0 : cvt.len_cvt]), dtype=out_format).reshape(-1, out_channels).copy()
)
return out_array
|
5069db14d2cca3233ecc96d57874c6badf08b341
| 35,645 |
def normalize_tags(string):
"""Return a list of normalized tags from a string with comma separated
tags"""
tags = string.split(',')
result = []
for tag in tags:
normalized = normalize(tag)
if normalized and not normalized in result:
result.append(normalized)
return result
|
6a03e6681246709e33d4a34c169158d02b4d191c
| 35,646 |
def basemz(df):
"""
The mz of the most abundant ion.
"""
# returns the
d = np.array(df.columns)[df.values.argmax(axis=1)]
return Trace(d, df.index, name='basemz')
|
8843b0065e8de383743a5c0442246a01edd1de23
| 35,647 |
def M_matrix_old(s, c, m, l_max):
"""Legacy function. Same as :meth:`M_matrix` except trying to be cute
with ufunc's, requiring scope capture with temp func inside
:meth:`give_M_matrix_elem_ufunc`, which meant that numba could not
speed up this method. Remains here for testing purposes. See
documentation for :meth:`M_matrix` parameters and return value.
"""
_ells = ells(s, m, l_max)
uf = give_M_matrix_elem_ufunc(s, c, m)
return uf.outer(_ells,_ells).astype(complex)
|
2d6576c56663d6cd7226d02b6d794305bb943ae7
| 35,648 |
def create_model(modelfunc, fname='', listw=[], outfname=''):
""":modelfunc: is a function that takes a word and returns its
splits. for ngram model this function returns all the ngrams of a
word, for PCFG it will return te split of the password.
@modelfunc: func: string -> [list of strings]
@fname: name of the file to read from
@listw: list of passwords. Used passwords from both the files and
listw if provided.
@outfname: the file to write down the model.
"""
pws = []
if fname:
pws = helper.open_get_line(fname, limit=3e6)
def join_iterators(_pws, listw):
for p in _pws: yield p
for p in listw: yield p
big_dict = defaultdict(int)
total_f, total_e = 0, 0
for pw, c in join_iterators(pws, listw):
for ng in modelfunc(pw):
big_dict[ng] += c
if len(big_dict)%100000 == 0:
print ("Dictionary size: {}".format(len(big_dict)))
total_f += c
total_e += 1
big_dict['__TOTAL__'] = total_e
big_dict['__TOTALF__'] = total_f
nDawg= dawg.IntCompletionDAWG(big_dict)
if not outfname:
outfname = 'tmpmodel.dawg'
nDawg.save(outfname)
return nDawg
|
7a6494b8017829e94fbfe364e07267b4f882a0b2
| 35,649 |
from typing import Collection
def iterable_to_wikitext(items: Collection[object]) -> str:
"""Convert iterable to wikitext."""
if len(items) == 1:
return f"{next(iter(items))}"
text = ""
for item in items:
text += f"\n* {item}"
return text
|
b4b082eb25e20deac738ae85d4141a0d3a98c349
| 35,650 |
def ElemMatch(q, *conditions):
"""
The ElemMatch operator matches documents that contain an array field with at
least one element that matches all the specified query criteria.
"""
new_condition = {}
for condition in conditions:
if isinstance(condition, (Condition, Group)):
condition = condition.to_dict()
deep_merge(condition, new_condition)
return Condition(q._path, new_condition, '$elemMatch')
|
cd45f06cc5bd19ecfc2539ec7de0f43d8e0bb05b
| 35,651 |
from typing import List
def get_links(client: SymphonyClient) -> List[Link]:
"""This function returns all existing links
Returns:
List[ `pyinventory.common.data_class.Link` ]
Example:
```
all_links = client.get_links()
```
"""
links = LinksQuery.execute(client, first=PAGINATION_STEP)
edges = links.edges if links else []
while links is not None and links.pageInfo.hasNextPage:
links = LinksQuery.execute(
client, after=links.pageInfo.endCursor, first=PAGINATION_STEP
)
if links is not None:
edges.extend(links.edges)
result = []
for edge in edges:
node = edge.node
if node is not None:
result.append(
Link(
id=node.id,
properties=node.properties,
service_ids=[s.id for s in node.services],
)
)
return result
|
683f605239ade48e8938d9e7a23c3033a533abe6
| 35,652 |
def set(data,c):
"""
Set Data to a Constant
Parameters:
* data Array of spectral data.
* c Constant to set data to (may be complex)
"""
data[...,:]=c
return data
|
cff2592b3973bbd3f9a1a4dbaa6d6ba4b99260bc
| 35,654 |
def browse_announcements():
"""
This function is used to browse Announcements Department-Wise
made by different faculties and admin.
@variables:
cse_ann - Stores CSE Department Announcements
ece_ann - Stores ECE Department Announcements
me_ann - Stores ME Department Announcements
sm_ann - Stores SM Department Announcements
all_ann - Stores Announcements intended for all Departments
context - Dictionary for storing all above data
"""
cse_ann = Announcements.objects.filter(department="CSE")
ece_ann = Announcements.objects.filter(department="ECE")
me_ann = Announcements.objects.filter(department="ME")
sm_ann = Announcements.objects.filter(department="SM")
all_ann = Announcements.objects.filter(department="ALL")
context = {
"cse" : cse_ann,
"ece" : ece_ann,
"me" : me_ann,
"sm" : sm_ann,
"all" : all_ann
}
return context
|
eaa72fbbd845c2b1b0771659fab2c0f772932d1e
| 35,655 |
def set_point_restraint(self,point,restraints):
"""
params:
point: str, name of point
restraints: bool, list of 6 to set restraints
return:
status of success
"""
try:
assert len(restraints)==6
pt=self.session.query(Point).filter_by(name=point).first()
if pt is None:
raise Exception("Point doesn't exists.")
res=self.session.query(PointRestraint).filter_by(point_name=point).first()
if res is None:
res=PointRestraint()
res.point_name=point
res.u1=restraints[0]
res.u2=restraints[1]
res.u3=restraints[2]
res.r1=restraints[3]
res.r2=restraints[4]
res.r3=restraints[5]
self.session.add(res)
elif not (restraints[0] or restraints[1] or restraints[2] or\
restraints[3] or restraints[4] or restraints[5]):
self.session.delete(res)
else:
res.u1=restraints[0]
res.u2=restraints[1]
res.u3=restraints[2]
res.r1=restraints[3]
res.r2=restraints[4]
res.r3=restraints[5]
self.session.add(res)
return True
except Exception as e:
logger.info(str(e))
self.session.rollback()
return False
|
1b512de2fc9dd1a9f57e85cab65eb029be1e036c
| 35,656 |
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6) -> float:
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean)
|
01a7434325192472add5030581df17d79a79b5e0
| 35,657 |
from typing import Any
from typing import Dict
def get_meta(instance: Any) -> Dict[str, Any]:
"""
Returns object pjrpc metadata.
"""
return getattr(instance, '__pjrpc_meta__', {})
|
1357cab8698297b8ba9c10423e4c0473690cb8f0
| 35,658 |
def initial_pop(size, password):
"""
Generate a population consisting of random words, each with the same
length as the password, and the population has the size specified.
"""
return [word_generate(len(password)) for _ in range(size)]
|
08e797996928e94565a822c7b2e5075145568edd
| 35,659 |
from pathlib import Path
def getAllComicImagePaths(source = "./comic_pages"):
"""Collect an ordered list of comic page images."""
p = Path(source)
files = [x for x in p.iterdir() if x.is_file()]
return [f for f in sorted(files) if _isImage(f)]
|
1f9a560085ec090352d3a9e48c2d3521a2ee9bb5
| 35,660 |
import requests
def login():
"""[summary]
Returns:
[type]: [description]
"""
if current_user.is_authenticated:
return flask.redirect(flask.url_for("bp.index"))
if flask.request.method == "POST":
if flask.request.form["submit_button"] == "GOOGLE LOGIN":
# Find out what URL to hit for Google Login
google_provider_cfg = requests.get(GOOGLE_DISCOVERY_URL).json()
authorization_endpoint = google_provider_cfg["authorization_endpoint"]
request_uri = client.prepare_request_uri(
authorization_endpoint,
redirect_uri=flask.request.base_url + "/callback",
scope=["openid", "email", "profile"],
)
return flask.redirect(request_uri)
if flask.request.form["submit_button"] == "LOG IN HERE":
email = flask.request.form.get("email")
password = flask.request.form.get("password")
if email == "" or password == "":
flask.flash("Please enter email or password")
return flask.render_template("login.html")
my_user = User.query.filter_by(email=email).first()
if not my_user or not check_password_hash(my_user.password, password):
flask.flash("Please check your login details and try again")
return redirect("/login")
login_user(my_user)
return flask.redirect(flask.url_for("bp.index"))
return flask.render_template("login.html")
|
e25058f928b586b75a022b6438f882e24a596f1c
| 35,662 |
def settings_page():
"""
The data web pages where you can download/delete the raw gnss data
"""
return render_template("settings.html")
|
6c12dedb13ac88ebda7c67eabe25a73da54eaa21
| 35,663 |
def SaveNumResults(doc:NexDoc, fileName):
"""Saves the numerical results to a text file with the specified name."""
return NexRun("SaveNumResults", locals())
|
9a1750d3bf92e2a5a459da5563705abe9e177bb0
| 35,664 |
def load_laplacian(n=0):
"""
Laplacians have these normalizations (from Ashish Raj):
n=0: L0 = diag(rowdegree) - C;
n=1: L1 = eye(nroi) - diag(1./(rowdegree+eps)) * C;
n=2: L2 = eye(nroi) - diag(1./(sqrt(rowdegree)+eps)) * C* diag(1./(sqrt(coldegree)+eps)) ;
n=3: L3 = eye(nroi) - diag(1./(sqrt(rowdegree.*coldegree)+eps)) * C; % * diag(1./(sqrt(coldegree)+eps)) ;
n=4: L4 = eye(nroi) - diag(1./(sqrt(sqrt(rowdegree.*coldegree)+eps))) * C * diag(1./(sqrt(sqrt(rowdegree.*coldegree)+eps)));
n=5: L5 = eye(nroi) - diag(1./(sqrt((rowdegree+coldegree)/2)+eps)) * C; % * diag(1./(sqrt(coldegree)+eps)) ;
"""
laplacian_filepath = get_file_path('connectivity_matrices/laplacians.mat')
laplacian = pd.DataFrame(loadmat(laplacian_filepath)['laplacians'][0][0][n])
DK = load_atlas(atlas="DK", portion="LRRL")
DK = DK.drop(
[
"Right-choroid-plexus",
"Left-choroid-plexus",
"Right-VentralDC",
"Left-VentralDC",
],
axis=0,
)
laplacian.columns = list(DK.index)
laplacian.index = list(DK.index)
return laplacian
|
188f5e3d920d4a7a660b4f2133c6675888efd7f8
| 35,665 |
def parse_host_port(address, default_port=None):
"""
Parse an endpoint address given in the form "host:port".
"""
if isinstance(address, tuple):
return address
def _fail():
raise ValueError("invalid address %r" % (address,))
def _default():
if default_port is None:
raise ValueError("missing port number in address %r" % (address,))
return default_port
if address.startswith('['):
# IPv6 notation: '[addr]:port' or '[addr]'.
# The address may contain multiple colons.
host, sep, tail = address[1:].partition(']')
if not sep:
_fail()
if not tail:
port = _default()
else:
if not tail.startswith(':'):
_fail()
port = tail[1:]
else:
# Generic notation: 'addr:port' or 'addr'.
host, sep, port = address.partition(':')
if not sep:
port = _default()
elif ':' in host:
_fail()
return host, int(port)
|
883f09d67e6be048b98806f0f1bbb5e00472c47b
| 35,666 |
def free_residents(residents_prefs_dict, matched_dict):
"""
In this function, we return a list of resident who do not have empty prefrences list and unmatched with any hospital.
"""
fr = []
for res in residents_prefs_dict:
if residents_prefs_dict[res]:
if not (any(res in match for match in matched_dict.values())):
fr.append(res)
return fr
|
b07991f6286be3c0e4b163ca2f0991630f910b4c
| 35,667 |
def index():
"""View of providing a feedback from the client side"""
form = FeedbackForm()
if form.validate_on_submit():
try:
data = {
'email': form.email.data,
'title': form.title.data,
'content': form.content.data,
}
new_feedback = Feedback(**data)
db.session.add(new_feedback)
db.session.commit()
committed_feedback = Feedback.query \
.filter_by(**data).first()
token = committed_feedback.token
send_email(data['email'],
'Thank you for your feedback.',
'main/mail/new_feedback',
token=token)
flash('Your Feedback is added Successfully')
return render_template('/main/success.html',
token=token)
except SQLAlchemyError:
flash('Failed to give a Feedback')
return render_template('/main/index.html',
form=form)
|
5974112cd5b87bfa204b73080346e50e63fb5ece
| 35,668 |
def predict_increment(big_n, obs_t, mu, basis_lag, coef):
"""
This should return predicted increments
between successive observations
"""
rate_hat = predict_intensity(
big_n, obs_t, mu, basis_lag, coef
)
increment_size = np.diff(obs_t)
return rate_hat * increment_size
|
dbb17ac3538e25c1da4e426c7629f6c9c05737a1
| 35,669 |
def _dualprf_error_unwrap(data_ma, ref_ma, err_mask, pvel_arr, prf_arr):
"""
Finds the correction factor that minimises the difference between
the gate velocity and the reference velocity
Parameters
----------
data_ma : masked array
Data
ref_ma : masked array
Reference data
err_mask : bool array
Mask for the identified outliers
pvel_arr : array
Primary (high/low PRF) velocity for each gate
prf_arr : array
PRF (high/low) of each gate
Returns
-------
nuw : int array
Unwrap number (correction factor) for each gate
"""
# Convert non-outliers to zero
ma_out = data_ma * err_mask
th_arr_out = pvel_arr * err_mask
ref_out = ref_ma * err_mask
# Primary velocity and prf factor of low PRF gates
prf_factor = np.unique(np.min(prf_arr))[0]
th_l = th_arr_out.copy()
th_l[prf_arr == prf_factor] = 0
dev = np.ma.abs(ma_out - ref_out)
nuw = np.zeros(ma_out.shape)
# Loop for possible correction factors
for ni in range(-prf_factor, (prf_factor + 1)):
# New velocity values for identified outliers
if abs(ni) == prf_factor:
v_corr_tmp = ma_out + 2 * ni * th_l
else:
v_corr_tmp = ma_out + 2 * ni * th_arr_out
# New deviation for new velocity values
dev_tmp = np.ma.abs(v_corr_tmp - ref_out)
# Compare with previous deviation
delta = dev - dev_tmp
# Update unwrap number when deviation has decreased
nuw[delta > 0] = ni
# Update corrected velocity and deviation
v_corr = ma_out + 2 * nuw * th_arr_out
dev = np.ma.abs(v_corr - ref_out)
return nuw.astype(int)
|
60230960aa37024f78d26e4df107ab22c91dafce
| 35,672 |
import pickle
def load(directory):
"""Loads pkl file from directory"""
with open(directory, 'rb') as f:
data = pickle.load(f)
return data
|
d500c6f717535ee95f452abd435be4d8688a59a4
| 35,673 |
from typing import Callable
from typing import Iterable
def choose(
chooser: Callable[[_TSource], Option[_TResult]]
) -> Callable[[Iterable[_TSource]], Iterable[_TResult]]:
"""Choose items from the sequence.
Applies the given function to each element of the list. Returns
the list comprised of the results x for each element where the
function returns `Some(x)`.
Args:
chooser: The function to generate options from the elements.
Returns:
The list comprising the values selected from the chooser
function.
"""
def _choose(source: Iterable[_TSource]) -> Iterable[_TResult]:
def mapper(x: _TSource) -> Iterable[_TResult]:
return chooser(x).to_seq()
return pipe(source, collect(mapper))
return _choose
|
388a98d8c9a7b5cf34a19515a66a72216ba64817
| 35,674 |
from .src import connect_s_fast
def connect_fast(ntwkA: Network, k: int, ntwkB: Network, l: int) -> Network:
"""
Connect two n-port networks together (using C-implementation)
Specifically, connect ports `k` on `ntwkA` to ports
`l` thru on `ntwkB`. The resultant network has
`(ntwkA.nports + ntwkB.nports - 2)` ports. The port indices ('k','l')
start from 0. Port impedances **are** taken into account.
Parameters
----------
ntwkA : :class:`Network`
network 'A'
k : int
starting port index on `ntwkA` ( port indices start from 0 )
ntwkB : :class:`Network`
network 'B'
l : int
starting port index on `ntwkB`
Returns
-------
ntwkC : :class:`Network`
new network of rank `(ntwkA.nports + ntwkB.nports - 2)`
Note
----
The effect of mis-matched port impedances is handled by inserting
a 2-port 'mismatch' network between the two connected ports.
This mismatch Network is calculated with the
:func:`impedance_mismatch` function.
Examples
--------
To implement a *cascade* of two networks
>>> ntwkA = rf.Network('ntwkA.s2p')
>>> ntwkB = rf.Network('ntwkB.s2p')
>>> ntwkC = rf.connect(ntwkA, 1, ntwkB,0)
"""
num = 1
# some checking
check_frequency_equal(ntwkA, ntwkB)
# create output Network, from copy of input
ntwkC = ntwkA.copy()
# if networks' z0's are not identical, then connect a impedance
# mismatch, which takes into account the effect of differing port
# impedances.
if assert_z0_at_ports_equal(ntwkA, k, ntwkB, l) == False:
ntwkC.s = connect_s(
ntwkA.s, k,
impedance_mismatch(ntwkA.z0[:, k], ntwkB.z0[:, l]), 0)
# the connect_s() put the mismatch's output port at the end of
# ntwkC's ports. Fix the new port's impedance, then insert it
# at position k where it belongs.
ntwkC.z0[:, k:] = npy.hstack((ntwkC.z0[:, k + 1:], ntwkB.z0[:, [l]]))
ntwkC.renumber(from_ports=[ntwkC.nports - 1] + range(k, ntwkC.nports - 1),
to_ports=range(k, ntwkC.nports))
# call s-matrix connection function
ntwkC.s = connect_s_fast(ntwkC.s, k, ntwkB.s, l)
# combine z0 arrays and remove ports which were `connected`
ntwkC.z0 = npy.hstack(
(npy.delete(ntwkA.z0, range(k, k + num), 1), npy.delete(ntwkB.z0, range(l, l + num), 1)))
return ntwkC
|
2e2fe2f57d5bc26ee3f6b1d11583f96d9f9c1ebc
| 35,675 |
import numpy
def interleave(left, right):
"""Convert two mono sources into one stereo source."""
return numpy.ravel(numpy.vstack((left, right)), order='F')
|
29833d8b4516de2bdab9a33246cb165556d287bc
| 35,676 |
from typing import Tuple
from typing import OrderedDict
from operator import concat
def DIN(
item_seq_feat_group: EmbdFeatureGroup,
other_feature_group: FeatureGroup,
dnn_hidden_units: Tuple[int] = (64, 32, 1),
dnn_activation: str = "dice",
dnn_dropout: float = 0,
dnn_bn: bool = False,
l2_dnn: float = 0,
lau_dnn_hidden_units: Tuple[int] = (32, 1),
lau_dnn_activation: str = "dice",
lau_dnn_dropout: float = 0,
lau_dnn_bn: bool = False,
lau_l2_dnn: float = 0,
seed: int = 2022,
) -> Model:
"""Implementation of Deep Interest Network (DIN) model
Parameters
----------
item_seq_feat_group : EmbdFeatureGroup
Item sequence feature group.
other_feature_group : FeatureGroup
Feature group for other features.
dnn_hidden_units : Tuple[int], optional
DNN structure, by default ``(64, 32, 1)``.
dnn_activation : str, optional
DNN activation function, by default ``"dice"``.
dnn_dropout : float, optional
DNN dropout ratio, by default ``0``.
dnn_bn : bool, optional
Whether use batch normalization or not, by default ``False``.
l2_dnn : float, optional
DNN l2 regularization param, by default ``0``.
lau_dnn_hidden_units : Tuple[int], optional
DNN structure in local activation unit, by default ``(32, 1)``.
lau_dnn_activation : str, optional
DNN activation function in local activation unit, by default ``"dice"``.
lau_dnn_dropout : float, optional
DNN dropout ratio in local activation unit, by default ``0``.
lau_dnn_bn : bool, optional
Whether use batch normalization or not in local activation unit, by default ``False``.
l2_dnn : float, optional
DNN l2 regularization param in local activation unit, by default ``0``.
seed : int, optional
Random seed of dropout in local activation unit, by default ``2022``.
Returns
-------
Model
A YouTubeDNN rank mdoel.
References
----------
.. [1] Zhou, Guorui, et al. "Deep interest network for click-through rate prediction."
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery
& data mining. 2018.
"""
feature_pool = item_seq_feat_group.feat_pool
other_dense, other_sparse = other_feature_group.embedding_lookup(pool_method="mean")
embd_outputs = OrderedDict()
id_input = None
for feat in item_seq_feat_group.features:
if id_input is None:
id_input = feature_pool.init_input(
feat.unit.name,
{"name": feat.unit.name, "shape": (1,), "dtype": tf.int32},
)
sparse_embd = item_seq_feat_group.embd_layers[feat.unit.name]
seq_input = item_seq_feat_group.input_layers[feat.name]
lau = LocalActivationUnit(
lau_dnn_hidden_units,
lau_dnn_activation,
lau_l2_dnn,
lau_dnn_dropout,
lau_dnn_bn,
seed,
)
embd_seq = sparse_embd(seq_input) # * (batch_size, seq_len, embd_dim)
embd_seq = SqueezeMask()(embd_seq)
# * att_score: (batch_size, 1, seq_len)
query = sparse_embd(id_input)
att_score = lau([query, embd_seq])
# * (batch_size, 1, embd_dim)
embd_outputs[feat.name] = tf.matmul(att_score, embd_seq)
local_activate_pool = list(embd_outputs.values())
# * concat input layers -> DNN
dnn_input = concat(other_dense, other_sparse + local_activate_pool)
dnn_output = DNN(
hidden_units=tuple(list(dnn_hidden_units) + [1]),
activation=dnn_activation,
output_activation="sigmoid",
l2_reg=l2_dnn,
dropout_rate=dnn_dropout,
use_bn=dnn_bn,
seed=seed,
)(dnn_input)
# * Construct model
inputs = list(feature_pool.input_layers.values())
model = Model(inputs=inputs, outputs=dnn_output)
return model
|
da49559837584b53989e4d0989a09796f130fb51
| 35,677 |
def get_seconds(time_string):
"""
Convert e.g. 1m5.928s to seconds
"""
minutes = float(time_string.split("m")[0])
seconds = float(time_string.split("m")[1].split("s")[0])
return minutes * 60.0 + seconds
|
5a729d24ab6c437fca536cae8ac3d34a45bb9054
| 35,678 |
import time
def generate_features_for_all_nodes(n_feature, features_filename):
"""
generates node-list with features for RiWalk-NA
"""
# generate node-features-df
print("\tFeatures generation starts.")
start_time = time.time()
nodes_all_features_df = n_feature.gen_features_all_nodes()
nodes_all_features_df.to_csv(features_filename, index=False)
print("\tFeature generation lasted {} seconds.".format(time.time() - start_time))
return nodes_all_features_df
|
e1f65c523a3140aa718ff867751657e04945fc38
| 35,679 |
def sharesnet34(**kwargs):
"""
ShaResNet-34 model from 'ShaResNet: reducing residual network parameter number by sharing weights,'
https://arxiv.org/abs/1702.08782.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.torch/models'
Location for keeping the model parameters.
"""
return get_sharesnet(blocks=34, model_name="sharesnet34", **kwargs)
|
50706761947f605fc0716740b07a661a6ad91277
| 35,680 |
import requests
from bs4 import BeautifulSoup
def query_spikeins(accession):
"""
Query spikeines IDs from Encode Websites
"""
query = f'https://www.encodeproject.org/experiments/{accession}/'
page = requests.get(query)
soup = BeautifulSoup(page.content, 'html.parser')
for div in soup.find_all('div'):
try:
if div['data-test'] == 'spikeins':
return div.find('a').get_text()
except KeyError:
continue
return None
|
c05d9480bba0b052a44b4a683da4ef16fa01e6fc
| 35,682 |
import tqdm
def pinnuts(f, M, Madapt, theta0, delta=0.6, epsilon=None):
"""
Implements the multinomial Euclidean Hamiltonian Monte Carlo sampler
described in Betancourt (2016).
Runs Madapt steps of burn-in, during which it adapts the step size
parameter epsilon, then starts generating samples to return.
Note the initial step size is tricky and not exactly the one from the
initial paper. In fact the initial step size could be given by the user in
order to avoid potential problems
INPUTS
------
epsilon: float
step size
see nuts8 if you want to avoid tuning this parameter
f: callable
it should return the log probability and gradient evaluated at theta
logp, grad = f(theta)
M: int
number of samples to generate.
Madapt: int
the number of steps of burn-in/how long to run the dual averaging
algorithm to fit the step size epsilon.
theta0: ndarray[float, ndim=1]
initial guess of the parameters.
KEYWORDS
--------
delta: float
targeted acceptance fraction
OUTPUTS
-------
samples: ndarray[float, ndim=2]
M x D matrix of samples generated by NUTS.
note: samples[0, :] = theta0
"""
if len(np.shape(theta0)) > 1:
raise ValueError('theta0 is expected to be a 1-D array')
D = len(theta0)
samples = np.empty((M + Madapt, D), dtype=float)
lnprob = np.empty(M + Madapt, dtype=float)
logp, grad = f(theta0)
samples[0, :] = theta0
lnprob[0] = logp
# Choose a reasonable first epsilon by a simple heuristic.
if epsilon is None:
epsilon = find_reasonable_epsilon(theta0, grad, logp, f)
# Parameters to the dual averaging algorithm.
gamma = 0.05
t0 = 10
kappa = 0.75
mu = log(10. * epsilon)
# Initialize dual averaging algorithm.
epsilonbar = 1
Hbar = 0
for m in tqdm.trange(1, M + Madapt):
# Resample momenta.
r0 = np.random.normal(0, 1, D)
#joint lnp of theta and momentum r
joint = logp - 0.5 * np.dot(r0, r0.T)
# if all fails, the next sample will be the previous one
samples[m, :] = samples[m - 1, :]
lnprob[m] = lnprob[m - 1]
alpha, nalpha, thetaprime, grad, logp = tree_sample(samples[m - 1, :], lnprob[m - 1], r0, grad, epsilon, f, joint, maxheight=10)
samples[m, :] = thetaprime[:]
lnprob[m] = logp
# Do adaptation of epsilon if we're still doing burn-in.
eta = 1. / float(m + t0)
Hbar = (1. - eta) * Hbar + eta * (delta - alpha / float(nalpha))
if (m <= Madapt):
epsilon = exp(mu - sqrt(m) / gamma * Hbar)
eta = m ** -kappa
epsilonbar = exp((1. - eta) * log(epsilonbar) + eta * log(epsilon))
else:
epsilon = epsilonbar
samples = samples[Madapt:, :]
lnprob = lnprob[Madapt:]
return samples, lnprob, epsilon
|
242c48e97137eb5ca843a3254c35b7e921d32703
| 35,685 |
from .source import importable, getname
import tempfile
def dump_source(object, **kwds):
"""write object source to a NamedTemporaryFile (instead of dill.dump)
Loads with "import" or "dill.temp.load_source". Returns the filehandle.
>>> f = lambda x: x**2
>>> pyfile = dill.temp.dump_source(f, alias='_f')
>>> _f = dill.temp.load_source(pyfile)
>>> _f(4)
16
>>> f = lambda x: x**2
>>> pyfile = dill.temp.dump_source(f, dir='.')
>>> modulename = os.path.basename(pyfile.name).split('.py')[0]
>>> exec('from %s import f as _f' % modulename)
>>> _f(4)
16
Optional kwds:
If 'alias' is specified, the object will be renamed to the given string.
If 'prefix' is specified, the file name will begin with that prefix,
otherwise a default prefix is used.
If 'dir' is specified, the file will be created in that directory,
otherwise a default directory is used.
If 'text' is specified and true, the file is opened in text
mode. Else (the default) the file is opened in binary mode. On
some operating systems, this makes no difference.
NOTE: Keep the return value for as long as you want your file to exist !
""" #XXX: write a "load_source"?
kwds.pop('suffix', '') # this is *always* '.py'
alias = kwds.pop('alias', '') #XXX: include an alias so a name is known
name = str(alias) or getname(object)
name = "\n#NAME: %s\n" % name
#XXX: assumes kwds['dir'] is writable and on $PYTHONPATH
file = tempfile.NamedTemporaryFile(suffix='.py', **kwds)
file.write(b(''.join([importable(object, alias=alias),name])))
file.flush()
return file
|
978ed048c875856a38c711a06fcbb063b8757023
| 35,686 |
async def remove_role_requirement(reaction_role: _ReactionRole, ctx: _Context, abort_text: str) -> _Tuple[bool, bool]:
"""
Returns: (success: bool, aborted: bool)
"""
role_requirement = await inquire_for_role_requirement_remove(ctx, reaction_role.role_requirements, abort_text)
if role_requirement:
role: _Role = ctx.guild.get_role(role_requirement.role_id)
role_requirement_id = role_requirement.id
await _utils.discord.reply(ctx, f'Removed role requirement (ID: {role_requirement_id}) for role \'{role.name}\' (ID: {role.id}).')
return True, False
return False, True
|
0daf6b243a685e993fc110e93cb1e4188208db93
| 35,687 |
def get_predicates():
"""
I'm not quite sure how to best get at all the predicates and tag them as relations with id's
"""
"""
results = GolrAssociationQuery(
rows=0,
facet_fields=['relation']
).exec()
facet_counts = results['facet_counts']
relations = facet_counts['relation']
return jsonify([{'id' : BiolinkTerm(c).curie(), 'name' : c, 'definition' : None} for key in relations])
"""
# Not yet implemented... don't really know how
return jsonify([])
|
2b0ec74aa91b099278c0fde7479dd90665897670
| 35,688 |
def study_dir(study_name: str) -> str:
"""(Deprecated) old name for storage directory
Args:
study_name: storage name
Returns:
Absolute path of storage directory
Warnings:
Deprecated in favor of :func:`storage_dir`
"""
return storage_dir(study_name)
|
7b0183fe16eea9b711fb023bd7c24c761f184885
| 35,689 |
def to_adjacent_matrix(m, threshold=5e-3):
"""given a numeric dxd matrix, convert it adjcent matrix
Args:
m: dxd ndarray
threshold: (Default value = 5e-3)
Returns:
dxd binary adjacent matrix
"""
m_ = m.copy()
m_[np.where(abs(m) > threshold)] = 1
# otherwise make it zero
m_[np.where(abs(m) <= threshold)] = 0
return m_
|
61349dddc057ce0f3f46157c2d89dc4d82dfdef2
| 35,690 |
import re
def hour_min_to_sec(hm):
"""Convert string in format hh:mm to seconds"""
h, m = re.match(r'(\d{1,2}):(\d{2})', hm).groups()
return 3600 * (int(h) + float(m) / 60.)
|
4b186810c1c4fe6f9767b5e3914e8869168fffbf
| 35,691 |
def create_target(hosts, name=None, comment=None):
""" In short: Create a target.
The client uses the create_target command to create a new target.
"""
if name is None:
name = hosts
root = etree.Element("create_target")
tree_name = etree.SubElement(root, "name")
tree_comment = etree.SubElement(root, "comment")
tree_host = etree.SubElement(root, "hosts")
tree_name.text = name
if comment:
tree_comment.text = comment
tree_host.text = hosts
return send_command_xml(root)
|
0f1fca078f9a13f9cf71e36b80dcb98211ae125b
| 35,693 |
import json
def get_slow_queries(**kwargs):
"""Simple function to construct and pass the args
for a redis LRANGE query on the slow_queries log."""
pipe = redis.pipeline()
resp = {}
hash_key='SLOW_QUERIES'
# minus 1 from the actual integer passed for row limit
pipe.lrange(hash_key, 0, kwargs['row_limit']-1)
data=pipe.execute()[0]
resp['slow_queries'] = [json.loads(d) for d in data]
return resp
|
27bbc3910da8055682de284e503dee6c0c6419bd
| 35,694 |
def getEscInfo(esc_record):
"""Extracts ESC information from a ESC record.
Args:
esc_record: A ESC record (dict of schema |EscSensorRecord|)).
Returns:
A tuple of:
esc_point: A (longitude, latitude) tuple.
esc_info: A |EscInformation| tuple.
"""
esc_install_params = esc_record['installationParam']
esc_point = (esc_install_params['longitude'], esc_install_params['latitude'])
ant_pattern = esc_install_params['azimuthRadiationPattern']
ant_pattern = sorted([(pat['angle'], pat['gain']) for pat in ant_pattern])
angles, gains = zip(*ant_pattern)
if angles != tuple(range(360)):
raise ValueError('ESC pattern inconsistent')
ant_gain_pattern = np.array(gains)
esc_info = EscInformation(
antenna_height=esc_install_params['height'],
antenna_azimuth=esc_install_params['antennaAzimuth'],
antenna_gain_pattern=ant_gain_pattern)
return esc_point, esc_info
|
ad3e3adaf15ff9ba4cf7f34ec70afb24a9085f63
| 35,695 |
def crcremainder(data, key):
"""
crcremainder Function
Function to calculate the CRC
remainder of a CRC message.
Contributing Author Credit:
Shaurya Uppal
Available from: geeksforgeeks.org
Parameters
----------
data: string of bits
The bit-string to be decoded.
key: string of bits
Bit-string representing key.
Returns
-------
remainder: string of bits
Bit-string representation of
encoded message.
"""
# Define Sub-Functions
def xor(a, b):
# initialize result
result = []
# Traverse all bits, if bits are
# same, then XOR is 0, else 1
for i in range(1, len(b)):
if a[i] == b[i]:
result.append('0')
else:
result.append('1')
return(''.join(result))
# Performs Modulo-2 division
def mod2div(divident, divisor):
# Number of bits to be XORed at a time.
pick = len(divisor)
# Slicing the divident to appropriate
# length for particular step
tmp = divident[0 : pick]
while pick < len(divident):
if tmp[0] == '1':
# replace the divident by the result
# of XOR and pull 1 bit down
tmp = xor(divisor, tmp) + divident[pick]
else: # If leftmost bit is '0'
# If the leftmost bit of the dividend (or the
# part used in each step) is 0, the step cannot
# use the regular divisor; we need to use an
# all-0s divisor.
tmp = xor('0'*pick, tmp) + divident[pick]
# increment pick to move further
pick += 1
# For the last n bits, we have to carry it out
# normally as increased value of pick will cause
# Index Out of Bounds.
if tmp[0] == '1':
tmp = xor(divisor, tmp)
else:
tmp = xor('0'*pick, tmp)
checkword = tmp
return(checkword)
# Condition data
data = str(data)
# Condition Key
key = str(key)
l_key = len(key)
# Appends n-1 zeroes at end of data
appended_data = data + '0'*(l_key-1)
remainder = mod2div(appended_data, key)
return(remainder)
|
6c0e401014d1a26a80c14f26f6b43a126bc0c17e
| 35,696 |
def test_method_nesting(server):
"""Test that we correctly nest namespaces"""
def handler(message):
return {
"jsonrpc": "2.0",
"result": True if message.params[0] == message.method else False,
"id": 1,
}
server._handler = handler
assert server.nest.testmethod("nest.testmethod")
assert server.nest.testmethod.some.other.method(
"nest.testmethod.some.other.method")
|
9c8264f357e0e958b94669ef82ee70b3efff7e8c
| 35,697 |
def merge_nn_dicts(
peaks, n_neighbors, peaks_in_chunk_idx_list, knn_indices_list, knn_distances_list
):
"""merge together peaks_in_chunk_idx_list and knn_indices_list
to build final graph
Args:
peaks (_type_): array of peaks
n_neighbors (_type_): number of neighbors
peaks_in_chunk_idx_list (_type_): list of spike index
knn_indices_list (_type_): indices of connections
knn_distances_list (_type_): distances
Raises:
ValueError: _description_
Returns:
_type_: _description_
"""
nn_index_array = np.zeros((len(peaks), n_neighbors * 2), dtype=int) - 1
nn_distance_array = np.zeros((len(peaks), n_neighbors * 2), dtype=float)
end_last = -1
# for each nn graph
for idxi, (peaks_in_chunk_idx, knn_indices, knn_distances) in enumerate(
zip(peaks_in_chunk_idx_list, knn_indices_list, knn_distances_list)
):
# put new neighbors in first 5 rows
nn_index_array[
peaks_in_chunk_idx[peaks_in_chunk_idx > end_last], :n_neighbors
] = knn_indices[peaks_in_chunk_idx > end_last]
# put overlapping neighbors from previous
nn_index_array[
peaks_in_chunk_idx[peaks_in_chunk_idx <= end_last], n_neighbors:
] = knn_indices[peaks_in_chunk_idx <= end_last]
# repeat for distances
nn_distance_array[
peaks_in_chunk_idx[peaks_in_chunk_idx > end_last], :n_neighbors
] = knn_distances[peaks_in_chunk_idx > end_last]
nn_distance_array[
peaks_in_chunk_idx[peaks_in_chunk_idx <= end_last], n_neighbors:
] = knn_distances[peaks_in_chunk_idx <= end_last]
# double up neighbors the beginning, since we only sample these once
if idxi == 0:
nn_index_array[peaks_in_chunk_idx, n_neighbors:] = knn_indices
nn_distance_array[peaks_in_chunk_idx, n_neighbors:] = knn_distances
# double up neighbors in the end, since we only sample these once
if idxi == len(peaks_in_chunk_idx_list) - 1:
nn_index_array[
peaks_in_chunk_idx[peaks_in_chunk_idx > end_last], n_neighbors:
] = knn_indices[peaks_in_chunk_idx > end_last]
# repeat for distances
nn_distance_array[
peaks_in_chunk_idx[peaks_in_chunk_idx > end_last], n_neighbors:
] = knn_distances[peaks_in_chunk_idx > end_last]
end_last = peaks_in_chunk_idx[-1]
return nn_index_array, nn_distance_array
|
030ff04b74f532507945c2dfd6570836e6ece941
| 35,699 |
import io
def bytes_to_PCM_16bits(bytes, start=0, end=None):
"""
Transform audio file to a format readable by scipy, ie. uncompressed PCM 16-bits.
Support transformation from any format supported by ffmpeg.
"""
try:
audiofile = AudioSegment.from_file(bytes)
except Exception as e:
raise Exception("""Invalid audio file.""")
# Crop audio
audiofile = audiofile[start*1000:]
if end:
audiofile = audiofile[:end*1000]
# Apply desired preprocessing
audiofile = audiofile.set_sample_width(2) # set to 16-bits
# audiofile.strip_silence
# Return the results as bytes without writing to disk
# ref: https://github.com/jiaaro/pydub/issues/270
buf = io.BytesIO()
audiofile.export(buf, format="wav")
return buf.getvalue()
|
cac297a610b90a3459542def406cd62f58dd86bd
| 35,700 |
import keras
from keras.datasets import cifar10
from keras.utils import np_utils
def data_cifar10(train_start=0, train_end=50000, test_start=0, test_end=10000):
"""
Preprocess CIFAR10 dataset
:return:
"""
global keras
if keras is None:
# These values are specific to CIFAR10
img_rows = 32
img_cols = 32
nb_classes = 10
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
if keras.backend.image_dim_ordering() == 'th':
x_train = x_train.reshape(x_train.shape[0], 3, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 3, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 3)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 3)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, nb_classes)
y_test = np_utils.to_categorical(y_test, nb_classes)
x_train = x_train[train_start:train_end, :, :, :]
y_train = y_train[train_start:train_end, :]
x_test = x_test[test_start:test_end, :]
y_test = y_test[test_start:test_end, :]
return x_train, y_train, x_test, y_test
|
1a23e78aa1cb873f18b31df616f467cea8db3f5e
| 35,702 |
def create_log_group_arn(logs_client, hosted_zone_test_name):
"""Return ARN of a newly created CloudWatch log group."""
log_group_name = f"/aws/route53/{hosted_zone_test_name}"
response = logs_client.create_log_group(logGroupName=log_group_name)
assert response["ResponseMetadata"]["HTTPStatusCode"] == 200
log_group_arn = None
response = logs_client.describe_log_groups()
for entry in response["logGroups"]:
if entry["logGroupName"] == log_group_name:
log_group_arn = entry["arn"]
break
return log_group_arn
|
79113cc7c9ac844c4d38cd1780b38d14a112b40d
| 35,703 |
def _make_filetags(attributes, default_filetag = None):
"""Helper function for rendering RPM spec file tags, like
```
%attr(0755, root, root) %dir
```
"""
template = "%attr({mode}, {user}, {group}) {supplied_filetag}"
mode = attributes.get("mode", "-")
user = attributes.get("user", "-")
group = attributes.get("group", "-")
supplied_filetag = attributes.get("rpm_filetag", default_filetag)
return template.format(
mode = mode,
user = user,
group = group,
supplied_filetag = supplied_filetag or "",
)
|
56898ec1fc974721150b7e1055be3ab3782754a2
| 35,704 |
from typing import Union
def button_callback(update: Update, context: CallbackContext) -> Union[None, str]:
"""Обработчик запросов обратного вызова"""
query = update.callback_query
query.answer()
message = query.data.split()
return callbacks[message[0]](update=update, context=context, query=query, message=message)
|
0c9e04f29fd931288cdb0d4cab0c732b03fd8fa0
| 35,705 |
def has_banking_permission(data):
""" CHecks to see if the user hs the correct permission. Based on Castorr91's Gamble"""
if not Parent.HasPermission(data.User, CESettings.BankingPermissions, CESettings.BankingPermissionInfo):
message = CESettings.PermissionResp.format(data.UserName, CESettings.BankingPermission, CESettings.BankingPermissionInfo)
SendResp(data, CESettings.Usage, message)
return False
return True
|
39dcb62c36e2f89a51503902db183a4c128128e6
| 35,706 |
from datetime import datetime
def calc_temps(start='start_date'):
"""min, max, avg temp for start range"""
start_date = datetime.strptime('2016-08-01', '%Y-%m-%d').date()
start_results = session.query(func.max(Measurements.tobs), \
func.min(Measurements.tobs),\
func.avg(Measurements.tobs)).\
filter(Measurements.date >= start_date)
start_tobs = []
for tobs in start_results:
tobs_dict = {}
tobs_dict["TAVG"] = float(tobs[2])
tobs_dict["TMAX"] = float(tobs[0])
tobs_dict["TMIN"] = float(tobs[1])
start_tobs.append(tobs_dict)
return jsonify(start_tobs)
|
78aaa7721c7f0d83843d85af55d2262faad69cdc
| 35,707 |
def reindex(tensor, shape, displacement=.5):
"""
Re-color the given tensor, by sampling along one axis at a specified frequency.
.. image:: images/reindex.jpg
:width: 1024
:height: 256
:alt: Noisemaker example output (CC0)
:param Tensor tensor: An image tensor.
:param list[int] shape:
:param float displacement:
:return: Tensor
"""
height, width, channels = shape
reference = value_map(tensor, shape)
mod = min(height, width)
x_offset = tf.cast((reference * displacement * mod + reference) % width, tf.int32)
y_offset = tf.cast((reference * displacement * mod + reference) % height, tf.int32)
tensor = tf.gather_nd(tensor, tf.stack([y_offset, x_offset], 2))
return tensor
|
a9aa0e323b7e2ee4f06e4f6a44fecb0c57e1acb7
| 35,708 |
def test_dal_getitem_access():
"""
Verify `__getitem__` is identical to `__getattr__`
"""
expected = "foo"
class SampleService(Service):
def sample_method(self):
return expected
dm = _BaseDataManager()
dm.register_services(sample=SampleService())
with dm.context() as ctx:
assert ctx.dal["sample.sample_method"]() == expected
|
8202385241a8ec7f4c4634b644dd8f459f5642cf
| 35,709 |
def seq_to_matrix(seq, letter_to_index=None):
"""Convert a list of characters to an N by 4 integer matrix
Parameters
----------
seq : list
list of characters A,C,G,T,-,=; heterozygous locus is separated by semiconlon. '-' is filler
for heterozygous indels; '=' is homozygous deletions
letter_to_index: dict or None
dictionary mapping DNA/RNA/amino-acid letters to array index
Returns
-------
seq_mat : numpy.array
numpy matrix for the sequences
"""
if letter_to_index is None:
letter_to_index = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'U': 3}
mat_len = len(seq)
mat = np.zeros((mat_len, 4))
n_letter = len(seq)
for i in range(n_letter):
try:
letter = seq[i]
if letter in letter_to_index:
mat[i, letter_to_index[letter]] += 1
elif letter == 'N':
mat[i, :] += 0.25
except KeyError:
print(i, letter, seq[i])
return mat
|
f43e406bc8efecc0b00ec7a22b57ebee4e16efc2
| 35,710 |
def plot(
title: str,
body_system: Body_System,
x_start: float = -1,
x_end: float = 1,
y_start: float = -1,
y_end: float = 1,) -> None:
"""
Utility function to plot how the given body-system evolves over time.
No doctest provided since this function does not have a return value.
"""
INTERVAL = 20
DELTA_TIME = INTERVAL / 1000
fig = plt.figure()
fig.canvas.set_window_title(title)
ax = plt.axes(
xlim = (x_start, x_end), ylim =(y_start, y_end)
)
plt.gca().set_aspect("equal")
patches = [
plt.Circle((body.position_x, body.position_y), body.size, fc = body.color)
for body in body_system.bodies
]
for patch in patches:
ax.add_patch(patch)
def update(frame: int) -> list[plt.Circle]:
update_step(body_system, DELTA_TIME, patches)
return patches
"""
anim = animation.FuncAnimation(
fig, update, interval = INTERVAL, blit = True
)
"""
plt.show()
|
33cdeee3be9625c82643d3cefa75a5d554b0f54e
| 35,712 |
from caffe2.python import workspace, core
def GetGPUMemoryUsageStats():
"""Get GPU memory usage stats from CUDAContext/HIPContext. This requires flag
--caffe2_gpu_memory_tracking to be enabled"""
workspace.RunOperatorOnce(
core.CreateOperator(
"GetGPUMemoryUsage",
[],
["____mem____"],
device_option=core.DeviceOption(workspace.GpuDeviceType, 0),
),
)
b = workspace.FetchBlob("____mem____")
return {
'total_by_gpu': b[0, :],
'max_by_gpu': b[1, :],
'total': np.sum(b[0, :]),
'max_total': np.sum(b[1, :])
}
|
84cd6d5b4786f666bfa756addf4d3010af6737f9
| 35,713 |
import typing
def from_jsonable(return_type: typing.Any, obj: typing.Any) -> typing.Any:
"""Return an instance of the specified 'return_type' that has been
constructed based on the specified 'obj', which is a composition of python
objects as would result from JSON deserialization by the 'json' module.
"""
return gencodeutil.from_jsonable(return_type, obj, _name_mappings,
_class_by_name)
|
6e7df09a53c116fe48cabb6e18587f297640e2cc
| 35,714 |
def _convert_symbol(op_name, inputs, attrs,
identity_list=None,
convert_map=None):
"""Convert from mxnet op to nnvm op.
The converter must specify some conversions explicitly to
support gluon format ops such as conv2d...
Parameters
----------
op_name : str
Operator name, such as Convolution, FullyConnected
inputs : list of nnvm.Symbol
List of input symbols.
attrs : dict
Dict of operator attributes
identity_list : list
List of operators that don't require conversion
convert_map : dict
Dict of name : callable, where name is the op's name that
require conversion to nnvm, callable are functions which
take attrs and return (new_op_name, new_attrs)
Returns
-------
sym : nnvm.Symbol
Converted nnvm Symbol
"""
identity_list = identity_list if identity_list else _identity_list
convert_map = convert_map if convert_map else _convert_map
if op_name in identity_list:
op = _get_nnvm_op(op_name)
sym = op(*inputs, **attrs)
elif op_name in convert_map:
sym = convert_map[op_name](inputs, attrs)
else:
_raise_not_supported('Operator: ' + op_name)
return sym
|
bf525a15b131369cb5f77d4681cab374afc1287c
| 35,715 |
from typing import List
from typing import Union
def non_parametric_double_ml_learner(df: pd.DataFrame,
feature_columns: List[str],
treatment_column: str,
outcome_column: str,
debias_model: Union[RegressorMixin, None] = None,
debias_feature_columns: List[str] = None,
denoise_model: Union[RegressorMixin, None] = None,
denoise_feature_columns: List[str] = None,
final_model: Union[RegressorMixin, None] = None,
final_model_feature_columns: List[str] = None,
prediction_column: str = "prediction",
cv_splits: int = 2,
encode_extra_cols: bool = True) -> LearnerReturnType:
"""
Fits an Non-Parametric Double/ML Meta Learner for Conditional Average Treatment Effect Estimation. It implements the
following steps:
1) fits k instances of the debias model to predict the treatment from the features and get out-of-fold residuals
t_res=t-t_hat;
2) fits k instances of the denoise model to predict the outcome from the features and get out-of-fold residuals
y_res=y-y_hat;
3) fits a final ML model to predict y_res / t_res from the features using weighted regression with weights set to
t_res^2. Trained like this, the final model will output treatment effect predictions.
Parameters
----------
df : pandas.DataFrame
A Pandas' DataFrame with features, treatment and target columns.
The model will be trained to predict the target column
from the features.
feature_columns : list of str
A list os column names that are used as features for the denoise, debias and final models in double-ml. All
this names should be in `df`.
treatment_column : str
The name of the column in `df` that should be used as treatment for the double-ml model. It will learn the
impact of this column with respect to the outcome column.
outcome_column : str
The name of the column in `df` that should be used as outcome for the double-ml model. It will learn the impact
of the treatment column on this outcome column.
debias_model : RegressorMixin (default None)
The estimator for fitting the treatment from the features. Must implement fit and predict methods. It can be an
scikit-learn regressor. When None, defaults to GradientBoostingRegressor.
debias_feature_columns : list of str (default None)
A list os column names to be used only for the debias model. If not None, it will replace feature_columns when
fitting the debias model.
denoise_model : RegressorMixin (default None)
The estimator for fitting the outcome from the features. Must implement fit and predict methods. It can be an
scikit-learn regressor. When None, defaults to GradientBoostingRegressor.
denoise_feature_columns : list of str (default None)
A list os column names to be used only for the denoise model. If not None, it will replace feature_columns when
fitting the denoise model.
final_model : RegressorMixin (default None)
The estimator for fitting the outcome residuals from the treatment residuals. Must implement fit and predict
methods. It can be an arbitrary scikit-learn regressor. The fit method must accept sample_weight as a keyword
argument. When None, defaults to GradientBoostingRegressor.
final_model_feature_columns : list of str (default None)
A list os column names to be used only for the final model. If not None, it will replace feature_columns when
fitting the final model.
prediction_column : str (default "prediction")
The name of the column with the treatment effect predictions from the final model.
cv_splits : int (default 2)
Number of folds to split the training data when fitting the debias and denoise models
encode_extra_cols : bool (default: True)
If True, treats all columns in `df` with name pattern fklearn_feat__col==val` as feature columns.
"""
features = feature_columns if not encode_extra_cols else expand_features_encoded(df, feature_columns)
debias_model = GradientBoostingRegressor() if debias_model is None else clone(debias_model, safe=False)
denoise_model = GradientBoostingRegressor() if denoise_model is None else clone(denoise_model, safe=False)
final_model = GradientBoostingRegressor() if final_model is None else clone(final_model, safe=False)
t_hat, mts = _cv_estimate(debias_model, df,
features if debias_feature_columns is None else debias_feature_columns,
treatment_column, cv_splits)
y_hat, mys = _cv_estimate(denoise_model, df,
features if denoise_feature_columns is None else denoise_feature_columns,
outcome_column, cv_splits)
y_res = df[outcome_column] - y_hat
t_res = df[treatment_column] - t_hat
final_target = y_res / t_res
weights = t_res ** 2
final_model_x = features if final_model_feature_columns is None else final_model_feature_columns
model_final_fitted = final_model.fit(X=df[final_model_x],
y=final_target,
sample_weight=weights)
def p(new_df: pd.DataFrame) -> pd.DataFrame:
return new_df.assign(**{prediction_column: model_final_fitted.predict(new_df[final_model_x].values)})
p.__doc__ = learner_pred_fn_docstring("non_parametric_double_ml_learner")
log = {'non_parametric_double_ml_learner': {
'features': feature_columns,
'debias_feature_columns': debias_feature_columns,
'denoise_feature_columns': denoise_feature_columns,
'final_model_feature_columns': final_model_feature_columns,
'outcome_column': outcome_column,
'treatment_column': treatment_column,
'prediction_column': prediction_column,
'package': "sklearn",
'package_version': sk_version,
'feature_importance': None,
'training_samples': len(df)},
'debias_models': mts,
'denoise_models': mys,
'cv_splits': cv_splits,
'object': model_final_fitted}
return p, p(df), log
|
0a78944ecf81d5d40114a517dbae587bfc5bb13c
| 35,716 |
def convert_image_cv2_to_cv(image, depth=cv.IPL_DEPTH_8U, channels=1):
"""
Converts an OpenCV2 wrapper of an image to an OpenCV1 wrapper.
Source: http://stackoverflow.com/a/17170855
Args:
image: image used by OpenCV2
depth: depth of each channel of the image
channels: number of channels
Returns:
OpenCV wrapper of the image passed as an argument
"""
img_ipl = cv.CreateImageHeader((image.shape[1], image.shape[0]),
depth, channels)
cv.SetData(img_ipl, image.tostring(),
image.dtype.itemsize * channels * image.shape[1])
return img_ipl
|
9a803eedadbb1082d8614f823b6d4063772fdaa3
| 35,717 |
def split_game_path(path):
"""Split a game path into individual components."""
# filter out empty parts that are caused by double slashes
return [p for p in path.split('/') if p]
|
9b939058aa7f8b3371d3e37b0252a5a01dba4e7b
| 35,719 |
def create_complete_dag(workbench: Workbench) -> nx.DiGraph:
"""creates a complete graph out of the project workbench"""
dag_graph = nx.DiGraph()
for node_id, node in workbench.items():
dag_graph.add_node(
node_id,
name=node.label,
key=node.key,
version=node.version,
inputs=node.inputs,
run_hash=node.run_hash,
outputs=node.outputs,
state=node.state.current_status,
)
for input_node_id in node.input_nodes:
predecessor_node = workbench.get(str(input_node_id))
if predecessor_node:
dag_graph.add_edge(str(input_node_id), node_id)
return dag_graph
|
026cb6ab7e168f6c4f1d84e7ae574d4b62bbbfe2
| 35,721 |
import csv
def read_single_disk(image_id):
""" Stores a single image to disk.
Parameters:
---------------
image_id integer unique ID for image
Returns:
----------
image image array, (32, 32, 3) to be stored
label associated meta data, int label
"""
image = np.array(Image.open(disk_dir / f"{image_id}.png"))
with open(disk_dir / f"{image_id}.csv", "r") as csvfile:
reader = csv.reader(
csvfile, delimiter=" ", quotechar="|", quoting=csv.QUOTE_MINIMAL
)
label = int(next(reader)[0])
return image, label
|
094b8b98fba85a224d613efc7623ed497129bfc7
| 35,723 |
import click
def try_get_balance(agent_config: AgentConfig, wallet: Wallet, type_: str) -> int:
"""
Try to get wallet balance.
:param agent_config: agent config object.
:param wallet: wallet object.
:param type_: type of ledger API.
:retun: token balance.
"""
try:
if type_ not in DEFAULT_LEDGER_CONFIGS: # pragma: no cover
raise ValueError("No ledger api config for {} available.".format(type_))
address = wallet.addresses[type_]
balance = LedgerApis.get_balance(type_, address)
if balance is None: # pragma: no cover
raise ValueError("No balance returned!")
return balance
except (AssertionError, ValueError) as e: # pragma: no cover
raise click.ClickException(str(e))
|
5cf32708c493b54a4950eee01144259be3be481d
| 35,724 |
def test_self_iat_hook_success():
"""Test hook success in single(self) thread"""
pythondll_mod = [m for m in windows.current_process.peb.modules if m.name.startswith("python") and m.name.endswith(".dll")][0]
RegOpenKeyEx = [n for n in pythondll_mod.pe.imports['advapi32.dll'] if n.name == function_to_hook][0]
hook_value = []
@callback_type
def open_reg_hook(hKey, lpSubKey, ulOptions, samDesired, phkResult, real_function):
hook_value.append((hKey, lpSubKey.value))
phkResult[0] = 12345678
return 0
x = RegOpenKeyEx.set_hook(open_reg_hook)
open_args = (0x12345678, "MY_KEY_VALUE")
k = winreg.OpenKey(*open_args)
assert k.handle == 12345678
assert hook_value[0] == open_args
# Remove the hook
x.disable()
|
682a8c251d0dee3e923f92bdfe0b4402d69c6b69
| 35,725 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.