content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def pack(a: ArrayLike, ox: int, oy: int, wx: int, wy: int, sx: int, sy: int, px: int = 0, py: int = 0,
is_column: bool = True) -> ShapeletsArray:
"""
Reverses the :obj:`~shapelets.compute.unpack` operation
For a thorough explanation of this method, consult the `ArrayFire documentation <https://arrayfire.org/docs/group__image__func__wrap.htm>`_
Parameters
----------
a: ArrayLike
Input array
ox: int
Output size for 1st dimension
oy: int
Output size for 2st dimension
wx: int
Window size along 1st dimension
wy: int
Window size along 2st dimension
sx: int
Stride along 1st dimension
sy: int
Stride along 2st dimension
px: int (default: 0)
Padding along 1st dimension
py: int (default: 0)
Padding along 2st dimension
is_column: bool (default: True)
Determines if an output patch is formed from a column (if true) or a row (if false)
Returns
-------
ShapeletsArray
A new array instance
Examples
--------
>>> import shapelets.compute as sc
>>> a = sc.array([1,2,3,4,5,6,7,8,9])
>>> w = sc.unpack(a, 3, 1, 3, 1)
>>> sc.pack(w, 9, 1, 3, 1, 3, 1)
[9 1 1 1]
1
2
3
4
5
6
7
8
9
"""
return _pygauss.pack(a, ox, oy, wx, wy, sx, sy, px, py, is_column)
|
ac1af1eeb76fed5ecf4a1d68f17a6683415a2f6d
| 35,259 |
def maybe_create_token_network(
token_network_proxy: TokenNetworkRegistry, token_proxy: CustomToken
) -> TokenNetworkAddress:
""" Make sure the token is registered with the node's network registry. """
block_identifier = token_network_proxy.rpc_client.get_confirmed_blockhash()
token_address = token_proxy.address
token_network_address = token_network_proxy.get_token_network(
token_address=token_address, block_identifier=block_identifier
)
if token_network_address is None:
_, new_token_network_address = token_network_proxy.add_token(
token_address=token_address,
channel_participant_deposit_limit=TokenAmount(UINT256_MAX),
token_network_deposit_limit=TokenAmount(UINT256_MAX),
given_block_identifier=block_identifier,
)
return new_token_network_address
else:
return token_network_address
|
1c477f8ad02ac99c2039d59dc04eef5f6ea6b1ed
| 35,260 |
def rmsprop(grad, init_params, callback=None, num_iters=100,
step_size=0.1, gamma=0.9, eps=10**-8):
"""Root mean squared prop: See Adagrad paper for details."""
flattened_grad, unflatten, x = flatten_func(grad, init_params)
avg_sq_grad = np.ones(len(x))
for i in range(num_iters):
g = flattened_grad(x, i)
if callback: callback(unflatten(x), i, unflatten(g))
avg_sq_grad = avg_sq_grad * gamma + g**2 * (1 - gamma)
x = x - step_size * g/(np.sqrt(avg_sq_grad) + eps)
return unflatten(x)
|
6c794d5a16dc7b46c055edfb714995f00450eb92
| 35,261 |
import re
def parse_transceiver_dom_sensor(output_lines):
"""
@summary: Parse the list of transceiver from DB table TRANSCEIVER_DOM_SENSOR content
@param output_lines: DB table TRANSCEIVER_DOM_SENSOR content output by 'redis' command
@return: Return parsed transceivers in a list
"""
res = []
p = re.compile(r"TRANSCEIVER_DOM_SENSOR\|(Ethernet\d+)")
for line in output_lines:
m = p.match(line)
assert m, "Unexpected line %s" % line
res.append(m.group(1))
return res
|
9a9e069543a8a80b9e741452c37ed1c665b56398
| 35,262 |
def get_excerpt(post):
"""Returns an excerpt between ["] and [/"]
post -- BBCode string"""
match = _re_excerpt.search(post)
if match is None:
return ""
excerpt = match.group(0)
excerpt = excerpt.replace(u'\n', u"<br/>")
return _re_remove_markup.sub("", excerpt)
|
b417fc18604020e91a9b5b4f4b154fba7fcbcdc1
| 35,263 |
def dropblock(net, is_training, keep_prob, dropblock_size,
data_format='channels_first'):
"""DropBlock: a regularization method for convolutional neural networks.
DropBlock is a form of structured dropout, where units in a contiguous
region of a feature map are dropped together. DropBlock works better than
dropout on convolutional layers due to the fact that activation units in
convolutional layers are spatially correlated.
See https://arxiv.org/pdf/1810.12890.pdf for details.
Args:
net: `Tensor` input tensor.
is_training: `bool` for whether the model is training.
keep_prob: `float` or `Tensor` keep_prob parameter of DropBlock. "None"
means no DropBlock.
dropblock_size: `int` size of blocks to be dropped by DropBlock.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
A version of input tensor with DropBlock applied.
Raises:
if width and height of the input tensor are not equal.
"""
if not is_training or keep_prob is None:
return net
tf.logging.info('Applying DropBlock: dropblock_size {}, net.shape {}'.format(
dropblock_size, net.shape))
if data_format == 'channels_last':
_, width, height, _ = net.get_shape().as_list()
else:
_, _, width, height = net.get_shape().as_list()
if width != height:
raise ValueError('Input tensor with width!=height is not supported.')
dropblock_size = min(dropblock_size, width)
# seed_drop_rate is the gamma parameter of DropBlcok.
seed_drop_rate = (1.0 - keep_prob) * width**2 / dropblock_size**2 / (
width - dropblock_size + 1)**2
# Forces the block to be inside the feature map.
w_i, h_i = tf.meshgrid(tf.range(width), tf.range(width))
valid_block_center = tf.logical_and(
tf.logical_and(w_i >= int(dropblock_size // 2),
w_i < width - (dropblock_size - 1) // 2),
tf.logical_and(h_i >= int(dropblock_size // 2),
h_i < width - (dropblock_size - 1) // 2))
valid_block_center = tf.expand_dims(valid_block_center, 0)
valid_block_center = tf.expand_dims(
valid_block_center, -1 if data_format == 'channels_last' else 0)
randnoise = tf.random_uniform(net.shape, dtype=tf.float32)
block_pattern = (1 - tf.cast(valid_block_center, dtype=tf.float32) + tf.cast(
(1 - seed_drop_rate), dtype=tf.float32) + randnoise) >= 1
block_pattern = tf.cast(block_pattern, dtype=tf.float32)
if dropblock_size == width:
block_pattern = tf.reduce_min(
block_pattern,
axis=[1, 2] if data_format == 'channels_last' else [2, 3],
keepdims=True)
else:
if data_format == 'channels_last':
ksize = [1, dropblock_size, dropblock_size, 1]
else:
ksize = [1, 1, dropblock_size, dropblock_size]
block_pattern = -tf.nn.max_pool(
-block_pattern, ksize=ksize, strides=[1, 1, 1, 1], padding='SAME',
data_format='NHWC' if data_format == 'channels_last' else 'NCHW')
percent_ones = tf.cast(tf.reduce_sum((block_pattern)), tf.float32) / tf.cast(
tf.size(block_pattern), tf.float32)
net = net / tf.cast(percent_ones, net.dtype) * tf.cast(
block_pattern, net.dtype)
return net
|
de401f315590505e5db9b58c78a13fdaa3b7f1bb
| 35,264 |
def certify(String, cert, password):
"""check a certificate for a string"""
return certificate(String, password) == cert
|
05ecd81e4738c4304e7d37c6c530035375ded09b
| 35,266 |
def is_same_float(a, b, tolerance=1e-09):
"""Return true if the two floats numbers (a,b) are almost equal."""
abs_diff = abs(a - b)
return abs_diff < tolerance
|
a8c10ae330db1c091253bba162f124b10789ba13
| 35,267 |
def generate_grid_speed(method, shape, speed_range):
"""Generate a speed distribution according to sampling method.
Parameters
----------
method : str
Method for generating the speed distribution.
shape : tuple
Shape of grid that the speed distribution should be defined on.
speed_range : tuple of float
Minimum and maximum allowed speeds.
Returns
-------
speed : np.ndarray
Speed values matched to the shape of the grid, and in the
allowed range, sampled according to input method.
"""
if method == 'flat':
speed = speed_range[0] * np.ones(shape)
elif method == 'random':
speed = speed_range[0] + np.random.random(shape) * (speed_range[1] - speed_range[0])
elif method == 'ifft':
values = []
for length in shape:
values.append(ifft_sample_1D(length))
output = np.einsum(subs[len(values)], *values)
speed = speed_range[0] + output * (speed_range[1] - speed_range[0])
elif method == 'fourier':
output = fourier_sample(shape)
speed = speed_range[0] + output * (speed_range[1] - speed_range[0])
elif method == 'mixed_random_ifft':
if np.random.rand() > 0.5:
speed = generate_grid_speed('random', shape, speed_range)
else:
speed = generate_grid_speed('ifft', shape, speed_range)
elif method == 'mixed_random_fourier':
if np.random.rand() > 0.5:
speed = generate_grid_speed('random', shape, speed_range)
else:
speed = generate_grid_speed('fourier', shape, speed_range)
else:
raise ValueError(f'Speed sampling method {method} not recognized for this grid shape')
return speed
|
700b1a6341bc1f218be04ff957ee3d02f9520adf
| 35,268 |
def common_atoms(cycle1, cycle2):
"""
INPUT: two cycles with type: list of atoms
OUTPUT: a set of common atoms
"""
set1 = set(cycle1)
set2 = set(cycle2)
return set1.intersection(set2)
|
1e85887a6199bf88a71709057c79025c0937a420
| 35,269 |
def get_two_body_decay_scaled_for_chargeless_molecules(
ion_pos: Array,
ion_charges: Array,
init_ee_strength: float = 1.0,
register_kfac: bool = True,
logabs: bool = True,
trainable: bool = True,
) -> Jastrow:
"""Make molecular decay jastrow, scaled for chargeless molecules.
The scale factor is chosen so that the log jastrow is initialized to 0 when
electrons are at ion positions.
Args:
ion_pos (Array): an (nion, d) array of ion positions.
ion_charges (Array): an (nion,) array of ion charges, in units of one
elementary charge (the charge of one electron)
init_ee_strength (float, optional): the initial strength of the
electron-electron interaction. Defaults to 1.0.
register_kfac (bool, optional): whether to register the computation with KFAC.
Defaults to True.
logabs (bool, optional): whether to return the log jastrow (True) or the jastrow
(False). Defaults to True.
trainable (bool, optional): whether to allow the jastrow to be trainable.
Defaults to True.
Returns:
Callable: a flax Module with signature (r_ei, r_ee) -> jastrow or log jastrow
"""
r_ii, charge_charge_prods = physics.potential._get_ion_ion_info(
ion_pos, ion_charges
)
jastrow_scale_factor = 0.5 * jnp.sum(
jnp.linalg.norm(r_ii, axis=-1) * charge_charge_prods
)
jastrow = TwoBodyExpDecay(
ion_charges,
init_ee_strength,
log_scale_factor=jastrow_scale_factor,
register_kfac=register_kfac,
logabs=logabs,
trainable=trainable,
)
return jastrow
|
97ded768c3c0f9b61d3f5fc0e313b072b7ba241f
| 35,271 |
def compute_huffman_code(message_probs):
"""
The input is a dictionary of messages, and their relative probabilities (which must add to 1).
The output is a dictionary of each message and it's new codeword (a bytestring) in the Huffman encoding.
"""
return tree_to_encoding(message_tree(message_probs))
|
fa760829736810ec908ea2ed9103937477971a2d
| 35,272 |
from typing import Optional
from typing import Dict
from typing import Any
def genomics_cnn(batch_size: int,
len_seqs: int,
num_motifs: int,
len_motifs: int,
num_denses: int,
num_classes: int = 10,
embed_size: int = 4,
one_hot: bool = True,
l2_weight: float = 0.0,
dropout_rate: float = 0.1,
before_conv_dropout: bool = False,
use_mc_dropout: bool = False,
spec_norm_hparams: Optional[Dict[str, Any]] = None,
gp_layer_hparams: Optional[Dict[str, Any]] = None,
**unused_kwargs: Dict[str, Any]) -> tf.keras.models.Model:
"""Builds Genomics CNN model.
Args:
batch_size: (int) Value of the static per_replica batch size.
len_seqs: (int) Sequence length.
num_motifs: (int) Number of motifs (= number of filters) to apply to input.
len_motifs: (int) Length of the motifs (= size of convolutional filters).
num_denses: (int) Number of nodes in the dense layer.
num_classes: (int) Number of output classes.
embed_size: (int) Static size of hidden dimension of the embedding output.
one_hot: (bool) If using one hot encoding to encode input sequences.
l2_weight: (float) L2 regularization coefficient.
dropout_rate: (float) Fraction of the convolutional output units and dense.
layer output units to drop.
before_conv_dropout: (bool) Whether to use filter wise dropout before the
convolutional layer.
use_mc_dropout: (bool) Whether to apply Monte Carlo dropout.
spec_norm_hparams: (dict) Hyperparameters for spectral normalization.
gp_layer_hparams: (dict) Hyperparameters for Gaussian Process output layer.
**unused_kwargs: (dict) Unused keyword arguments that will be ignored by the
model.
Returns:
(tf.keras.Model) The 1D convolutional model for genomic sequences.
"""
# define layers
if spec_norm_hparams:
spec_norm_bound = spec_norm_hparams['spec_norm_bound']
spec_norm_iteration = spec_norm_hparams['spec_norm_iteration']
else:
spec_norm_bound = None
spec_norm_iteration = None
conv_layer = models_util.make_conv2d_layer(
use_spec_norm=(spec_norm_hparams is not None),
spec_norm_bound=spec_norm_bound,
spec_norm_iteration=spec_norm_iteration)
dense_layer = models_util.make_dense_layer(
use_spec_norm=(spec_norm_hparams is not None),
spec_norm_bound=spec_norm_bound,
spec_norm_iteration=spec_norm_iteration)
output_layer = models_util.make_output_layer(
gp_layer_hparams=gp_layer_hparams)
# compute outputs given inputs
inputs = tf.keras.Input(
shape=[len_seqs], batch_size=batch_size, dtype=tf.int32)
x = _input_embedding(
inputs, VOCAB_SIZE, one_hot=one_hot, embed_size=embed_size)
# filter-wise dropout before conv,
# x.shape=[batch_size, len_seqs, vocab_size/embed_size]
if before_conv_dropout:
x = models_util.apply_dropout(
x,
dropout_rate,
use_mc_dropout,
filter_wise_dropout=True,
name='conv_dropout')
x = _conv_pooled_block(
x,
conv_layer=conv_layer(
filters=num_motifs,
kernel_size=(len_motifs, embed_size),
strides=(1, 1),
kernel_regularizer=tf.keras.regularizers.l2(l2_weight),
name='conv'))
x = models_util.apply_dropout(
x, dropout_rate, use_mc_dropout, name='dropout1')
x = dense_layer(
units=num_denses,
activation=tf.keras.activations.relu,
kernel_regularizer=tf.keras.regularizers.l2(l2_weight),
name='dense')(
x)
x = models_util.apply_dropout(
x, dropout_rate, use_mc_dropout, name='dropout2')
if gp_layer_hparams and gp_layer_hparams['gp_input_dim'] > 0:
# Uses random projection to reduce the input dimension of the GP layer.
x = tf.keras.layers.Dense(
gp_layer_hparams['gp_input_dim'],
kernel_initializer='random_normal',
use_bias=False,
trainable=False,
name='gp_random_projection')(
x)
outputs = output_layer(num_classes, name='logits')(x)
return tf.keras.Model(inputs=inputs, outputs=outputs)
|
5553dfda33e2596ba3372d9b7158f9964bfd6cfd
| 35,273 |
def setDuration(*args):
"""setDuration(ALInterpolationBangBangAcceleration pObject, float pDuration)"""
return _almathinternal.setDuration(*args)
|
74f8bf125266a0174aa39f6e7284854bf066a32f
| 35,277 |
def regex(pattern):
"""
Does a pattern search using the system's `find` utility
:param pattern: a pattern you intend to search for
:return: String
"""
cmd = "find " + MIGRATION_FOLDER + " -type f -exec grep -il " + pattern + " {} +"
out = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE)
stdout, stderr = out.communicate()
if not stderr:
return stdout.decode()
else:
return stderr.decode()
|
5b5df47dc85239db2294fa36411d259617756186
| 35,278 |
def _mp_fabber_options(wsp):
"""
:return: General Fabber options for multiphase decoding
"""
# General options. note that the phase is always PSP number 1
options = {
"method" : "vb",
"noise" : "white",
"model" : "asl_multiphase",
"data" : wsp.asldata,
"mask" : wsp.rois.mask,
"nph" : wsp.asldata.nphases,
"ntis" : wsp.asldata.ntis,
"repeats" : wsp.asldata.rpts[0], # We have already checked repeats are fixed
"save-mean" : True,
"save-model-fit" : True,
"max-iterations": 30,
"PSP_byname1" : "phase",
"PSP_byname1_prec" : 0.2,
}
# Spatial mode
if wsp.mp_spatial:
options.update({
"method" : "spatialvb",
})
if wsp.mp_spatial_phase:
# Make the phase a spatial prior
options["PSP_byname1_type"] = "M"
else:
# Make the magnitudes and offsets spatial priors
prior = 2
for pld_idx in range(wsp.asldata.ntis):
options.update({
"PSP_byname%i" % prior: "mag%i" % (pld_idx+1),
"PSP_byname%i_type" % prior : "M",
"PSP_byname%i" % (prior+1): "offset%i" % (pld_idx+1),
"PSP_byname%i_type" % (prior+1) : "M",
})
# Special case if we have only 1 PLD the magnitude and offset
# parameters are named differently for compatibility
options["PSP_byname2"] = "mag"
options["PSP_byname3"] = "offset"
# Additional user-specified multiphase fitting options override the above
options.update(wsp.ifnone("mp_options", {}))
return options
|
af1c724bd9b88a0d76e7c7d18a3fa2b19591984e
| 35,279 |
def get_player_objects_from_challenge_info(player, should_be_completed=False, search_by_discord_name=True):
"""
Search for a challenge in the DB corresponding to the player
param str/int player: The gamertag or id of the player to search for
param bool should_be_completed: If the challenge should already be completed or not
param bool search_by_discord_name: Searches for player by full discord_name instead of gamertag
param str message_author: The discord_user that send the message (eg. Pandabeer#2202)
returns tuple os3_rll.models.player.Player: (p1, p2)
"""
if isinstance(player, str):
player = Player.get_player_id_by_username(player, discord_name=search_by_discord_name)
with Database() as db:
db.execute_prepared_statement(
"SELECT `p1`, `p2` FROM `challenges` WHERE (`p1`=%s OR `p2`=%s) AND `winner` IS {} NULL ORDER BY `id` DESC".format(
"NOT" if should_be_completed else ""
),
(player, player),
)
if db.rowcount == 0:
raise ChallengeException("No challenges found")
p1, p2 = db.fetchone()
return Player(p1), Player(p2)
|
e4a39d3a72063b41d5b9b92f0b1535ba164beeb1
| 35,280 |
def get_output(interpreter, score_threshold, labels):
"""Returns list of detected objects."""
boxes = output_tensor(interpreter, 0)
class_ids = output_tensor(interpreter, 1)
scores = output_tensor(interpreter, 2)
count = int(output_tensor(interpreter, 3))
def get_label(i):
id = int(class_ids[i])
return labels.get(id, id)
def make(i):
ymin, xmin, ymax, xmax = boxes[i]
bbox = BBox(
xmin = np.maximum(0.0, xmin),
ymin = np.maximum(0.0, ymin),
xmax = np.minimum(1.0, xmax),
ymax = np.minimum(1.0, ymax))
return DetectedObject(
label = get_label(i),
score = scores[i],
area = bbox.area,
centroid = bbox.centroid,
bbox = bbox)
return [make(i) for i in range(count) if scores[i] >= score_threshold]
|
83518a28025d7d39bf475cd0f6aa222ad7197659
| 35,282 |
def provide_session(func):
"""
Function decorator that provides a session if it isn't provided.
If you want to reuse a session or run the function as part of a
database transaction, you pass it to the function, if not this wrapper
will create one and close it for you.
"""
@wraps(func)
def wrapper(*args, **kwargs):
arg_session = 'session'
func_params = func.__code__.co_varnames
session_in_args = arg_session in func_params and \
func_params.index(arg_session) < len(args)
session_in_kwargs = arg_session in kwargs
if session_in_kwargs or session_in_args:
return func(*args, **kwargs)
else:
with create_session() as session:
kwargs[arg_session] = session
return func(*args, **kwargs)
return wrapper
|
d11233a852a8c2f4ac7a95179b588e7b497bbf3a
| 35,283 |
def encode_urlencoded_form(fields):
"""
Encode dict of fields as application/x-www-form-urlencoded.
"""
body = urlencode(fields, doseq=1)
headers = {'Content-Type': 'application/x-www-form-urlencoded'}
return body, headers
|
26d4b99070e8d354775f7f2b6e97673dedd582f0
| 35,284 |
def process_wrapper(row, seq, cds_seq, seq_lookup, tile_begins, tile_ends, qual, locate_log, mutrate, base,
posteriorQC, adjusted_er):
"""
Wrapper function to process each line (pair of reads)
"""
mut_parser = locate_mut.MutParser(row, seq, cds_seq, seq_lookup, tile_begins, tile_ends, qual, locate_log,
mutrate, base, posteriorQC, adjusted_er)
hgvs, outside_mut, all_df, hgvs_r1_clusters, hgvs_r2_clusters, track_df = mut_parser._main()
return hgvs, outside_mut, all_df, hgvs_r1_clusters, hgvs_r2_clusters, track_df
|
19547caddd84c1eb54b32525babf4d8b624aea70
| 35,285 |
def default_cfg():
"""
Set parameter defaults.
"""
# Simulation specification
cfg_spec = dict( nfreq=20,
start_freq=1.e8,
bandwidth=0.2e8,
start_time=2458902.33333,
integration_time=40.,
ntimes=40,
cat_name="gleamegc.dat",
apply_gains=True,
apply_noise=True,
ant_pert=False,
seed=None,
ant_pert_sigma=0.0,
hex_spec=(3,4),
hex_ants_per_row=None,
hex_ant_sep=14.6,
use_ptsrc=True )
# Diffuse model specification
cfg_diffuse = dict( use_diffuse=False,
nside=64,
obs_latitude=-30.7215277777,
obs_longitude = 21.4283055554,
obs_height = 1073,
beam_pol='XX',
diffuse_model='GSM',
eor_random_seed=42,
nprocs=1 )
# Beam model parameters
cfg_beam = dict( ref_freq=1.e8,
spectral_index=-0.6975,
seed=None,
perturb_scale=0.0,
mainlobe_scale_mean=1.0,
mainlobe_scale_sigma=0.0,
xstretch_mean=1.0,
xstretch_sigma=0.0,
ystretch_mean=1.0,
ystretch_sigma=0.0,
xystretch_same=True,
xystretch_dist=None,
rotation_dist='',
rotation_mean=0.0,
rotation_sigma=0.0,
mainlobe_width=0.3,
nmodes=8,
beam_coeffs=[ 0.29778665, -0.44821433, 0.27338272,
-0.10030698, -0.01195859, 0.06063853,
-0.04593295, 0.0107879, 0.01390283,
-0.01881641, -0.00177106, 0.01265177,
-0.00568299, -0.00333975, 0.00452368,
0.00151808, -0.00593812, 0.00351559
] )
# Fluctuating gain model parameters
cfg_gain = dict(nmodes=8, seed=None)
# Noise parameters
cfg_noise = dict(nsamp=1., seed=None, noise_file=None)
# reflection parameters
cfg_reflection = dict(amp=1.e-2, dly=800.)
# xtalk parameters
cfg_xtalk = dict(amp=1.e-2, dly=400.)
# Combine into single dict
cfg = { 'sim_beam': cfg_beam,
'sim_spec': cfg_spec,
'sim_diffuse': cfg_diffuse,
'sim_noise': cfg_noise,
'sim_gain': cfg_gain,
'sim_reflection': cfg_reflection,
'sim_xtalk': cfg_xtalk,
}
return cfg
|
0b76e2166ce17d6ab42e4f72d7003ba6c03b11f6
| 35,286 |
def merge_outputs(*streams: Stream) -> OutputStream:
"""Include all given outputs in one ffmpeg command line."""
return MergeOutputsNode(streams).stream()
|
bd6dee8b54843556426a01f691f87f28a62c1a99
| 35,287 |
def softmax(vector, theta=1.0):
"""Takes an vector w of S N-element and returns a vectors where each column
of the vector sums to 1, with elements exponentially proportional to the
respective elements in N.
Parameters
----------
vector : array of shape = [N, M]
theta : float (default = 1.0)
used as a multiplier prior to exponentiation
Returns
-------
dist : array of shape = [N, M]
Which the sum of each row sums to 1 and the elements are exponentially
proportional to the respective elements in N
"""
w = np.atleast_2d(vector)
e = np.exp(np.array(w) / theta)
dist = e / np.sum(e, axis=1).reshape(-1, 1)
return dist
|
06b4df32e5a04b49e3eaa1626638dad845c4b4a0
| 35,288 |
def scaled_elementary_effect_i(
model, i_python, init_input_pars, stepsize, sd_i, sd_model
):
"""Scales EE by (SD_i / SD_M)"""
ee_i = elementary_effect_i(model, i_python, init_input_pars, stepsize)
return ee_i * (sd_i / sd_model)
|
c345c4e40a58b0ac9228edb0cd9e96a05d28e1db
| 35,289 |
def arch_mnasnet_b1(variant, feat_multiplier=1.0, **kwargs):
"""Creates a mnasnet-b1 model.
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
Paper: https://arxiv.org/pdf/1807.11626.pdf.
Args:
feat_multiplier: multiplier to number of channels per layer.
"""
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s1_c16_noskip'],
# stage 1, 112x112 in
['ir_r3_k3_s2_e3_c24'],
# stage 2, 56x56 in
['ir_r3_k5_s2_e3_c40'],
# stage 3, 28x28 in
['ir_r3_k5_s2_e6_c80'],
# stage 4, 14x14in
['ir_r2_k3_s1_e6_c96'],
# stage 5, 14x14in
['ir_r4_k5_s2_e6_c192'],
# stage 6, 7x7 in
['ir_r1_k3_s1_e6_c320_noskip']
]
model_kwargs = dict(
block_defs=decode_arch_def(arch_def),
stem_size=32,
feat_multiplier=feat_multiplier,
**kwargs
)
return model_kwargs
|
25a9a0c0f4a026f122c73139cb8464c47fae299a
| 35,290 |
def accession(data, location):
"""
Generate an accession for the given location in data.
"""
return "{ac}:{gene}".format(
ac=parent_accession(location),
gene=data["gene"],
)
|
a8023857b812b510990c6161194b8f85832df14a
| 35,291 |
def poly_oval(x0,y0, x1,y1, steps=20, rotation=0):
"""return an oval as coordinates suitable for create_polygon"""
# x0,y0,x1,y1 are as create_oval
# rotation is in degrees anti-clockwise, convert to radians
rotation = rotation * pi / 180.0
# major and minor axes
a = (x1 - x0) / 2.0
b = (y1 - y0) / 2.0
# center
xc = x0 + a
yc = y0 + b
point_list = []
# create the oval as a list of points
for i in range(steps):
# Calculate the angle for this step
# 360 degrees == 2 pi radians
theta = (pi * 2) * (float(i) / steps)
x1 = a * cos(theta)
y1 = b * sin(theta)
# rotate x, y
x = (x1 * cos(rotation)) + (y1 * sin(rotation))
y = (y1 * cos(rotation)) - (x1 * sin(rotation))
point_list.append(round(x + xc))
point_list.append(round(y + yc))
return point_list
|
7a188676654ca47a53da33df40ac16387ecaa490
| 35,292 |
def not_found(request):
"""Error page for 404."""
response = render(request, "projectile/404.html")
response.status_code = 404
return response
|
fb17b8f1cdcdfa530adb569abc9b006ed2868492
| 35,293 |
def reset_universe_id():
"""
reset_universe_id()
Resets the auto-generated unique Universe ID counter to 10000.
"""
return _openmoc.reset_universe_id()
|
bd7815a749e4d89c8d3a78aea1b24046db9c78bf
| 35,295 |
from typing import Union
def native_mean(data: Union[list, np.ndarray, pd.Series]) -> float:
"""
Calculate Mean of a list.
:param data: Input data.
:type data: list, np.ndarray, or pd.Series
:return: Returns the mean.
:rtype: float
:example: *None*
:note: *None*
"""
data = _remove_nan(data=_to_list(data=data))
return sum(data) / len(data)
|
3d62a3fdbb77ae0dbc8b19eaefee40abe96d3888
| 35,296 |
import json
def dataset_info_4_biogps(request, ds_id):
"""
get information about a dataset
"""
ds = adopt_dataset(ds_id)
if ds is None:
return general_json_response(GENERAL_ERRORS.ERROR_NOT_FOUND,
"dataset with this id not found")
s = json.dumps(ds, cls=ComplexEncoder)
oj = json.loads(s)
del oj['metadata']
oj['id'] = ds.id
oj['lastmodified'] = ds.lastmodified.strftime('%b.%d, %Y')
oj['created'] = ds.created.strftime('%b.%d, %Y')
oj['summary_wrapped'] = ds.summary_wrapped
oj['owner'] = ds.metadata['owner']
if oj['owner'] == "ArrayExpress Uploader":
oj['sample_source'] = 'http://www.ebi.ac.uk/arrayexpress/experiments/'\
+ oj['geo_gse_id'] + '/samples/'
oj['source'] = 'http://www.ebi.ac.uk/arrayexpress/experiments/'\
+ oj['geo_gse_id']
if 'sample_geneid' in ds.metadata:
oj['sample_geneid'] = ds.metadata['sample_geneid']
if ds.metadata.get('pubmed_id', None):
oj['pubmed_id'] = ds.metadata['pubmed_id']
factors = []
if oj['factors']:
for e in oj['factors']:
i = oj['factors'].index(e)
k = list(ds.metadata['factors'][i])[0]
if k.startswith('GSM'):
k = k.rstrip(' 1')
else:
k = k.rstrip(' ')
factors.append({k: e})
elif 'factors' in ds.metadata:
# get factors from metadata['factors']
for e in ds.metadata['factors']:
k = list(e)[0]
if 'factorvalue' in e[k]:
factors.append({k: e[k]['factorvalue']})
oj['factors'] = factors
# ret = _contruct_meta(ds)
# fa = get_ds_factors_keys(ds)
# ret.update({'factors': ds.factors})
ts = Tag.objects.get_for_object(ds)
tags = [t.name for t in ts]
oj['tags'] = tags
return general_json_response(detail=oj)
|
d38f3bde125cb20a48a2842bdc8021f3eb032c8c
| 35,297 |
def _set_reducemax_attrs(desc_d, attrs):
"""Add addition attributes for ReduceMax."""
backend = desc_d['process']
if backend == 'cuda' and _reducemax_pattern(desc_d)[0]:
attrs['enable_tile_c0'] = True
elem_per_thread = 4
blockdim_x = 64
blockdim_y = 16
griddim_x = 1
griddim_y = _reducemax_pattern(desc_d)[1] / (blockdim_y * elem_per_thread)
attrs['dim'] = ' 0 0 128 64 b1 t1 0 1 128 128 b0 t0'
attrs['bind_block'] = str(griddim_x) + ' ' + str(griddim_y)
attrs['bind_thread'] = str(blockdim_x) + ' ' + str(blockdim_y)
return attrs
|
d5b50da5b3097690a0cc2ab27bbac47448f35bb7
| 35,298 |
def getTail(compiler,version):
"""
Function which generates the Tail of a
Compiler module file.
@input compiler :: compiler name ('intel','pgi',..)
@input version :: version of the compiler
@return :: list of Lua lines
"""
strA = 'local version = "{0}"'.format(version)
strB = 'local mdir = pathJoin(mroot,"Compiler/{0}",version)'.format(compiler.lower())
strC = '-- a. compiled with {0}/{1}'.format(compiler.title(),version)
strD = ' local mdir = pathJoin(mroot,"Compiler",CLUSTERNAME,"{0}",version)'.format(compiler)
res = ['','',
'-- MODULEPATH modification to include packages',
'-- that are compiled with this version of the compiler',
'-- and available ON ALL clusters', strA,
'local mroot = os.getenv("MODULEPATH_ROOT")', strB,
'prepend_path("MODULEPATH",mdir)','','',
'-- MODULEPATH modification to include packages',
'-- that are:', strC,
'-- b. ONLY available ON a specific cluster','',
'local CLUSTERNAME = nil',
'local str = os.getenv("UUFSCELL")','',
'if str ~= nil then',
' if str == "ash.peaks" then',
' CLUSTERNAME = "ash"',
' elseif str == "ember.arches" then',
' CLUSTERNAME = "em"',
' elseif str == "kingspeak.peaks" then',
' CLUSTERNAME = "kp"',
' elseif str == "lonepeak.peaks" then',
' CLUSTERNAME = "lp"',
' end','',
' if CLUSTERNAME ~= nil then', strD,
' prepend_path("MODULEPATH",mdir)',
' end',
'end']
return res
|
46df63461d05b26fbc5e5a45e6162a2794f92ed1
| 35,299 |
def make_attr_string(attr):
"""Returns an attribute string in the form key="val"."""
attr_string = ' '.join('%s="%s"' % (k, v) for k, v in attr.items())
return '%s%s' % (' ' if attr_string != '' else '', attr_string)
|
7185a6e725349313a4cc67ae643a18d9ab63c871
| 35,300 |
def optimize_weights(instrument, sample):
"""Optimize the weights on a particular sample"""
guess = [1.0] * sample.shape[1]
bounds = [(0.0,5.0)] * sample.shape[1]
def function(w, instrument, sample):
"""This is the function that is minimized iteratively using scipy.optimize.minimize to find the best weights (w)"""
wf = weight_forecast(sample, w)
# We introduce a capital term, as certain currencies like HKD are very 'numerate', which means we need millions of HKD to get a
# significant position
position = instrument.position(forecasts = wf, nofx=True, capital=10E7).rename(instrument.name).to_frame().dropna()
# position = instrument.position(forecasts = wf, nofx=True).rename(instrument.name).to_frame().dropna()
l = accountCurve([instrument], positions = position, panama_prices=instrument.panama_prices().dropna(), nofx=True)
s = l.sortino()
try:
assert np.isnan(s) == False
except:
print(sample, position)
raise
return -s
result = minimize(function, guess, (instrument, sample),\
method = 'SLSQP',\
bounds = bounds,\
tol = 0.01,\
constraints = {'type': 'eq', 'fun': lambda x: sample.shape[1] - sum(x)},\
options = {'eps': .1},
)
return result.x
|
f5070a76a7cb2a3210caee01928e9ae5b83055a3
| 35,301 |
from datetime import date
def voto(ano):
"""
FUNÇÃO QUE VALIDA A IDADE DO ELEITOR
:param ano: ano de nascimento
:return: idade menor que 16 anos: NÃO VOTA
idade entre 16 e 17 anos e acima de 65 anos: VOTO OPCIONAL
idade entre 18 e 65: APTO A VOTAR
"""
idade = date.today().year - ano
if idade < 16:
return f'{amarelo}COM {idade} ANOS: NÃO VOTA{fimdacor}'
elif 16 <= idade < 18 or idade > 65:
return f'{amarelo}COM {idade} ANOS: VOTO OPCIONAL{fimdacor}'
else:
return f'{amarelo}COM {idade} ANOS: APTO A VOTAR{fimdacor}'
|
ccd103a7fcd31d021c1b563df3c883d8ea81d668
| 35,303 |
import curses
def new_border_and_win(ws):
"""
Returns two curses windows, one serving as the border, the other as the
inside from these *_FRAME tuples above.
"""
return (
curses.newwin(ws[1][1], ws[1][0], ws[0][1], ws[0][0]),
curses.newwin(ws[1][1] - 2, ws[1][0] - 2, ws[0][1] + 1, ws[0][0] + 1),
)
|
cec302bda38ba5fa9d0c88dbfac1c501984a96a0
| 35,304 |
import socket
def mk_sock(mcast_host, mcast_ip, mcast_port):
"""
multicast socket setup
"""
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.setsockopt(
socket.IPPROTO_IP,
socket.IP_ADD_MEMBERSHIP,
socket.inet_aton(mcast_ip) + socket.inet_aton(mcast_host),
)
sock.bind((mcast_host, mcast_port))
return sock
|
702a95e5baec4ecf54206f8f16cfa22d8365f8a0
| 35,307 |
def next_line_start_or_here(text, pos):
"""Find next line start, or `pos` if `pos` is already a line start
"""
if pos == 0 or (pos-1 < len(text) and text[pos-1] == "\n"):
return pos
return next_line_start(text, pos)
|
623be9a39064e2a67fc79ca0a12e95477071fc35
| 35,309 |
def getimdata(cubenm, verbose=False):
"""Get fits image data
"""
if verbose:
print(f'Getting image data from {cubenm}')
with fits.open(cubenm, memmap=True, mode='denywrite') as hdu:
dxas = hdu[0].header['CDELT1']*-1*u.deg
dyas = hdu[0].header['CDELT2']*u.deg
nx, ny = hdu[0].data[0, 0, :,
:].shape[0], hdu[0].data[0, 0, :, :].shape[1]
old_beam = Beam.from_fits_header(
hdu[0].header
)
datadict = {
'image': hdu[0].data[0, 0, :, :],
'header': hdu[0].header,
'oldbeam': old_beam,
'nx': nx,
'ny': ny,
'dx': dxas,
'dy': dxas
}
return datadict
|
6ea45ba1dbbf46d9d6518a28e643bb67d3a6d627
| 35,310 |
import math
def N(latitude):
"""
Transverse radius of curvature.
Returns radius of curvature in east-west direction.
latitude: Latitude in radians.
"""
return a/math.sqrt(1-e2*pow(math.sin(latitude),2.0))
|
ac1bbf3c7f6aa28251d25a584ec283a09b9e01b5
| 35,311 |
def cmd(command_id):
"""
A helper function for identifying command functions
"""
def decorator(func):
func.__COMMAND_ID__ = command_id
return func
return decorator
|
cff8664ad18c78629bb3c1b4946be592142711e0
| 35,312 |
import json
def getBatchExperiments():
"""
return the information related to the experiments of a batch
:return: informations of the experiment
:rtype: Dict
"""
data = request.json['data']
experiments = []
for key in data:
batch_experiments = queueManager.getBatchExperiments(key)
for experiment in batch_experiments:
new_exp = experiment
new_exp["optimization_data"] = queueManager.getExperimentInfo(
experiment["batchId"],
experiment["experimentId"])
experiments.append(new_exp)
return json.dumps(experiments)
|
1762c7449800ce38f0ffc867aa0962827b561a5b
| 35,313 |
def noiseProb(ksStat, Ntot):
"""pvalue = noiseProb(ksStat, Ntot)
Returns probability of being in same distribution for given K-S statistic"""
s = Ntot*pow(ksStat, 2)
# For d values that are in the far tail of the distribution (i.e.
# p-values > .999), the following lines will speed up the computation
# significantly, and provide accuracy up to 7 digits.
if (s > 7.24) or ( (s > 3.76) and (Ntot > 99) ):
return 2.0*exp( -1.0 * (2.000071 + 0.331/sqrt(Ntot) + 1.409/Ntot )*s )
else:
# Express d as d = (k-h)/Ntot, where k is a +ve integer and 0 < h < 1.
k = ceil(ksStat*Ntot)
h = k - ksStat*Ntot
m = 2*k - 1.0
# Create the H matrix, which describes the CDF, as described in Marsaglia,
# et al.
if m > 1.0:
c = [1.0/gamma(x) for x in np.linspace(2,m+1,m)]
r = np.linspace(0,0,m)
r[0] = 1.0
r[1] = 1.0
T = toeplitz(c,r)
T[:,0] = T[:,0] - [ pow(h, x)/gamma(x + 1) for x in np.linspace(1,m,m) ]
#T[m-1, :] = np.fliplr( T[:,0] )
# Try this because fliplr is throwing a fit...
L = len(T[:,0])
T[m-1, :] = [ T[L-x-1,0] for x in range(L) ]
T[m-1, 1] = (1.0 - 2.0*pow(h,m) + pow( max(0, 2.0*h - 1.0), m ) )/gamma(m+1)
else:
T = (1.0 - 2.0*pow( h, m ) + pow( max(0,2.0*h - 1), m) )/gamma(m+1)
T=np.array([T,T]) # Make T appear to be a 2D array
# Scaling before raising the matrix to a power
if not np.isscalar(T):
lmax = abs( np.amax(np.linalg.eig(T)[0]) )
T = np.power( T/lmax, Ntot )
else:
lmax = 1.0
# Pr(DNtot < d) = Ntot!/Ntot * tkk , where tkk is the kth element of TNtot = T^Ntot.
# p-value = Pr(Dn > d) = 1-Pr(Dn < d)
return 1.0 - exp(gammaln(Ntot+1) + Ntot*log(lmax) - Ntot*log(Ntot)) * T[k-1,k-1]
|
2e4a99c631ef8ba7225aa8e328dfa03de68c18ed
| 35,314 |
def _check_nmant(np_type, nmant):
""" True if fp type `np_type` seems to have `nmant` significand digits
Note 'digits' does not include implicit digits. And in fact if there are
no implicit digits, the `nmant` number is one less than the actual digits.
Assumes base 2 representation.
Parameters
----------
np_type : numpy type specifier
Any specifier for a numpy dtype
nmant : int
Number of digits to test against
Returns
-------
tf : bool
True if `nmant` is the correct number of significand digits, false
otherwise
"""
np_type = np.dtype(np_type).type
max_contig = np_type(2 ** (nmant + 1)) # maximum of contiguous integers
tests = max_contig + np.array([-2, -1, 0, 1, 2], dtype=np_type)
return np.all(tests - max_contig == [-2, -1, 0, 0, 2])
|
9e1905d6efb1f2c5dcdc668128a614a48ef6c7f3
| 35,315 |
import json
import uuid
import time
def timeboard_send_steps_list(self, steps, scenario_name, timeout):
"""
Change all steps in timeboard
:param steps: The list of steps extracted from the scenario json file
:type steps: list
:param scenario_name: name of the scenario to which the steps belong
:type scenario_name: string
:param timeout: maximum time to wait for a reaction from the local manager
:type timeout: float
"""
step_list = []
step_id_to_index = {}
index = 0
for step in steps:
if not step['action']:
step_list.append({'name': step['name'], 'eta': step['eta']})
step_id_to_index[step[id]] = index
index += 1
goal = RequestToLocalManagerGoal(action="stepsList", payload=json.dumps({
'id': str(uuid.uuid4()),
'timestamp': time.time(),
'args': {
'scenarioName': scenario_name,
'stepsList': step_list
}
}))
return self._send_goal_and_wait(goal, timeout), step_id_to_index
|
8d3cbbd2f61b1f6c4169737f72972c52ebc14fe1
| 35,316 |
from typing import Union
from typing import Dict
def get_indices(s: Union[str, 'ChainedBase']) -> Dict[int, str]:
""" Retrieve a dict of characters and escape codes with their real index
into the string as the key.
"""
codeindices = get_code_indices(s)
if not codeindices:
# This function is not for non-escape-code stuff, but okay.
return {i: c for i, c in enumerate(s)}
indices = {}
for codeindex in sorted(codeindices):
code = codeindices[codeindex]
if codeindex == 0:
indices[codeindex] = code
continue
# Grab characters before codeindex.
start = max(indices or {0: ''}, key=int)
startcode = indices.get(start, '')
startlen = start + len(startcode)
indices.update({i: s[i] for i in range(startlen, codeindex)})
indices[codeindex] = code
lastindex = max(indices, key=int)
lastitem = indices[lastindex]
start = lastindex + len(lastitem)
textlen = len(s)
if start < (textlen - 1):
# Grab chars after last code.
indices.update({i: s[i] for i in range(start, textlen)})
return indices
|
813c1b23a55400a645f6f79208b86d8c9e9d3905
| 35,317 |
import re
def parse_shortcodes(post_body):
"""
I stole this shortcode regex from Wordpress's source. It is very confusing.
"""
tagregexp = '|'.join([re.escape(t) for t in TAGS_WE_CAN_PARSE.keys()])
pattern = re.compile(
'\\[(\\[?)(' + tagregexp +
')\\b([^\\]\\/]*(?:\\/(?!\\])[^\\]\\/]*)*?)(?:(\\/)\\]|\\](?:([^\\[]*(?:\\[(?!\\/\\2\\])[^\\[]*)*)\\[\\/\\2\\])?)(\\]?)'
)
return re.sub(pattern, replace_tags, post_body)
|
2a8a76e7b34a4e176a0236740886d4e7dc89bb20
| 35,318 |
from typing import Callable
def on_start(func: Callable) -> FunctionCallback:
"""Decorator for creating a callback from a function. The function will be
executed when the `Events.START` is triggered. The function should take
:class:`argus.engine.State` as the first argument.
Example:
.. code-block:: python
import argus
from argus.engine import State
@argus.callbacks.on_start
def start_callback(state: State):
state.logger.info("Start training!")
model.fit(train_loader,
val_loader=val_loader,
callbacks=[start_callback])
"""
return FunctionCallback(Events.START, func)
|
d3e6fbad2932b88d9545c0368b75488b21f5f798
| 35,319 |
def conditional_entropy(cond_counts):
"""
Compute the conditional entropy of a conditional multinomial distribution
given a list of lists of counts or Counters for x given each y:
H(x|y) = \sum_y p(y) \sum_x p(x|y) \log (1 / p(x|y))
"""
if isinstance(cond_counts, dict):
cond_counts = list(cond_counts.values())
cond_ents = [_ent_impl(xs) for xs in cond_counts]
cond_ent_sum = sum(cond_ent_y * ny for cond_ent_y, ny in cond_ents)
y_tot = sum(ny for _, ny in cond_ents)
return cond_ent_sum / y_tot
|
9695e282f59a6eefe6f83217c554f734d8bdbafb
| 35,320 |
def xover_selection(snakes, survivors, opts, num_survivors):
""" Picks parents from the current generation of snakes for crossover
params:
snakes: list, current generation of snakes of class Snake
survivors: list, snakes of class Snake that survived
opts: dict, contains hyperparamters
num_survivors: int, how many survivors there should be
returns:
list of parents of class Snake
"""
parents = []
max_num_parents = opts["PopulationSize"] - num_survivors
while len(parents) < max_num_parents:
for survivor in survivors:
if (len(parents) < max_num_parents):
parents.append(survivor)
for snake in snakes:
if snake not in survivors:
if snake.selected:
if (len(parents) < max_num_parents):
parents.append(snake)
return parents
|
990e65aac637abe8c4c6c8a661f4a039b0900ca4
| 35,321 |
def rgb2hsv(image):
"""
Convert RGB image to HSV.
Parameters
----------
image : af.Array
- A 3 D arrayfire array representing an 3 channel image, or
- A multi dimensional array representing batch of images.
Returns
--------
output : af.Array
- A RGB image.
"""
output = Array()
safe_call(backend.get().af_rgb2hsv(c_pointer(output.arr), image.arr))
return output
|
72b76e200e1ff1fba05fe7f3211b19b34b1ef982
| 35,322 |
def make_colormap(seq,cmapname='CustomMap'):
"""Return a LinearSegmentedColormap
seq: a sequence of floats and RGB-tuples. The floats should be increasing
and in the interval (0,1).
"""
seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3]
cdict = {'red': [], 'green': [], 'blue': []}
for i, item in enumerate(seq):
if isinstance(item, float):
r1, g1, b1 = seq[i - 1]
r2, g2, b2 = seq[i + 1]
cdict['red'].append([item, r1, r2])
cdict['green'].append([item, g1, g2])
cdict['blue'].append([item, b1, b2])
return mcolors.LinearSegmentedColormap(cmapname, cdict)
|
44dd4b40c4519244a857aa1e6d62b5be974f42d0
| 35,323 |
def _interp_fit(y0, y1, y_mid, f0, f1, dt):
"""Fit coefficients for 4th order polynomial interpolation.
Args:
y0 (Tensor) : Function value at the start of the interval.
y1 (Tensor) : Function value at the end of the interval.
y_mid (Tensor) : Function value at the mid-point of the interval.
f0 (Tensor) : Derivative value at the start of the interval.
f1 (Tensor) : Derivative value at the end of the interval.
dt (float64) : Width of the interval.
Returns:
`[a, b, c, d, e]` : For interpolating with the polynomial
`p = a * x ** 4 + b * x ** 3 + c * x ** 2 + d * x + e` for values of `x`
between 0 (start of interval) and 1 (end of interval).
"""
a = _dot_product([-2 * dt, 2 * dt, -8, -8, 16], [f0, f1, y0, y1, y_mid])
b = _dot_product([5 * dt, -3 * dt, 18, 14, -32], [f0, f1, y0, y1, y_mid])
c = _dot_product([-4 * dt, dt, -11, -5, 16], [f0, f1, y0, y1, y_mid])
d = dt * f0
e = y0
return [a, b, c, d, e]
|
021b045ca7635471cde1c3e3f6a887d093666bb4
| 35,324 |
def interleave_value(t0,series,begin=False,end=False):
"""Add t0 between every element of *series*"""
T = []
if begin: T += [t0]
if len(series) > 0: T += [series[0]]
for t in series[1:]: T += [t0,t]
if end: T += [t0]
return T
|
33e3d8562a482e897bb3fd8d49f33a1dfed9bfb9
| 35,325 |
def menu():
"""Menu grafico testuale per programma di gestione Immobili """
x = 1
while x !=0 :
print (" Menu'")
print(" Gestione Immobiliare")
print(" INSERIMENTO IMMOBILE .........digita 1 --> ")
print(" MODIFICA IMMOBILE .........digita 2 --> ")
print(" CANCELLA IMMOBILE .........digita 3 --> ")
print(" STAMPA TUTTI GLI IMMOBILI......digita 4 --> ")
print(" INSERISCI NUOVO CLIENTE........digita 5 --> ")
print(" STAMPA ANAGRAFICA CLIENTI......digita 6 --> ")
print(" CERCA IMMOBILE PER INDIRIZZO...digita 7 --> ")
print(" STAMPA IMMOBILI PER CATALOGO...digita 8 --> ")
print("\n")
print(" PER USCIRE ................digita 0 --> ")
print("\n\n")
x = input("scegli cosa vuoi fare digita 0 per uscire............... --> ")
if x == "1":
return 1
elif x == "2":
return 2
elif x == "3":
return 3
elif x == "4":
return 4
elif x == "5":
return 5
elif x == "6":
return 6
elif x == "7":
return 7
elif x == "8":
return 8
elif x == "0":
x = 0
else:
print(" Scelta non valida - solo numeri da 0 a 8")
x = 1
print("Hai scelto di uscire, Grazie!")
return 0
|
bfb16f3a50339b6e9ed672e1002e727b10f7cc39
| 35,326 |
def named(new_name):
"""
Sets given string as command name instead of the function name.
The string is used verbatim without further processing.
Usage::
@named('load')
def do_load_some_stuff_and_keep_the_original_function_name(args):
...
The resulting command will be available only as ``load``. To add aliases
without renaming the command, check :func:`aliases`.
.. versionadded:: 0.19
"""
def wrapper(func):
setattr(func, ATTR_NAME, new_name)
return func
return wrapper
|
c47d71c4d622fdfcba5854d4f01f2148a07c36ff
| 35,327 |
def remove_junk_chars(bucket_name):
"""Remove characters that shouldn't or won't be in a bucket name"""
name = bucket_name
names = []
#Remove junk chars
junk_chars = ["'", '"', "'", "!"]
for junk_char in junk_chars:
name = name.replace(junk_char, "")
#Remove domains (this can be added later)
domains = [".com", ".org", ".net", ".edu", ".gov"]
for domain in domains:
name = name.replace(domain, "")
#Replace junk char with space so it can be replaced by a replacement char
name = name.replace(","," ")
name = name.replace("."," ")
name = name.replace("*"," ")
name = name.replace("&", " and ")
#Remove any duplicate spaces
while " " in name:
name = name.replace(" ", " ")
#Add the name without "and" if it's there (e.g. "Bob & Sue" becomes "Bob and Sue" and "Bob Sue")
names.append(name.strip())
if " and " in name:
names.append(name.replace(" and ", " ").strip())
return names
|
cd2a3076215a3a8bb94903e1015391abc00ecfaa
| 35,328 |
def create_2x2_arrays(num_arrays):
"""This creates a multi-dimensional array of n 2x2 arrays
Arguments:
num_var {[int]} -- [this is the number of desired arrays]
Returns:
[numpy array] -- [a zero filled n dimensional array with n 2x2 arrays]
"""
temp_list = [2]
for temp in range(0, num_arrays):
temp_list.append(2)
return np.zeros((temp_list))
|
26994d64e0dde46083481fd9f1594c9c102065f3
| 35,329 |
def calculate_gr(fr_pattern, density, composition):
"""
Calculates a g(r) pattern from a given F(r) pattern, the material density and composition.
:param fr_pattern: F(r) pattern
:param density: density in g/cm^3
:param composition: composition as a dictionary with the elements as keys and the abundances as values
:return: g(r) pattern
"""
return calculate_gr_raw(fr_pattern, convert_density_to_atoms_per_cubic_angstrom(composition, density))
|
ac2ad0de0a01e9c629a2affa0a943bb6948e014c
| 35,330 |
import random
def get_batch(data_bucket, bucket_id, batch_size=1):
""" Return one batch to feed into the model """
# only pad to the max length of the bucket
encoder_size, decoder_size = config.BUCKETS[bucket_id]
encoder_inputs, decoder_inputs = [], []
for _ in range(batch_size):
encoder_input, decoder_input = random.choice(data_bucket)
# pad both encoder and decoder, reverse the encoder
encoder_inputs.append(list(reversed(_pad_input(encoder_input, encoder_size))))
decoder_inputs.append(_pad_input(decoder_input, decoder_size))
# now we create batch-major vectors from the data selected above.
batch_encoder_inputs = _reshape_batch(encoder_inputs, encoder_size, batch_size)
batch_decoder_inputs = _reshape_batch(decoder_inputs, decoder_size, batch_size)
# create decoder_masks to be 0 for decoders that are padding.
batch_masks = []
for length_id in range(decoder_size):
batch_mask = np.ones(batch_size, dtype=np.float32)
for batch_id in range(batch_size):
# we set mask to 0 if the corresponding target is a PAD symbol.
# the corresponding decoder is decoder_input shifted by 1 forward.
if length_id < decoder_size - 1:
target = decoder_inputs[batch_id][length_id + 1]
if length_id == decoder_size - 1 or target == config.PAD_ID:
batch_mask[batch_id] = 0.0
batch_masks.append(batch_mask)
return batch_encoder_inputs, batch_decoder_inputs, batch_masks
|
81c17c41021509a82d9fe08f8614997bee937a3b
| 35,333 |
import html
import json
def get_report_formatter(format_name):
"""
Get the correct report table output function for a named format
Args:
format_name (str): Name of the desired format
Returns:
A formatting output function if the format is recognized, or None if it
is not.
"""
format_name = get_canonical_format_name(format_name)
if format_name == 'markdown':
return markdown.report
if format_name == 'html':
return html.report
if format_name == 'json':
return json.report
return None
|
cbb8f623715d3c272e745d3e454053e419e42960
| 35,334 |
from typing import Set
def print_rule_tree(rt: Set['FlowRule']):
"""
Recursively explore rt-contained rules' parents.
"""
rt = rt.copy()
res = []
seen = set()
while rt:
rule = rt.pop()
if rule in seen:
continue
seen.add(rule)
res.insert(0, rule)
for parent_rule_groups in rule._parent_rules:
for pr in parent_rule_groups:
rt.add(pr)
res.sort(key=human_rule_sorter)
return res
|
05b67cda248753042f9f6fbd05dd0b84797a73a3
| 35,335 |
def sort(request):
"""
Valid values for the 'sort' parameter used in the Index
setops methods (intersection, union, etc.)
Caution:
Don't confuse this one with the "sort" fixture used
for DataFrame.append or concat. That one has
parameters [True, False].
We can't combine them as sort=True is not permitted
in in the Index setops methods.
"""
return request.param
|
0f1e7bb570b6f8f617a7564695c1a20d71cfbe80
| 35,336 |
from datetime import datetime
import pytz
def date_string_to_utc_float_string(date_string, timezone=None):
"""Return a utc_float_string for a given date_string
- date_string: string form between 'YYYY' and 'YYYY-MM-DD HH:MM:SS.f'
"""
dt = None
s = None
for fmt in [
'%Y-%m-%d %H:%M:%S', '%Y-%m-%d %H:%M', '%Y-%m-%d %H', '%Y-%m-%d', '%Y-%m', '%Y'
]:
try:
dt = datetime.strptime(str(date_string), fmt)
except ValueError:
continue
else:
break
if dt:
if timezone:
tz = pytz.timezone(timezone)
dt = tz.localize(dt).astimezone(pytz.utc)
s = dt_to_float_string(dt)
return s
|
cd1b1db88d6b9add6dcd252c58877030a31038a8
| 35,337 |
import pathlib
def _find_nested(d1, d2):
"""
Find paths in d1 that are nested inside paths in d2.
Returns tuples with keys `(d1_key, d2_key)` where `d1_path` was a subdirectory of `d2_path`.
"""
# Copy to ensure we don't alter
# original dicts in parent scope
d1 = d1.copy()
d2 = d2.copy()
# Make paths `pathlib.Path` objects
d1 = _normalize_paths(d1, type_fn=pathlib.Path)
d2 = _normalize_paths(d2, type_fn=pathlib.Path)
return [
(d1_key, d2_key) for d1_key, d1_path in d1.items()
for d2_key, d2_path in d2.items()
if d2_path in d1_path.parents
]
|
21b8a9deab9b4ce57987916e98d8ec8c321fd533
| 35,338 |
def safe(method):
"""
Decorator to return safe in case of error.
"""
def ret(*args, **kw):
try:
return method(*args, **kw)
except Exception as e:
log.exception(e)
# return result
return ret
|
9d3d99fec1f2e7e53a35858ad3d5d94d10e443c8
| 35,339 |
def flashpoint_alert_list_command(client: Client, args: dict) -> CommandResults:
"""
List alerts from Flashpoint.
:param client: Client object
:param args: The command arguments
:return: Standard command result or no records found message.
"""
args = validate_alert_list_args(args)
response = client.http_request("GET", url_suffix=URL_SUFFIX_V1['ALERTS'], params=args)
alerts = response.get('data', [])
if not alerts:
return CommandResults(readable_output=MESSAGES['NO_RECORDS_FOUND'].format('alerts'))
readable_output = prepare_hr_for_alerts(alerts)
token_context = {
'since': 'N/A',
'until': 'N/A',
'size': 'N/A',
'scroll_id': 'N/A',
'name': 'flashpoint-alert-list'
}
links = response.get('links', {}).get('next', {}).get('href')
if links:
token_hr = "To retrieve the next set of result use,"
context = prepare_context_from_next_href(links)
for con in context:
token_context[con] = context[con][0]
token_hr += "\n" + con + " = " + context[con][0]
readable_output += token_hr
for alert in alerts:
tags = alert.get('tags', {})
if 'archived' in tags.keys():
alert['tags']['archived'] = True
else:
alert['tags']['archived'] = False
if 'flagged' in tags.keys():
alert['tags']['flagged'] = True
else:
alert['tags']['flagged'] = False
outputs = {
FLASHPOINT_PATHS['ALERT']: alerts,
FLASHPOINT_PATHS['TOKEN']: token_context
}
outputs = remove_empty_elements(outputs)
return CommandResults(
outputs=outputs,
readable_output=readable_output,
raw_response=response
)
|
703f14150c3ac1bce3d70bbe32e2e49f617295e2
| 35,340 |
def create_user(db, django_user_model: AbstractUser, test_password: str):
""" factory for creating users """
def make_user(username, email, first_name, last_name) -> AbstractUser:
new_user: AbstractUser = User.objects.create(username=username, email=email,
first_name=first_name, last_name=last_name)
# assign password
new_user.set_password(test_password)
new_user.save()
return new_user
yield make_user
|
81390a58e4a30b83515c6fa22cb0d42e16a816e6
| 35,341 |
def _read_network_data_from_h5(fname):
"""Read the network stored by the write_network_to_h5 function"""
bias_accumulator = []
weight_accumulator = []
with h5py.File(fname, "r") as hdf:
n_dense_layers = hdf["n_dense_layers"][...][0]
activation = list(hdf["activation"].keys())[0] # Extract activation function
for i in range(n_dense_layers):
bias_accumulator.append(hdf[BIAS_OUTPAT.format(i)][...])
weight_accumulator.append(hdf[WEIGHT_OUTPAT.format(i)][...])
xmin = hdf["xmin"][...]
xmax = hdf["xmax"][...]
ymin = hdf["ymin"][...]
ymax = hdf["ymax"][...]
dense_params = [(b, w) for b, w in zip(bias_accumulator, weight_accumulator)]
return dense_params, xmin, xmax, ymin, ymax, activation
|
e78a0966d9ed30cb1c9d35447f91c5c22009fd40
| 35,342 |
import json
def credentials_from_file(file):
"""Load credentials corresponding to an evaluation from file"""
with open(file) as file:
return json.load(file)
|
8f73c595b4e61757ae454b1674a7177ab4d05059
| 35,343 |
import requests
def get_workspace_vars(auth, workspace_id):
"""
Function to get variables created in a workspace
"""
headers = {"Content-Type": "application/json"}
url = f"https://intersight.com/tfc/api/v2/workspaces/{workspace_id}/vars"
response = requests.get(url, headers=headers, auth=auth)
response_data = response.json()
print(response_data)
workspace_vars = {}
for var in response_data["data"]:
var_id = var["id"]
workspace_vars[var_id] = {}
workspace_vars[var_id]["var_name"] = var["attributes"]["key"]
workspace_vars[var_id]["var_value"] = var["attributes"]["value"]
workspace_vars[var_id]["sensitive"] = var["attributes"]["sensitive"]
workspace_vars[var_id]["var_description"] = var["attributes"]["description"]
return workspace_vars
|
ed05bc7fee86d0303e25fe6ea0b0fd898a08e347
| 35,344 |
def locate_btn(game, team_name, mkt_type, verbose=False):
"""
given selenium game, team_name, and mkt_type
returns find the specific bet button for the givens
game: selenium obj
team_name: str
mkt_type: 0 is point spread, 1 is moneyline, and 2 is over/under
"""
bet_buttons = get_bet_buttons(game)
index = btn_index(game, mkt_type, team_name)
to_click = bet_buttons[index]
if verbose:
print(f"btn_index: {index}")
return to_click
|
641412d41a1a90153bac456ed56702a3a5abc09c
| 35,345 |
def mailchimp_get_endpoint(**kwargs):
"""Endpoint that the mailchimp webhook hits to check that the OSF is responding"""
return {}, http_status.HTTP_200_OK
|
6e46145b976dae5c77d5b8049da91464669aab40
| 35,346 |
def format_date(value, format='%Y-%m-%d'):
"""Returns a formatted time string
:param value: The datetime object that should be formatted
:param format: How the result should look like. A full list of available
directives is here: http://goo.gl/gNxMHE
"""
return value.strftime(format)
|
3f094918610617e644db69415d987fa770a06014
| 35,347 |
def Transpose(node):
"""(Simple) transpose
>>> print(matlab2cpp.qscript("a = [1,2,3]; b = a.'"))
sword _a [] = {1, 2, 3} ;
a = irowvec(_a, 3, false) ;
b = arma::strans(a) ;
"""
# unknown datatype
if not node.num:
return "arma::strans(%(0)s)"
"""
# colvec -> rowvec
if node[0].dim == 1:
node.dim = 2
# rowvec -> colvec
elif node[0].dim == 2:
node.dim = 1
"""
# not complex type
#if node.mem < 4:
# return "arma::strans(", "", ")"
return "arma::strans(", "", ")"
|
16f4eb901ee59c424474b5f55264109dc47e6958
| 35,348 |
import numbers
import collections
def get_xml_type(val):
"""Returns the data type for the xml type attribute"""
if type(val).__name__ in ('str', 'unicode'):
return 'str'
if type(val).__name__ in ('int', 'long'):
return 'int'
if type(val).__name__ == 'float':
return 'float'
if type(val).__name__ == 'bool':
return 'bool'
if isinstance(val, numbers.Number):
return 'number'
if type(val).__name__ == 'NoneType':
return 'null'
if isinstance(val, dict):
return 'dict'
if isinstance(val, collections.Iterable):
return 'list'
return type(val).__name__
|
95a93523d0c982ed2bbd81bba528198915a7eff3
| 35,349 |
def DatetimeToWmiTime(dt):
"""Take a datetime tuple and return it as yyyymmddHHMMSS.mmmmmm+UUU string.
Args:
dt: A datetime object.
Returns:
A string in CMI_DATETIME format.
http://www.dmtf.org/sites/default/files/standards/documents/DSP0004_2.5.0.pdf
"""
td = dt.utcoffset()
if td:
offset = (td.seconds + (td.days * 60 * 60 * 24)) / 60
if offset >= 0:
str_offset = "+%03d" % offset
else:
str_offset = "%03d" % offset
else:
str_offset = "+000"
return u"%04d%02d%02d%02d%02d%02d.%06d%s" % (dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second,
dt.microsecond, str_offset)
|
706faec64a116ad4dc255b6ff9b87b4a8488bcff
| 35,350 |
def _add_suffix(params, model):
"""Add derivative suffixes to a list of parameters."""
params_full = params.copy()
suffix = {
"basic": {},
"derivatives": {"derivative1"},
"power2": {"power2"},
"full": {"derivative1", "power2", "derivative1_power2"},
}
for par in params:
for suff in suffix[model]:
params_full.append(f"{par}_{suff}")
return params_full
|
178b71bb24dde36c262d115e485b568fe0bef503
| 35,351 |
def _random_covariance_matrix(batch_size):
"""Generate a batch of random covariance matrices.
Args:
batch_size: Number of elements in the first dimension returned.
Returns:
A tensor with dimensions [batch_size, 2, 2].
"""
# Make a random covariance matrix by taking the outer product of 10 random
# matrices.
x = np.random.normal(size=(batch_size, 10, 2))
sigma = np.matmul(x.transpose(0, 2, 1), x)
return sigma
|
19ab668bc43e4213ed5b4a042730f9953424b37f
| 35,353 |
def parse_ranges_highlight(ranges_string):
"""Process ranges highlight string.
Args:
ranges_string: (str) A string representing a numerical range of a list of
numerical ranges. See the help info of the -r flag of the print_tensor
command for more details.
Returns:
An instance of tensor_format.HighlightOptions, if range_string is a valid
representation of a range or a list of ranges.
"""
ranges = None
def ranges_filter(x):
r = np.zeros(x.shape, dtype=bool)
for range_start, range_end in ranges:
r = np.logical_or(r, np.logical_and(x >= range_start, x <= range_end))
return r
if ranges_string:
ranges = command_parser.parse_ranges(ranges_string)
return tensor_format.HighlightOptions(
ranges_filter, description=ranges_string)
else:
return None
|
263c6b11d123277e6a2636c482ba045751a8863d
| 35,354 |
def have_instance(nova_connection: NovaConnection, instance_name: str):
"""
Check if the instance_name is in the same region that nova_connection
:param nova_connection: NovaConnection
:param instance_name: str content the instance name
:return: bool
"""
for server in nova_connection.connection.servers.list():
server_info = dict(server.to_dict())
if 'name' in server_info and server_info['name'] == instance_name:
return True
return False
|
4174a3817301007f3cb5eaab02bfc8c14b7526fd
| 35,355 |
import torch
def torchify_dict(data: dict):
"""
Transform np.ndarrays to torch.tensors.
Parameters
----------
data : dict
property data of np.ndarrays.
References
----------
.. [1] https://github.com/ken2403/schnetpack/blob/6617dbf4edd1fc4d4aae0c984bc7a747a4fe9c0c/src/schnetpack/data/atoms.py
"""
torch_properties = {}
for pname, prop in data.items():
if prop.dtype in [np.int32, np.int64]:
torch_properties[pname] = torch.LongTensor(prop)
elif prop.dtype in [np.float32, np.float64]:
torch_properties[pname] = torch.FloatTensor(prop.copy())
else:
raise CellDataError(
"Invalid datatype {} for property {}!".format(type(prop), pname)
)
return torch_properties
|
fbfc2a05e6e6710bae1aee8487c277f463b58225
| 35,356 |
def select_black_ou(board):
"""
手番側の有効な王の利きを求めるために使う
:param board:
:return:
"""
# 桂馬で王手されているかを調べるために、擬似的に王から桂馬の効きを計算する
# 王の通常の動きの計算もある
# 2回使うので、collectionに登録する
name = 'black_short_ou'
collection = tf.get_collection_ref(name)
if len(collection) == 0:
selected = tf.to_float(tf.equal(board, Piece.BLACK_OU))
tf.add_to_collection(name, selected)
else:
selected = collection[0]
return selected
|
7b30d104b6fb916b7b70025f7812dc2fd26a4bad
| 35,358 |
def bytes_to_decimal_bytes(bytes_decimal_str, is_little_endian=False):
"""
:param bytes_decimal_str:
:param is_little_endian:
:return:
"""
if not bytes_decimal_str.isdigit():
raise Exception('bytes_decimal_str 不是数字字符串!')
return
length = len(bytes_decimal_str)
tmp_list = [bytes_decimal_str[i:i+2] for i in range(length) if (i % 2 == 0)]
hex_list = list()
for byte_str in tmp_list:
h_str = hex(int(byte_str))
hex_list.append(h_str[2:].zfill(2))
byte_str = bytes.fromhex(''.join(hex_list))
# print(byte_str)
return byte_str
|
2a5dbbfe643919c20e764268ca4046151d80eaf2
| 35,359 |
from .. import sim
from ..support.morlet import MorletSpec, index2ms
from scipy import signal as spsig
def prepareSpectrogram(
sim=None,
timeRange=None,
electrodes=['avg', 'all'],
pop=None,
LFPData=None,
NFFT=256,
noverlap=128,
nperseg=256,
minFreq=1,
maxFreq=100,
stepFreq=1,
smooth=0,
includeAxon=True,
logy=False,
normSignal=False,
normPSD=False,
normSpec=False,
filtFreq=False,
filtOrder=3,
detrend=False,
transformMethod='morlet',
**kwargs):
"""
Function to prepare data for plotting of the spectrogram
"""
data = prepareLFP(
sim=sim,
timeRange=timeRange,
electrodes=electrodes,
pop=pop,
LFPData=LFPData,
NFFT=NFFT,
noverlap=noverlap,
nperseg=nperseg,
minFreq=minFreq,
maxFreq=maxFreq,
stepFreq=stepFreq,
smooth=smooth,
includeAxon=includeAxon,
logy=logy,
normSignal=normSignal,
normPSD=normPSD,
normSpec=normSpec,
filtFreq=filtFreq,
filtOrder=filtOrder,
detrend=detrend,
transformMethod=transformMethod,
**kwargs)
print('Preparing spectrogram data...')
if not sim:
if not timeRange:
timeRange = [0, sim.cfg.duration]
lfps = np.array(data['electrodes']['lfps'])
names = data['electrodes']['names']
electrodes = data['electrodes']
spect_data = {}
spect_data['vmin'] = None
spect_data['vmax'] = None
# Morlet wavelet transform method
if transformMethod == 'morlet':
fs = int(1000.0/sim.cfg.recordStep)
spec = []
spect_data['morlet'] = []
spect_data['extent'] = []
freqList = None
if logy:
freqList = np.logspace(np.log10(minFreq), np.log10(maxFreq), int((maxFreq-minFreq)/stepFreq))
for i, elec in enumerate(names):
lfp_elec = lfps[i, :]
t_spec = np.linspace(0, index2ms(len(lfp_elec), fs), len(lfp_elec))
spec.append(MorletSpec(lfp_elec, fs, freqmin=minFreq, freqmax=maxFreq, freqstep=stepFreq, lfreq=freqList))
vmin = np.array([s.TFR for s in spec]).min()
vmax = np.array([s.TFR for s in spec]).max()
if normSpec:
vmin = 0
vmax = 1
spect_data['vmin'] = vmin
spect_data['vmax'] = vmax
for i, elec in enumerate(names):
T = timeRange
F = spec[i].f
if normSpec:
S = spec[i].TFR / vmax
else:
S = spec[i].TFR
spect_data['morlet'].append(S)
spect_data['extent'].append([np.amin(T), np.amax(T), np.amin(F), np.amax(F)])
# FFT transform method
elif transformMethod == 'fft':
spect_data['fft'] = []
for i, elec in enumerate(names):
lfp_elec = lfps[:, i]
fs = int(1000.0/sim.cfg.recordStep)
f, t_spec, x_spec = spsig.spectrogram(lfp_elec, fs=fs, window='hanning', detrend=mlab.detrend_none, nperseg=nperseg, noverlap=noverlap, nfft=NFFT, mode='psd')
x_mesh, y_mesh = np.meshgrid(t_spec*1000.0, f[f<maxFreq])
spect_data['fft'].append(10*np.log10(x_spec[f<maxFreq]))
vmin = np.array(spect_data['fft']).min()
vmax = np.array(spect_data['fft']).max()
spect_data['vmin'] = vmin
spect_data['vmax'] = vmax
spect_data['xmesh'] = x_mesh
spect_data['ymesh'] = y_mesh
#for i, elec in enumerate(electrodes):
# plt.pcolormesh(x_mesh, y_mesh, spec[i], cmap=cm.viridis, vmin=vmin, vmax=vmax)
data['electrodes']['spectrogram'] = spect_data
return data
|
209f0f58878a36184d93824d84e07fa4e00a146b
| 35,361 |
def mock_func_call(*args, **kwargs):
"""
Mock function to be used instead of benchmark
"""
options = Options()
cost_func = make_cost_function()
results = []
result_args = {'options': options,
'cost_func': cost_func,
'jac': 'jac',
'hess': 'hess',
'initial_params': [],
'params': [],
'error_flag': 4}
result = fitbm_result.FittingResult(**result_args)
results.append(result)
failed_problems = []
unselected_minimizers = {}
return results, failed_problems, unselected_minimizers
|
9dd8c1e928f649f8acea70e423f08df29fb9c59c
| 35,362 |
def _full_gauss_den(x, mu, va, log):
""" This function is the actual implementation
of gaussian pdf in full matrix case.
It assumes all args are conformant, so it should
not be used directly Call gauss_den instead
Does not check if va is definite positive (on inversible
for that matter), so the inverse computation and/or determinant
would throw an exception."""
d = mu.size
inva = lin.inv(va)
fac = 1 / N.sqrt( (2*N.pi) ** d * N.fabs(lin.det(va)))
# we are using a trick with sum to "emulate"
# the matrix multiplication inva * x without any explicit loop
#y = -0.5 * N.sum(N.dot((x-mu), inva) * (x-mu), 1)
y = -0.5 * N.dot(N.dot((x-mu), inva) * (x-mu),
N.ones((mu.size, 1), x.dtype))[:, 0]
if not log:
y = fac * N.exp(y)
else:
y = y + N.log(fac)
return y
|
6828755f0dc526009babe48ec31b14977e1187eb
| 35,363 |
def load_texture_pair(filename):
""" Handles textures """
return[
arcade.load_texture(filename),
arcade.load_texture(filename, mirrored=True)
]
|
20cd31cc09dfc6a503e678135b1de406263c8719
| 35,364 |
def set_field_value(context, field_value):
"""populates variable into a context"""
if field_value:
context['field_value'] = field_value
else:
context['field_value'] = ''
return ''
|
68110380f244b78550a04d08ad9bda5df193211e
| 35,365 |
def get_bbox(src_bbox, offset):
"""src_bboxにoffsetを適用し、元の領域を復元する。
RPNから得たoffset予測値をアンカーボックスに適用して提案領域を得る。といったケースで利用する。
Args:
src_bbox (tensor / ndarray): オフセットを適用するBoudingBox。
Its shape is :math:`(R, 4)`.
2軸目に以下の順でBBoxの座標を保持する。
:math:`p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}`.
offset (tensor / ndarray): オフセット。
形状はsrc_bboxに同じ。
2軸目にオフセットの形状を保持数r。 :math:`t_y, t_x, t_h, t_w`.
tx =(x−xa)/wa, ty =(y−ya)/ha, tw = log(w/wa), th = log(h/ha)
※それぞれ、アンカーからのオフセット
※「x」は予測された領域の中心x、「xa」はアンカーの中心x。
Returns:
tensor:
オフセットを適用したBoudingBox。
形状はsrc_bboxに同じ。
1軸目はsrc_bboxと同じ情報を示す。
2軸目にはオフセットを適用した座標を保持する。
:math:`\\hat{g}_{ymin}, \\hat{g}_{xmin},
\\hat{g}_{ymax}, \\hat{g}_{xmax}`.
"""
if type(src_bbox) == np.ndarray and type(offset) == np.ndarray:
xp = np
else:
xp = K
if src_bbox.shape[0] == 0:
return xp.zeros((0, 4), dtype=offset[:, 0].dtype)
# src_bbox(anchorなど)の左上と右下の座標から、中心座標+高さ+幅の形式に変換する
src_height = src_bbox[:, 2] - src_bbox[:, 0]
src_width = src_bbox[:, 3] - src_bbox[:, 1]
src_ctr_y = src_bbox[:, 0] + 0.5 * src_height
src_ctr_x = src_bbox[:, 1] + 0.5 * src_width
# オフセットを中心座標、高さ、幅毎にまとめる
dy = offset[:, 0]
dx = offset[:, 1]
dh = offset[:, 2]
dw = offset[:, 3]
# 論文にあるオフセット算出式(以下)から逆算
# tx =(x−xa)/wa, ty =(y−ya)/ha, tw = log(w/wa), th = log(h/ha)
# ※それぞれ、アンカーからのオフセット
# ※「x」は予測された領域の中心x、「xa」はアンカーの中心x。
ctr_y = dy * src_height + src_ctr_y
ctr_x = dx * src_width + src_ctr_x
h = xp.exp(dh) * src_height
w = xp.exp(dw) * src_width
# 矩形の左上と右下の座標に変換
ymin = ctr_y - 0.5 * h
xmin = ctr_x - 0.5 * w
ymax = ctr_y + 0.5 * h
xmax = ctr_x + 0.5 * w
bbox = xp.transpose(xp.stack((ymin, xmin, ymax, xmax), axis=0))
return bbox
|
3afc2cacbd86a6b507c14b7623a1759148ca71fc
| 35,366 |
def show_books(object_list):
"""
加载指定书籍列表的模板。
:param object_list: Book模型实例的列表
:return: 返回一个字典作为模板的上下文
"""
if len(object_list) > 0:
try:
getattr(object_list[0], 'object')
except AttributeError:
pass
else:
object_list = map(lambda ele: ele.object, object_list)
context = {
'books_list': object_list,
}
return context
|
034707460c73eed6e69578726c860ee55a070ac6
| 35,367 |
def load_mesh_from_file(filepath, color=None, alpha=None):
"""
Load a a mesh or volume from files like .obj, .stl, ...
:param filepath: path to file
:param **kwargs:
"""
actor = load(str(filepath))
actor.c(color).alpha(alpha)
return actor
|
49d4a1aa576d2df3d18647f0b48cd84662f9f713
| 35,368 |
import six
def find_html_form(forms, form_match):
# type: (Dict[AnyKey, Form], FormSearch) -> Optional[Form]
"""
Searches for the specified form amongst a group of multiple forms.
:param forms: Possible forms to distinguish and look for a specific one.
:param form_match:
Search criteria to retrieve the specific form.
Can be a form name, the form index (from all available forms on page) or an iterable of key/values of
form fields to search for a match (first match is used if many are available).
Also, can be directly the targeted form if already retrieved (pass-through operation).
:return: matched form or ``None`` when not found.
"""
form = None
# direct instance match
if isinstance(form_match, Form):
form = form_match
# match by name or index
elif isinstance(form_match, (int, six.string_types)):
form = forms[form_match]
else:
# select form if all key/value pairs specified match the current one
for f in forms.values():
f_fields = [(fk, fv[0].value) for fk, fv in f.fields.items()]
if all((mk, mv) in f_fields for mk, mv in form_match.items()):
form = f
break
return form
|
7168a9b2734a7f67bb0e490700689c5e92f18b6e
| 35,369 |
import re
from typing import OrderedDict
def parse_dict(s, sep=None):
"""
parser for (ordered) dicts
:s: the input string to parse, which should be of the format
key1 := value1,
key2 := value2,
key3 := value3,
where the last comma is optional
:sep: separator (default is ':=')
:returns: OrderedDict(('key1', 'value1'), ...)
"""
if sep is None: sep = ":="
# deal with the comma on the last line
s_split = s.split(",")
if re.match("^\s*$", s_split[-1]):
del s_split[-1]
# now deal with the dict
try: return OrderedDict(
map (
lambda s2: tuple(map(
# split at
lambda s3: s3.strip(),
s2.split(sep)
)),
s_split
)
)
except:
raise
return OrderedDict()
|
dcfdec6dcc68661f5d27f49a280326bec6cfd90b
| 35,370 |
def compute_pdi(value_matrix, slice_list):
"""
Computes a 'preference' discordance index
:param value_matrix:
:param slice_list:
:return:
"""
pdi = ['x']
pdimax = ['x']
for i in slice_list:
incident = compute_incident(value_matrix, i)
complement = invert_matrix(incident)
g = sparse_graph(complement, 1)
Q = dowker_relation(g)
strct = Q.diagonal()
tmp = np.zeros(len(strct))
tmax = np.zeros(len(strct))
pmax = len(strct) - 1
for j in range(len(Q[0])):
q = []
for k in range(len(Q[0][j])):
if k is not j:
q.append(Q[0][j][k])
if strct[j] < 0:
tmp[j] = 0
tmax[j] = pmax
else:
val = strct[j] - max(q)
tmp[j] = val
tmax[j] = pmax
pdi.append(tmp)
pdimax.append(tmax)
pdi = np.array(pdi[1:]).sum(axis=0)
pdimax = np.array(pdimax[1:]).sum(axis=0)
pdi = np.divide(pdi, pdimax)
return pdi
|
e4dafa4259a0d8ecdd496a18cca6dc7cd44c69ad
| 35,371 |
def sublist_search(array1, array2):
"""
:param array1: sublist
:param array2: list
:return: Whether list contains sublist
Time complexity: O(n * m)
"""
# Empty array
if len(array1) == 0:
return True
for start_idx in range(len(array2)):
if check_is_contained(array1, array2, start_idx):
return True
return False
|
905d89b1a831e5f3d0ae2ee3c7fdbe6956bbd507
| 35,372 |
def get_instance_names(node: AST) -> list[str]:
"""Extract names from an assignment node, only for instance attributes.
Parameters:
node: The node to extract names from.
Returns:
A list of names.
"""
return [name.split(".", 1)[1] for name in get_names(node) if name.startswith("self.")]
|
c96d4e0b5a79845f695e8ee6c48a1db544670692
| 35,374 |
def is_geq_than(x,y):
""" x is not None and greater than or equal to y """
if x != None:
if x>=y: return True
return False
|
706e801cb23673ed094e330ee8582aaf14fe85c3
| 35,375 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.