content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_config(client, config_type, basefolder="/config"): """ Return an object that can be used to push/pull configurations inside an etcd database. Examples: import etcd3 import etcdgo client = etcd3.Etcd3Client() # push a json configuration inside database config = etcdgo.get_config(client, "json") config.push("myconfig", "myfile.json") # push a yaml configuration inside database config = etcdgo.get_config(client, "yaml") config.push("myconfig", "myfile.yaml") # pull data from etcd database data = config.pull("myconfig") Args: client (etcd3.Etcd3Client): etcd client object. config_type (str): configuration type. Supported: json, yaml. basefolder (str): root of the configuration inside the etcd database. Returns: Config: object to push/pull configurations inside an etcd database. """ if not client or not isinstance(client, etcd3.Etcd3Client): raise ValueError("client must be of type etcd3.Etcd3Client") if not config_type or not isinstance(config_type, str): raise ValueError("config_type must be a string") obj = None if config_type.lower() == "json": obj = etcdgo.config.JsonConfig(client, basefolder=basefolder) elif config_type.lower() == "yaml": obj = etcdgo.config.YamlConfig(client, basefolder=basefolder) elif config_type.lower() == "ini": obj = etcdgo.config.IniConfig(client, basefolder=basefolder) else: raise NotImplementedError("'%s' format is not supported" % config_type) return obj
db0eabbe025a924a18188cbc02c0fe934531986a
35,035
def get_file_attribute_dtypes(filename): # type: (str) -> Dict[str, str] """ Get the dtypes of the attributes of the file :param filename: :return: """ with h5py.File(filename, 'r') as infile: return {key: type(value).__name__ for key, value in infile.attrs.items()}
ae03efa9210f898cf3fc120a87e313c1edbeae6e
35,036
def default_input_format(content_type='application/json', apply_globally=False, api=None): """A decorator that allows you to override the default output format for an API""" def decorator(formatter): formatter = hug.output_format.content_type(content_type)(formatter) if apply_globally: hug.defaults.input_format[content_type] = formatter else: apply_to_api = hug.API(api) if api else hug.api.from_object(formatter) apply_to_api.http.set_input_format(content_type, formatter) return formatter return decorator
1bbfb2cb23dbb2353804e701938d005aea941e86
35,037
import inspect def popargs(*args, **kwargs): """A decorator for _cp_dispatch (cherrypy.dispatch.Dispatcher.dispatch_method_name). Optional keyword argument: handler=(Object or Function) Provides a _cp_dispatch function that pops off path segments into cherrypy.request.params under the names specified. The dispatch is then forwarded on to the next vpath element. Note that any existing (and exposed) member function of the class that popargs is applied to will override that value of the argument. For instance, if you have a method named "list" on the class decorated with popargs, then accessing "/list" will call that function instead of popping it off as the requested parameter. This restriction applies to all _cp_dispatch functions. The only way around this restriction is to create a "blank class" whose only function is to provide _cp_dispatch. If there are path elements after the arguments, or more arguments are requested than are available in the vpath, then the 'handler' keyword argument specifies the next object to handle the parameterized request. If handler is not specified or is None, then self is used. If handler is a function rather than an instance, then that function will be called with the args specified and the return value from that function used as the next object INSTEAD of adding the parameters to cherrypy.request.args. This decorator may be used in one of two ways: As a class decorator: @cherrypy.popargs('year', 'month', 'day') class Blog: def index(self, year=None, month=None, day=None): #Process the parameters here; any url like #/, /2009, /2009/12, or /2009/12/31 #will fill in the appropriate parameters. def create(self): #This link will still be available at /create. Defined functions #take precedence over arguments. Or as a member of a class: class Blog: _cp_dispatch = cherrypy.popargs('year', 'month', 'day') #... The handler argument may be used to mix arguments with built in functions. For instance, the following setup allows different activities at the day, month, and year level: class DayHandler: def index(self, year, month, day): #Do something with this day; probably list entries def delete(self, year, month, day): #Delete all entries for this day @cherrypy.popargs('day', handler=DayHandler()) class MonthHandler: def index(self, year, month): #Do something with this month; probably list entries def delete(self, year, month): #Delete all entries for this month @cherrypy.popargs('month', handler=MonthHandler()) class YearHandler: def index(self, year): #Do something with this year #... @cherrypy.popargs('year', handler=YearHandler()) class Root: def index(self): #... """ # Since keyword arg comes after *args, we have to process it ourselves # for lower versions of python. handler = None handler_call = False for k, v in kwargs.items(): if k == 'handler': handler = v else: raise TypeError( "cherrypy.popargs() got an unexpected keyword argument '{0}'" .format(k) ) if handler is not None \ and (hasattr(handler, '__call__') or inspect.isclass(handler)): handler_call = True def decorated(cls_or_self=None, vpath=None): if inspect.isclass(cls_or_self): # cherrypy.popargs is a class decorator cls = cls_or_self setattr(cls, dispatch.Dispatcher.dispatch_method_name, decorated) return cls # We're in the actual function self = cls_or_self parms = {} for arg in args: if not vpath: break parms[arg] = vpath.pop(0) if handler is not None: if handler_call: return handler(**parms) else: request.params.update(parms) return handler request.params.update(parms) # If we are the ultimate handler, then to prevent our _cp_dispatch # from being called again, we will resolve remaining elements through # getattr() directly. if vpath: return getattr(self, vpath.pop(0), None) else: return self return decorated
9139de9770e5e295656331a31d44ca38d4dcecbc
35,038
def to_pass(line): """ Replace a line of code with a pass statement, with the correct number of leading spaces Arguments ---------- line : str, line of code Returns ---------- passed : str, line of code with same leading spaces but code replaced with pass statement """ # the number of leading spaces on the line spaces = len(line) - len(line.lstrip(' ')) # replace statement with pass and correct leading spaces passed = (' ' * spaces) + 'pass' return passed
f8444ecc38523aaef13d535258974881956e30b9
35,039
import numpy def reverse_sort_C(C, sorted_index): """ Perform the reverse of sort described in sort_by_sorted_index, on rows in a numpy array. Args: C (numpy.array): array with C.shape[0] = len(sorted_index) sorted_index (list of ints): desired order for rows of C """ m,n = C.shape C_new = numpy.zeros(C.shape) for i in range(len(sorted_index)): row = sorted_index[i] for j in range(n): C_new[row][j] = C[i][j] return C_new
a0865dba6479104bb1442ea185ec7913ed8cb53c
35,040
def auto_reconnect_connection(func): """ Attempt to safely reconnect when an error is hit that resembles the bouncer disconnecting the client due to a timeout/etc. """ @wraps(func) def inner(self, *args, **kwargs): try: return func(self, *args, **kwargs) except Exception, e: if not can_reconnect(e): raise self.close(reconnect=True) return func(self, *args, **kwargs) return inner
88d69a885004d4c683aa653d8c79d43fb9408476
35,041
def windices_of_references(string, sen_dict): """ returns a list of word/sentence indices for all coreferences to the given string in sen_dict. returns [(0,0,0)] if there were no coreferences found. """ indices = [] coreferences = coreferences_for(string, sen_dict) if not coreferences: return [(0, 0, 0)] for ref_pair in coreferences: for ref in ref_pair: sen_id = ref[1] start_index = ref[3] end_index = ref[4] interval = (int(sen_id), int(start_index), int(end_index)) indices.append(interval) return list(set(indices))
2bf13beb67aa3e519fb40c06d59a018f89037890
35,042
def radius(x,y,z,xa,ya) : """ Compute distances between the control points (x,y) and a potential center (xa, ya) in UTM coord, and sort the results depending on the elevation of the control points (z) Parameters ---------- x,y,z : UTM coordinates and Elevation of the control point xa, ya : UTM coordinates of the potential center ("a" for apex) Returns ------- r: Distance between the control point and the potential center ("r" for Radius since we are dealing with conical shapes) z: Elevation of the control point Both r and z are sorted depending on the elevation. Example ------- radius_sorted, Elev_sorted = radius(control_xUTM, control_yUTM,control_z,apex_coordX,apex_coordY) """ r = np.sqrt( (x-xa)**2 + (y-ya)**2 ) index = np.argsort(r) return r[index], np.array(z)[index]
3bbe20677dfd921c6c6d561f34b76ed54a12d266
35,043
def remove_labels(data): """ Keep only sqrt(n) of the real labels. To find the others, use k=sqrt(sqrt(n)) nearest neighbors from the labels we know, and use the mode. """ # "Remove" labels # lost_idx = np.random.choice( # len(data.y_train), size=int(len(data.y_train) - np.sqrt(len(data.y_train)))) lost_idx = np.random.choice( len(data.y_train), size=int(0.63 * len(data.y_train)), replace=False) X_lost = data.x_train[lost_idx] X_rest = np.delete(data.x_train, lost_idx, axis=0) y_lost = data.y_train[lost_idx] y_rest = np.delete(data.y_train, lost_idx, axis=0) if len(X_lost.shape) == 1: X_lost = X_lost.reshape(1, -1) if len(X_rest.shape) == 1: X_rest = X_rest.reshape(1, -1) # Impute data for i in range(len(X_lost)): tree = KDTree(X_rest) d, idx = tree.query([X_lost[i]], k=int(np.sqrt(len(X_rest))), p=1) y_lost[i] = mode(y_rest[idx][0])[0][0] print('Ratio =', round(len(X_rest) / len(data.y_train), 2)) print('Total =', len(X_lost) + len(X_rest)) data.x_train = np.concatenate((X_lost, X_rest), axis=0) data.y_train = np.concatenate((y_lost, y_rest), axis=0) return data, 0.8 * len(X_rest) / (len(X_rest) + len(X_lost))
4a13ab58309c7ca104375f47c4cdb6dee076fa19
35,044
import asyncio async def async_setup(hass, config): """Set up the Ais Files platform.""" # register services @asyncio.coroutine async def async_transfer_file(call): if "path" not in call.data or "name" not in call.data: return await _async_transfer_file(hass, call.data["path"], call.data["name"]) @asyncio.coroutine async def async_remove_file(call): if "path" not in call.data: return await _async_remove_file(hass, call.data["path"]) @asyncio.coroutine async def async_refresh_files(call): await _async_refresh_files(hass) @asyncio.coroutine async def async_pick_file(call): if "idx" not in call.data: return await _async_pick_file(hass, call.data["idx"]) @asyncio.coroutine async def async_change_logger_settings(call): await _async_change_logger_settings(hass, call) @asyncio.coroutine async def async_get_db_log_settings_info(call): await _async_get_db_log_settings_info(hass, call) @asyncio.coroutine async def async_check_db_connection(call): await _async_check_db_connection(hass, call) hass.services.async_register(DOMAIN, "pick_file", async_pick_file) hass.services.async_register(DOMAIN, "refresh_files", async_refresh_files) hass.services.async_register(DOMAIN, "transfer_file", async_transfer_file) hass.services.async_register(DOMAIN, "remove_file", async_remove_file) hass.services.async_register( DOMAIN, "change_logger_settings", async_change_logger_settings ) hass.services.async_register( DOMAIN, "check_db_connection", async_check_db_connection ) hass.services.async_register( DOMAIN, "get_db_log_settings_info", async_get_db_log_settings_info ) hass.http.register_view(FileUpladView) return True
22bec0569edf73774100b5f8a70dcbd6d6d65de3
35,045
from typing import Iterable import itertools def expand(curr_state: State, params: FindPathParams) -> Iterable[Identifier]: """ Expand a state into it's children states """ per_agent_expansion = [] for agent in curr_state.identifier.actual: agent: Agent # if an agent is colliding, expand it fully if curr_state.collision_set.is_colliding(agent): res = expand_position(agent, params.grid) # otherwise, expand following the individually optimal path else: res = params.optimal_path.best_move(agent) per_agent_expansion.append(res) new_identifiers = itertools.product(*per_agent_expansion) return [ Identifier(part, part) for part in new_identifiers ]
1aebb5701b22d26a250aded9ee1e8aede0a87eac
35,046
import time def SSDR(poses, rest_pose, num_bones, sparseness=4, max_iterations=20): """ Computes the Smooth Skinning Decomposition with Rigid bones inputs: poses |num_poses| x |num_verts| x 3 matrix representing coordinates of vertices of each pose rest_pose |num_verts| x 3 numpy matrix representing the coordinates of vertices in rest pose num_bones number of bones to create sparseness max number of bones influencing a single vertex return: An i x j matrix of bone-vertex weights, where i = # vertices and j = # bones A length-B list of (length-t lists of bone transformations [R_j | T_j] ), one list for each bone A list of bone translations for the bones at rest """ start_time = time.time() bone_transforms, rest_bones_t = initialize(poses, rest_pose, num_bones) for _ in range(max_iterations): W = update_weight_map(bone_transforms, rest_bones_t, poses, rest_pose, sparseness) bone_transforms = update_bone_transforms(W, bone_transforms, rest_bones_t, poses, rest_pose) print("Reconstruction error:", reconstruction_err(poses, rest_pose, bone_transforms, rest_bones_t, W)) end_time = time.time() print("Done. Calculation took {0} seconds".format(end_time - start_time)) print("Avg reconstruction error:", reconstruction_err(poses, rest_pose, bone_transforms, rest_bones_t, W)) return W, bone_transforms, rest_bones_t
b4bf6b7d4a6c184b79ad0dcf2122ba31e1faef4f
35,047
import itertools def string_permutations(test_list, list_to_permutate): """Takes a list and a set, and returns a list of all the permutations as strings""" str_perms = [list(permutation) for permutation in itertools.permutations(list_to_permutate)] return [str(test_list + str_perm) for str_perm in str_perms]
b4cee2f34e0382a7cd2b49f5b5f22bc85712731a
35,048
def to_cols(d): """Make a square matrix with columns equal to 'd'. >>> print ker.to_cols(np.array([1,2,3,4])) [[1 1 1 1] [2 2 2 2] [3 3 3 3] [4 4 4 4]] """ return np.tile(d.reshape(len(d), -1), (1, len(d)))
1a5dc76a86d3b5d83b6ac5360af3df041237dbce
35,049
def captured_sensor(hass): """Create a captured today ArloSensor.""" data = _get_named_tuple({"captured_today": [0, 0, 0, 0, 0]}) return _get_sensor(hass, "Captured Today", "captured_today", data)
045b78cf8929517b4f15f479503ed82814182cce
35,050
def create_icon_axes(fig, ax_position, lw_bars, lw_grid, lw_border, rgrid): """ Create a polar axes containing the matplotlib radar plot. Parameters ---------- fig : matplotlib.figure.Figure The figure to draw into. ax_position : (float, float, float, float) The position of the created Axes in figure coordinates as (x, y, width, height). lw_bars : float The linewidth of the bars. lw_grid : float The linewidth of the grid. lw_border : float The linewidth of the Axes border. rgrid : array-like Positions of the radial grid. Returns ------- ax : matplotlib.axes.Axes The created Axes. """ with plt.rc_context({ 'axes.edgecolor': MPL_BLUE, 'axes.linewidth': lw_border }): ax = fig.add_axes(ax_position) ax.set_axisbelow(True) linewidth = 5 N = 1000 n_1 = 6 n_2 = 32 i = np.linspace(0, 1, n_1) j = np.linspace(0, 1, n_2 + 1, endpoint=True) II, JJ = np.meshgrid(i, j) R = 20 * (3)**II THETA = 2 * np.pi * (JJ + 0.5 / n_2) XX = R * np.cos(THETA) YY = R * np.sin(THETA) m = int(n_2 / 4 * 3 - 1) n = int(n_1 / 2) XXX = XX[m:m + 2, n:n + 2] YYY = YY[m:m + 2, n:n + 2] x_avg = (XXX.max() + XXX.min()) / 2 a = (XXX.max() - XXX.min()) / 2 * 1.618 y_avg = (YYY.max() + YYY.min()) / 2 ax.set_aspect("equal") ax.axis("off") ax.plot(XX[m - 1:m + 3, n - 1:n + 3], YY[m - 1:m + 3, n - 1:n + 3], "gray", linewidth=linewidth, solid_capstyle="round") ax.plot(XX[m - 1:m + 3, n - 1:n + 3].T, YY[m - 1:m + 3, n - 1:n + 3].T, "gray", linewidth=linewidth, solid_capstyle="round") ax.set_xlim([x_avg - a, x_avg + a]) ax.set_ylim([y_avg - a, y_avg + a]) ax.plot(XXX, YYY, "green", linewidth=linewidth, solid_capstyle="round") ax.plot(XXX.T, YYY.T, "green", linewidth=linewidth, solid_capstyle="round") xi = np.linspace(-1.0, 1.0, N) eta = np.linspace(-1.0, 1.0, N) XI, ETA = np.meshgrid(xi, eta) shape_funcs = np.array([ 1 / 4 * (1 + XI) * (1 + ETA), 1 / 4 * (1 - XI) * (1 + ETA), 1 / 4 * (1 + XI) * (1 - ETA), 1 / 4 * (1 - XI) * (1 - ETA), ]) XXXX = np.einsum(shape_funcs, [0, 1, 2], XXX.reshape((-1, )), [0]) YYYY = np.einsum(shape_funcs, [0, 1, 2], YYY.reshape((-1, )), [0]) ZZZZ = (XXXX - XXXX.min()) * (YYYY - YYYY.min() + a * 0.5) ax.contourf(XXXX, YYYY, ZZZZ) return ax
1ea5e6248ab6b9053afe543d4ed3d8d31ec02d57
35,051
import time def baseline_multiclass(train_data, train_labels, test_data, test_labels, args): """Train various classifiers to get a baseline.""" clf, train_accuracy, test_accuracy, train_f1, test_f1, exec_time = [], [], [], [], [], [] clf.append(sklearn.neighbors.KNeighborsClassifier(n_neighbors=15, n_jobs=8)) clf.append( sklearn.ensemble.RandomForestClassifier(n_jobs=8, verbose=10, random_state=args.seed)) for i, c in enumerate(clf): t_start = time.process_time() c.fit(train_data, train_labels) train_pred = c.predict(train_data) test_pred = c.predict(test_data) train_accuracy.append('{:5.2f}'.format( 100 * sklearn.metrics.accuracy_score(train_labels, train_pred))) test_accuracy.append('{:5.2f}'.format( 100 * sklearn.metrics.accuracy_score(test_labels, test_pred))) train_f1.append('{:5.2f}'.format(100 * sklearn.metrics.f1_score( train_labels, train_pred, average='weighted'))) test_f1.append('{:5.2f}'.format(100 * sklearn.metrics.f1_score( test_labels, test_pred, average='weighted'))) exec_time.append('{:5.2f}'.format(time.process_time() - t_start)) print('Train accuracy: {}'.format(' '.join(train_accuracy))) print('Test accuracy: {}'.format(' '.join(test_accuracy))) print('Train F1 (weighted): {}'.format(' '.join(train_f1))) print('Test F1 (weighted): {}'.format(' '.join(test_f1))) print('Execution time: {}'.format(' '.join(exec_time))) return train_accuracy, test_accuracy, train_f1, test_f1, exec_time, clf
eb1a63b1921d54faa1141becdcc5d13716b08b7c
35,052
def zeno_data(word: str)->[str]: """returns all available zeno data""" result = [None,None,None,None,None,None,None,None,None,None,None,None,None,None,None,None,None] for pos in range(zeno.nrows): if (word == zeno.cell(pos,0).value): result[0] = zeno.cell(pos,1).value #sfi result[1] = zeno.cell(pos,2).value #d result[2] = zeno.cell(pos,3).value #u result[3] = zeno.cell(pos,4).value #f result[4] = zeno.cell(pos,5).value #gr1 result[5] = zeno.cell(pos,6).value #gr2 result[6] = zeno.cell(pos,7).value #gr3 result[7] = zeno.cell(pos,8).value #gr4 result[8] = zeno.cell(pos,9).value #gr5 result[9] = zeno.cell(pos,10).value #gr6 result[10] = zeno.cell(pos,11).value #gr7 result[11] = zeno.cell(pos,12).value #gr8 result[12] = zeno.cell(pos,13).value #gr9 result[13] = zeno.cell(pos,14).value #gr10 result[14] = zeno.cell(pos,15).value #gr11 result[15] = zeno.cell(pos,16).value #gr12 result[16] = zeno.cell(pos,17).value #gr13 break pos += 1 return result
12981f05acfe9c7d272f7f907ec0ec51ddcf0d6a
35,053
from operator import index def transfer(): """Logic for transferring $$""" data = decode_url(request.get_data().decode()) otheruser = data.get("name", None) amount = data.get("amount", None) if not (otheruser and get_user(otheruser)): return index(f"Other user is not found") if not request.cookies.get("userID"): return index(f"Please login") curr_user = get_user(request.cookies.get("userID")) if amount is None or curr_user.get_amount() < amount: return index(f"Amount is invalid / You do not have enough money") user_data = get_user(otheruser) user_data.money += amount curr_user.money -= amount db.session.commit() return index("Successfully Transferred")
9afbda60cfb193a2d2852dfdc1accebe6d4fb845
35,054
from typing import Optional def get_object_detection_by_id(odid: int) -> Optional[ObjectDetection]: """ Gets an object detection by id. :param odid: The object detection's id. :return: An object detection or None. """ try: return ObjectDetection.objects.get(id=odid) except ObjectDetection.DoesNotExist: return None
3d3605326aa507d856c055edda787d2d407ac673
35,055
from cacao_accounting.contabilidad.registros.entidad import RegistroEntidad from cacao_accounting.database import Entidad def activar_entidad(id_entidad): """Estable una entidad como inactiva.""" REGISTRO = RegistroEntidad() TRANSACCION = obtener_registro_desde_uuid(tabla=Entidad, uuid=id_entidad) TRANSACCION.accion = "actualizar" TRANSACCION.tipo = "principal" TRANSACCION.nuevo_estatus = "activo" REGISTRO.ejecutar_transaccion(TRANSACCION) return LISTA_ENTIDADES
10d9da05b464c924471cb316b4b2dbd9e778a79a
35,056
import warnings def trans_expected(clr, chromosomes, chunksize=1000000, use_dask=False): """ Aggregate the signal in intrachromosomal blocks. Can be used as abackground for contact frequencies between chromosomes. Parameters ---------- clr : cooler.Cooler Cooler object chromosomes : list of str List of chromosome names chunksize : int, optional Size of dask chunks use_dask : bool, optional option to use dask Returns ------- pandas.DataFrame that stores total number of interactions between a pair of chromosomes: 'balanced.sum', corresponding number of bins involved in the inter-chromosomal interactions: 'n_valid', and a ratio 'balanced.avg = balanced.sum/n_valid', that is the actual value of expected for every interchromosomal pair. """ warnings.warn( "`cooltools.expected.trans_expected()` is deprecated in 0.3.2, will be removed subsequently. " "Use `cooltools.expected.blocksum_pairwise()` instead.", category=FutureWarning, stacklevel=2, ) if use_dask: # pixels = daskify(clr.filename, clr.root + '/pixels', chunksize=chunksize) raise NotImplementedError("To be implemented once dask supports MultiIndex") # turn chromosomes into supports: chrom_supports = [ (chrom, 0, None) for chrom in chromosomes ] # use balaned transformation only: balanced_transform = { "balanced": \ lambda pixels: pixels["count"] * pixels["weight1"] * pixels["weight2"] } # trans_expected is simply a wrapper around new blocksum_pairwise # but it preserved the interface of the original trans_expected trans_records = blocksum_pairwise(clr, supports=chrom_supports, transforms=balanced_transform, chunksize=chunksize) # trans_records are inter-chromosomal only, # changing trans_records keys to reflect that: # region[0] for a region = (chrom, start, stop) trans_records = { ( region1[0], region2[0] ): val for ( region1, region2 ), val in trans_records.items() } # turn trans_records into a DataFrame with # MultiIndex, that stores values of 'balanced.sum' # and 'n_valid' values for each pair of chromosomes: trans_df = pd.DataFrame.from_dict( trans_records, orient="index" ) trans_df.index.rename( ["chrom1","chrom2"], inplace=True ) # an alternative way to get from records to DataFrame, as in CLI expected: # result = pd.DataFrame( # [ # {"chrom1": s1[0], "chrom2": s2[0], **rec} # for (s1, s2), rec in trans_records.items() # ], # columns=["chrom1", "chrom2", "n_valid", "count.sum", "balanced.sum"], # ) # the actual expected is balanced.sum/n_valid: trans_df["balanced.avg"] = trans_df["balanced.sum"] / trans_df["n_valid"] return trans_df
809d03501f6d6018da5133b65665f5046be36ca7
35,057
def exp_trans(base=None, **kwargs): """ Create a exponential transform class for *base* This is inverse of the log transform. Parameters ---------- base : float Base of the logarithm kwargs : dict Keyword arguments passed onto :func:`trans_new`. Should not include the `transform` or `inverse`. Returns ------- out : type Exponential transform class """ # default to e if base is None: name = 'power_e' base = np.exp(1) else: name = 'power_{}'.format(base) # transform function def transform(x): return base ** x # inverse function def inverse(x): return np.log(x)/np.log(base) return trans_new(name, transform, inverse, **kwargs)
fbd7ef154be3675d8b7010ae700e5b34d0f398c2
35,058
def broadcastable_to_str(b): """Return string representation of broadcastable.""" named_broadcastable = { (): "scalar", (False,): "vector", (False, True): "col", (True, False): "row", (False, False): "matrix", } if b in named_broadcastable: bcast = named_broadcastable[b] else: bcast = "" return bcast
35dbe968a8341d076a264333c68fb597212439bc
35,059
def avg_weapon_count_character(db): """Returns the average number of weapons per character from MongoDB database. Args: db (pymongo.database.Database): MongoDB database Returns: (float) Average number of weapons per character """ agg_dict = [ { "$lookup": { 'from': 'armory.weapon', 'localField': 'inventory', 'foreignField': 'pk', 'as': 'weapons_doc' } }, { "$project": { "numberOfWeapons": {"$size": "$weapons_doc"} } }, { "$group": { "_id": None, "avgWeapon": {"$avg": "$numberOfWeapons"} } } ] agg_res = db["charactercreator.character"].aggregate(agg_dict) return list(agg_res)[0]["avgWeapon"]
0f65cad267d7b1d52730134e98e738dda56b2430
35,060
def partition(sort_list, low, high): """ All the elements smaller than the pivot will be on the left side of the list and all the elements on the right side will be greater than the pivot. """ i = (low - 1) pivot = sort_list[high] for j in range(low, high): if sort_list[j] <= pivot: i += 1 sort_list[i], sort_list[j] = sort_list[j], sort_list[i] sort_list[i+1], sort_list[high] = sort_list[high], sort_list[i+1] return (i+1)
3ae3a569fc5c3968ae047bf20df7a7a59bdfb0cf
35,061
from argo.workflows.client import ApiClient from typing import Dict from typing import Any def sanitize_for_serialization(obj: Dict[str, Any]) -> Dict[str, Any]: """Return object sanitized for serialization. May be used with a V1alpha1Workflow to sanitize it back to the original state (i.e. per manifest). """ cl = ApiClient() return cl.sanitize_for_serialization(obj)
5a975e347ee529ac4db7777a0bc31750092f5442
35,062
def is_valid_degree_sequence(deg_sequence, method='hh'): """Returns True if deg_sequence is a valid degree sequence. A degree sequence is valid if some graph can realize it. Parameters ---------- deg_sequence : list A list of integers where each element specifies the degree of a node in a graph. method : "eg" | "hh" The method used to validate the degree sequence. "eg" corresponds to the Erdős-Gallai algorithm, and "hh" to the Havel-Hakimi algorithm. Returns ------- valid : bool True if deg_sequence is a valid degree sequence and False if not. References ---------- Erdős-Gallai [EG1960]_, [choudum1986]_ Havel-Hakimi [havel1955]_, [hakimi1962]_, [CL1996]_ """ if method == 'eg': valid = is_valid_degree_sequence_erdos_gallai(deg_sequence) elif method == 'hh': valid = is_valid_degree_sequence_havel_hakimi(deg_sequence) else: msg = "`method` must be 'eg' or 'hh'" raise nx.NetworkXException(msg) return valid
0ce013847902b002dcde32fbc0e818a5a506028c
35,063
def get_vpc_id(ec2, subnet_id: str = None) -> str: """Returns VPC ID that should be used for deployment.""" if subnet_id: vpc_id = Subnet.get_by_id(ec2, subnet_id).vpc_id else: default_vpc = Vpc.get_default_vpc(ec2) if not default_vpc: raise ValueError('Default VPC not found') vpc_id = default_vpc.vpc_id return vpc_id
b345b840b0efadec62c68f74f4a69fc06c45b81e
35,066
from datetime import datetime def _get_dates(request): """Obtain the start and end dates.""" today = date.today() date_start = request.POST.get('date_start') if not date_start: date_start = today - timedelta(days=1) else: date_start = datetime.strptime(date_start, '%Y-%m-%d').date() date_end = request.POST.get('date_end') if not date_end: date_end = today + timedelta(days=1) else: date_end = datetime.strptime(date_end, '%Y-%m-%d').date() + timedelta(days=1) return (date_start, date_end)
d6313e9175de5e91965d162d066fbbbebe797914
35,067
import numpy def detect_model(items: numpy.ndarray) -> int: """Detects which logistic model an item matrix fits into. :param items: an item matrix :return: an int between 1 and 4 denoting the logistic model of the given item matrix """ a, b, c, d = _split_params(items) if any(d != 1): return 4 if any(c != 0): return 3 if len(set(a)) > 1: return 2 return 1
f24881dd125638bf559e129e2871863ce24fdb91
35,069
import typing def split_value(input_val) -> (typing.Union[dict, list], typing.Union[dict, list]): """Split input_val into data for params.yaml and zntrack.json Parameters ---------- input_val: dict A dictionary of shape {_type: str, value: any} from ZnJSON Returns ------- params_data: dict|list A dictionary containing the data considered a parameter input_val: dict|list A dictionary containing the constant data which is not considered a parameter """ if isinstance(input_val, (list, tuple)): data = [split_value(x) for x in input_val] params_data, _ = zip(*data) else: if input_val["_type"] in ["zn.method"]: params_data = input_val["value"].pop("kwargs") params_data["_cls"] = input_val["value"].pop("cls") else: # things that are not zn.method and do not have kwargs, such as pathlib, ... params_data = input_val.pop("value") return params_data, input_val
be858fbfe5e65f02b79d37a54f7fd4d8123d1fc2
35,070
def assert_http_ok(resp, msg=None): """ Ensures the response is returning a HTTP 200. """ return assert_equal(resp.status_code, 200, resp.content if msg is None else msg)
8758d78ed248aa39c92c5aacdda02d9cf3df3fbe
35,071
def segnet_vgg13_bn(pretrained=False, progress=True, **kwargs): """Constructs a DeepLabV3+ model with a mobilenet backbone. """ model = SegNet(arch='segnet_vgg13_bn', **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls['segnet_vgg13_bn'], progress=progress) model.load_state_dict(state_dict) return model
512f03e3e24bcfd143caacb77a6619c868738da0
35,072
def New_Dataframe(old_df,indicator_name): """ create a new dataframe that is composed of only one indicator Args: old_df (dataframe): general dataframe from which we extract the new one indicator_name (string): Name onf the indicator that will composed the new dataframe Returns: (dataframe): dataframe composed of only the chosen indicator """ return old_df.loc[old_df.Indicator == indicator_name]
5ccd394a01a70b39b64d2a12ed0aac6f39296a0a
35,073
def get_long_description(): """Compose a long description for PyPI.""" long_description = None try: long_description = read_file('README.rst').decode('utf-8') changelog = read_file('CHANGES.rst').decode('utf-8') changelog = "\n".join(first_sections(changelog, '=', 4)) + """ Older versions ============== The full changelog is available online in CHANGES.rst_. .. _CHANGES.rst: https://github.com/hibtc/cpymad/blob/master/CHANGES.rst """ long_description += '\n' + changelog except (IOError, UnicodeDecodeError): pass return long_description
52352c9515f6e04aba2bb85f24a146ca25a42128
35,074
import re def _create_matcher(utterance): """Create a regex that matches the utterance.""" # Split utterance into parts that are type: NORMAL, GROUP or OPTIONAL # Pattern matches (GROUP|OPTIONAL): Change light to [the color] {item} parts = re.split(r'({\w+}|\[[\w\s]+\] *)', utterance) # Pattern to extract name from GROUP part. Matches {item} group_matcher = re.compile(r'{(\w+)}') # Pattern to extract text from OPTIONAL part. Matches [the color] optional_matcher = re.compile(r'\[([\w ]+)\] *') pattern = ['^'] for part in parts: group_match = group_matcher.match(part) optional_match = optional_matcher.match(part) # Normal part if group_match is None and optional_match is None: pattern.append(part) continue # Group part if group_match is not None: pattern.append( r'(?P<{}>[\w ]+?)\s*'.format(group_match.groups()[0])) # Optional part elif optional_match is not None: pattern.append(r'(?:{} *)?'.format(optional_match.groups()[0])) pattern.append('$') return re.compile(''.join(pattern), re.I)
78b1fc8b2096d5dcc2c2b6dc4112d562b1e365de
35,075
def change_video_state(player_name, state): """ :param player_name: video_player or topic_player or live or vr_live or pic_player or local_player :param state: play or pause :return: """ response = context.agent.call('ChangeVideoState', player_name, state) if response.name == 'Fail': raise ValueError(*response.args) if len(response.args) == 0: return None return response.args[0]
d0f64b8e1266eed6df31db9ca2b072877f8e3ba9
35,076
import codecs def generate(converter, input_file, format='xml', encoding='utf8'): """ Given a converter (as returned by compile()), this function reads the given input file and converts it to the requested output format. Supported output formats are 'xml', 'yaml', 'json', or 'none'. :type converter: compiler.Context :param converter: The compiled converter. :type input_file: str :param input_file: Name of a file to convert. :type format: str :param format: The output format. :type encoding: str :param encoding: Character encoding of the input file. :rtype: str :return: The resulting output. """ with codecs.open(input_file, encoding=encoding) as thefile: return generate_string(converter, thefile.read(), format=format)
41a0c12387453b2e58972abe3c0f7d505036bb57
35,077
def compute_SS_TAS(df, cpds_median_score, num_L1000_feats = n_L1000_feats): """ Computes both Transcriptional activity score (TAS) and signature strength per compound based on its replicates across all doses""" dose_list = list(set(df['dose'].unique().tolist()))[1:7] for dose in dose_list: df_dose = df[df['dose'] == dose].copy() cpds_ss = compute_signature_strength(list(cpds_median_score.keys()), df_dose) cpds_tas = compute_tas(cpds_ss, cpds_median_score, dose, num_L1000_feats) sorted_ss = {key:value for key, value in sorted(cpds_ss.items(), key=lambda item: item[0])} sorted_tas = {key:value for key, value in sorted(cpds_tas.items(), key=lambda item: item[0])} if dose == 1: df_cpd_ss = pd.DataFrame.from_dict(sorted_ss, orient='index', columns = ['dose_1']) df_cpd_tas = pd.DataFrame.from_dict(sorted_tas, orient='index', columns = ['dose_1']) else: df_cpd_ss['dose_' + str(dose)] = sorted_ss.values() df_cpd_tas['dose_' + str(dose)] = sorted_tas.values() return df_cpd_ss, df_cpd_tas
451fce4e361ac8a6144d2d9aefed949d236f0db2
35,078
def check_args(args): """ Checks validity of command line arguments and, in some cases modifies them a little bit. :param args: The command-line arguments. :type args: argparse.ArgumentParser Namespace :returns: argparse.ArgumentParser Namespace -- The updated command-line arguments. """ if not args.outbase: print("Must specify an output base filename (--outbase).") raise SystemExit # Supports passing a list of aspect files. if args.aspfile: args.aspfile = str(args.aspfile).split(',') # If the band is not explicity called, attempt to derive it from filenames. if not args.band and args.raw6file: print("Trying to derive band from raw6 filename...") if '-fd-raw6' in args.raw6file: args.band = 'FUV' elif '-nd-raw6' in args.raw6file: args.band = 'NUV' else: print("Unable to parse band from raw6 filename. Specify band on" " command line using --band.") raise SystemExit if not args.band: print("Band not specified.") else: args.band = args.band.upper() if not args.band in ["NUV", "FUV"]: print("Band must be NUV or FUV. ") raise SystemExit if not (args.raw6file or args.scstfile) and not args.eclipse: print ("Must provide raw6 and scst files or specify eclipse.") raise SystemExit return args
04270a50fce1003ee3960576b60bdcdc21f69767
35,079
from aiida.engine import Process from aiida.orm.utils.node import is_valid_node_type_string from typing import Tuple def _get_ormclass_from_cls(cls: EntityClsType) -> Tuple[EntityTypes, Classifier]: """ Return the correct classifiers for the QueryBuilder from an ORM class. :param cls: an AiiDA ORM class or backend ORM class. :param query: an instance of the appropriate QueryBuilder backend. :returns: the ORM class as well as a dictionary with additional classifier strings Note: the ormclass_type_string is currently hardcoded for group, computer etc. One could instead use something like aiida.orm.utils.node.get_type_string_from_class(cls.__module__, cls.__name__) """ # pylint: disable=protected-access,too-many-branches,too-many-statements # Note: Unable to move this import to the top of the module for some reason classifiers: Classifier if issubclass(cls, nodes.Node): classifiers = Classifier(cls.class_node_type) # type: ignore[union-attr] ormclass = EntityTypes.NODE elif issubclass(cls, groups.Group): type_string = cls._type_string assert type_string is not None, 'Group not registered as entry point' classifiers = Classifier(GROUP_ENTITY_TYPE_PREFIX + type_string) ormclass = EntityTypes.GROUP elif issubclass(cls, computers.Computer): classifiers = Classifier('computer') ormclass = EntityTypes.COMPUTER elif issubclass(cls, users.User): classifiers = Classifier('user') ormclass = EntityTypes.USER elif issubclass(cls, authinfos.AuthInfo): classifiers = Classifier('authinfo') ormclass = EntityTypes.AUTHINFO elif issubclass(cls, comments.Comment): classifiers = Classifier('comment') ormclass = EntityTypes.COMMENT elif issubclass(cls, logs.Log): classifiers = Classifier('log') ormclass = EntityTypes.LOG # Process # This is a special case, since Process is not an ORM class. # We need to deduce the ORM class used by the Process. elif issubclass(cls, Process): classifiers = Classifier(cls._node_class._plugin_type_string, cls.build_process_type()) ormclass = EntityTypes.NODE else: raise ValueError(f'I do not know what to do with {cls}') if ormclass == EntityTypes.NODE: is_valid_node_type_string(classifiers.ormclass_type_string, raise_on_false=True) return ormclass, classifiers
c0471544887f614e6d98b90d38c595e0eb3fe5ad
35,082
import warnings def norm_diff(a): """Calculate average of (a[i] - a[i+1]) / (a[i] + a[i+1]).""" if len(a) <= 1: return np.nan a = a.astype(float) if np.allclose((a[1:] + a[:-1]), 0.): return 0. norm_diffs = (a[1:] - a[:-1]) / (a[1:] + a[:-1]) norm_diffs[(a[1:] == 0) & (a[:-1] == 0)] = 0. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=RuntimeWarning, module="numpy") avg = np.nanmean(norm_diffs) return avg
1755b357ad9b84e742e0c432db420df9161d8dc5
35,083
def expand_batch_dims(structure, batch_sizes): """Expands the first dimension of each tensor in structure to be batch_sizes. Args: structure: A structure (tuple, namedtuple, list, dictionary, ...). batch_sizes: A 1-D tensor of shapes describing the batch dims. Returns: A structure matching the input structure, where each tensor's first dimension has been expanded to match batch_sizes. """ def _helper(tensor): if isinstance(tensor, tf.Tensor): shape = tf.shape(tensor) return tf.reshape(tensor, tf.concat([batch_sizes, shape[1:]], axis=0)) else: return tensor return nest.map_structure(_helper, structure)
1c72fc555b42d4dbc0f066ba399dc8f4c96b7245
35,084
def VLBAAIPSName( project, session): """ Derive AIPS Name. AIPS file name will be project+session with project truncated to fit in 12 characters. * project = project name * session = session code """ ################################################################ Aname = Aname=project.strip()[0:12-len(session)]+session return Aname # end VLBAAIPSName
1a9009c01f00fbb47d7355fa1b8513177dbd3784
35,085
import torch def test_unbalanced_logging_with_multiple_optimizers(tmpdir): """This tests ensures reduction works in unbalanced logging settings.""" class TestModel(MultiOptModel): actual = {0: [], 1: []} def training_step(self, batch, batch_idx, optimizer_idx): out = super().training_step(batch, batch_idx) loss = out["loss"] self.log(f"loss_{optimizer_idx}", loss, on_epoch=True) self.actual[optimizer_idx].append(loss) return out model = TestModel() model.training_epoch_end = None # Initialize a trainer trainer = pl.Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=5, limit_val_batches=5, weights_summary=None ) trainer.fit(model) for k, v in model.actual.items(): assert torch.equal(trainer.callback_metrics[f"loss_{k}_step"], v[-1]) # test loss is properly reduced torch.testing.assert_allclose(trainer.callback_metrics[f"loss_{k}_epoch"], torch.tensor(v).mean())
b1c85a2ddba18af5c0e16c35e67a7b1757616805
35,086
from typing import Optional def dot_general(lhs: Array, rhs: Array, dimension_numbers: DotDimensionNumbers, precision: PrecisionLike = None, preferred_element_type: Optional[DType] = None) -> Array: """More general contraction operator. Wraps XLA's `DotGeneral <https://www.tensorflow.org/xla/operation_semantics#dotgeneral>`_ operator. Args: lhs: an array rhs: an array dimension_numbers: a tuple of tuples of the form `((lhs_contracting_dims, rhs_contracting_dims), (lhs_batch_dims, rhs_batch_dims))` precision: Optional. Either ``None``, which means the default precision for the backend, a ``lax.Precision`` enum value (``Precision.DEFAULT``, ``Precision.HIGH`` or ``Precision.HIGHEST``) or a tuple of two ``lax.Precision`` enums indicating precision of ``lhs``` and ``rhs``. preferred_element_type: Optional. Either ``None``, which means the default accumulation type for the input types, or a datatype, indicating to accumulate results to and return a result with that datatype. Returns: An array containing the result. """ contract_dims_seq, batch_dims_seq = dimension_numbers contract_dims = tuple(map(lambda x: tuple(x), contract_dims_seq)) batch_dims = tuple(map(lambda x: tuple(x), batch_dims_seq)) return dot_general_p.bind(lhs, rhs, dimension_numbers=(contract_dims, batch_dims), precision=_canonicalize_precision(precision), preferred_element_type=preferred_element_type)
824edf24f3130de598652e03da3aa2269f9e9b60
35,087
from typing import Tuple def random(n: int, area: Tuple[float, float]): """ Generate random lines. By default, 10 lines are randomly placed in a square with corners at (0, 0) and (10mm, 10mm). Use the `--area` option to specify the destination area. """ lines = np.random.rand(n, 2) + 1j * np.random.rand(n, 2) lines.real *= area[0] lines.imag *= area[1] return vp.LineCollection(lines)
c3cfda6d9ccf133adf494b30d626d55fbb354b6a
35,088
from pathlib import Path def check_path_in_dir(file_path, directory_path): """ Check if a file path is in a directory :param file_path: Full path to a file :param directory_path: Full path to a directory the file may be in :return: True if the file is in the directory """ directory = Path(directory_path) parent = Path(file_path).parent return parent == directory
5e96abd89c72ea39a944e75b4548fc20b67892cd
35,089
def trace_eyes(im, wnd_pos, wnd_dim, threshold, image_scale, filter_size, color_invert): """ Parameters ---------- im : image (numpy array); win_pos : position of the window on the eyes (x, y); win_dim : dimension of the window on the eyes (w, h); threshold : threshold for ellipse fitting (int). wnd_pos : wnd_dim : image_scale : filter_size : color_invert : Returns ------- """ PAD = 0 cropped = _pad( im[ wnd_pos[0] : wnd_pos[0] + wnd_dim[0], wnd_pos[1] : wnd_pos[1] + wnd_dim[1] ].copy(), padding=PAD, val=255, ) thresholded = (cropped < threshold).astype(np.uint8) # try: e = _fit_ellipse(thresholded) if e is False: e = (np.nan,) * 10 else: e = e[0][0] + e[0][1] + (e[0][2],) + e[1][0] + e[1][1] + (e[1][2],) return np.array(e)
651c3a219d9e69d8e261659272f05e6ef9dc2519
35,090
def get() -> DslContextRegistry: """Gets the current active registry that observes DSL definitions.""" return _registry_holder.current
31029f0996716266e0f14b5155eadf21c3fbd8ad
35,091
def scalebar(length,slon='auto',slat='auto',az=90,label=True,ax=None,**kwargs): """ Plot scalebar of given length in meters. Parameters: length: Length of scalebar in meters slon: Starting longitude (decimal degrees) for scalebar slat: Starting latitude (decimal degrees) for scalebar az = Azimuth of scalebar label: Boolean for whether to label length of scalebar in km ax: Axes on which to plot scalebar Return: ax: Axes with scalebar plotted """ if ax is None: ax = plt.gca() geodesic = cgeo.Geodesic() # Set up geodesic calculations # Get map projection from axes crs = ax.projection if (slon=='auto')&(slat=='auto'): trans = ax.transAxes + ax.transData.inverted() sx,sy = trans.transform((0.1,0.1)) slon,slat = ccrs.Geodetic().transform_point(sx,sy,src_crs=crs) # Calculate endpoint for given distance end = geodesic.direct( points=[slon,slat],azimuths=az,distances=length)[0] elon = end[0] elat = end[1] mid = geodesic.direct( points=[slon,slat],azimuths=az,distances=length/2)[0] clon = mid[0] clat = mid[1] # Plot line from start to end ax.plot([slon,elon],[slat,elat],transform=ccrs.Geodetic(), **kwargs,linewidth=3) # Add label with number of km if label==True: # Transform lat-lon into axes coordinates tlon,tlat = crs.transform_point(clon,clat,src_crs=ccrs.Geodetic()) # Add label as annotation ax.annotate(text=str(round(length/1000,None))+' km',xy=(tlon,tlat), xytext=(0,3),xycoords='data',textcoords='offset points', fontsize=7,ha='center') return(ax)
1981816449291cf8cf2ffe7a8afef1ea638dac47
35,092
def to_str(bytes_or_str): """ Return Instance of str """ if isinstance(bytes_or_str, bytes): value = bytes_or_str.decode('utf-8') else: value = bytes_or_str return value
5578e52f72fa5ee5d629748e0388cde4dffe62ee
35,093
def flat_out(f, *a, **kw): """Flatten the output of target function.""" return f(*a, **kw).flatten()
ffe09ffbaae93657fde818de8a03cc17fee962f1
35,094
def delete_question(id): """ Delete question. """ question = Question.query.get(id) if question is not None: question.delete() response = {"message": "Object deleted."} return make_response(jsonify(response), 200) abort(404)
fd826877712efad3ea1344188f4571fd7e6bd9f3
35,095
def vgg16_cinic10_bn(pretrained=False, progress=True, **kwargs): """ VGG 16-layer model (configuration "D") with batch normalization Inspired by: https://github.com/geifmany/cifar-vgg/blob/master/cifar100vgg.py to follow https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7486599 and then gave up on Dropout in Conv layers and just used the smaller classifier head and reduced dropout. """ # return _vgg( # cfg="D", # batch_norm=True, # smaller_head=True, # **kwargs, # ) return _vgg( "vgg16_cinic10_bn", "D", True, progress=progress, pretrained_features_only=pretrained, pretrained=False, smaller_head=True, **kwargs, )
f7c86108208352dd89b34fb64c7a9875e594e470
35,096
from .apiv1 import blueprint as api1 def create_app(config_name): """ 初始化Flask的应用对象,并初始化数据库等内容 :param config_name: str 配置模式的模式的名字 ("develop", "product") :return: """ # 创建app app = Flask(__name__) @app.after_request def after_request(response): response.headers.add('Access-Control-Allow-Origin', '*') if request.method == 'OPTIONS': response.headers['Access-Control-Allow-Methods'] = 'DELETE, GET, POST, PUT' headers = request.headers.get('Access-Control-Request-Headers') if headers: response.headers['Access-Control-Allow-Headers'] = headers return response # 根据配置模式的名字获取配置参数的类 config_class = config_map.get(config_name) app.config.from_object(config_class) # 使用app 初始化db db.init_app(app) # 创建redis连接对象 global redis_store redis_store = redis.StrictRedis(host=config_class.REDIS_HOST, port=config_class.REDIS_PORT) # 利用flask_session,将session数据保存在redis中 Session(app) # 为flask 补充csrf防护 # CSRFProtect(app) # 为flask 添加自定义的转换器 app.url_map.converters["re"] = ReConverter # 注册蓝图 # from .apis import blueprint as api app.register_blueprint(api1, url_prefix="/api/v1.0") # from .apiv2 import blueprint as api2 # app.register_blueprint(api2, url_prefix="/api/v2.0") # 使用swagger # Swagger(app) return app
79288b830a2ec8809253ecf98c1b610e1dce3c52
35,098
def add_vote_and_redirect(event, _): """ Handle add vote requests and redirect to a info page :param event: event :return: redirect to a page explaining that the vote was added """ # Save the vote do_vote(event, None) redirect_url = "/voted" # Find the user and determine the redirect page username = event["pathParameters"]["user"].lower() user = User() user_data = user.get_user_by_username(username) if user_data: # If the user has a redirect page configured if user_data["voted_redirect"]: redirect_url = user_data["voted_redirect"] elif user_data["voted_message"]: redirect_url = f"/voted?message={quote_plus(user_data['voted_message'])}" # Return response return create_response(302, additional_headers={"Location": redirect_url})
7db963fb8a0f17f7e8221038f70e06f14dd931fd
35,099
import json def read_json_vectors(filename): """Return np array of vectors from json sources""" vectors = [] with open(filename) as json_file: json_data = json.load(json_file) for v in json_data: vectors.append(v) print("Read {} vectors from {}".format(len(vectors), filename)) np_array = np.array(vectors) return np_array
04010096dda8b210fad260ef955ce3c5c393e51a
35,100
from lmfit import Parameters, minimize from typing import Pattern def optimize_density_and_bkg_scaling(data_pattern, bkg_pattern, composition, initial_density, initial_bkg_scaling, r_cutoff, iterations=2, use_modification_fcn=False): """ This function tries to find the optimum density in background scaling with the given parameters. The equations behind the optimization are presented equ (47-50) in the Eggert et al. 2002 paper. :param data_pattern: original data pattern :param bkg_pattern: original background pattern :param composition: composition as a dictionary with the elements as keys and the abundances as values :param initial_density: density starting point for the optimization procedure :param initial_bkg_scaling: background scaling starting point for the optimization procedure :param r_cutoff: cutoff value below which there is no signal expected (below the first peak in g(r)) :param iterations: number of iterations for optimization, described in equations 47-49 in Eggert et al. 2002 :param use_modification_fcn: Whether or not to use the Lorch modification function during the Fourier transform. :return: tuple with optimized parameters (density, density_error, bkg_scaling, bkg_scaling_error) """ N = sum([composition[x] for x in composition]) q = data_pattern.extend_to(0, 0).x inc = calculate_incoherent_scattering(composition, q) f_eff = calculate_effective_form_factors(composition, q) z_tot = calculate_atomic_number_sum(composition) s_inf = calculate_s_inf(composition, z_tot, f_eff, q) j = calculate_j(inc, z_tot, f_eff) def optimization_fcn(x): density = x['density'].value bkg_scaling = x['bkg_scaling'].value r = np.arange(0, r_cutoff, 0.02) sample_pattern = data_pattern - bkg_scaling * bkg_pattern sample_pattern = sample_pattern.extend_to(0, 0) alpha = calculate_alpha(sample_pattern, z_tot, f_eff, s_inf, j, density) coherent_pattern = calculate_coherent_scattering(sample_pattern, alpha, N, inc) sq_pattern = calculate_sq(coherent_pattern, N, z_tot, f_eff) iq_pattern = Pattern(sq_pattern.x, sq_pattern.y - s_inf) fr_pattern = calculate_fr(iq_pattern, r, use_modification_fcn=use_modification_fcn) q, iq_int = iq_pattern.data r, fr_int = fr_pattern.data delta_fr = fr_int + 4 * np.pi * r * density for iteration in range(iterations): in_integral = np.array(np.sin(np.outer(q.T, r))) * delta_fr integral = np.trapz(in_integral, r) iq_optimized = iq_int - 1. / q * (iq_int / (s_inf + j) + 1) * integral iq_pattern = Pattern(q, iq_optimized) fr_pattern = calculate_fr(iq_pattern, r) q, iq_int = iq_pattern.data r, fr_int = fr_pattern.data delta_fr = fr_int + 4 * np.pi * r * density return delta_fr params = Parameters() params.add('density', value=initial_density, ) params.add('bkg_scaling', value=initial_bkg_scaling) result = minimize(optimization_fcn, params) return result.params['density'].value, result.params['density'].stderr, \ result.params['bkg_scaling'].value, result.params['density'].stderr
281c1ec6c57854fcc703ca9d4f1b364cea9ccf98
35,101
def detail(root, name, my, request, actie="", msg=""): """bouw het scherm met actiegegevens op. de soort user wordt meegegeven aan het scherm om indien nodig wijzigen onmogelijk te maken en diverse knoppen te verbergen. """ ## msg = request.GET.get("msg", "") if not msg: if request.user.is_authenticated: msg = 'U bent ingelogd als <i>{}</i>. '.format(request.user.username) msg += 'Klik <a href="/logout/' inuit = 'uit' else: msg = 'U bent niet ingelogd. Klik <a href="/accounts/login/' inuit = 'in' msg += '?next=/{}/{}/">hier</a> om {} te loggen. '.format(root, actie, inuit) if inuit == "uit": msg += "Klik op een van onderstaande termen om meer te zien." page_data = { "name": name, "root": root, "pages": my.Page.objects.all().order_by('order'), "soorten": my.Soort.objects.all().order_by('order'), "stats": my.Status.objects.all().order_by('order'), "users": [x.assigned for x in my.Worker.objects.all()], "msg": msg} if is_user(root, request.user) or is_admin(root, request.user): page_data["readonly"] = False else: page_data["readonly"] = True if actie == "nieuw": titel = "Nieuwe actie" page_titel = "" volgnr = 0 aant = my.Actie.objects.count() nw_date = dt.datetime.now() if aant: last = my.Actie.objects.all()[aant - 1] jaar, volgnr = last.nummer.split("-") volgnr = int(volgnr) if int(jaar) == nw_date.year else 0 volgnr += 1 page_data["nummer"] = "{0}-{1:04}".format(nw_date.year, volgnr) page_data["nieuw"] = request.user else: actie = my.Actie.objects.get(pk=actie) page_data["actie"] = actie titel = "Actie {0} - ".format(actie.nummer) page_titel = "Titel/Status" page_data["title"] = titel page_data["page_titel"] = page_titel return render(request, root + '/actie.html', page_data)
fd53b4ed2bb860ce20d8c7a6474c6effe5b33a71
35,103
def define_areas( pixel_filtered_map: np.ndarray, district_heating_zone_threshold: float ): """ This function defines areas where the sum of the pixel values for a given area exceeds a certain threshold. Inputs : * pixel_filtered_map : pixel filtered map (MWh). * district_heating_zone_threshold : threshold that the areas must meet (MWh). Outputs : * areas : - map where the value of the pixels belonging to a given area corresponds to the potential of this area. * filtered_map : - map where the values of the pixels not belonging to a filtered area are set to zero. * total_potential : - the sum of the potential of each zone. * areas_potential : - list of the potential of each zone. The pixels that do not pass the thresholds (and therefore defined with a potential equal to zero) belong to the first zone. For example : [0, "1st area potential", ..., "nth area potential"] - NB: this zone is not interesting, therefore only the potential of the other zones is returned in practice """ structure = np.ones((3, 3)).astype(int) expanded_map = binary_dilation(input=pixel_filtered_map, structure=structure) eroded_map = binary_erosion(input=expanded_map, structure=structure) labels_array, n_label = measurements.label( input=eroded_map, structure=structure, ) # labels start from 1, therefore the array size is 'num_labels_array + 1' areas_potential = np.zeros((n_label + 1)).astype(float) if n_label > 0: end, start, sorted_array = get_browsing_indexes( labels_array=labels_array, pixel_filtered_map=pixel_filtered_map, n_label=n_label, ) for i, (start_index, end_index) in enumerate(zip(start, end)): area = sorted_array[start_index:end_index, 3] area_potential = np.sum(area) if area_potential >= district_heating_zone_threshold: # i+1 because labeling starts from 1 and not from 0 # factor 0.001 for conversion from MWh/ha to GWh/ha areas_potential[i + 1] = np.around(np.sum(area_potential) / 1000, 2) areas = areas_potential[labels_array] filtered_map = pixel_filtered_map * (areas > 0).astype(int) total_potential = np.sum(areas_potential) return areas, filtered_map, total_potential, areas_potential[1:]
67d4f4418e5fd456f12454a6de81840da5e8cb39
35,104
def get_relation(filename): """read relation file, return rel2idx""" rel2idx = {} f = open(filename, 'r') lines = f.readlines() for (n, rel) in enumerate(lines): rel = rel.strip().lower() rel2idx[rel] = n f.close() return rel2idx
1c239ec3343cf63e502bf9de485171c9a346e240
35,105
def id_for_base(val): """Return an id for a param set.""" if val is None: return "No base params" if "editor-command" in val: return "Long base params" if "ecmd" in val: return "Short base params" return "Unknown base params"
ecf54fa40195ba4de7db13874e44388a04527bed
35,106
import math def __bilinear(lat, lon, table): """Return bilinear interpolated data from table""" try: lat = float(lat) lon = float(lon) except ValueError: return '' if _non_finite(lat) or _non_finite(lon): return '' if math.fabs(lat) > 90 or math.fabs(lon) > 180: return '' row = int(math.floor((90.0 + lat) / TABLE_SPAN)) column = int(math.floor((180.0 + lon) / TABLE_SPAN)) if row < (TABLE_ROWS - 1): grid_w = row grid_e = row + 1 else: grid_w = row - 1 grid_e = row if column < (TABLE_COLS - 1): grid_s = column grid_n = column + 1 else: grid_s = column - 1 grid_n = column south = grid_s * TABLE_SPAN - 180 north = grid_n * TABLE_SPAN - 180 west = grid_w * TABLE_SPAN - 90 east = grid_e * TABLE_SPAN - 90 delta = TABLE_SPAN * TABLE_SPAN * 100 from_west = lat - west from_south = lon - south from_east = east - lat from_north = north - lon result = table[grid_e][grid_n] * from_west * from_south result += table[grid_w][grid_n] * from_east * from_south result += table[grid_e][grid_s] * from_west * from_north result += table[grid_w][grid_s] * from_east * from_north return result / delta
83a665437e4391fd44c87aa8b4631c63c0da4756
35,107
def serialize_serializable(obj, spec, ctx): """ Serialize any class that defines a ``serialize`` method. """ return obj.serafin_serialize(spec, ctx)
936c3b51257c60c156cd9686e38b09ec55a929f2
35,108
import time import torch def train_baseline(train_loader, model, criterion, optimizer, epoch): """ :param train_loader: data loader with training images :param model: model used for training :param criterion: loss function :param optimizer: optimizer :param epoch: current training epoch :return: baseline training script used for pretraining and fine-tuning of deepmir model """ batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() # switch to train mode model.train() end = time.time() for i, (input_img, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) # create autograd variables of the input and target so that hooks (forward and backward) can be used # the hooks are used to track the gradient updates in layers that have hooks input_var = torch.autograd.Variable(input_img) target_var = torch.autograd.Variable(target) output = model(input_var) # compute model predictions_test # activate these lines in case of model with 1 predictions_test neuron # target_var = target_var.unsqueeze(1) # target_var = target_var.float() # ########### loss = criterion(output, target_var) # update the loss function # measure accuracy and record loss [acc] = accuracy(output.data, target, topk=(1,)) losses.update(loss.data, input_img.size(0)) top1.update(acc.item(), input_img.size(0)) # compute gradient and do loss step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print(f'Epoch: [{epoch}][{i}/{len(train_loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' f'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' f'Loss {losses.val:.4f} ({losses.avg:.4f})\t' f'Accuracy {top1.val:.3f} ({top1.avg:.3f})') return losses.avg, top1.avg
ccac87a4e7a9d43fd5f5f85f00ab4cf797c23def
35,109
def best_match(supported, header): """Return mime-type with the highest quality ('q') from list of candidates. Takes a list of supported mime-types and finds the best match for all the media-ranges listed in header. The value of header must be a string that conforms to the format of the HTTP Accept: header. The value of 'supported' is a list of mime-types. The list of supported mime-types should be sorted in order of increasing desirability, in case of a situation where there is a tie. >>> best_match(['application/xbel+xml', 'text/xml'], 'text/*;q=0.5,*/*; q=0.1') 'text/xml' """ split_header = _filter_blank(header.split(',')) parsed_header = [parse_media_range(r) for r in split_header] weighted_matches = [] pos = 0 for mime_type in supported: weighted_matches.append((fitness_and_quality_parsed(mime_type, parsed_header), pos, mime_type)) pos += 1 weighted_matches.sort() return weighted_matches[-1][0][1] and weighted_matches[-1][2] or ''
b7774bcce984dce5d55b5351218ec71163fc5032
35,110
def hourly_median(hours, series, all_hours=True): """ Calculate hourly binned medians of a time series. Parameters ---------- hours : array_like Time series of the hour number. Must be of the same length as `series`. series : array_like Time series of the data. all_hours : bool, optional Default is `True` to consider 24 hours. If `False`, only consider the hours that are present in the `hours` input. Returns ------- hour_level : array_like Hour levels. median : array_like Median values by the hour. q1 : array_like First quartile values by the hour. q3 : array_like Third quartile values by the hour. See Also -------- `hourly_avg` : Hourly binned average function. """ if all_hours: hour_level = _np.arange(24) else: hour_level = _np.unique(hours) med_hr = _np.zeros(hour_level.size) + _np.nan q1_hr = _np.zeros(hour_level.size) + _np.nan q3_hr = _np.zeros(hour_level.size) + _np.nan for i in range(hour_level.size): med_hr[i] = _np.nanmedian(series[hours == hour_level[i]]) q1_hr[i], q3_hr[i] = _np.nanpercentile( series[hours == hour_level[i]], [25.0, 75] ) HourlyMedianResult = namedtuple( "HourlyMedianResult", ("hour_level", "median", "q1", "q3") ) return HourlyMedianResult(hour_level, med_hr, q1_hr, q3_hr)
7712b425e9445a520eda6bcc8cc18a6ac8274de4
35,111
def is_orthonormal_direct(basis): """ Returns True if the basis is orthonormal and direct: Parameters ---------- basis Returns ------- """ return is_orthonormal(basis) and np.allclose( np.cross(basis[0, :], basis[1, :]), basis[2, :] )
d58f5f9c30ea82d52fd6444febf0515fb99a9147
35,112
def matlab_style_gauss2D(shape=(3, 3), sigma=0.5): """ 2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',[shape],[sigma]) Acknowledgement : https://stackoverflow.com/questions/17190649/how-to-obtain-a-gaussian-filter-in-python (Author@ali_m) """ m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2. * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 sumh = h.sum() if sumh != 0: h /= sumh return h
4be8f129fd7063bc959802e206782bee46310dae
35,113
def triangle2str(idx, triangle): """ converts a triangle to a string """ return f"shapes[{idx}] = makeShape(" + \ f"materials[{triangle['matid']}]," + \ f"makeTriangle({vec32str(triangle['a'])}," + \ f"{vec32str(triangle['b'])}," + \ f"{vec32str(triangle['c'])}));"
13761396602855bf38901f5eef365f0bbc2592bf
35,114
import socket def get_hosts_from_yaml(test_yaml, args, key_match=None): """Extract the list of hosts from the test yaml file. This host will be included in the list if no clients are explicitly called out in the test's yaml file. Args: test_yaml (str): test yaml file args (argparse.Namespace): command line arguments for this program key_match (str, optional): test yaml key used to filter which hosts to find. Defaults to None which will match all keys. Returns: list: a unique list of hosts specified in the test's yaml file """ display( args, "Extracting hosts from {} - matching key '{}'".format( test_yaml, key_match)) host_set = set() if args.include_localhost and key_match != YAML_KEYS["test_servers"]: host_set.add(socket.gethostname().split(".")[0]) found_client_key = False for key, value in list(find_yaml_hosts(test_yaml).items()): display(args, " Found {}: {}".format(key, value)) if key_match is None or key == key_match: display(args, " Adding {}".format(value)) host_set.update(value) if key in YAML_KEYS["test_clients"]: found_client_key = True # Include this host as a client if no clients are specified if not found_client_key and key_match != YAML_KEYS["test_servers"]: local_host = socket.gethostname().split(".")[0] display(args, " Adding the localhost: {}".format(local_host)) host_set.add(local_host) return sorted(list(host_set))
4dce69fe52769972c396208859d9cc5cfe4cf64a
35,115
def parse_labels_mapping(s): """ Parse the mapping between a label type and it's feature map. For instance: '0;1;2;3' -> [0, 1, 2, 3] '0+2;3' -> [0, None, 0, 1] '3;0+2;1' -> [1, 2, 1, 0] """ if len(s) > 0: split = [[int(y) for y in x.split('+')] for x in s.split(';')] elements = sum(split, []) assert all(x in range(4) for x in elements) assert len(elements) == len(set(elements)) labels_mapping = [] for i in range(4): found = False for j, l in enumerate(split): if i in l: assert not found found = True labels_mapping.append(j) if not found: labels_mapping.append(None) assert len(labels_mapping) == 4 else: labels_mapping = None return labels_mapping
d2f77876f1759e6d4093afc720e7631f1b4d9ff4
35,116
from typing import Optional from typing import Any from typing import Dict def sraa_eedi3(clip: vs.VideoNode, rep: Optional[int] = None, **eedi3_args: Any)-> vs.VideoNode: """Drop half the field with eedi3+nnedi3 and interpolate them. Args: clip (vs.VideoNode): Source clip. rep (Optional[int], optional): Repair mode. Defaults to None. Returns: vs.VideoNode: AA'd clip """ nnargs: Dict[str, Any] = dict(nsize=0, nns=3, qual=1) eeargs: Dict[str, Any] = dict(alpha=0.2, beta=0.6, gamma=40, nrad=2, mdis=20) eeargs.update(eedi3_args) eedi3_fun, nnedi3_fun = core.eedi3m.EEDI3, core.nnedi3cl.NNEDI3CL flt = core.std.Transpose(clip) flt = eedi3_fun(flt, 0, False, sclip=nnedi3_fun(flt, 0, False, False, **nnargs), **eeargs) flt = core.std.Transpose(flt) flt = eedi3_fun(flt, 0, False, sclip=nnedi3_fun(flt, 0, False, False, **nnargs), **eeargs) if rep: flt = core.rgsf.Repair(flt, clip, rep) return flt
24f5bcaedbd16fe0feabfb589fdf4244554888ae
35,117
from typing import Any import dataclasses def _is_nested(x: Any) -> bool: """Returns whether a value is nested.""" return isinstance(x, dict) or dataclasses.is_dataclass(x)
798000adfd8eb900b61be988ab6a31e1b062540d
35,118
import math def pedel(lsize, seq_len, mps, dist_fx=poisson): """ Pedel calculates library diversity given library size and mutational load. For poisson distribution use poisson (default). For pcr distribution, use first pcr_distribution_factory(efficiency, cycles) to obtain a function specific to those parameters. >>> pedel(1e6,len(wt),4,pcr_distribution_factory(0.4, 32)) :param lsize: library size :param seq_len: sequence length (bases) :param mps: mutation per seq. (mutational load) :param dist_fx: function of the distribution :return: number of distinct sequences in library """ def Lx(x): return poisson(x, mps) * lsize def Cx(x): """ Number of unique variants in libray with x mutations :param x: n muts :return: C_x """ if x == 0: return 1 # wt # eq 6. return Vx(x) * (1 - math.exp(-Lx(x) / Vx(x))) def Vx(x): """ Number of possible variants with x muts :param x: number of mutations :return: V_x """ if x == 0: return 1 # wt # eq. 5 return special.binom(seq_len, x) * 3 ** x xu = (mps + math.log(0.1 / lsize)) / math.log(mps / (2 * seq_len)) xl = (mps + math.log(3 / lsize)) / math.log(mps / (3 * seq_len)) s1 = math.floor(xl) s2 = math.ceil(xu) # note that range(min,max) does not include max. C = 1 + \ sum([Vx(x) for x in range(1, s1 + 1)]) + \ sum([Cx(x) for x in range(s1, s2)]) + \ lsize * (1 - sum([dist_fx(x, mps) for x in range(0, s2)])) return C
d5f75a1032272961a407dc7f02292e3095966281
35,119
def contains_pept(name): """Checks if the saccharide name contains the peptide fragment, such as EES, GS, SA etc""" contains_pept = False for pept_stub_name in ('_E', '_G', '_S', '_A'): if (pept_stub_name in name) and ('_NRE' not in name): contains_pept = True return contains_pept
937679a96b21766e96eb455baca51c1695412287
35,120
import torch def check_stacked_complex(data: torch.Tensor) -> torch.Tensor: """ Check if tensor is stacked complex (real & imag parts stacked along last dim) and convert it to a combined complex tensor. Args: data: A complex valued tensor, where the size of the final dimension might be 2. Returns: A complex valued tensor. """ return torch.view_as_complex(data) if data.shape[-1] == 2 else data
afce7ac1840ff64199c9ebc9f4222e1d3f09dafd
35,121
def circle(x, y, a, b, width): """ widthで指定された直径の中に含まれているかを判定 :param x: :param y: :param a: :param b: :param width: :return: """ _x = round(((x - a) ** 2), 3) _y = round(((y - b) ** 2), 3) _r = round(((width/2) ** 2), 3) if (_x + _y) <= _r: return _r - (_x + _y) return None
fabddad9e3c404dc36e1cf1830ebcc107cf66516
35,122
def fetch_representative_points( service_area_ids, include_census_data, engine=connect.create_db_engine() ): """ Fetch representative points for a list of service areas. Prepares responses for use by the frontend. """ if not service_area_ids: return [] query_params = { 'id_list': tuple(service_area_ids) } # Set census mapping. census_mapping = CENSUS_FIELDS_BY_CATEGORY if include_census_data else {} if include_census_data: join_list = ' '.join([""" LEFT JOIN {table} ON (representative_points.census_tract = {table}.census_tract) """.format( table=table) for table in CENSUS_TABLES ]) select_query = """ SELECT {cols} FROM {table_name} {joins} WHERE service_area_id IN %(id_list)s ORDER BY id ; """.format( cols=', '.join( RP_COLUMNS + readable_columns_from_census_mapping(CENSUS_FIELDS_BY_CATEGORY)), table_name=representative_point.RepresentativePoint.__tablename__, joins=join_list, ) logger.info('Fetching representative_points with census data.') else: select_query = """ SELECT {cols} FROM {table_name} WHERE service_area_id IN %(id_list)s ORDER BY id ; """.format( cols=', '.join(RP_COLUMNS), table_name=representative_point.RepresentativePoint.__tablename__ ) return [ representative_point.row_to_dict(row, census_mapping=census_mapping) for row in engine.execute(select_query, query_params).fetchall() ]
daec38168159c537454d55696f6bcac72799b586
35,123
def get_most_similar(candidates, target_val, endpointService): """ select the entity from candidates that are most similar to the original one ties are broken by overall popularity """ closest_dist = float('inf') closest_matches = [] target_val = target_val.lower() for cand in candidates: # skip candidates, we dont have a label for if not cand['labels']: continue # the dist of this candidate distances = [sDist.levenshtein(target_val, label.lower()) for label in cand['labels']] dist = min(distances) # do we need to update? if dist < closest_dist: closest_dist = dist closest_matches = [cand] elif dist == closest_dist: closest_matches.append(cand) # we got a unique best-match if len(closest_matches) == 1: return closest_matches[0] # break ties by popularity cands_uris = [cand['uri'] for cand in closest_matches] popularity = endpointService.get_popularity_for_lst.send([cands_uris]) for cand in closest_matches: if (cand['uri'] in popularity) and (len(popularity[cand['uri']]) > 0) and ('popularity' in popularity[cand['uri']][0]): cand['popularity'] = int(popularity[cand['uri']][0]['popularity']) else: cand['popularity'] = 0 closest_matches.sort(key=lambda x: x['popularity'], reverse=True) return closest_matches[0]
0f4c99e0ed9428160880a778385c35597732b322
35,124
def dict_remove_none(starting_seq=None, extend_chained=True, chained=None, chained_status=None): """ Given a target sequence, look for dictionary keys that have values of None and remove them. By default, ``chained`` will have ``.extend()`` or ``.update()`` called on it with ``starting_seq`` as the only argument. Set ``extend_chained`` to False to ignore ``starting_seq``. chained_status Status returned by the chained method. The first return value (status) will be True if the sterilizing is successful, and False otherwise. The second argument will be the sterilized sequence. """ if extend_chained: try: if starting_seq and isinstance(chained, (set, dict)): chained.update(starting_seq) elif starting_seq and isinstance(chained, list): chained.extend(starting_seq) except (AttributeError, TypeError, ValueError): log.error("Invalid arguments type", exc_info=True) return False, None if isinstance(chained, dict): ret = _sterilize_dict(chained) elif isinstance(chained, (list, set, tuple)): ret = _sterilize_seq(chained) else: log.error("Invalid arguments type - dict, list, set or tuple expected") ret = None status = bool(ret) return status, ret
ce43ce9cdfff92fcce329b50cf25aeb8f74b6ff5
35,125
import requests def get_scoped_token(os_auth_url, access_token, project_id): """ Get a scoped token, will try all protocols if needed """ unscoped_token, protocol = get_unscoped_token(os_auth_url, access_token) url = get_keystone_url(os_auth_url, "/v3/auth/tokens") body = { "auth": { "identity": {"methods": ["token"], "token": {"id": unscoped_token}}, "scope": {"project": {"id": project_id}}, } } request = requests.post(url, json=body) # pylint: disable=no-member if request.status_code != requests.codes.created: raise RuntimeError("Unable to get a scoped token") return request.headers["X-Subject-Token"], protocol
1ebeeb09e90ae6ad6091ef2623c9be59b27a22d5
35,126
def split_feature_class(label: str, frame: pd.DataFrame): """ Split features and class from encode dataset. `label` is the class, and `frame` is the dataset which has been encoded. """ sub_cols = [attr for attr in frame.columns if attr.startswith(label)] if len(sub_cols) <= 1: return frame, None is_one_class = len(sub_cols) == 2 if is_one_class: # For one class, there are two sorted values. # e.g. ['Yes', 'No'] => [[0, 1], # [1, 0]] # Choose second column to represent this attribute. label_ = sub_cols[1] return frame.drop(sub_cols, axis=1), frame[label_] # merge multiple columns into one column: [Name_A, Name_B, ..] => Name y = frame[sub_cols].apply(lambda x: Index(x).get_loc(1), axis=1) return frame.drop(sub_cols, axis=1), y
03cd3b4f3c2909aaf03ec8832bb7a543a6c1f789
35,130
def user_form_test(): # <dev> """recommender user form. Returns: request: dictionary (json object) list of user's strain description schema: {"type_list": [""], "effect_list": [""], "flavor_list": [""]} """ return render_template("index.html")
3f853f197ffa7d879af77a6c1777ec6f9ea394dc
35,131
def bestfit_sphere_numpy(points): """Returns the sphere's center and radius that fits best through a set of points. Parameters ---------- points: list of points XYZ coordinates of the points. Returns ------- tuple: center, radius sphere center (XYZ coordinates) and sphere radius. Notes ----- For more information see [1]_. References ---------- .. [1] Least Squares Sphere Fit. Available at: https://jekel.me/2015/Least-Squares-Sphere-Fit/. Examples -------- >>> from compas.geometry import bestfit_sphere_numpy >>> points = [(291.580, -199.041, 120.194), (293.003, -52.379, 33.599),\ (514.217, 26.345, 29.143), (683.253, 26.510, -6.194),\ (683.247, -327.154, 179.113), (231.606, -430.659, 115.458),\ (87.278, -419.178, -18.863), (24.731, -340.222, -127.158)] >>> center, radius = bestfit_sphere_numpy(points) """ # Assemble the A matrix spX = asarray([p[0] for p in points]) spY = asarray([p[1] for p in points]) spZ = asarray([p[2] for p in points]) A = zeros((len(spX), 4)) A[:, 0] = spX*2 A[:, 1] = spY*2 A[:, 2] = spZ*2 A[:, 3] = 1 # Assemble the f matrix f = zeros((len(spX), 1)) f[:, 0] = (spX*spX) + (spY*spY) + (spZ*spZ) C, residules, rank, singval = lstsq(A, f) # solve for the radius t = (C[0]*C[0]) + (C[1]*C[1]) + (C[2]*C[2]) + C[3] radius = sqrt(t) return [float(C[0][0]), float(C[1][0]), float(C[2][0])], radius
52cee41806ef1ea7dc5c3b3c00109ab686b606cd
35,132
import numpy def absupearson(a,b,weights): """Distance between two points based on the pearson correlation coefficient. By treating each data point as half of a list of ordered pairs it is possible to caluclate the pearson correlation coefficent for the list. The correlation coefficent is then converted into a pseudo-distance by subtracting its absolute value from 1. This function assumes the ordered pairs are centered around 0. Used over the uncentered pearson distance when linearity of correlation, and not slope of correlation, is a more appropriate measure of similarity. Parameters: a,b : ndarray The data points. Expects two rank 1 arrays of the same length. weights : ndarray The weights for each dimension. Expects rank 1 array of same length as a & b. Returns: d : float The absolute uncentered pearson distance between the two data points. See Also: abspearson Notes: The absolute uncentered pearson distance is defined mathematically as: | -- | | > w[i]a[i]b[i] | | -- | d = 1 - | ----------------------------- | | -- -- | | > w[i]a[i]**2 > w[i]b[i]**2 | | -- -- | where a[i] & b[i] are the ith elements of a & b respectively and w[i] is the weight of the ith dimension. Only dimensions for which both vectors have values are used when computing the sums of squares. """ return 1. - numpy.abs((2.*upearson(a,b,weights)-1))
7bc70816f96a8bd90a424eb7ca13fd291d086b06
35,133
def plot_met(data_df: pd.DataFrame, data_interp_df: pd.DataFrame, met_selection: list, scaled_conc: bool = False, x_scale: str = 'linear', y_scale: str = 'linear', x_lim: tuple = (10 ** -10, 1), y_lim: tuple = None): """ Plots a given metabolite across all models in altair. Uses line plots. Args: data_df: data_interp_df: met: scaled_conc: x_lim: Returns: """ if data_df is not None: plot1 = alt.Chart(data_df[data_df['met'].isin(met_selection)]).mark_line().encode( alt.X('time_point:Q', scale=alt.Scale(domain=x_lim, type=x_scale) ), alt.Y('concentration:Q' if scaled_conc else 'concentration_unscaled:Q', scale=alt.Scale(type=y_scale) ), color='model:N', tooltip='model:N' ).properties( width=500, height=400 ) plot2 = alt.Chart(data_interp_df[data_interp_df['met'].isin(met_selection)]).mark_point().encode( alt.X('time_point:Q', scale=alt.Scale(domain=x_lim, type=x_scale) ), alt.Y('concentration:Q' if scaled_conc else 'concentration_unscaled:Q', scale=alt.Scale(y_scale) ), color='model:N', tooltip='model:N' ).properties( width=500, height=400 ) return alt.layer(plot1, plot2).interactive() else: plot2 = alt.Chart(data_interp_df[data_interp_df['met'].isin(met_selection)]).mark_line().encode( alt.X('time_point:Q', scale=alt.Scale(domain=x_lim, type=x_scale) ), alt.Y('concentration:Q' if scaled_conc else 'concentration_unscaled:Q', scale=alt.Scale(y_scale) ), color='model:N', tooltip='model:N' ).properties( width=500, height=400 ) return plot2.interactive()
cad99c352a4c04a1a9492811bb79fa61853fb25a
35,134
def get_page(db: Session, name: str) -> models.Page: """ Get the page with the given name. :param db: The db session to check. :param name: The name of the page to find. :return: The desired page in the db, or None if DNE. """ return db.query(models.Page).filter(models.Page.name == name).first()
f4fb59efe5dc68260e9a261858e77a9e946502f8
35,136
from typing import Tuple def _dbms_utility_name_resolve( connection: oracle.Connection, name: str, context: int ) -> Tuple[str, str, str, str, int, int]: """Wrapper for Oracle DBMS_UTILITY.NAME_RESOLVE procedure""" with connection.cursor() as cursor: schema = cursor.var(str) part1 = cursor.var(str) part2 = cursor.var(str) database_link = cursor.var(str) part1_type = cursor.var(int) object_id = cursor.var(int) cursor.callproc( "dbms_utility.name_resolve", [ name, context, schema, part1, part2, database_link, part1_type, object_id, ], ) return ( schema.getvalue(), part1.getvalue(), part2.getvalue(), database_link.getvalue(), part1_type.getvalue(), object_id.getvalue(), )
43bdf191c8f7b296cbac93f9d63a405a7f0f1115
35,138
def func_call(instance: ARIA, func_name: str, command_name: str, demisto_arguments: list, args: dict): """ Helper function used to call different demisto command Args: instance: An ARIA instance. func_name: Name of the functions in the ARIA class. command_name: Related demisto command name. demisto_arguments: List of arguments name in the right order. args: Input of demisto arguments dict. """ arguments_value = [] for arg in demisto_arguments: value = args.get(arg) # get values from demisto command arguments_value.append(value) context_entry = getattr(instance, func_name)(*tuple(arguments_value)) # get returned tuple table_header = ['Rule', 'Status', 'Endpoints'] context_name = func_name.title().replace('_', '') ec = { f'Aria.{context_name}(val.name && val.name == obj.name)': context_entry } readable_output = tableToMarkdown(command_name, context_entry, table_header) return readable_output, ec
2d55693c7df9179f4771717ed00da45ea74f2d1d
35,139
def admin_role_required(f): """ Grant access if user is in Administrator role """ @wraps(f) def decorated_function(*args, **kwargs): if g.user.role.name != 'Administrator': return redirect(url_for('error', code=401)) return f(*args, **kwargs) return decorated_function
e0f67f97339af3867227f9507047e240fea43eaa
35,140
def format_location_detail_tract(data): """Reformat the list of data to Location Detail format for tract Args: data (list): A list of FSF object Returns: A pandas formatted DataFrame """ df = pd.DataFrame([vars(o) for o in data]) df.rename(columns={'fsid': 'fsid_placeholder'}, inplace=True) if not df['county'].isna().values.all(): df = pd.concat([df.drop(['county'], axis=1), df['county'].apply(pd.Series)], axis=1) df.rename(columns={'fsid': 'county_fips', 'name': 'county_name'}, inplace=True) else: df.drop(['county'], axis=1, inplace=True) df['county_fips'] = pd.NA df['county_name'] = pd.NA if not df['state'].isna().values.all(): df = pd.concat([df.drop(['state'], axis=1), df['state'].apply(pd.Series)], axis=1) df.rename(columns={'fsid': 'state_fips', 'name': 'state_name'}, inplace=True) else: df.drop(['state'], axis=1, inplace=True) df['state_fips'] = pd.NA df['state_name'] = pd.NA df.rename(columns={'fsid_placeholder': 'fsid', 'name_placeholder': 'name'}, inplace=True) df['fsid'] = df['fsid'].apply(str) df['county_fips'] = df['county_fips'].astype('Int64').apply(str) df['state_fips'] = df['state_fips'].astype('Int64').apply(str).apply(lambda x: x.zfill(2)) df['geometry'] = df['geometry'].apply(get_geom_center) df = pd.concat([df.drop(['geometry'], axis=1), df['geometry'].apply(pd.Series)], axis=1) return df[['fsid', 'valid_id', 'fips', 'county_fips', 'county_name', 'state_fips', 'state_name', 'latitude', 'longitude']]
3d99e5790aab8e3031494fac824dd5425acf2463
35,141
from typing import List def pgcdDesDistancesEntreRepetitions(crypted: List[int], i: int) -> int: """ Returns pgcd{ } """ assert 0 <= i < len(crypted) - 2, "i must be in [0, len(crypted)-2)" search_for = crypted[i:i+2+1] current_pattern: List[int] = [] distances: List[int] = [] for i, c in enumerate(crypted[i+3:]): if 0 < len(current_pattern) < 3 and c == search_for[len(current_pattern)]: current_pattern += [c] if len(current_pattern) == len(search_for): distances += [i] current_pattern = [] return pgcd(*distances)
7843c9d86f5dc0a28793cb6158261cdb9425df84
35,142
import numpy def preprocess(simulation, field): """ Store DOF and geometry info that will not change unless the mesh is updated (which is not handled in any way) """ mesh = simulation.data['mesh'] dofmap = field.function_space().dofmap() conFC = simulation.data['connectivity_FC'] # Data to compute facet_data = {} cell_dofs = [None] * mesh.num_cells() is_ghost_cell = [False] * mesh.num_cells() cell_coords = numpy.zeros((2, 3), float) for facet in dolfin.facets(mesh, 'all'): fid = facet.index() cell_ids = conFC(fid) if len(cell_ids) != 2: continue # Get midpoint coordinates of the two connected cells and the DG0 # dof needed to find the field value in each of the cells for i, cell_id in enumerate(cell_ids): cell = dolfin.Cell(mesh, cell_id) is_ghost_cell[cell_id] = cell.is_ghost() pt = cell.midpoint() cell_coords[i, 0] = pt.x() cell_coords[i, 1] = pt.y() cell_coords[i, 2] = pt.z() # Get the one and only DG0 dof for this cell dofs = dofmap.cell_dofs(cell_id) assert len(dofs) == 1 cell_dofs[cell_id] = dofs[0] # Unit vector from cell 1 to cell 0 uvec = cell_coords[0] - cell_coords[1] uvec /= (uvec[0] ** 2 + uvec[1] ** 2 + uvec[2] ** 2) ** 0.5 # Store data for later use coords0 = numpy.array(cell_coords[0]) coords1 = numpy.array(cell_coords[1]) facet_data[fid] = cell_ids[0], cell_ids[1], coords0, coords1, uvec return facet_data, cell_dofs, is_ghost_cell
552cba3b5c092ea530f2089ec8252991349a0853
35,143
def drop_probable_entities(X): """ :param X: a data matrix: a list wrapping a list of strings, with each sublist being a sentence. :return: >>> drop_empty_lists(drop_arabic_numeric(drop_probable_entities([['Catullus'], ['C.', 'VALERIVS', 'CATVLLVS'],['1','2', '2b', '3' ],['I.', 'ad', 'Cornelium'],['Cui', 'dono', 'lepidum', 'novum', 'libellum', 'arida', 'modo', 'pumice', 'expolitum', '?']]))) [['ad'], ['dono', 'lepidum', 'novum', 'libellum', 'arida', 'modo', 'pumice', 'expolitum', '?']] """ return [[word for word in sentence if word[0].lower() == word[0]] for sentence in X]
18e21d21212d56e256fd015f9513e06b31ed1027
35,144
def wrong_obj_msg(*objs, allow="sources"): """return error message for wrong object type provided""" assert len(objs) <= 1, "only max one obj allowed" allowed = allow.split("+") prefix = "No" if len(allowed) == 1 else "Bad" msg = f"{prefix} {'/'.join(allowed)} provided" if "sources" in allowed: msg += "\n" + ALLOWED_SOURCE_MSG if "observers" in allowed: msg += "\n" + ALLOWED_OBSERVER_MSG if "sensors" in allowed: msg += "\n" + ALLOWED_SENSORS_MSG if objs: obj = objs[0] msg += f"\nreceived {obj!r} of type {type(obj).__name__!r} instead." "" return msg
09294ccc6da5f02718edbdc2e04c8a92f213eb4a
35,145
def text2haiku(text, keep_chance=0.75, iterations=2000): """ Given a string of text, try to make a haiku returns a haiku as a string or None if it fails """ word_list = text_to_word_list(text) haiku = bagging_haiku_maker(word_list, keep_chance=keep_chance, iterations=iterations) return haiku
759e6a94698e252f2df29911700a9fa6b945e61d
35,146