content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def norm(x): """Calculate the Euclidean norm of a vector x.""" return np.sqrt(np.dot(x, x))
c09ff946ed6248e4bf57b87f96ec4ad54ce4cdc8
34,923
def codegen_reload_data(): """Parameters to codegen used to generate the fn_palo_alto_wildfire package""" reload_params = {"package": u"fn_palo_alto_wildfire", "incident_fields": [], "action_fields": [], "function_params": [u"artifact_id", u"artifact_type", u"artifact_value", u"attachment_id", u"incident_id"], "datatables": [u"palo_alto_wildfire_results"], "message_destinations": [u"palo_alto_wildfire"], "functions": [u"palo_alto_wildfire_file_submission_artifact", u"palo_alto_wildfire_file_submission_attachment", u"palo_alto_wildfire_url_submission"], "phases": [], "automatic_tasks": [], "scripts": [], "workflows": [u"example_palo_alto_wildfire_file_submission_artifact", u"example_palo_alto_wildfire_file_submission_attachment", u"example_palo_alto_wildfire_url_submission"], "actions": [u"Example: Submit File (Artifact) to WildFire", u"Example: Submit File (Attachment) to WildFire", u"Example: Submit URL to WildFire"], "incident_artifact_types": [] } return reload_params
554f93deb50664db00ef59a67f76a979779cb9c9
34,924
def min_number_in_rotated_array(r_nums): """ :param r_nums:rotated arrat :return: min number """ if not r_nums: return None left = 0 right = len(r_nums)-1 while left < right: mid = (left + right) // 2 if r_nums[mid] == r_nums[right] == r_nums[left]: right -= 1 elif r_nums[mid] <= r_nums[right]: right = mid else: left = mid + 1 return r_nums[left]
97cd37fb040a38b6c52cf816d29b97aa36c3c338
34,925
def scatter_columns(A): """ Performs the reverse operation as gather_columns. Thus, each prow receives the prow'th row-slice of A. If A had local shape(grid[0] * m_l, n_l), thre result has local shape (m_l, n_l). If the number of local rows in A is not an even multiple of grid[0] an error is thrown. """ m_l, n_l = A.shape if m_l % NROWS != 0: raise TypeError(f"Rows of A: {A.shape} can't be scattered over" f"{NROWS} prows.") panel_size = m_l // NROWS start = my_prow() * panel_size return jax.lax.dynamic_slice(A, (start, jnp.zeros_like(start)), (panel_size, n_l))
7619491aa08ee172aa77c15b44caa889b690cc54
34,927
def digitos(valor): """Resulta em uma string contendo apenas os dígitos da string original.""" return ''.join([d for d in valor if d.isdigit()])
dc742d871efefa8067f33c95cc277963e3cfa201
34,928
def from_Point(ros_pt): """From ROS Point to Klamp't point""" return [ros_pt.x,ros_pt.y,ros_pt.z]
34d83ea0266883679c7e2f51c4eb555e189940d4
34,929
def greedy(): """A greedy distribution.""" def sample_fn(key: ArrayLike, preferences: ArrayLike): probs = _argmax_with_random_tie_breaking(preferences) return _categorical_sample(key, probs) def probs_fn(preferences: ArrayLike): return _argmax_with_random_tie_breaking(preferences) def log_prob_fn(sample: ArrayLike, preferences: ArrayLike): probs = _argmax_with_random_tie_breaking(preferences) return base.batched_index(jnp.log(probs), sample) def entropy_fn(preferences: ArrayLike): probs = _argmax_with_random_tie_breaking(preferences) return -jnp.nansum(probs * jnp.log(probs), axis=-1) return DiscreteDistribution(sample_fn, probs_fn, log_prob_fn, entropy_fn)
b99c4c2d410be42be33c38633b4b998e5db37be7
34,930
def GibbsSampler(dna_list, k, t, N, mode = 'v1', repeat=20): """Input a list of Dna sequence, out put the best set of motifs. The motifs are generated by Gibbs sampling and optimized by comparing hamming or entropy scores. Mode 'v1' returns kmer by weighted probability; mode v2 returns the most probable kmer. """ start = True for i in range(repeat): ran_list = [rd.randint(0, len(dna_list[0]) - k) for i in range(t)] iter_seqs = [seq[ran_list[i]: ran_list[i] + k] for i, seq in enumerate(dna_list)] if start: best_seqs = iter_seqs[:] best_score = w4.ProfileMatrix(best_seqs, k, t, mode='ham') start = False # Inner loop. for j in range(N): index = rd.randint(0, t-1) # Generate the profile matrix with the rest of the temp_seqs. iter_seqs.pop(index) profile = w4.ProfileMatrix(iter_seqs, k, t-1, mode='profile') if mode == 'v1': iter_seqs.insert(index, w4.GibbsKmer(dna_list[index], k, profile)) if mode == 'v2': iter_seqs.insert(index, w4.ProfileMostPKmer(dna_list[index], k, profile)) # iter_seqs[index] = w4.ProfileMostPKmer(dna_list[index], # k, profile) iter_score = w4.ProfileMatrix(iter_seqs, k, t, mode='ham') if iter_score < best_score: best_seqs = iter_seqs[:] best_score = iter_score print(w4.ProfileMatrix(best_seqs, k, t, mode='ham')) return best_seqs
767597df8b23baf09666009a90452d9d51a814fb
34,931
def read_input_h5(h5): """ Reads astra inpu5 from h5 See: write_input_h5 """ d = {} for g in h5: d[g] = dict(h5[g].attrs) # Convert to native types for k, v in d[g].items(): d[g][k] = native_type(v) return d
1bcf29418df9fcd4d49bb86e32c47febf2bb2403
34,932
import math def to_half_life(days): """ Return the constant [1/s] from the half life length [day] """ s= 24 * 3600 * days return -math.log(1/2)/s
7224be1e3e460336493d49c3f2b3d8932341f575
34,933
def fit_on_batch(model, x, y, loss_fn, optimizer, metrics=["loss", "acc"]): """Trains the model on a single batch of examples. This is a training function for a basic classifier. For more complex models, you should write your own training function. NOTE: Before you call this, make sure to do `model.train(True)`. Parameters ---------- model: nn.Module The model to train. x: Tensor or numpy array Image tensors should have size (batch_size, in_channels, height, width). y: Tensor or numpy array Contains the label indices (not one-hot encoded). loss_fn: The loss function to use. optimizer: The SGD optimizer to use. metrics: list Which metrics to compute over the batch. Returns ------- dict The computed metrics for this batch. """ optimizer.zero_grad() # Forward pass outputs = model(make_var(x)) # Compute loss y_true = make_var(y, dtype=np.int) loss = loss_fn(outputs, y_true) # Backward pass loss.backward() optimizer.step() # Additional metrics results = {} if "loss" in metrics: results["loss"] = loss.data[0] if "acc" in metrics: results["acc"] = accuracy_metric(outputs, y_true) if "mse" in metrics: results["mse"] = F.mse_loss(outputs, y_true).data[0] return results
87fa7342bdf84a382fdcce5edde9458bec7bb4c8
34,934
def get_longest_common_substring(text_a, text_b): """Find longest common subtring.""" # isjunk=None, a='', b='', autojunk=True seqMatch = SequenceMatcher(None, text_a, text_b, autojunk=False) #Also: # autojunk = True (default) # isjunk = None (deafult), same as: lambda x: False; # or return True for junk (ignored) using: isjunk = lambda x: x in " \t" # find_longest_match(alo=0, ahi=None, blo=0, bhi=None) # Find longest matching block in a[alo:ahi] and b[blo:bhi]. match = seqMatch.find_longest_match(0, len(text_a), 0, len(text_b)) if (match.size): return text_a[match.a: match.a + match.size]
9b4c75525aa071892aba11919aa59dae2e4a43de
34,935
from typing import OrderedDict def from_group(group, time_index=False, absolute_time=False, scaled_data=True): """ Converts a TDMS group object to a DataFrame. DataFrame columns are named using the channel names. :param group: Group object to convert. :param time_index: Whether to include a time index for the dataframe. :param absolute_time: If time_index is true, whether the time index values are absolute times or relative to the start time. :param scaled_data: By default the scaled data will be used. Set to False to use raw unscaled data. :return: The TDMS object data. :rtype: pandas.DataFrame """ channels_to_export = OrderedDict((ch.name, ch) for ch in group.channels()) return _channels_to_dataframe(channels_to_export, time_index, absolute_time, scaled_data)
ba2d049a8c3076e02c7a9bbb8019ef901957aa7a
34,936
import time def _bq_harness_with_result(sql, do_batch): """ Handles all the boilerplate for running a BQ job """ client = bigquery.Client() job_config = bigquery.QueryJobConfig() if do_batch: job_config.priority = bigquery.QueryPriority.BATCH location = 'US' # API request - starts the query query_job = client.query(sql, location=location, job_config=job_config) # Query job_state = 'NOT_STARTED' while job_state != 'DONE': query_job = client.get_job(query_job.job_id, location=location) #print('Job {} is currently in state {}'.format(query_job.job_id, query_job.state)) job_state = query_job.state if job_state != 'DONE': time.sleep(5) #print('Job {} is done'.format(query_job.job_id)) query_job = client.get_job(query_job.job_id, location=location) if query_job.error_result is not None: print('Error result!! {}'.format(query_job.error_result)) return None results = query_job.result() return results
8546498d7e4553e5c0c74f7515db5c75ef4338ad
34,938
def create_workflow(name=None, namespace=None, bucket=None, **kwargs): """ Args: name: Name to give to the workflow. This can also be used to name things associated with the workflow. """ builder = Builder(name=name, namespace=namespace, bucket=bucket, **kwargs) return builder.build()
58980a10d3ebe858547c71efc65c369a78373016
34,939
def validadeInequalityFilter(inequality_filters, entity): """Check if a entity attends all the inequality filters inputed""" check = True # Iterated on every the inequality filter informed for f in inequality_filters: if hasattr(entity, f["field"]): # Check if the entity has the attribute # Check if the entity atends the filter if not VALIDATORS[f["operator"]](getattr(entity, f["field"]), f['value']): check = False else: check = False return check
374174dc4b9aac720c74fdf83b55321ed6525a7b
34,940
def flops_metric_map(end_points, mean_metric, total_name='Total Flops'): """Assembles flops-count metrics into a map for use in tf.contrib.metrics.""" metric_map = {} total_flops = tf.to_float(end_points['flops']) flops_map = moments_metric_map(total_flops, total_name, mean_metric, delimiter='/', do_shift=True) metric_map.update(flops_map) for block_scope in end_points['block_scopes']: name = '{}/flops'.format(block_scope) flops = tf.to_float(end_points[name]) flops_map = moments_metric_map(flops, name, mean_metric, do_shift=True) metric_map.update(flops_map) return metric_map
fd18df2d4f442e8afc9902760a864a479eefe7c5
34,942
def _is_false2(x): """Non-vectorized helper function""" return (x in ("False", "false", "0") or not bool(x)) and not _is_na2(x)
972983f25474017065128023de1011f40c319866
34,943
import re def process_document(document, context_size, dictionary, fixed_dictionary=False): """ Given a dictionary, extract the tuples of words of length equal to context_size. Each word is represented by a unique integer number. If fixed_dictionary is True, only take consecutive tuples of words being (all of them) in the dictionary. Example: document = "This is a new document" context_size = 4 dictionary = { 0: "this", 1: "is", 2: "a", 3: "new", 4: "document" } return [(0, 1, 2, 3), (1, 2, 3, 4)] """ text = document.lower() p = re.compile("[a-z]+") tokens = p.findall(text) list_of_points = [] for i in range(len(tokens) - context_size + 1): data_point = [0 for l in range(context_size)] add_new_data_point = True for j in range(context_size): k = i+j if tokens[k] not in dictionary.index: if fixed_dictionary: # only takes series of words in the dictionary add_new_data_point = False break else: new_Ix = dictionary.size dictionary[new_Ix] = tokens[k] data_point[j] = dictionary.index[tokens[k]] if add_new_data_point: list_of_points.append(tuple(data_point)) return list_of_points
3f3531faa8c9aad63ac798e9c3e3a06230d5ecf7
34,944
def list_buckets(): """ Lists available buckets. :return: list of available buckets Amazon (2019) s3-python-example-list-buckets.py Copyright 2010-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. """ # create s3 client s3 = boto3.client('s3') # call client and get list of buckets response = s3.list_buckets() # get a list of all bucket names from the response buckets = [bucket['Name'] for bucket in response['Buckets']] # print list of bucket names return buckets
e669d1137d43ffc62d474a36be6e64c5b02eca2a
34,945
def site_time_zone(request, registry, settings): """Expose website URL from ``tm.site_time_zone`` config variable to templates. By best practices, all dates and times should be stored in the database using :term:`UTC` time. This setting allows quickly convert dates and times to your local time. Example: .. code-block:: html+jinja <p> <strong>Bar opens</strong>: {{ opening_at|friendly_time(timezone=site_time_zone) }} </p> Default value is ``UTC``. See `timezone abbreviation list <https://en.wikipedia.org/wiki/List_of_time_zone_abbreviations>`_. """ return settings.get("tm.site_timezone", "UTC")
40d3314d35fde3d77a4e2f5fe441eee499f8de03
34,946
def qubic_spline_coeff(x_nodes, y_nodes): """Here underscored variables are related to the matrix equation, whereas normal ones stand for the spline coefficients """ polynomials_num = len(x_nodes) - 1 coeffs = np.zeros((polynomials_num, 3)) hs = (x_nodes - np.roll(x_nodes, 1))[1:] ys = (y_nodes - np.roll(y_nodes, 1))[1:] # Build A upper_diag = hs.copy() upper_diag[0] = 0 lower_diag = hs.copy() lower_diag[-1] = 0 diag = np.r_[[1], 2 * (upper_diag[1:] + lower_diag[:-1]), [1]] A_ = np.diag(upper_diag, 1) + np.diag(diag) + np.diag(lower_diag, -1) # Build b b_ = np.r_[[0], 3 / hs[1:] * ys[1:] - 3 / hs[:-1] * ys[:-1], [0]] c = np.dot(np.linalg.inv(A_), b_) a = y_nodes[:-1] b = 1 / hs * ys - hs / 3 * (2 * c[:-1] + c[1:]) d = 1 / (3 * hs) * (c[1:] - c[:-1]) return np.c_[a, b, c[:-1], d]
95d1f50d638919355acbe21d2564ab7a37a4b920
34,947
from bs4 import BeautifulSoup import itertools def load_C2O(xml_file): """Load a C2O decision model. See http://www.jku.at/isse/content/e139529/e126342/e126343 for information about the C2O (Configurator 2.0) tool. Arguments: xml_file: Path to a C2O XML file. Returns: A tuple with two elements `var_domains` and `constraints` giving the variable domains and constraints, respectively. """ with open(xml_file) as fd: soup = BeautifulSoup(fd, "xml") # Fail early if the file contains cnfRelation tags. if soup.find("cnfRelation"): raise ValueError("CNF relations not yet supported") # Parse the questions. # Keys: a question id. # Values: set of possible answers. questions = {} for question in soup.model.questions.find_all("question"): choices = set() for choice in question.find_all("choice"): choices.add(choice["name"]) questions[question["identifier"]] = choices # Parse the constraint relations. # Keys: (source question, target question) tuples. # Values: dict mapping a source choice to a set of allowed target choices. restrictions = defaultdict(dict) for constraint in soup.model.relations.find_all("constraintRelation"): source_id = constraint.source["questionIdentifier"] for rule in [r for r in constraint.find_all("rule") if r.contents]: source_choice = rule["choiceName"] for target in constraint.targets.find_all("target"): target_id = target["questionIdentifier"] target_choices = set() if rule.contents[0].name == "allowed": for allowed in rule.find_all("allowed"): target_choices.add(allowed["choiceName"]) else: target_choices.update(questions[target_id]) for disallowed in rule.find_all("disallowed"): target_choices.remove(disallowed["choiceName"]) # Populate the constraints dict. k = (source_id, target_id) restrictions[k][source_choice] = target_choices # Parse the relevancy relations. # Keys: (source question, target question) tuples. # Values: a set of choices of the source question that makes # the target question irrelevant. relevancies = {} for relevancy in soup.model.relations.find_all("relevancyRelation"): source_id = relevancy.source["questionIdentifier"] for target in relevancy.targets.find_all("target"): target_id = target["questionIdentifier"] irrelevant_choices = set() if any(t.name == "irrelevantIf" for t in relevancy.find_all(True)): for irrelevant in relevancy.find_all("irrelevantIf"): irrelevant_choices.add(irrelevant["choiceName"]) else: irrelevant_choices.update(questions[source_id]) for relevant in relevancy.find_all("relevantIf"): irrelevant_choices.remove(relevant["choiceName"]) # Populate the relevancies dict. k = (source_id, target_id) relevancies[k] = irrelevant_choices # Transform the problem into the representation used in the library. irrelevant_value = "Irrelevant" question_ids = {i: question for i, question in enumerate(sorted(questions.keys()))} question_indices = {q: i for i, q in question_ids.items()} var_domains = [list(sorted(questions[question])) for question in sorted(questions.keys())] for question, i in question_indices.items(): assert questions[question] == set(var_domains[i]) assert irrelevant_value not in questions[question] # Add an additional value for variables that can become irrelevant. for source, target in relevancies.keys(): var_domain = var_domains[question_indices[target]] if irrelevant_value not in var_domain: var_domain.append(irrelevant_value) def constraint_fun(var_indices, var_values): source = question_ids[var_indices[0]] target = question_ids[var_indices[1]] source_value, target_value = var_values # Check for restrictions. if (source, target) in restrictions: allowed_target_choices = restrictions[(source, target)] if (source_value in allowed_target_choices and target_value not in allowed_target_choices[source_value]): return False # Check for relevancy relations. if (source, target) in relevancies: irrelevant_choices = relevancies[(source, target)] if (source_value in irrelevant_choices and target_value != irrelevant_value): return False # Passed all the constraints. return True constraints = {} for source, target in \ itertools.chain(restrictions.keys(), relevancies.keys()): if (source, target) not in constraints: var_indices = (question_indices[source], question_indices[target]) constraints[var_indices] = constraint_fun constraints = list(constraints.items()) return var_domains, constraints
b708e94d6a29829d0df775f784ad7070aa663edc
34,948
def contact_infectivity_asymptomatic_40x50(): """ Real Name: b'contact infectivity asymptomatic 40x50' Original Eqn: b'contacts per person normal 40x50*infectivity per contact' Units: b'1/Day' Limits: (None, None) Type: component b'' """ return contacts_per_person_normal_40x50() * infectivity_per_contact()
63d1d87a35bc2eafa64b3b22993f388ce617c3b4
34,949
def freezeclass(cls): """ Decorator to freeze a class.""" cls.__frozen = False def frozensetattr(self, key, value): if self.__frozen and not hasattr(self, key): print("Class {} is frozen. Cannot set {} = {}" .format(cls.__name__, key, value)) else: object.__setattr__(self, key, value) def init_decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): func(self, *args, **kwargs) self.__frozen = True return wrapper cls.__setattr__ = frozensetattr cls.__init__ = init_decorator(cls.__init__) return cls
58fd3754c93dfcfa3aeb8b7ed722cd7d4bfd307e
34,950
def gsc_url_keyword(prop, start, end, query, url): """Return position, clicks & impressions from GSC for keyword for URL.""" #API Not adapted to Pipulate yet request = { "startDate": start, "endDate": end, "dimensions": [ "query", "page" ], "dimensionFilterGroups": [ { "filters": [ { "operator": "equals", "expression": url, "dimension": "page" }, { "operator": "equals", "expression": query, "dimension": "query" } ] } ] } data = gs.gsc().searchanalytics().query(siteUrl=prop, body=request).execute() val = [] if 'rows' in data: r = data['rows'][0] val = [start] + [r['keys'][0]] + [r['keys'][1]] + [ r['position']] + [r['clicks']] + [r['impressions']] + [r['ctr']] return val
3fa1993e73cf8672eef232a7de12c6db1914ca51
34,951
def zerofill_net(input_size=(640, None, 1), **dummy_kwargs): """A net that performs a simple zero-filled reconstruction Parameters: input_size (tuple): the size of your input kspace Returns: keras.models.Model: the zerofill net model, compiled """ # shapes mask_shape = input_size[:-1] # inputs and buffers kspace_input = Input(input_size, dtype='complex64', name='kspace_input_simple') mask = Input(mask_shape, dtype='complex64', name='mask_input_simple') # # simple inverse image_res = Lambda(tf_adj_op, output_shape=input_size, name='ifft_simple')([kspace_input, mask]) image_res = tf_fastmri_format(image_res) model = Model(inputs=[kspace_input, mask], outputs=image_res) default_model_compile(model, lr=1e-3) return model
bde693f37097c797c8a2344ef8f196241e619147
34,952
def __useless_contour(shape, detected, last_cont,center,angle): """ Erase the useless contours, center, and angle. Contours, center, and angle are erased if the shape type is ALL, PARTIAL or UNKNOWN. Parameters ---------- shape : Shape The shape we want to detect detected : Shape The detected shape last_cont : numpy.ndarray Contours of the shape. center : tuple of float Center of the detected shape. angle : float Angle of rotation of the detected shape. Returns ------- last_cont : numpy.ndarray Contours of the shape. center : tuple of float Center of the detected shape. angle : float Angle of rotation of the detected shape. """ if shape == Shape.Shape.ALL.value or \ shape == Shape.Shape.PARTIAL.value or \ shape == Shape.Shape.UNKNOW.value: last_cont = np.array([]) center = None angle = None return last_cont
6daa7add5ae79222853600d3e7e7f406a2d4c37e
34,953
def add_b(_rb): """ Add for Baselines """ def add(e): for i in range(e["obs"].shape[0]): _rb.add(obs_t=e["obs"][i], action=e["act"][i], reward=e["rew"][i], obs_tp1=e["next_obs"][i], done=e["done"][i]) return add
1b2d6bb94958a00a5c43e0b601f4999b0271f932
34,954
def get_ncfile(fname='cmip5.CSIRO-Mk3-6-0.nc'): """ Return one netCDF file """ return join(get_datadir(),fname)
1638eaa0519ac4415ea114dc6abdb760f951f3d5
34,955
def generate_complete_path(filename:str, main_folder="./temp/", subfolders='', file_extension = ".png", save_files=True): """ Function to create the full path of a plot based on `name`. It creates all the subfolders required to save the final file. If `save_files=False` returns `None`, useful to control from a global variable whether files should be updated or not. :param filename: Name of the file (without extension) :type filename: str :param main_folder: Root folder for the files :type main_folder: str :param subfolders: Subfolders attached after the root. :type subfolders: str :param file_extension: Extension of the image :type file_extension: str :param subfolders: Create path or return None. :type save_files: boolean :return: Complete path to create a file :rtype: str Example: generate_complete_path("histogram", main_folder="./plots/", subfolders='dataset1/') will return "./plots/dataset1/histogram.png" """ if (save_files): path = main_folder + subfolders + filename + file_extension check_or_create_folder(path) return path else: return None
b97e7531088688d72ef3a248abedcfef3a054394
34,956
def realm_from_principal(principal): """ Attempt to retrieve a realm name from a principal, if the principal is fully qualified. :param principal: A principal name: [email protected] :type: principal: str :return: realm if present, else None :rtype: str """ if '@' not in principal: return else: parts = principal.split('@') if len(parts) < 2: return return parts[-1]
1880fef7b4383edc6f2ccd94958200686d500e0c
34,957
from typing import List import torch def patch_batchnorm(module: nn.Module) -> List: """Patch all batchnorm instances (1d, 2d, 3d, sync_bn, etc.) of a module so that they don't track running stats when torch.no_grad() is enabled. This is important in activation checkpointing to ensure stats are tracked correctly as if there were no activation checkpointing. The reason is that activation checkpointing runs the forward function twice, first with torch.no_grad(), then with torch.grad(). Args: module (nn.Module): The module to be patched in-place. Returns: (list): A list of hook handles, late can be freed. """ def pre_forward(module: _BatchNorm, input: Tensor) -> None: if torch.is_grad_enabled(): return module._track_running_stats_backup = module.track_running_stats module.track_running_stats = False def post_forward(module: _BatchNorm, input: Tensor, result: Tensor) -> None: if torch.is_grad_enabled(): return module.track_running_stats = module._track_running_stats_backup hooks = [] for name, child in module.named_modules(): # _BatchNorm is base for bn1d, bn2d, bn3d and sync_bn, apex_sync_bn, etc. if isinstance(child, _BatchNorm): # Register the pre/post hooks. pre_handle = child.register_forward_pre_hook(pre_forward) post_handle = child.register_forward_hook(post_forward) hooks += [pre_handle, post_handle] return hooks
d1456d48db5f2016716aaaa4f87f2eb77e4dcd43
34,958
import six def _joined_names_column(df): """ Join data from all name columns into a single column. """ return df.apply( lambda row: ','.join(set([ six.text_type(n) for n in [row['main_name'], row['asciiname'], row['alternatenames']] if n and n is not np.nan ])), axis=1 )
d563971403758035bf9c57442a3d99c246f2fb92
34,960
def skip( num_input_channels=2, num_output_channels=3, num_channels_down=[16, 32, 64, 128, 128], num_channels_up=[16, 32, 64, 128, 128], num_channels_skip=[4, 4, 4, 4, 4], filter_size_down=3, filter_size_up=3, filter_skip_size=1, need_sigmoid=True, need_bias=True, pad='zero', upsample_mode='nearest', downsample_mode='stride', act_fun='LeakyReLU', need1x1_up=True): """ Assembles encoder-decoder with skip connections. Arguments: act_fun: Either string 'LeakyReLU|Swish|ELU|none' or module (e.g. nn.ReLU) pad (string): zero|reflection (default: 'zero') upsample_mode (string): 'nearest|bilinear' (default: 'nearest') downsample_mode (string): 'stride|avg|max|lanczos2' (default: 'stride') """ assert len(num_channels_down) == len(num_channels_up) == len(num_channels_skip) n_scales = len(num_channels_down) if not (isinstance(upsample_mode, list) or isinstance(upsample_mode, tuple)): upsample_mode = [upsample_mode] * n_scales if not (isinstance(downsample_mode, list) or isinstance(downsample_mode, tuple)): downsample_mode = [downsample_mode] * n_scales if not (isinstance(filter_size_down, list) or isinstance(filter_size_down, tuple)): filter_size_down = [filter_size_down] * n_scales if not (isinstance(filter_size_up, list) or isinstance(filter_size_up, tuple)): filter_size_up = [filter_size_up] * n_scales last_scale = n_scales - 1 cur_depth = None model = nn.Sequential() model_tmp = model input_depth = num_input_channels for i in range(len(num_channels_down)): deeper = nn.Sequential() skip = nn.Sequential() if num_channels_skip[i] != 0: model_tmp.add(Concat(1, skip, deeper)) else: model_tmp.add(deeper) model_tmp.add(bn(num_channels_skip[i] + (num_channels_up[i + 1] if i < last_scale else num_channels_down[i]))) if num_channels_skip[i] != 0: skip.add(conv(input_depth, num_channels_skip[i], filter_skip_size, bias=need_bias, pad=pad)) skip.add(bn(num_channels_skip[i])) skip.add(act(act_fun)) deeper.add(conv(input_depth, num_channels_down[i], filter_size_down[i], 2, bias=need_bias, pad=pad, downsample_mode=downsample_mode[i])) deeper.add(bn(num_channels_down[i])) deeper.add(act(act_fun)) deeper.add(conv(num_channels_down[i], num_channels_down[i], filter_size_down[i], bias=need_bias, pad=pad)) deeper.add(bn(num_channels_down[i])) deeper.add(act(act_fun)) deeper_main = nn.Sequential() if i == len(num_channels_down) - 1: # The deepest k = num_channels_down[i] else: deeper.add(deeper_main) k = num_channels_up[i + 1] deeper.add(nn.Upsample(scale_factor=2, mode=upsample_mode[i], align_corners=True)) model_tmp.add(conv(num_channels_skip[i] + k, num_channels_up[i], filter_size_up[i], 1, bias=need_bias, pad=pad)) model_tmp.add(bn(num_channels_up[i])) # model_tmp.add(layer_norm(num_channels_up[i])) model_tmp.add(act(act_fun)) if need1x1_up: model_tmp.add(conv(num_channels_up[i], num_channels_up[i], 1, bias=need_bias, pad=pad)) model_tmp.add(bn(num_channels_up[i])) # model_tmp.add(layer_norm(num_channels_up[i])) model_tmp.add(act(act_fun)) input_depth = num_channels_down[i] model_tmp = deeper_main model.add(conv(num_channels_up[0], num_output_channels, 1, bias=need_bias, pad=pad)) if need_sigmoid: model.add(nn.Sigmoid()) return model
4c26a931d701f1cfb439a835c1fe628569bbc24f
34,961
def validate_kml(possible_files): """Validate uploaded KML file and a possible image companion file KML files that specify vectorial data typers are uploaded standalone. However, if the KML specifies a GroundOverlay type (raster) they are uploaded together with a raster file. """ kml_file = [ f for f in possible_files if f.name.lower().endswith(".kml")][0] others = [ f.name for f in possible_files if not f.name.lower().endswith(".kml")] kml_file.seek(0) kml_bytes = kml_file.read() result = _validate_kml_bytes(kml_bytes, others) if not result: kml_doc, namespaces = get_kml_doc(kml_bytes) if kml_doc and namespaces: return ("kml", "sld", ) return result
e5389c7b3b9972757fb44a5c2e29af4aaede1618
34,962
import base64 def mailform(): """Sample form for sending email via Microsoft Graph.""" # read user profile data user_profile = MSGRAPH.get('me/', headers=request_headers()).data user_name = user_profile['displayName'] # get profile photo photo_data, _, profile_pic = profile_photo(client=MSGRAPH, save_as='me') # save photo data as config.photo for use in mailform.html/mailsent.html if profile_pic: config.photo = base64.b64encode(photo_data).decode() else: profile_pic = 'static/images/no-profile-photo.png' with open(profile_pic, 'rb') as fhandle: config.photo = base64.b64encode(fhandle.read()).decode() # upload profile photo to OneDrive upload_response = upload_file(client=MSGRAPH, filename=profile_pic) if str(upload_response.status).startswith('2'): # create a sharing link for the uploaded photo link_url = sharing_link(client=MSGRAPH, item_id=upload_response.data['id']) else: link_url = '' body = flask.render_template('email.html', name=user_name, link_url=link_url) return flask.render_template('mailform.html', name=user_name, email=user_profile['userPrincipalName'], profile_pic=profile_pic, photo_data=config.photo, link_url=link_url, body=body)
e9180515b84e7f012aef576e123ea08fba3aefda
34,963
def _global_query_(included_interviews=None, included_globals=None, client_as_numeric=True, exclude_reliability=True): """ Constructs the globals query for session-level datasets :param included_interviews: iterable of str specifying names of interviews to include :param included_globals: :param client_as_numeric: Whether to cast client_id as a numeric type. Default True :param exclude_reliability: Whether to exclude (True, default) or include (False) interviews of type 'reliability' :return: ModelSelect, Cte - The full query for global ratings and the CTE associated object """ client_column = Cast(Interview.client_id, "INT").alias('client_id') if client_as_numeric else Interview.client_id # May want only certain interviews included or certain properties included, # so construct some predicates for where clauses, if necessary types = ['general'] if exclude_reliability else ['general', 'reliability'] predicate = Interview.interview_type.in_(types) if included_interviews is not None: predicate = predicate & Interview.interview_name.in_(included_interviews) if included_globals is not None: predicate = predicate & GlobalProperty.gp_name.in_(included_globals) """ Logic above replaces this global_predicate = ((p1) & (p2) & (p3)) if included_interviews is not None and included_globals is not None else \ ((p1) & (p3)) if included_interviews is not None else \ ((p2) & (p3)) if included_globals is not None else \ p3 """ # For any session-level/decile dataset, we want scores for all session-level globals. # Thus, there will need to be either a UNION ALL of counts and global ratings # or a separate query for globals. # Below constructs the global ratings part of the UNION ALL global_query = (GlobalRating.select(GlobalRating.interview_id, GlobalProperty.gp_name, Cast(GlobalValue.gv_value, "INT"), GlobalValue.global_property_id) .join(GlobalValue).join(GlobalProperty, JOIN.LEFT_OUTER)) global_cte = global_query.cte("global_cte", columns=['interview_id', 'gp_name', 'gv_value', 'global_property_id']) outer_global_query = (Interview .select(Interview.interview_name, Interview.interview_type, client_column, Interview.rater_id, Interview.session_number, GlobalProperty.gp_name, global_cte.c.gv_value) .join(CodingSystem) .join(GlobalProperty)) full_global_query = outer_global_query.join( global_cte, JOIN.LEFT_OUTER, on=((Interview.interview_id == global_cte.c.interview_id) & (GlobalProperty.global_property_id == global_cte.c.global_property_id)) ) # Append the predicate full_global_query = full_global_query.where(predicate) return full_global_query, global_cte
dca8599fc7625f4f8a2db5321c32666b6b384c02
34,964
def basic_detokenizer(tokens): """Reverse the process of the basic tokenizer below.""" result = [] previous_nospace = True for t in tokens: if is_char(t): result.append(t[_CHAR_MARKER_LEN:]) previous_nospace = True elif t == _SPACE: result.append(" ") previous_nospace = True elif previous_nospace: result.append(t) previous_nospace = False else: result.extend([" ", t]) previous_nospace = False return "".join(result)
073a388a3a7f2133457e9c7a61a499b830d59760
34,965
def get_task_state(exit_code): """Interprets the exit_code and return the corresponding task status string Parameters ---------- exit_code: int An integer that represents the return code of the task. Returns ------- A task status string corresponding to the exit code. """ if exit_code > 0: return cook.TASK_FAILED elif exit_code < 0: return cook.TASK_KILLED else: return cook.TASK_FINISHED
99837d42586ffacc2d2b1e8dc938add185bc0e04
34,967
def filtertime(timestamp, interval): """Check if timestamp is between timestamp_range - (time1,time2) Args: timestamp --> UNIX timestamp value. interval --> `Tuple` of 2 UNIX timestamp values. Returns: `bool` --> True/False """ T0, T1 = interval if (timestamp <= T1) and (timestamp >= T0): return True else: return False
72fe1aa9ed01e59ad7bbe5299b4c21272fab7354
34,968
def is_dataframe(value): """ Check if an object is a Spark DataFrame :param value: :return: """ return isinstance(value, DataFrame)
954276a168586d7cd19846575d239a82083d3f9f
34,969
from typing import Type from typing import Dict def reverse_enum(enum_to_reverse: Type[SMOOTHIE_GCODE]) -> Dict: """ Returns dictionary with keys and values switched from passed Enum :param enum_to_reverse: The Enum that you want to reverse :return: Reversed dictionary """ # I don't know what is going on with mypy, it is complaining # about keys not existing as an attribute. I am not calling it # as an attribute. I am calling it as a function. members = enum_to_reverse._member_map_.keys() # type: ignore[attr-defined] values = [ enum_to_reverse[member].value for member in members ] return dict(zip(values, members))
4dbb65905d2441089eb989b28733b6f4c4e0b529
34,970
def install_npm(path=None, build_dir=None, source_dir=None, build_cmd='build', force=False): """Return a Command for managing an npm installation. Note: The command is skipped if the `--skip-npm` flag is used. Parameters ---------- path: str, optional The base path of the node package. Defaults to the repo root. build_dir: str, optional The target build directory. If this and source_dir are given, the JavaScript will only be build if necessary. source_dir: str, optional The source code directory. build_cmd: str, optional The npm command to build assets to the build_dir. """ class NPM(BaseCommand): description = 'install package.json dependencies using npm' def run(self): if skip_npm: log.info('Skipping npm-installation') return node_package = path or here node_modules = pjoin(node_package, 'node_modules') if not which("npm"): log.error("`npm` unavailable. If you're running this command " "using sudo, make sure `npm` is availble to sudo") return if force or is_stale(node_modules, pjoin(node_package, 'package.json')): log.info('Installing build dependencies with npm. This may ' 'take a while...') run(['npm', 'install'], cwd=node_package) if build_dir and source_dir and not force: should_build = is_stale(build_dir, source_dir) else: should_build = True if should_build: run(['npm', 'run', build_cmd], cwd=node_package) return NPM
dd99c1a80f3fe3228d08c4ffad0efaf450c35aed
34,971
from typing import Iterable from typing import List from typing import Tuple from typing import Counter def group_Counter(trip: Iterable[Leg]) -> List[Tuple[int, int]]: """Group legs into bins with distances 5 nm or less. >>> trip = [ ('s1', 'e1', 1), ('s4', 'e4', 4.9), ('s5', 'e5', 5), ('s6', 'e6', 6)] >>> group_Counter(trip) [(0, 2), (5, 2)] """ quantized = (int(5*(dist//5)) for start, stop, dist in trip) return Counter(quantized).most_common()
51cf9dac6e25a4c5c3666a5ad60169304759d7c7
34,972
import time def run_deduper(deduper, data_frame, settings_file, training_file, recall_weight = 1): """ Given a deduper object and a dataset, this function trains the model and predicts which records are duplicates. depends: dedupe as dd pandas as pd time params: deduper: a Dedupe or StaticDedupe object data_frame: a pandas data frame where each row is a record to be deduped settings_file: a string giving the path where the settings should be written training_file: a string giving the path where the labelled training examples should be written recall_weight: a number indicating how much to privilege recall over precision. returns: deduper: the trained Dedupe object matches: a list of tuples giving record ids of duplicates and confidence scores """ # Convert data frame into dict as required by Dedupe df_nones = data_frame.where(pd.notnull(data_frame), None) # NaN must be converted to 'None' data = df_nones.to_dict("index") # convert to list of record dicts # If the model is untrained (i.e. if it has not been loaded from a saved 'settings file'), # then train it: if type(deduper) != dd.StaticDedupe: # Train the model print("Active Dedupe object found. Now training model...") start = time.perf_counter() deduper.train() end = time.perf_counter() print(f"Training complete. It took {end - start:.3f} seconds.") print("Saving training data and trained parameters...") # Save the training examples with open(training_file, 'w') as tf: deduper.writeTraining(tf) print(f'Training data written to {training_file}.') # Save the model parameters with open(settings_file, 'wb') as sf: deduper.writeSettings(sf) print(f'Trained parameters written to {settings_file}.') # Calculate threshold for matches print(f"Computing threshold based on a recall weighting of {recall_weight}.") start = time.perf_counter() threshold = deduper.threshold(data, recall_weight = recall_weight) end = time.perf_counter() print(f"Computation complete. Threshold = {threshold}. It took {end - start:.3f} seconds.") # Compute the matches print("Clustering...") start = time.perf_counter() matches = deduper.match(data, threshold) end = time.perf_counter() print(f"Clustering complete. {len(matches)} clusters found. It took {end - start:.3f} seconds.") return deduper, matches
918969cf37dc948ab88e19e7239873da384bafa2
34,973
def _get_file_preferred_suffix() -> tuple: """Based on ontologia/core.lkg.yml + env variable LANGUAGE, build preferred user language Returns: tuple: the result of file sufisex """ userpref_suffix = [] core_suffix = CORE_LKG['fs']['hdp']['base'] userlangs_upper = get_language_user_know() if len(userlangs_upper) > 0: userlangs = map(lambda x: x.lower(), userlangs_upper) for lang_ in userlangs: userpref_suffix.append(lang_ + '.hdp.json') userpref_suffix.append(lang_ + '.hdp.yml') combined_suffixes = userpref_suffix + core_suffix return tuple(combined_suffixes)
2bb2c3a7d2543d284203467d93ea4d3c0cfedbd3
34,974
def fatorial(n, show=False): """ -> Call :param n: :param show: :return: """ f = 1 for c in range (n, 0, -1): if show: print(c, end='') if c>1: print(' x ', end='') else: #print(f'{c} X ') print(' = ', end='') f *= c return f
edc42b1269799716d90896cdada721c33d156503
34,975
import uuid def integrate_whole(payload, org, out_uuid, group): """integrates payload into whole of profile, returns dict""" if group: in_uuid = str(uuid.uuid4()) nested = {"PayloadContent": payload, "PayloadEnabled": True, "PayloadIdentifier": 'SparkleDisabler', "PayloadType": "com.apple.ManagedClient.preferences", "PayloadUUID": in_uuid, "PayloadVersion": 1, } payload = [nested] else: payload = payload finished_profile = {"PayloadContent": payload, "PayloadOrganization": org, "PayloadRemovalDisallowed": True, "PayloadScope": "System", "PayloadType": "Configuration", "PayloadUUID": out_uuid, "PayloadVersion": 1, } return finished_profile
b08cab03f0a1e3a2b74110a7829f6fc6d736d0f4
34,976
from typing import List def search_hospitals(request_input: RequestInput, db_session) -> List[dict]: """ Search hospitals based on requested items. Sort them by nearest location :param request_input: RequestInput :param db_session: DB session :return: List of Hospital dictionaries """ # Search hospitals which has requested resources hospitals_list = search_items_on_quantity(request_input, db_session) if len(hospitals_list) < 1: return [] # Get source hospital source_hospital = db_session.query(HospitalModel).filter(HospitalModel.id == request_input.hospital_id).one() # Sort hospitals by nearest location return sort_by_location(source_hospital, hospitals_list)
22dde6acb46fcc03e2cf6f2ef56fca05a2b4090b
34,977
def get_inverse_metric(): """Computes and returns the inverse metric Sets the inverse metric variable, so that DendroSym knows how to compute various derived variables. This should be done early on in the generating script. It requires the metric to already be defined. Returns ------- sympy.Matrix The 3x3 matrix returned is the inverse metric Example ------- >>> gt = dendrosym.dtypes.sym_3x3("gt") >>> dendrosym.nr.set_metric(gt) >>> igt = dendrosym.nr.get_inverse_metric() """ global metric, inv_metric, undef if metric == undef: raise ValueError('Dendro: Metric not defined.') if inv_metric == undef: # method : ('GE', 'LU', or 'ADJ') inv_metric = sym.simplify(metric.inv('ADJ')) return inv_metric
da6399366b0b4096065dcb8ea8e2dd5f95555432
34,978
def add_towers_4G_km2_sheet(ws, cols, lnth): """ """ for col in cols: cell = "{}1".format(col) ws[cell] = "=Towers!{}".format(cell) for col in cols[:2]: for i in range(1, lnth): cell = "{}{}".format(col, i) ws[cell] = "=Towers!{}".format(cell) for col in cols[2:]: for i in range(2, lnth): cell = "{}{}".format(col, i) ws[cell] = "=IFERROR(Towers!{}/Area!{},0)".format(cell,cell) set_border(ws, 'A1:L{}'.format(lnth-1), "thin", "000000") return ws
1fe86a6ddd210c13d3e92f68a1deb9b41375d14b
34,979
from typing import List from typing import Dict def get_all_netting_channel_events( chain: BlockChainService, token_network_address: Address, netting_channel_identifier: ChannelID, contract_manager: ContractManager, from_block: BlockSpecification = GENESIS_BLOCK_NUMBER, to_block: BlockSpecification = 'latest', ) -> List[Dict]: """ Helper to get all events of a NettingChannelContract. """ filter_args = get_filter_args_for_all_events_from_channel( token_network_address=token_network_address, channel_identifier=netting_channel_identifier, contract_manager=contract_manager, from_block=from_block, to_block=to_block, ) return get_contract_events( chain, contract_manager.get_contract_abi(CONTRACT_TOKEN_NETWORK), token_network_address, filter_args['topics'], from_block, to_block, )
bcaf2a96db7a95c3660abcc7daac4a448baad50d
34,980
from typing import List def custom_extractors( eval_shared_model: tfma.MaybeMultipleEvalSharedModels, eval_config: tfma.EvalConfig, tensor_adapter_config: tensor_adapter.TensorAdapterConfig, ) -> List[tfma.extractors.Extractor]: """Returns default extractors plus a custom prediction extractor.""" predict_extractor = make_xgboost_predict_extractor(eval_shared_model, eval_config) return tfma.default_extractors(eval_shared_model=eval_shared_model, eval_config=eval_config, tensor_adapter_config=tensor_adapter_config, custom_predict_extractor=predict_extractor)
a6efc2c15bbb6b437710d79a3b22174c19eb1083
34,981
def custom_detrending(flc): """Wrapper""" f = flc.flux[np.isfinite(flc.flux)] if np.abs(f[0]-f[-1])/np.median(f) > .2: print("Do a coarse spline interpolation to remove trends.") flc = fit_spline(flc, spline_coarseness=12) flc.flux[:] = flc.detrended_flux[:] # Iteratively remove fast sines with Periods of 0.1 to 2 day periods (the very fast rotators) flc = iteratively_remove_sines(flc) flc.flux[:] = flc.detrended_flux[:] # remove some rolling medians on a 10 hours time scale flc.flux[:] = flc.flux - pd.Series(flc.flux).rolling(300, center=True).median() + np.nanmedian(flc.flux)#15h # Determine the window length for the SavGol filter for each continuous observation gap flc = find_iterative_median(flc) w = search_gaps_for_window_length(flc) flc = flc[np.isfinite(flc.flux)] #Use lightkurve's SavGol filter while padding outliers with 25 data points around the outliers/flare candidates # print(w) # flc = flc.detrend("savgol", window_length=w, pad=7) # flc.flux[:] = flc.detrended_flux[:] #After filtering, always use a 2.5 hour window to remove the remaining # flcd = flc.detrend("savgol", window_length=25, pad=7) flcd=flc # Determine the noise properties with a rolling std, padding masked outliers/candidates flcd = refine_detrended_flux_err(flcd, mask_pos_outliers_sigma=1.5, std_rolling_window_length=15, pad=25) return flcd
534e0881ccab91811128f1e7f109460321f98937
34,982
import random def summon_blocks(board): """Place 1-8 circles in random places on the speed board""" for _ in range(random.randint(1, 8)): x = random.randint(0, 4) y = random.randint(0, 4) while board[x][y] != 'g': x = random.randint(0, 4) y = random.randint(0, 4) board[x][y] = 'b' return board
0cfa703b6451e44ea8688561bc857ac70f560c90
34,983
from typing import List from typing import Tuple def three_sum_brute_force(array: List[int], target: int) -> Tuple[int, int, int]: """ args: array: target: returns: idxs >>> s = [-1, 0, 1, 2, -1, -4] >>> three_sum_brute_force(s, 0) (0, 1, 2) O(N^3) """ for i, u in enumerate(array): for j, v in enumerate(array): for k, w in enumerate(array): if j > i and k > j and u + v + w == target: return i, j, k return None
4a47fae2c4f81ef654bcf21c73462cc4965b6b78
34,984
def on_cooldown(user): """Shortcut: Get remaining cooldown of a user.""" return Parent.GetUserCooldownDuration(ScriptName, settings["command"], user)
afadc17c45f09303d1fdcddc997c6b5d98c5e903
34,986
def get_ieconstraints(unknowns, segment): """ Runs the mission if the inequality constraint values are needed, these are specific to a climb Assumptions: Time only goes forward CL is less than a specified limit CL is greater than zero All altitudes are greater than zero The vehicle accelerates not decelerates Inputs: state.unknowns [Data] Outputs: constraints [array] Properties Used: N/A """ if isinstance(unknowns,array_type): segment.state.unknowns.unpack_array(unknowns) else: segment.state.unknowns = unknowns if not np.all(segment.state.inputs_last == segment.state.unknowns): segment.process.iterate(segment) # Time goes forward, not backward t_final = segment.state.conditions.frames.inertial.time[-1,0] time_con = (segment.state.conditions.frames.inertial.time[1:,0] - segment.state.conditions.frames.inertial.time[0:-1,0])/t_final # Less than a specified CL limit lift_coefficient_limit = segment.lift_coefficient_limit CL_con = (lift_coefficient_limit - segment.state.conditions.aerodynamics.lift_coefficient[:,0])/lift_coefficient_limit CL_con2 = segment.state.conditions.aerodynamics.lift_coefficient[:,0] # Altitudes are greater than 0 alt_con = segment.state.conditions.freestream.altitude[:,0]/segment.altitude_end # Acceleration constraint, go faster not slower acc_con = segment.state.conditions.frames.inertial.acceleration_vector[:,0] constraints = np.concatenate((time_con,CL_con,CL_con2,alt_con,acc_con)) return constraints
6cdc5ce218ecdc40b792f0bf2fce8789e8577aa9
34,987
def check_file_name(file_name, file_type="", extension=""): """ check_file_name(file_name, file_type="", extension="") Checks file_name for file_type or extension """ file_name = check_string(file_name, -1, '.', extension) file_name = check_string(file_name, -1, '_', file_type) return file_name
250937094bc90e67ccf5a3d2615105b4e448dfff
34,988
def render_experiments( driver: Driver = None, collab_id: str = "", project_id: str = "", form_type: str = "display", show_details: bool = True ): """ Renders out retrieved experiment metadata in a custom form Args: driver (Driver): A connected Synergos driver to communicate with the selected orchestrator. collab_id (str): ID of selected collaboration to be rendered project_id (str): ID of selected project to be rendered form_type (str): What type of form to render (i.e. 'display' or 'modify' mode). This is due to the way at which experiments are declared. show_details (bool): Toogles if experiment details should be shown Returns: Selected experiment ID (str) Updated experiment record (dict) """ expt_data = driver.experiments.read_all( collab_id=collab_id, project_id=project_id ).get('data', []) expt_ids = [expt['key']['expt_id'] for expt in expt_data] with st.beta_container(): selected_expt_id = st.selectbox( label="Experiment ID:", options=expt_ids, help="""Select an experiment to peruse.""" ) if not show_details: return selected_expt_id, None selected_expt_data = driver.experiments.read( collab_id=collab_id, project_id=project_id, expt_id=selected_expt_id ).get('data', {}) if selected_expt_data: selected_expt_data.pop('relations') # no relations rendering with st.beta_expander("Experiment Details"): updated_experiment = ( expt_renderer.display(selected_expt_data) if form_type == "display" else expt_renderer.modify(selected_expt_data) ) return selected_expt_id, updated_experiment
8f210251052081184b0e3792ed7381263a9961b2
34,989
import json def tag_lookup(request): """JSON endpoint that returns a list of potential tags. Used for upload template autocomplete. """ tag = request.GET['tag'] tagSlug = slugify(tag.strip()) tagCandidates = Tag.objects.values('word').filter(slug__startswith=tagSlug) tags = json.dumps([candidate['word'] for candidate in tagCandidates]) return HttpResponse(tags, content_type='application/json')
c6cca931538a30bfa2e6f356f87eaa17158f5145
34,990
def scope_to_list(scope): """Convert a space separated string to a list of scopes.""" if isinstance(scope, list) or scope is None: return scope else: return scope.split(" ")
c806f91192f86dbc42719787d9ddfe0d79690f0c
34,991
from pathlib import Path import importlib def import_migration_script(filepath: Path) -> ModuleType: """ Import migration script as if it were a module. """ spec = importlib.util.spec_from_file_location(filepath.stem, filepath) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) # type: ignore return module
15c8a5532d0a38d0741c3a82c299ad13e6885792
34,992
from typing import Callable import inspect def numargs(func: Callable) -> int: """Get number of arguments.""" return len(inspect.signature(func).parameters)
2b4e068798add68323db6bd43253fbca34ea71ba
34,993
def _embed(x, order=3, delay=1): """Time-delay embedding. Parameters ---------- x : 1d-array, shape (n_times) Time series order : int Embedding dimension (order) delay : int Delay. Returns ------- embedded : ndarray, shape (n_times - (order - 1) * delay, order) Embedded time-series. """ N = len(x) Y = np.empty((order, N - (order - 1) * delay)) for i in range(order): Y[i] = x[i * delay:i * delay + Y.shape[1]] return Y.T
e2834c835521e57132f67a19f4a405af752e497f
34,994
def form_baseline_intro(current_law): """ Form final sentance of introduction paragraph """ if not current_law: return f"{date()}" else: return ( f"{date()}, along with some modifications. A summary of these " "modifications can be found in the \"Summary of Baseline Policy\" " "section" )
8e93002290188605eb5df6992f5f41ae2352634d
34,996
from typing import Any def serialise(entry: Directive) -> Any: """Serialise an entry.""" if not entry: return None ret = entry._asdict() ret["type"] = entry.__class__.__name__ if isinstance(entry, Transaction): ret["payee"] = entry.payee or "" if entry.tags: ret["narration"] += " " + " ".join(["#" + t for t in entry.tags]) if entry.links: ret["narration"] += " " + " ".join( ["^" + link for link in entry.links] ) del ret["links"] del ret["tags"] ret["postings"] = [serialise(pos) for pos in entry.postings] elif ret["type"] == "Balance": amt = ret["amount"] ret["amount"] = {"number": str(amt.number), "currency": amt.currency} return ret
9ec9e1ea77011a79f8d1aac7ce4c804ef288f9f6
34,997
def MeanValueCoordinateMapping(dpoint, uv, physical_points): """MVC mapping from parametric uv to physical 3D inputs: dpoint: [list, tuple or 1D array of floats] desired uv point uv: [2D array] of parametric uv points of polygon vertices physical_points: [2D array] of physical points of polygon vertices """ norm = np.linalg.norm counter = 0 cp = False for i, p in enumerate(uv): if np.abs(norm(p-dpoint)) < 1e-9: counter = i cp = True break if cp: return physical_points[counter,:] dpoint_tile = np.tile(dpoint,uv.shape[0]).reshape(uv.shape[0],uv.shape[1]) segments = dpoint_tile - uv seg_lengths = norm(segments, axis=1) num_vertices = uv.shape[0] alphas = [] for i in range(num_vertices): if i<num_vertices-1: n0 = norm(segments[i,:]) n1 = norm(segments[i+1,:]) s0 = norm(segments[i,:]/n0 + segments[i+1,:]/n1) s1 = norm(segments[i,:]/n0 - segments[i+1,:]/n1) a = 2.*np.arctan2(s1,s0) else: n0 = norm(segments[i,:]) n1 = norm(segments[0,:]) s0 = norm(segments[i,:]/n0 + segments[0,:]/n1) s1 = norm(segments[i,:]/n0 - segments[0,:]/n1) a = 2.*np.arctan2(s1,s0) alphas.append(a) ws = [] for i in range(num_vertices): if i==0: a0 = alphas[-1] a1 = alphas[i] n1 = seg_lengths[i] w = (np.tan(a0/2.) + np.tan(a1/2.))/n1 else: a0 = alphas[i-1] a1 = alphas[i] n1 = seg_lengths[i] w = (np.tan(a0/2.) + np.tan(a1/2.))/n1 ws.append(w) ws = np.array(ws) lmbs = ws / np.sum(ws) candidate_point = np.zeros((physical_points.shape[1])) for i in range(num_vertices): candidate_point += physical_points[i,:]*lmbs[i] candidate_point = candidate_point.reshape(candidate_point.shape[0],1) candidate_point = candidate_point.ravel() return candidate_point
e5212fc953a67bc3e9827aa0d3bb4c088a6c848d
34,998
import re def _handle_discogs(url): """https://*discogs.com/*""" apiurl = 'https://api.discogs.com/' headers = {'user-agent': 'pyfibot-urltitle'} title_formats = { 'release': '{0[artists][0][name]} - {0[title]} - ({0[year]}) - {0[labels][0][catno]}', 'artist': '{0[name]}', 'label': '{0[name]}', 'master': '{0[artists][0][name]} - {0[title]} - ({0[year]})', } m = re.match( r'https:\/\/(?:www\.)?discogs\.com\/(?:([A-Za-z0-9-]+)\/)?(release|master|artist|label|item|seller|user)\/(\d+|[A-Za-z0-9_.-]+)', url) if m: m = m.groups() if m[1] in title_formats: endpoint = '%ss/%s' % (m[1], m[2]) data = bot.get_url('%s%s' % (apiurl, endpoint), headers=headers).json() title = title_formats[m[1]].format(data) elif m[1] in ['seller', 'user']: endpoint = 'users/%s' % m[2] data = bot.get_url('%s%s' % (apiurl, endpoint), headers=headers).json() title = ['{0[name]}'] if data['num_for_sale'] > 0: plural = 's' if data['num_for_sale'] > 1 else '' title.append('{0[num_for_sale]} item%s for sale' % plural) if data['releases_rated'] > 10: title.append( 'Rating avg: {0[rating_avg]} (total {0[releases_rated]})') title = ' - '.join(title).format(data) elif m[0:2] == ['sell', 'item']: endpoint = 'marketplace/listings/%s' % m[2] data = bot.get_url('%s%s' % (apiurl, endpoint)).json() for field in ('condition', 'sleeve_condition'): if field in ['Generic', 'Not Graded', 'No Cover']: data[field] = field else: m = re.match(r'(?:\w+ )+\(([A-Z]{1,2}[+-]?)( or M-)?\)', data[field]) data[field] = m.group(1) fmt = ('{0[release][description]} [{0[price][value]}' '{0[price][currency]} - ships from {0[ships_from]} - ' 'Condition: {0[condition]}/{0[sleeve_condition]}]') title = fmt.format(data) if title: return title
37be95755e77782ad4b6beee000a6b096a681aa9
34,999
def get_api_all_item(): """Get map of class name to class for all ApiItem subclasses. Returns: :obj:`dict` """ return {c.__name__: c for c in ApiItem.__subclasses__()}
621a867b0f4b28eb3d1b5721e22ea4914a5f577d
35,000
def get_image_url(soup_object: object) -> str: """Return book image url.""" image_url = soup_object.find("img")["src"] return image_url.replace("../..", "https://books.toscrape.com/")
5a52145eacc2489762d3f32b63e092e26d4fc4c8
35,001
def concat_train_val(train_df, val_df): """Utility function to concatenate the train and validation set, while maintaining globally unique ids.""" # increment id tags max_article_id = train_df['Article_ID'].max() + 1 max_ner_tag_id = train_df['NER_Tag_ID'].max() + 1 increment_article_id = partial(increment_id, increment=max_article_id) increment_tag_id = partial(increment_id, increment=max_ner_tag_id) val_df['Article_ID'] = val_df['Article_ID'].apply(increment_article_id) val_df['NER_Tag_ID'] = val_df['NER_Tag_ID'].apply(increment_tag_id) # combine train/validation set train_val_df = pd.concat((train_df, val_df), axis=0) return train_val_df
b4c949e08061a724441caf0abf8a2a14f1e494c3
35,003
import math def frequencyToMidi(frequency): """ Convert a given frequency in Hertz to its corresponding MIDI pitch number (60 = Middle C) """ return int(round(69 + 12 * math.log(frequency / 440.0, 2)))
29d4b92b9deacb81f768b554200c4b63b632bf23
35,005
def lower(value): # Only one argument. """Converts a string into all lowercase How to Use {{ value|lower|lower|.... }} """ return value.lower()
a6c290276aa777cee5e948d0c89202c67a97e6d1
35,006
def stdp2rbp_non_linear_calcium(*args, **kwargs): """Rate-based plasticity from STDP using the non linear calcium model. Same arguments as ~cbsp.population_1.non_linear_calcium(u, v, w0, seed) Returns: float: the population average change of synapse strength at time point 0 """ w_rec, t, _ = non_linear_calcium(*args, **kwargs) return utils.derivative(w_rec.mean(axis=0), t)
454990dc4783641c2da2da17297dd77abc95e3cd
35,007
def create_RevPAR(dataframe): """Calculate revpar from answer_num_rooms converted to supply of room nights divided by answer_ann_revenue""" dataframe['CREATED_revpar'] = dataframe['ANSWER_ann_revenue'].astype(float)/(dataframe['ANSWER_num_rooms'].astype(float)*365) return dataframe
0d3c91ff3909ea693fdde4b0ea8baae43a31a9a0
35,008
def get_find_response_normal_field_dict(model): """ :param model: :return: """ normal_fields = get_normal_field_list_by_model(model) # 普通字段 find_response_allow_fields = {} for normal_field in normal_fields: response_key = newbee_model.get_attr_by_model_field_key(model, normal_field, "response_key") can_found = newbee_model.get_attr_by_model_field_key(model, normal_field, "can_found") is_found_as_foreign_return = newbee_model.get_attr_by_model_field_key(model, normal_field, "is_found_as_foreign_return") if can_found: find_response_allow_fields[normal_field] = { "response_key": response_key or normal_field, "is_found_as_foreign_return": is_found_as_foreign_return, } return find_response_allow_fields
c55da5f2a573857dc7f349bac79b467cd2345450
35,009
def predict(): """Return Cell with Summary""" global CLEAN_SUMMARY global model summary = CLEAN_SUMMARY in_count = None out_count = None logger.info('Received Text Input') if request.method == 'POST': out = request.form['rawtext'] # preprocess text text = preprocess(out) logger.info('text preprocessed') # get summary summary = get_summary(model, text) logger.info('obtained summary') in_count = len(request.form['rawtext'].split()) out_count = len(summary.split()) input_count_words = f"{in_count} words." output_count_words = f"{out_count} words." CLEAN_SUMMARY = summary return render_template('index.html', input_count=input_count_words, output=summary, output_count=output_count_words)
94fbc9d75b9d488e371185912c54741596a23506
35,011
import random import string def id_generator(N=10): """ Generator a random string of characters. """ return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(N))
3e454a583f00f9218a8305dc5f7dca5d0bd27243
35,012
def transform_covariance(cov_in, transform): """ Apply a given transform to a covariance matrix. :param cov_in: Covariance matrix :param transform: The transform that will be applies :returns: The transformed covariance matrix """ # Converting the Quaternion to a Rotation Matrix first # Taken from: https://automaticaddison.com/how-to-convert-a-quaternion-to-a-rotation-matrix/ q0 = transform.transform.rotation.w q1 = transform.transform.rotation.x q2 = transform.transform.rotation.y q3 = transform.transform.rotation.z # First row of the rotation matrix r00 = 2 * (q0 * q0 + q1 * q1) - 1 r01 = 2 * (q1 * q2 - q0 * q3) r02 = 2 * (q1 * q3 + q0 * q2) # Second row of the rotation matrix r10 = 2 * (q1 * q2 + q0 * q3) r11 = 2 * (q0 * q0 + q2 * q2) - 1 r12 = 2 * (q2 * q3 - q0 * q1) # Third row of the rotation matrix r20 = 2 * (q1 * q3 - q0 * q2) r21 = 2 * (q2 * q3 + q0 * q1) r22 = 2 * (q0 * q0 + q3 * q3) - 1 # Code reference: https://github.com/ros2/geometry2/pull/430 # Mathematical Reference: # A. L. Garcia, “Linear Transformations of Random Vectors,” in Probability, # Statistics, and Random Processes For Electrical Engineering, 3rd ed., # Pearson Prentice Hall, 2008, pp. 320–322. R = np.array([[r00, r01, r02], [r10, r11, r12], [r20, r21, r22]]) R_transpose = np.transpose(R) cov_11 = np.array([cov_in[:3], cov_in[6:9], cov_in[12:15]]) cov_12 = np.array([cov_in[3:6], cov_in[9:12], cov_in[15:18]]) cov_21 = np.array([cov_in[18:21], cov_in[24:27], cov_in[30:33]]) cov_22 = np.array([cov_in[21:24], cov_in[27:30], cov_in[33:]]) # And we perform the transform result_11 = R @ cov_11 @ R_transpose result_12 = R @ cov_12 @ R_transpose result_21 = R @ cov_21 @ R_transpose result_22 = R @ cov_22 @ R_transpose cov_out = PoseWithCovarianceStamped() cov_out.pose.covariance[0] = result_11[0][0] cov_out.pose.covariance[1] = result_11[0][1] cov_out.pose.covariance[2] = result_11[0][2] cov_out.pose.covariance[6] = result_11[1][0] cov_out.pose.covariance[7] = result_11[1][1] cov_out.pose.covariance[8] = result_11[1][2] cov_out.pose.covariance[12] = result_11[2][0] cov_out.pose.covariance[13] = result_11[2][1] cov_out.pose.covariance[14] = result_11[2][2] cov_out.pose.covariance[3] = result_12[0][0] cov_out.pose.covariance[4] = result_12[0][1] cov_out.pose.covariance[5] = result_12[0][2] cov_out.pose.covariance[9] = result_12[1][0] cov_out.pose.covariance[10] = result_12[1][1] cov_out.pose.covariance[11] = result_12[1][2] cov_out.pose.covariance[15] = result_12[2][0] cov_out.pose.covariance[16] = result_12[2][1] cov_out.pose.covariance[17] = result_12[2][2] cov_out.pose.covariance[18] = result_21[0][0] cov_out.pose.covariance[19] = result_21[0][1] cov_out.pose.covariance[20] = result_21[0][2] cov_out.pose.covariance[24] = result_21[1][0] cov_out.pose.covariance[25] = result_21[1][1] cov_out.pose.covariance[26] = result_21[1][2] cov_out.pose.covariance[30] = result_21[2][0] cov_out.pose.covariance[31] = result_21[2][1] cov_out.pose.covariance[32] = result_21[2][2] cov_out.pose.covariance[21] = result_22[0][0] cov_out.pose.covariance[22] = result_22[0][1] cov_out.pose.covariance[23] = result_22[0][2] cov_out.pose.covariance[27] = result_22[1][0] cov_out.pose.covariance[28] = result_22[1][1] cov_out.pose.covariance[29] = result_22[1][2] cov_out.pose.covariance[33] = result_22[2][0] cov_out.pose.covariance[34] = result_22[2][1] cov_out.pose.covariance[35] = result_22[2][2] return cov_out.pose.covariance
0926bf95e58702f6594de572c7eeb1be2053b0c5
35,013
def delete_vocabulary(vid): """ Delete an existing vocabulary :return: """ try: vocs.delete_vocabulary(vid) except IndexError: raise APIError('Ontology URI not found') except vocs.UnknownVocabulary, e: raise NotFound(e.message) __analyse_vocabularies([vid]) __check_seeds() response = make_response() response.status_code = 200 return response
49e1be4b8132d3db2533ea6e5155d9891a3c221c
35,014
import numpy as np def available_kurucz_models(): """These hard-code the available Kurucz models, as present on Nov 22, 2019 on 'http://kurucz.harvard.edu/grids/grid'""" T_a = np.concatenate((np.arange(3500,13250,250),np.arange(13000,1000,51000))) logg_a = np.arange(0,5.5,0.5) Z_a = np.round(np.concatenate((np.arange(-5,0,0.5),np.arange(-0.3,0.4,0.1),np.array([0.5,1.0]))),decimals=1)#I need to do a rounding here because np.concatenate() makes a numerical error on the middle array... Weird! return(T_a,logg_a,Z_a)
2779e39e55127783986a71b65e0b7f09373551f7
35,015
import numpy as np def draw_skill_prices( T, J, pi_fun='pi_fixed', low=-0.2, high=0.2, const=[0.0, 0.05] ): """ Draws initial skill prices and simulates random prices changes. With the normalization of wages in task 1 to zero, some parts of this function are redundent. However, the way this function is currently set up allows for a simulation without this normalization, too. Arguments: T (int) Number of periods J (int) Number of tasks seed (int) Seed for random draw of prices pi_fun (str) defines the process of wage changes. Currently implemented options: - pi_normal: Draws from standard normal distribution. - pi_uniform: Draws uniform distribution. Borders are defined in "low" and "high" arguments. - pi_fixed: Non-random, constant price changes. Changes can be provided in "const" argument. low (int) Lower border of uniform distributed price changes. high (int) Upper border of uniform distributed price changes. const (list) Changes for pi_fixed option. Returns: pi1, pi2 JxT array of prices for tasks 1 and 2. Assumptions: (1) Initial relative skill price for task 2 is +5% (2) No price changes in a base period (t=0 to t=1) """ # import packages # # set seed # np.random.seed(seed) # define functions that return price changes for different specifications # (1) Draw stadard normal distributed changes in log prices. def pi_normal(J=J, T=T, **kwargs): pi_normal = np.around(np.random.normal(size=(J, T-1)), 4) return pi_normal # (2) Draw changes in log prices that are uniformly distributed over # some interval. def pi_uniform(J=2, T=T, **kwargs): low, high = kwargs['low'], kwargs['high'] pi_uniform = np.around( np.random.uniform(low, high, size=(J, T-1)), 4 ) return pi_uniform # (3) Fix changes in log prices. def pi_fixed(J=J, T=T, **kwargs): const = kwargs['const'] pi_fixed = np.array([const, ]*T).transpose() return pi_fixed # Set initial task prices # Assume task 1 has a lower price than task 2 pi1_0 = 0 pi2_0 = 0.1 # Define price array pi = np.empty([J, T]) # Set intial prices pi[:, 0] = pi1_0, pi2_0 pi[:, 1] = pi1_0, pi2_0 # Get price changes. # Find price changes function of choice: price_changes = eval(pi_fun) d_pi = price_changes(T=T, J=J, low=low, high=high, const=const) # Calculate prices in each period, while there is no price change in a base # period (from t=0 to t=1) for t in range(2, T): pi[:, t] = pi[:, t-1] + d_pi[:, t-1] return pi
a14af64fae651d3728fe4be2eae3f3e51eeecfe5
35,016
def deal_with_categorical(feasible_values, one_hot_values): """ function to do the one hot encoding of the categorical values """ index = np.argmax(one_hot_values) #index = one_hot_values.argmax() return feasible_values[int(index)]
f57d4c8ae3dbe7183849eced8c42a4561ab910f0
35,017
def pretty_size(n, pow=0, b=1024, u='B', pre=[''] + [p + 'i' for p in 'KMGTPEZY']): """ origin: https://stackoverflow.com/a/31178618 """ pow, n = min(int(m_log(max(n * b ** pow, 1), b)), len(pre) - 1), n * b ** pow return "%%.%if %%s%%s" % abs(pow % (-pow - 1)) % (n / b ** float(pow), pre[pow], u)
dbef4901c93f240847f37755712a57a225a98900
35,018
def launch_container(container, **kwargs): """ Launch a specific container :param container: :return: the container ID """ # Build the container if it doesn't exist logger.info("Building %s container..." % container) client.images.build(path='../%s' % container, tag="%s/%s:%s" % (NAMESPACE, IMAGE_NAME_MAP[container], VERSION), rm=True) logger.info("Done building %s" % container) # Run the container logger.info("Running %s container..." % container) container_id = client.containers.run("%s/%s:%s" % (NAMESPACE, IMAGE_NAME_MAP[container], VERSION), detach=True, **kwargs).short_id logger.info("%s up and running" % container) return container_id
fdeda303a6bc36a3d9a0a828a69cd0bc2a31275d
35,019
def collatz_function(n): """ This function, collatz function, takes a number n and the entire part on the division with 2 if n is even or 3*n+1 is n is odd. """ if n % 2 == 0: return n//2 else: return 3*n+1
bd9b061e9651e46e4c6efd3f6e45524d824040ff
35,020
def has_enabled_clear_method(store): """Returns True iff obj has a clear method that is enabled (i.e. not disabled)""" return hasattr(store, 'clear') and ( # has a clear method... not hasattr(store.clear, 'disabled') # that doesn't have a disabled attribute or not store.clear.disabled )
28ee30f92d44d14300e30fec0de37a2a241c8e92
35,021
def get_module_for_handler(handler_name): """ Gets the module for a handler using naming convention. First the name of the handler is capitalized and appended by the string "Handler". Then it is converted from camel to snake case to get the name of the module that will be loaded. Raises an ImportError exception if no module is found for the constructed module name :param handler_name: :return: """ module_name = HANDLERS_MODULE_NAME.format(pascal_to_snake_case(handler_name)) # noinspection PyPep8 try: return _get_module(module_name) except: raise ImportError(ERR_NO_MODULE_FOR_HANDLER.format(module_name, handler_name, ", ".join(all_handlers())))
1aace2db3658c4309501bb13deeaa0cbd3647654
35,023
def create_model(activations_outfeed_queue, gradient_accumulation_steps_per_replica): """ Create the model using the Keras Model class. Outfeed the activations for a single layer. """ input_layer = keras.layers.Input(shape=(28, 28, 1), dtype=tf.float32, batch_size=32) x = keras.layers.Flatten()(input_layer) x = keras.layers.Dense(128, activation='relu', name="Dense_128")(x) # Outfeed the activations for a single layer: x = outfeed_layers.Outfeed(activations_outfeed_queue, name="Dense_128_acts")(x) x = keras.layers.Dense(10, activation='softmax', name="Dense_10")(x) model = keras.Model(input_layer, x) model.set_gradient_accumulation_options( gradient_accumulation_steps_per_replica=gradient_accumulation_steps_per_replica) return model
d7f536becc97a0cb7a4d6465b784a6ce828faeda
35,024
def project_config(opts): """Template of project_config.yaml Args: opts: mapping parameters as dictionary Returns: str: file content as string """ template = get_template("project_config") return template.safe_substitute(opts)
12ce2cfbf967912586dd6c7a9a9dfe8e7eb00717
35,025
def _make_dense_split(quantile_accumulator_handle, stats_accumulator_handle, stamp_token, next_stamp_token, multiclass_strategy, class_id, feature_column_id, l1_regularization, l2_regularization, tree_complexity_regularization, min_node_weight, is_multi_dimentional, loss_uses_sum_reduction, weak_learner_type): """Function that builds splits for a dense feature column.""" # Get the bucket boundaries are_splits_ready, buckets = ( gen_quantile_ops.quantile_accumulator_get_buckets( quantile_accumulator_handles=[quantile_accumulator_handle], stamp_token=stamp_token)) # quantile_accumulator_get_buckets returns a list of results per handle that # we pass to it. In this case we're getting results just for one resource. are_splits_ready = are_splits_ready[0] buckets = buckets[0] # After we receive the boundaries from previous iteration we can flush # the quantile accumulator. with ops.control_dependencies([buckets]): flush_quantiles = gen_quantile_ops.quantile_accumulator_flush( quantile_accumulator_handle=quantile_accumulator_handle, stamp_token=stamp_token, next_stamp_token=next_stamp_token) if is_multi_dimentional: num_minibatches, partition_ids, bucket_ids, gradients, hessians = ( gen_stats_accumulator_ops.stats_accumulator_tensor_flush( stats_accumulator_handle, stamp_token, next_stamp_token)) else: num_minibatches, partition_ids, bucket_ids, gradients, hessians = ( gen_stats_accumulator_ops.stats_accumulator_scalar_flush( stats_accumulator_handle, stamp_token, next_stamp_token)) # For sum_reduction, we don't need to divide by number of minibatches. num_minibatches = control_flow_ops.cond(loss_uses_sum_reduction, lambda: math_ops.to_int64(1), lambda: num_minibatches) # Put quantile and stats accumulator flushing in the dependency path. with ops.control_dependencies([flush_quantiles, partition_ids]): are_splits_ready = array_ops.identity(are_splits_ready) partition_ids, gains, split_infos = ( split_handler_ops.build_dense_inequality_splits( num_minibatches=num_minibatches, bucket_boundaries=buckets, partition_ids=partition_ids, bucket_ids=bucket_ids, gradients=gradients, hessians=hessians, class_id=class_id, feature_column_group_id=feature_column_id, l1_regularization=l1_regularization, l2_regularization=l2_regularization, tree_complexity_regularization=tree_complexity_regularization, min_node_weight=min_node_weight, multiclass_strategy=multiclass_strategy, weak_learner_type=weak_learner_type)) return are_splits_ready, partition_ids, gains, split_infos
0d688a7290ebe05ab13488fc2ab0a04044beb29b
35,026
import torchvision import torch def load_data(dataset='cifar10', batch_size=128, num_workers=4): """ Loads the required dataset :param dataset: Can be either 'cifar10' or 'cifar100' :param batch_size: The desired batch size :return: Tuple (train_loader, test_loader, num_classes) """ print('==> Preparing data..') transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) if dataset == 'cifar10': # classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') num_classes = 10 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) elif dataset == 'cifar100': num_classes = 100 trainset = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform_train) testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test) else: raise ValueError('Only cifar 10 and cifar 100 are supported') trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=num_workers) return trainloader, testloader, num_classes
2983bb2d350c5c6b8ad613186490815f954313e7
35,028
import netrc import errno def get_auth_from_netrc(hostname): """Try to find login auth in ``~/.netrc``. Return ``(user, pwd)`` tuple. """ try: auth = netrc(file=NETRC) except IOError as cause: if cause.errno != errno.ENOENT: raise return None, None username, _, password = auth.hosts.get(hostname, None) or (None,) * 3 return username, password
da35fec0c9981166b14cce8870319eb9f1fb8e87
35,029
def _add_rows_by_count(df, amount, count, alloc_id, constraint, stuff=False): """ Add rows to a table so that the sum of values in the `count` column is increased by `amount`. Parameters ---------- df : pandas.DataFrame amount : float Amount by which to increase sum of `count` column. count : str Name of the column in `df` to use for accounting. alloc_id : str Name of column in `df` that specifies container ID. constraint : pandas.Series The constraint property that limits where new rows can be placed. Index must correspond to values in `alloc_id` column of `df`. stuff : bool, optional Whether it's okay for allocation to go over constraints. If False rows are still added to meet targets, but some will not be placed. Returns ------- new_df : pandas.DataFrame """ if amount == 0: return df.copy() sort_count = df[count].sort_values(ascending=False, inplace=False) sort_count = sort_count[sort_count != 0] orig_sort_count = sort_count.copy() to_add = [] while amount >= 1: sort_count = sort_count[sort_count <= amount] if len(sort_count) == 0: # see if we can pop the most recent thing off to_add # and try again with a smaller number. k = to_add.pop() v = orig_sort_count[k] amount += v sort_count = orig_sort_count[ (orig_sort_count < v) & (orig_sort_count <= amount)] if len(sort_count) == 0: break for k, v in sort_count.iteritems(): if v <= amount: to_add.append(k) amount -= v if amount == 0: break rows_to_add = df.loc[to_add] # update the new rows' index max_idx = df.index.max() rows_to_add.index = range(max_idx + 1, max_idx + len(rows_to_add) + 1) # allocate rows to containers _allocate_rows(rows_to_add, alloc_id, constraint, stuff) return pd.concat([df, rows_to_add])
1bb28f8e58116c469f100c65e9ec2f703f62cc6f
35,030
def rot2(theta, deg=True): """returns 2D rotation matrix :math:`R \in SO(2)` to rotate a vector/point in a plane in counter-clockwise direction Parameters ---------- theta : float the angle of rotation deg : bool ``True`` = degree (default), ``False`` = radians Returns ------- r : ndarray the rotation matrix Notes ----- Same as the function ``rotMat2D()`` execpt for slight change in the input parameter specification, plus ``rot2()`` returns ``ndarray`` instead of numpy matrix. See the function's docstring for details. See Also -------- rotMat2D() """ atype = 'd' if deg else 'r' return _np.asarray(rotMat2D(angle=theta, atype=atype))
557ff9b7135c62043ff767f4a33c8ca0484832bc
35,031
import torch def coin_flip(prob): """ Return the outcome of a biased coin flip. Args: prob: the probability of True. Returns: bool """ return prob > 0 and torch.rand(1).item() < prob
672929fb49a0e65101a4bdfdd13e981ae5eae31c
35,032
import warnings def _pair_exp_cov(X, Y, span=180): """ Calculate the exponential covariance between two timeseries of returns. :param X: first time series of returns :type X: pd.Series :param Y: second time series of returns :type Y: pd.Series :param span: the span of the exponential weighting function, defaults to 180 :type span: int, optional :return: the exponential covariance between X and Y :rtype: float """ covariation = (X - X.mean()) * (Y - Y.mean()) # Exponentially weight the covariation and take the mean if span < 10: warnings.warn("it is recommended to use a higher span, e.g 30 days") return covariation.ewm(span=span).mean().iloc[-1]
ffd64bb660d54444b64f11fc1a46c0a7c26169b4
35,033
def _protected_division(x1, x2): """Closure of division (x1/x2) for zero denominator.""" with np.errstate(divide='ignore', invalid='ignore'): return np.where(np.abs(x2) > 0.001, np.divide(x1, x2), x1)
676e8a2f72f076773d33501d2888871674ab6346
35,034