content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from cache_requests import Memoize def test_bust_cache_reevaluates_function(redis_mock): """:type redis_mock: mock.MagicMock""" # LOCAL TEST HELPER # ------------------------------------------------------------------------ def call_count(): try: return redis_mock.get.call_count, redis_mock.set.call_count finally: redis_mock.reset_mock() # LOCAL SETUP # ------------------------------------------------------------------------ result = { 'test': 'sample text' } @Memoize(connection=redis_mock) def hello(*_): return result.get('test') # TEST LOCAL SETUP # ------------------------------------------------------------------------ assert call_count() == (0, 0) # 1 get, 1 set assert hello('hello', 'world') == 'sample text' assert call_count() == (1, 1) assert call_count() == (0, 0) # TEST GETTING RESULTS FROM CACHE # ------------------------------------------------------------------------ result['test'] = 'bad cache target' # 1 get, 0 sets assert hello('hello', 'world') == 'sample text' assert call_count() == (1, 0) # TEST BUSTING CACHE # ------------------------------------------------------------------------ # 0 gets, 1 set assert hello('hello', 'world', bust_cache=True) == 'bad cache target' assert call_count() == (0, 1) # TEST GETTING RESULTS FROM CACHE AFTER BUST # ------------------------------------------------------------------------ # 1 get, 0 sets assert hello('hello', 'world') == 'bad cache target' # NO FUNNY BUSINESS result['test'] = 'really bad cache target' # 1 get, 0 sets assert hello('hello', 'world') == 'bad cache target' assert call_count() == (2, 0)
7d61180ea48be9985f9f861777d33e95640795e6
35,147
from scipy.sparse import csc_matrix def read_ccs(fname): """ Read a CCS matrix from file into a scipy csc matrix. This routine uses the CCS matrix files that CheSS generates. Args: fname (str): name of the file. Result: scipy.sparse.csc_matrix: the matrix in the file. """ data = [] indices = [] indptr = [] with open(fname, "r") as ifile: # Read the meta data. line = next(ifile) split = line.split() matdim = int(split[0]) nel = int(split[2]) split = next(ifile).split() # Read in the index pointers. indptr = [] indntx = [int(x) - 1 for x in split] indptr += indntx while len(indntx) == 10000: split = next(ifile).split() indntx = [int(x) - 1 for x in split] indptr += indntx # Read the indices. added = 0 while(added < nel): split = next(ifile).split() values = [int(x) - 1 for x in split] indices.extend(values) added += len(values) # Read the data for line in ifile: data.append(float(line)) matrix = csc_matrix((data, indices, indptr), shape=(matdim, matdim)) return matrix
74d893eeb7176b5dfa967fe1ad009cc64e7e9a4e
35,149
def demo__google_result_open_in_new_tab(raw_text, content_mime): """Force google search's result to open in new tab. to avoid iframe problem 在新标签页中打开google搜索结果 """ def hexlify_to_json(ascii_str): _buff = '' for char in ascii_str: if char in '\'\"<>&=': _buff += r'\x' + hex(ord(char))[2:] else: _buff += char _buff = _buff.replace('\\', '\\\\') _buff = _buff.replace('/', r'\/') return _buff if content_mime == 'application/json': raw_text = raw_text.replace( hexlify_to_json('<h3 class="r"><a href="'), hexlify_to_json('<h3 class="r"><a target="_blank" href="') ) raw_text = raw_text.replace( hexlify_to_json('<h3 class="r"><a class="l" href="'), hexlify_to_json('<h3 class="r"><a target="_blank" class="l" href="') ) else: raw_text = raw_text.replace('<h3 class="r"><a href="', '<h3 class="r"><a target="_blank" href="') raw_text = raw_text.replace('<h3 class="r"><a class="l" href="', '<h3 class="r"><a target="_blank" class="l" href="') return raw_text
9e11f59ab66d037887c60fa0e5b636af2c5fc0c8
35,150
def to_location_via_telescope_name(self): """Calculate the observatory location via the telescope name. Returns ------- loc : `astropy.coordinates.EarthLocation` Location of the observatory. """ return EarthLocation.of_site(self.to_telescope())
928fa0afa141dc4a974eb29ad4302b751ab4793b
35,151
def mailmangle_linked(email): """ Weakly obfuscates an email address using JavaScript and displays it with a mailto link. If JS not present (i.e. what's in ``<noscript>``), displays a link to a reCAPTCHA. """ encoded = _encoder( '<a href="mailto:{0}" class="email">' '{0}' '</a>' .format(email)) mh = _mailhide(email) return mark_safe(MAIL_PAYLOAD.format(b64enc=encoded, noscript=mh))
b6b7a3edfd8e3f714ec3de70e428b1551f3635ac
35,152
def hamiltonian(ncomp, freq, controls): """Assemble hf for one spin, given a detuning freq, the control amplitudes controls, and ncomp components of the control pulse.""" nc = 2 * ncomp + 1 # number of components in hf hf = np.zeros((nc, 2, 2), dtype=np.complex128) for k in range(ncomp): # Controls are ordered in reverse compared to how they are placed in hf a = controls[-2 * k - 2] b = controls[-2 * k - 1] # The controls are placed symmetrically around # the centre of hf, so we can place them at the # same time to save us some work! hf[k,:,:] = np.array([[0.0, 0.25 * (1j * a + b)], [0.25 * (1j * a - b), 0.0]]) hf[-k - 1,:,:] = np.array([[0.0, -0.25 * (1j * a + b)], [0.25 * (-1j * a + b), 0.0]]) # Set centre (with Fourier index 0) hf[ncomp] = np.array([[0.5 * freq, 0.0], [0.0, -0.5 * freq]], dtype=np.complex128) return hf
50d2c938319d7f817f7272761e3c29799f7b686b
35,153
def delete_database_cluster(rds_client, db_identifier): """Function to delete RDS instance. Args: rds_client (Client): AWS RDS Client object. db_instance_identifier (str): RDS instance to delete Returns: bool: True if instance was deleted successfully or does not exist, False otherwise. Raises: MaskopyResourceException: Exception used when trying to access a resource that cannot be accessed. MaskopyThrottlingException: Exception used to catch throttling from AWS. Used to implement a back off strategy. """ db_cluster_identifier=db_identifier['DBClusterIdentifier'] db_instance_identifier=db_identifier['DBInstanceIdentifier'] if db_cluster_identifier.startswith('Maskopy'): print(f"Deleting RDS cluster in destination account: {db_cluster_identifier}") try: rds_client.delete_db_instance( DBInstanceIdentifier=db_instance_identifier, SkipFinalSnapshot=True) rds_client.delete_db_cluster( DBClusterIdentifier=db_cluster_identifier, SkipFinalSnapshot=True) return True except ClientError as err: # Check if error code is DBSnapshotNotFound. If so, ignore the error. if err.response['Error']['Code'] == 'DBClusterNotFound': print(f'RDS cluster, {db_cluster_identifier}, already deleted.') return True # Check if error code is due to RDS not being in an available state. if err.response['Error']['Code'] == 'InvalidDBClusterState': print(f"{db_cluster_identifier}: RDS cluster is not in available state.") raise MaskopyResourceException(err) # Check if error code is due to throttling. if err.response['Error']['Code'] == 'Throttling': print(f"Throttling occurred when deleting database: {db_cluster_identifier}.") raise MaskopyThrottlingException(err) if err.response['Error']['Code'] == 'DBInstanceNotFound': print(f'RDS instance, {db_instance_identifier}, already deleted.') return True # Check if error code is due to RDS not being in an available state. if err.response['Error']['Code'] == 'InvalidDBInstanceState': print(f"{db_instance_identifier}: RDS instance is not in available state.") raise MaskopyResourceException(err) print(f"Error deleting database cluster, {db_cluster_identifier}: {err.response['Error']['Code']}") print(err) return False
6469dbb722cb5f546dedbae0a228719e068b668a
35,154
def get_nbow_vecotr(word_string, label_dict): """ Calc nBOW vector :param word_string: :param label_dict: :return: """ n_bow = label_dict.transform([word_string]) # nBOW vector n_bow = n_bow.toarray().ravel() n_bow = n_bow.astype(np.double) n_bow /= n_bow.sum() return n_bow
453a0b9754aef2742aba29f1680bc9d4b99200b6
35,155
import base64 def google_audio_settings_to_mod9(google_audio_settings): """ Map from Google-style audio input to Mod9 TCP server-style audio input. Args: google_audio_settings (dict): Google-style audio. Returns: Union[str, Iterable[bytes]]: Mod9-style audio to pass to Mod9 ASR Engine TCP Server. """ if not google_audio_settings: return None # Require one, and only one, of 'uri' or 'content'. if 'uri' in google_audio_settings and 'content' in google_audio_settings: raise ConflictingGoogleAudioSettingsError("Got both 'uri' and 'content' keys.") if 'uri' not in google_audio_settings and 'content' not in google_audio_settings: raise KeyError("Got neither 'uri' nor 'content' key.") if 'uri' in google_audio_settings: mod9_audio_settings = google_audio_settings['uri'] utils.uri_exists(mod9_audio_settings) else: # Decode google_audio_settings byte string if Base64 encoded; send chunks in generator. try: byte_string = base64.b64decode(google_audio_settings['content'], validate=True) except BinasciiError: byte_string = google_audio_settings['content'] mod9_audio_settings = ( byte_string[i:i+CHUNKSIZE] for i in range(0, len(byte_string), CHUNKSIZE) ) return mod9_audio_settings
65e81e26316201e0032db68ad4cad161e93fc69b
35,156
def get_sequence_lengths(sequence_batch: Array, eos_id: int) -> Array: """Returns the length of each one-hot sequence, including the EOS token.""" # sequence_batch.shape = (batch_size, seq_length, vocab_size) eos_row = sequence_batch[:, :, eos_id] eos_idx = jnp.argmax(eos_row, axis=-1) # returns first occurrence # `eos_idx` is 0 if EOS is not present, so we use full length in that case. return jnp.where( eos_row[jnp.arange(eos_row.shape[0]), eos_idx], eos_idx + 1, sequence_batch.shape[1] # if there is no EOS, use full length )
7db2c66c19ad08033126773d8575bac2ee62654d
35,157
def Shift(parent, shift, da_mode="nearest", constant=0.0, name=""): """\ Shift the input image. :param parent: parent layer :param shift: list of maximum absolute fraction for the horizontal and vertical translations :param da_mode: one of "nearest", "constant" :param constant: fill value for the area outside the resized image, used for all channels :return: Shift layer """ return _eddl.Shift(parent, shift, da_mode, constant, name)
8b7d4aa4909bab9dd937d2df03e937c87dcfcf21
35,159
def iterations_for_terms(terms): """ Parameters ---------- terms : int Number of terms in the singular value expansion. Returns ------- Int The number of iterations of the power method needed to produce reasonably good image qualit for the given number of terms in the singular value expansion. By "reasonably good" we mean that using larger number of terms will not produce noticeably better image, thus it is wasteful. """ if terms <= 20: return 10 if terms <= 50: return 5 if terms <= 100: return 3 return 1
4142d8325f132e16e0525c36d114dd989873870f
35,160
def explained_variance(y_pred, y): """ Returns 1 - Var[y - y_pred] / Var[y] """ assert y.ndim == 1 and y_pred.ndim == 1 variance = np.var(y) return np.nan if variance == 0 else 1 - np.var(y - y_pred) / variance
80ea05c9d83f3d48cfe49a038b81f9712a04df16
35,161
import itertools def get_3d_points_from_multiple_observation(candidate_sets, camera_matrixs, fundamental_matrixs, threshold_sv = 15.0): """ param candidate_sets : [[np.array{2}, ...], ...] list of candidate sets(list) in cameras param camera_matrixs : np.array{ v x 3 x 4 } return : [np.array{3}, ...] the corresponding points in 3d space """ for candidate_set in candidate_sets: candidate_set.append(None) combinations = list(itertools.product(*candidate_sets)) combinations = [(combination, len([combination[i] for i in range(len(combination)) if combination[i] != None])) for combination in combinations] combinations = sorted(combinations, key=itemgetter(1), reverse = True) combinations = [combination[0] for combination in combinations] combinations_used = [] res = [] for combination in combinations: combination_valid = [combination[i] for i in range(len(combination)) if combination[i] != None] if len(combination_valid) >= 2: isSubset = False for combination_used in combinations_used: #if not subset of previous isSubset = True for pt_tgt, pt_used in zip(combination, combination_used): if pt_tgt != pt_used and not pt_tgt == None: isSubset = False break if isSubset: break # if not isSubset: # idx_valid = np.array([i for i in range(len(combination)) if combination[i] != None]) # combination_valid = [combination[i] for i in idx_valid] # camera_matrixs_valid = camera_matrixs[idx_valid] # if test_epipolar_constraints(np.vstack(combination_valid), fundamental_matrixs, idx_valid): # xyz, s = get_triangulation(np.vstack(combination_valid), camera_matrixs_valid) # s /= len(camera_matrixs_valid) # if s < threshold_sv and np.all(is_front_of_view(xyz, camera_matrixs_valid)): # combinations_used.append(combination) # res.append(xyz) if not isSubset: camera_matrixs_valid = np.array([camera_matrixs[i] for i in range(len(combination)) if combination[i] != None]) xyz, s = get_triangulation(np.vstack(combination_valid), camera_matrixs_valid) s /= len(camera_matrixs_valid) # to reward points with many views if s < threshold_sv and np.all(is_front_of_view(xyz, camera_matrixs_valid)): combinations_used.append(combination) res.append(xyz) return res
3e1171c798c0ab7f0a587d94ff262d9fafda4b8a
35,162
def get_macro(macro_name): """ Get the configured macro :param macro_name: The name of the macro to add :return: The macro itself in string form """ return MACROS[macro_name]
624bc6912ce1d32d68ffd11c029b6c84e2bf563f
35,163
def part_1(input_data: str) -> int: """What do you get if you multiply your final horizontal position by your final depth? Returns: int: [final horizontal position * final depth] """ h_pos, depth = 0, 0 # Your horizontal position and depth both start at 0. commands = parse_input(input_data) for command, value in commands: if command == "forward": h_pos += value elif command == "up": depth -= value elif command == "down": depth += value else: print(f"ERROR: unrecognised command ({command})") break return h_pos * depth
4ae988405c568d8f409935dee1eb6413fc68e8a5
35,164
def preprocess_image(img, cam_values): """ Function to prepare image for lane extraction: 1. undistort image 2. crop a region of interest 3. convert image to hsv 4. Get binary gradient image using sobel 5. transfer binary image using the roi Args: img ([type]): [description] """ #define a vertices which includes the lane vertices = np.array([[ ((img.shape[1]/2 - 80),img.shape[0]/1.59), ((img.shape[1]/2 + 80),img.shape[0]/1.59), ((img.shape[1] - 150 ),img.shape[0] - 40), (0 + 225,img.shape[0] - 40)]], dtype=np.int32) #define a destination vertice to warp the image dst = np.array([[ (95, 0), ((img.shape[1] -95),0), ((img.shape[1] - 265),img.shape[0]), (265,img.shape[0])]], dtype=np.int32) undist = cv2.undistort(img, cam_values['mtx'], cam_values['dist'], None, cam_values['mtx']) # cv2.imwrite('undist.png', undist) bin_image_thresh = abs_sobel_thresh(undist, orient='x', thresh_min = 10, thresh_max = 100) # cv2.imwrite('bin_image_sobel.png', bin_image_thresh*255) bin_image_hls = svalues_mask(undist, s_min = 120, s_max = 255) # cv2.imwrite('bin_image_hls.png', bin_image_hls*255) #combine both bin images bin_image = np.zeros_like(bin_image_thresh) bin_image[(bin_image_thresh == 1) | (bin_image_hls == 1)] = 1 cv2.imwrite('bin_image.png', bin_image*255) bin_image_crop = region_of_interest(bin_image, vertices) # cv2.imwrite('bin_image_cropped.png', bin_image_crop*255) src = np.float32([[vertices[0][0]],[vertices[0][1]], [vertices[0][2]],[vertices[0][3]]]) bin_image_warped = warp_perpsective(bin_image_crop, src, np.float32(dst)) # cv2.imwrite('bin_image_warp.png', bin_image_warped*255) #get inverse matrix to ba able to recalulate the found lines/points of the warped image Minv = cv2.getPerspectiveTransform(np.float32(dst), src) return undist, bin_image_warped, Minv
b4d132144629de64c4556c9f16fa16ce9a54a23d
35,165
import struct import tqdm def init_compress_eigerdata( images, mask, md, filename, bad_pixel_threshold=1e15, hot_pixel_threshold=2 ** 30, bad_pixel_low_threshold=0, nobytes=4, bins=1, with_pickle=True, reverse=True, rot90=False, direct_load_data=False, data_path=None, images_per_file=100, ): """ Compress the eiger data Create a new mask by remove hot_pixel Do image average Do each image sum Find badframe_list for where image sum above bad_pixel_threshold Generate a compressed data with filename if bins!=1, will bin the images with bin number as bins Header contains 1024 bytes ['Magic value', 'beam_center_x', 'beam_center_y', 'count_time', 'detector_distance', 'frame_time', 'incident_wavelength', 'x_pixel_size', 'y_pixel_size', bytes per pixel (either 2 or 4 (Default)), Nrows, Ncols, Rows_Begin, Rows_End, Cols_Begin, Cols_End ] Return mask avg_img imsum bad_frame_list """ fp = open(filename, "wb") # Make Header 1024 bytes # md = images.md if bins != 1: nobytes = 8 if "count_time" not in list(md.keys()): md["count_time"] = 0 if "detector_distance" not in list(md.keys()): md["detector_distance"] = 0 if "frame_time" not in list(md.keys()): md["frame_time"] = 0 if "incident_wavelength" not in list(md.keys()): md["incident_wavelength"] = 0 if "y_pixel_size" not in list(md.keys()): md["y_pixel_size"] = 0 if "x_pixel_size" not in list(md.keys()): md["x_pixel_size"] = 0 if "beam_center_x" not in list(md.keys()): md["beam_center_x"] = 0 if "beam_center_y" not in list(md.keys()): md["beam_center_y"] = 0 if not rot90: Header = struct.pack( "@16s8d7I916x", b"Version-COMP0001", md["beam_center_x"], md["beam_center_y"], md["count_time"], md["detector_distance"], md["frame_time"], md["incident_wavelength"], md["x_pixel_size"], md["y_pixel_size"], nobytes, md["pixel_mask"].shape[1], md["pixel_mask"].shape[0], 0, md["pixel_mask"].shape[1], 0, md["pixel_mask"].shape[0], ) else: Header = struct.pack( "@16s8d7I916x", b"Version-COMP0001", md["beam_center_x"], md["beam_center_y"], md["count_time"], md["detector_distance"], md["frame_time"], md["incident_wavelength"], md["x_pixel_size"], md["y_pixel_size"], nobytes, md["pixel_mask"].shape[0], md["pixel_mask"].shape[1], 0, md["pixel_mask"].shape[0], 0, md["pixel_mask"].shape[1], ) fp.write(Header) Nimg_ = len(images) avg_img = np.zeros_like(images[0], dtype=np.float) Nopix = float(avg_img.size) n = 0 good_count = 0 frac = 0.0 if nobytes == 2: dtype = np.int16 elif nobytes == 4: dtype = np.int32 elif nobytes == 8: dtype = np.float64 else: print("Wrong type of nobytes, only support 2 [np.int16] or 4 [np.int32]") dtype = np.int32 Nimg = Nimg_ // bins time_edge = np.array(create_time_slice(N=Nimg_, slice_num=Nimg, slice_width=bins)) imgsum = np.zeros(Nimg) if bins != 1: print("The frames will be binned by %s" % bins) for n in tqdm(range(Nimg)): t1, t2 = time_edge[n] img = np.average(images[t1:t2], axis=0) mask &= img < hot_pixel_threshold p = np.where((np.ravel(img) > 0) & np.ravel(mask))[0] # don't use masked data v = np.ravel(np.array(img, dtype=dtype))[p] dlen = len(p) imgsum[n] = v.sum() if (imgsum[n] > bad_pixel_threshold) or (imgsum[n] <= bad_pixel_low_threshold): # if imgsum[n] >=bad_pixel_threshold : dlen = 0 fp.write(struct.pack("@I", dlen)) else: np.ravel(avg_img)[p] += v good_count += 1 frac += dlen / Nopix # s_fmt ='@I{}i{}{}'.format( dlen,dlen,'ih'[nobytes==2]) fp.write(struct.pack("@I", dlen)) fp.write(struct.pack("@{}i".format(dlen), *p)) if bins == 1: if nobytes != 8: fp.write(struct.pack("@{}{}".format(dlen, "ih"[nobytes == 2]), *v)) else: fp.write(struct.pack("@{}{}".format(dlen, "dd"[nobytes == 2]), *v)) else: fp.write(struct.pack("@{}{}".format(dlen, "dd"[nobytes == 2]), *v)) # n +=1 fp.close() frac /= good_count print("The fraction of pixel occupied by photon is %6.3f%% " % (100 * frac)) avg_img /= good_count bad_frame_list = np.where( (np.array(imgsum) > bad_pixel_threshold) | (np.array(imgsum) <= bad_pixel_low_threshold) )[0] # bad_frame_list1 = np.where( np.array(imgsum) > bad_pixel_threshold )[0] # bad_frame_list2 = np.where( np.array(imgsum) < bad_pixel_low_threshold )[0] # bad_frame_list = np.unique( np.concatenate( [bad_frame_list1, bad_frame_list2]) ) if len(bad_frame_list): print("Bad frame list are: %s" % bad_frame_list) else: print("No bad frames are involved.") if with_pickle: pkl.dump([mask, avg_img, imgsum, bad_frame_list], open(filename + ".pkl", "wb")) return mask, avg_img, imgsum, bad_frame_list
71d60adabb48e1b6566e7888dbeca06d54647d88
35,166
import re def parseTomEval(inFile, strand): """parse the tomtotm.txt file and return a dict of e-values between motifs """ #dict between query and target Ids matchDict = {} #read the tomtom.txt file and see if any known are found with open(inFile, 'rb') as handler: for line in handler: line = line.strip() if re.search(r'Query', line): continue #skip if the target is reverse compliment lineSplit = line.split('\t') #when making the dict, the targets are usually motif IDs as digits so check them, otherwise they are strings/names if lineSplit[0].isdigit(): query = int(lineSplit[0]) else: query = lineSplit[0] if lineSplit[1].isdigit(): target = int(lineSplit[1]) else: target = lineSplit[1] eVal = float(lineSplit[4]) overlap = int(lineSplit[6]) strand = lineSplit[9] #if strand != '+': #continue if query not in matchDict: matchDict[query] = {} if target not in matchDict[query] and target != query: matchDict[query][target]=eVal #for query in matchDict: #print 'query:', query #for target in matchDict[query]: #print '\ttarget:', target,'eval:', matchDict[query][target] return matchDict
d9394111d35444199f93bf97e7de606d919b9bb3
35,167
from typing import Dict from typing import Union from pathlib import Path import tqdm import warnings def prepare_peoples_speech( corpus_dir: Pathlike, output_dir: Pathlike, ) -> Dict[str, Union[RecordingSet, SupervisionSet]]: """ Prepare :class:`~lhotse.RecordingSet` and :class:`~lhotse.SupervisionSet` manifests for The People's Speech. The metadata is read lazily and written to manifests in a stream to minimize the CPU RAM usage. If you want to convert this data to a :class:`~lhotse.CutSet` without using excessive memory, we suggest to call it like:: >>> peoples_speech = prepare_peoples_speech(corpus_dir=..., output_dir=...) >>> cuts = CutSet.from_manifests( ... recordings=peoples_speech["recordings"], ... supervisions=peoples_speech["supervisions"], ... output_path=..., ... lazy=True, ... ) :param corpus_dir: Pathlike, the path of the main data dir. :param output_dir: Pathlike, the path where to write the manifests. :return: a dict with keys "recordings" and "supervisions" with lazily opened manifests. """ corpus_dir = Path(corpus_dir) output_dir = Path(output_dir) output_dir.mkdir(parents=True, exist_ok=True) recs_path = output_dir / "peoples-speech_recordings_all.jsonl.gz" sups_path = output_dir / "peoples-speech_supervisions_all.jsonl.gz" if recs_path.is_file() and sups_path.is_file(): # Nothing to do: just open the manifests in lazy mode. return { "recordings": RecordingSet.from_jsonl_lazy(recs_path), "supervisions": SupervisionSet.from_jsonl_lazy(sups_path), } exist = 0 tot = 0 err = 0 with RecordingSet.open_writer(recs_path,) as rec_writer, SupervisionSet.open_writer( sups_path, ) as sup_writer: for item in tqdm( # Note: People's Speech manifest.json is really a JSONL. load_jsonl(corpus_dir / "manifest.json"), desc="Converting People's Speech manifest.json to Lhotse manifests", ): for duration_ms, text, audio_path in zip(*item["training_data"].values()): full_path = corpus_dir / audio_path tot += 1 if not full_path.exists(): # If we can't find some data, we'll just continue and some items # were missing later. continue exist += 1 try: audio_info = info(full_path) duration = duration_ms / 1000 r = Recording( id=full_path.stem, sampling_rate=audio_info.samplerate, num_samples=compute_num_samples( duration, audio_info.samplerate ), duration=duration, sources=[ AudioSource( type="file", channels=[0], source=str(full_path), ) ], ) s = SupervisionSegment( id=r.id, recording_id=r.id, start=0, duration=r.duration, channel=0, text=text, language="English", custom={"session_id": item["identifier"]}, ) validate_recordings_and_supervisions(recordings=r, supervisions=s) rec_writer.write(r) sup_writer.write(s) except Exception as e: # If some files are missing (e.g. somebody is working on a subset # of 30.000 hours), we won't interrupt processing; we will only # do so for violated assertions. if isinstance(e, AssertionError): raise err += 1 continue if exist < tot or err > 0: warnings.warn( f"We finished preparing The People's Speech Lhotse manifests. " f"Out of {tot} entries in the original manifest, we found {exist} " f"audio files existed, out of which {err} had errors during processing." ) return { "recordings": rec_writer.open_manifest(), "supervisions": sup_writer.open_manifest(), }
48605c9511824a5fbe0e130fa4df0368228a8d0a
35,168
def process_edit_distances(mx, reference_counter, reference_values, search_values): """Extract search values that has minimum edit distance from reference values. Multiple hits are enabled.""" min_distances = mx.min(axis=1) matches = [] for i in range(mx.shape[0]): min_dist = min_distances[i] min_indices = np.argwhere(mx[i,:] == min_dist) min_indices = list(min_indices[:,0])#convert array to column for idx in min_indices: reference, min_match = reference_values[i], search_values[idx] matches.append((reference, reference_counter[reference], min_match, min_dist)) return matches
87ea6d8adfd6810c8aa56eb248bb3126acf25022
35,169
def get_jobs(): """Get a list of jobs""" query = "SELECT * FROM urls" result = db.execute(query) return jsonify(result)
03b2987a8a11c88b493c6e6e435434b96e0741db
35,170
def get_leaf_nodes(struct): """ Get the list of leaf nodes. """ leaf_list = [] for idx, node in enumerate(struct): if node['is_leaf']: leaf_list.append(idx) return leaf_list
90c66e49bac0c49ef5d2c75b4c1cbe6f4fdd4b83
35,171
def cg_build_w_env(A, B, i): """ Build the environment for constructing the ith HOTRG isometry for A and B. """ A_indices1 = [1,2,3,4,5,-11] A_indices2 = [1,2,3,4,5,-12] A_indices1[i] = -1 A_indices2[i] = -2 A2 = ncon((A, A.conjugate()), (A_indices1, A_indices2)) B_indices1 = [1,2,3,4,-11,6] B_indices2 = [1,2,3,4,-12,6] B_indices1[i] = -1 B_indices2[i] = -2 B2 = ncon((B, B.conjugate()), (B_indices1, B_indices2)) env = ncon((A2, B2), ([-1,-11,1,2], [-2,-12,1,2])) return env
4ea4e660dc1dc95cebcb2612c1d9a46d0d7d85ac
35,172
def get_node_edge(docs, w2d_score, d2d_score): """ :param docs: :param w2d_score: :param d2d_score: :return: """ wid2wnid = {} w_id, d_idx = [], [] w_d_wnid, w_d_dnid = [], [] w_d_feat = {"score": [], 'dtype': []} d_d_dnid1, d_d_dnid2 = [], [] d_d_feat = {"score": [], 'dtype': []} wnid, dnid = 0, 0 for di, (_, wd_scores) in enumerate(zip(docs, w2d_score)): for wid, wd_score in wd_scores.items(): if wid not in wid2wnid: wid2wnid[wid] = wnid w_id.append(wid) wnid += 1 w_d_wnid.append(wid2wnid[wid]) w_d_dnid.append(dnid) w_d_feat["score"].append(wd_score) w_d_feat["dtype"].append(0) d_idx.append(di) dnid += 1 if di > 0: d_d_dnid1.append(0) d_d_dnid2.append(di) # d_d_feat["score"].append(max(0, min(round(math.log(d2d_score[di-1])), 9))) d_d_feat["score"].append(d2d_score[di - 1]) d_d_feat["dtype"].append(1) utils = {"w_id": w_id, "d_idx": d_idx, "w_d_wnid": w_d_wnid, "w_d_dnid": w_d_dnid, "w_d_feat": w_d_feat, "d_d_dnid1": d_d_dnid1, "d_d_dnid2": d_d_dnid2, "d_d_feat": d_d_feat } return utils
40e4d0a11fdd671971319ae8d463ad94a7e3ca9a
35,173
def get_elixier_org_by_id_local(id_local): """ ..liefert den zu id_local passenden Datensatz """ items = DmsElixierOrg.objects.filter(id_local=id_local) if len(items) > 0: return items[0] else: return None
fdecff1dbc8cda34da994b87fb197b1c88515a75
35,174
def nearest_approach_to_any_vehicle(traj, vehicles): """ Calculates the closest distance to any vehicle during a trajectory. """ closest = 999999 for v in vehicles.values(): d = nearest_approach(traj, v) if d < closest: closest = d return closest
de09f23d0886f48ce34c455a41f12c0bb435d216
35,175
def getAllQuery(): """ This will get all the records in the userQuery table """ rows = [] with engine.begin() as conn: sel = userQuery.select() rows = conn.execute(sel).fetchall() return rows
d7800ea523877e930f7e0e0d4c4d70e70ad608ca
35,176
def testingParameters(cal_file = None): """ Create a Spliner parameters object. """ params = parameters.ParametersSpliner() params.setAttr("max_frame", "int", -1) params.setAttr("start_frame", "int", -1) params.setAttr("background_sigma", "float", 8.0) if cal_file is not None: params.setAttr("camera_calibration", "filename", cal_file) else: params.setAttr("camera_gain", "float", settings.camera_gain) params.setAttr("camera_offset", "float", settings.camera_offset) params.setAttr("find_max_radius", "int", 5) params.setAttr("fit_error_model", "string", settings.fit_error_model) params.setAttr("iterations", "int", settings.iterations) params.setAttr("no_fitting", "int", 0) params.setAttr("pixel_size", "float", settings.pixel_size) params.setAttr("sigma", "float", 1.5) params.setAttr("spline", "filename", "psf.spline") params.setAttr("threshold", "float", 6.0) # Don't do tracking. params.setAttr("descriptor", "string", "1") params.setAttr("radius", "float", "0.0") # Don't do drift-correction. params.setAttr("d_scale", "int", 2) params.setAttr("drift_correction", "int", 0) params.setAttr("frame_step", "int", 500) params.setAttr("z_correction", "int", 0) # 'peak_locations' testing. if hasattr(settings, "peak_locations") and (settings.peak_locations is not None): params.setAttr("peak_locations", "filename", settings.peak_locations) return params
fbd5c4a20ce036274bf221d4fb9e16933b94d332
35,177
def fetch_labels(k, kmeans_history, offset=-1): """This fetches the original edges of a hierarchical mean. """ labels = kmeans_history[1] passes = labels.shape[0] indices = np.array([k]) for i in range(offset, -(passes + 1), -1): try: indices = np.array([np.nonzero(labels[i] == j)[0] for j in indices]) indices = np.hstack(indices) except IndexError: return np.array(indices) return indices
b6752505be9cd6b2c849a79ef9e7f9ef6528651f
35,178
def _reshape(t: 'Tensor', shape) -> 'Tensor': """ Also see --------- :param t: :param shape: :return: """ data = t.data.reshape(shape) requires_grad = t.requires_grad if requires_grad: def grad_f(grad: 'np.ndarray') -> 'np.ndarray': return grad.reshape(t.shape) depends_on = [Dependency(tensor = t, grad_fn = grad_f)] else: depends_on = [] return Tensor(data, requires_grad, depends_on)
46677d4bbe6fb384fa1759b8c7e08ae481bba5e7
35,179
from datetime import datetime def get_target_month(month_count, utc_now=None): """ Return datetime object for number of *full* months older than `month_count` from now, or `utc_now`, if provided. :arg month_count: Number of *full* months :arg utc_now: Used for testing. Overrides current time with specified time. :rtype: Datetime object """ utc_now = date(utc_now.year, utc_now.month, 1) if utc_now else date.today() target_date = date(utc_now.year, utc_now.month, 1) if month_count < 0: for i in range(0, month_count, -1): if target_date.month == 12: target_date = date(target_date.year+1, 1, 1) else: target_date = date(target_date.year, target_date.month+1, 1) else: for i in range(0, month_count): if target_date.month == 1: target_date = date(target_date.year-1, 12, 1) else: target_date = date(target_date.year, target_date.month-1, 1) return datetime(target_date.year, target_date.month, target_date.day)
c2a8f79add91cb176d537cf7a523f70d8c3ec2c2
35,180
from datetime import datetime def mark_notifications_read(db: orm.Session = Depends(get_db)): """Mark all the notifications as read Returns: List of schema.Notification: A list of all the notifications updated to read """ notifications = db.query(model.Notification).all() for notification in notifications: if notification.has_read: pass else: notification.has_read = True notification.last_updated = datetime.utcnow() db.commit() db.refresh(notification) return list(map(schema.Notification.from_orm, notifications))
bb659f1d5676c9442aba4a0bc00c810f51493bad
35,181
import copy def created_task(result, status=202, mimetype='application/vnd.task-v1+json', headers={}): """ Created response for celery result by creating a task representation and adding a link header. :param result: :type result: AsyncResult :param status: Http status code. Defaults to 202 (Accepted) as celery executes task asynchronously. :type status: int :param mimetype: Response mimetype. Defaults to 'application/vnd.task-v1+json' :type mimetype: str :param headers: Dictionary containing http headers. By default, Location header is added. :type headers: dict :return: Tuple containing Flask Response, Status code, Http headers. :rtype: tuple """ headers = copy.deepcopy(headers or {}) task_id = str(result) headers.setdefault('Location', url_for('.tasks', id=task_id)) output = { 'task_id': task_id } return build_response(output, status=status, mimetype=mimetype, headers=headers)
ef56fdb129585e5b078bc20a0a449204c75705d7
35,182
def _get_dir_list(names): """This function obtains a list of all "named"-directory [name1-yes_name2-no, name1-no_name2-yes, etc] The list's building occurs dynamically, depending on your list of names (and its order) in config.yaml. The entire algorithm is described in "img" in the root directory and in the Readme.md. :param names: the names of judges, they have to be in the same order as they arranged in a filename. For example: if a file calls "name1-yes_name2-no_", therefore the name's list looks like [name1, name2] :return: list of compiled directories. """ # Number of columns n = len(names) # Number of lines num_lines = 2**n # fill the result with '\0' dir_list = ['' for i in range(num_lines)] # In our case a name represents a column. for name in names: column_index = names.index(name) # The partition_index is the cue when we should to switch 0 to 1 (no to yes) and vise versa. partition_index = num_lines / (2**(column_index + 1)) # yes_mode means that we add '-yes_' up to a name, otherwise add '-no_'. yes_mode = True line = 0 while line < num_lines: path_part = name # Switch the mode to the opposite one. if line % partition_index == 0: yes_mode = not yes_mode # Sets a decision to a name if not yes_mode: path_part += '-no_' else: path_part += '-yes_' # Add a path's part (column by column) to the list dir_list[line] += path_part line += 1 return dir_list
284c328878c2c8d0e0ae273c140798e2884ef13f
35,183
def mapCardToImagePath(card): """ Given a card, return the relative path to its image """ if card == "01c": return 'src/imgs/2C.png' if card == "02c": return 'src/imgs/3C.png' if card == "03c": return 'src/imgs/4C.png' if card == "04c": return 'src/imgs/5C.png' if card == "05c": return 'src/imgs/6C.png' if card == "06c": return 'src/imgs/7C.png' if card == "07c": return 'src/imgs/8C.png' if card == "08c": return 'src/imgs/9C.png' if card == "09c": return 'src/imgs/10C.png' if card == "10c": return 'src/imgs/JC.png' if card == "11c": return 'src/imgs/QC.png' if card == "12c": return 'src/imgs/KC.png' if card == "13c": return 'src/imgs/AC.png' if card == "01d": return 'src/imgs/2D.png' if card == "02d": return 'src/imgs/3D.png' if card == "03d": return 'src/imgs/4D.png' if card == "04d": return 'src/imgs/5D.png' if card == "05d": return 'src/imgs/6D.png' if card == "06d": return 'src/imgs/7D.png' if card == "07d": return 'src/imgs/8D.png' if card == "08d": return 'src/imgs/9D.png' if card == "09d": return 'src/imgs/10D.png' if card == "10d": return 'src/imgs/JD.png' if card == "11d": return 'src/imgs/QD.png' if card == "12d": return 'src/imgs/KD.png' if card == "13d": return 'src/imgs/AD.png' if card == "01s": return 'src/imgs/2S.png' if card == "02s": return 'src/imgs/3S.png' if card == "03s": return 'src/imgs/4S.png' if card == "04s": return 'src/imgs/5S.png' if card == "05s": return 'src/imgs/6S.png' if card == "06s": return 'src/imgs/7S.png' if card == "07s": return 'src/imgs/8S.png' if card == "08s": return 'src/imgs/9S.png' if card == "09s": return 'src/imgs/10S.png' if card == "10s": return 'src/imgs/JS.png' if card == "11s": return 'src/imgs/QS.png' if card == "12s": return 'src/imgs/KS.png' if card == "13s": return 'src/imgs/AS.png' if card == "01h": return 'src/imgs/2H.png' if card == "02h": return 'src/imgs/3H.png' if card == "03h": return 'src/imgs/4H.png' if card == "04h": return 'src/imgs/5H.png' if card == "05h": return 'src/imgs/6H.png' if card == "06h": return 'src/imgs/7H.png' if card == "07h": return 'src/imgs/8H.png' if card == "08h": return 'src/imgs/9H.png' if card == "09h": return 'src/imgs/10H.png' if card == "10h": return 'src/imgs/JH.png' if card == "11h": return 'src/imgs/QH.png' if card == "12h": return 'src/imgs/KH.png' if card == "13h": return 'src/imgs/AH.png' else: return 'INVALID CARD'
f2a8d4918b26617335a274a536a0569c845cb526
35,184
from typing import Optional def update_partition(chain_parent_in: list, job_id: str, partition_name: str) -> Optional[dict]: """ NOTE: This task is part of a chain(). At very first, it is evaluated if the previous tasks contain any errors. :param chain_parent_in: Output of parent task. :param job_id: :param partition_name: :return: """ fac = utilities.HookFactory() glue_hook = fac.create(type_hook='glue').create_client(custom_region='eu-central-1') sync_athena = PermitsAthena(current_uuid=job_id) table_info = None # -------------------- STEP 1: Verify head_object and target stack resources are valid---------- for response in chain_parent_in: if 'error' in response.keys(): table_info = {'error': 'CustomTaskException', 'message': 'Source file or target not valid. Update partition failed.'} return table_info try: glue_tbl_r = glue_hook.get_table(DatabaseName=sync_athena.permits_database, Name=sync_athena.permits_table) # logger.info(f"glue_table: {glue_tbl_r}") except ClientError as e: table_info = {'error': str(e)} return table_info else: table_info = glue_tbl_r # -------------------- STEP 2: Verify that partition does not exist----------------------------- try: get_glue_part_r = glue_hook.get_partition(DatabaseName=sync_athena.permits_database, TableName=sync_athena.permits_table, # PartitionValues=['2019-09-07']) PartitionValues=[f"{partition_name}"]) logger.info(f"table_info: {table_info}, \t partition_name: {partition_name}, \t glue_partition: {get_glue_part_r}") except ClientError as e: logger.info(f"message: partitiontime='{partition_name}' not found. Create new partition '{partition_name}'") if 'GetPartition operation: Cannot find partition.' in str(e): # ------------- STEP 3: Parsing table info required to create partitions from table---- try: part_input_dict = {'Values': [f'{partition_name}'], 'StorageDescriptor': { 'Location': f"{table_info['Table']['StorageDescriptor']['Location']}/partitiontime={partition_name}/", 'InputFormat': table_info['Table']['StorageDescriptor']['InputFormat'], 'OutputFormat': table_info['Table']['StorageDescriptor']['OutputFormat'], 'SerdeInfo': table_info['Table']['StorageDescriptor']['SerdeInfo'] }} # partition_keys = table_info['Table']['PartitionKeys'] except KeyError as e: table_info = {'error': str(e), 'message': 'Could not retrieve Keys from Glue::Table.'} except BaseException as e: table_info = {'error': 'Unexpected error', 'message': str(e)} else: # ------- STEP 4: Create new partition---------------------------------------- try: create_glue_part_r = glue_hook.create_partition(DatabaseName=sync_athena.permits_database, TableName=sync_athena.permits_table, PartitionInput=part_input_dict) except ClientError as e: table_info = {'error': 'Unexpected error when creating partition', 'message': str(e)} except BotoCoreError as e: logger.info(f"Unknown BotoCoreError: {e}") table_info = {'error': str(e)} else: get_part_info = create_glue_part_r logger.info(f"Create new partition: {get_part_info}") finally: if table_info is not None: return table_info else: return {'error': 'UnknownError.', 'message': 'Unable to retrieve table information.'} except BotoCoreError as e: logger.info(f"Unknown BotoCoreError: {e}") return {'error': str(e)} else: return table_info
72aa1ba409cb83d179cc178daad7677db6f17504
35,185
def consolidate_gauge(df): """ takes in gauge columns and normalizes them all to stiches per inch """ try: df['gauge_per_inch'] = df.loc[:,'gauge']/df.loc[:,'gauge_divisor'] except: print("Error occured when consolidating gauge") return df
a3a1eecec97b521c19bc50f2d1496f1aba9fbce6
35,187
import time def parse_data(driver): """Return a float of the current price given the driver open to the TMX page of the specific symbol.""" # The driver needs time to load the page before it can be parsed. time.sleep(5) content_obj = driver.find_element(by="id", value="root") content_text = content_obj.text price_string = content_text.split("PRICE")[1].split("CHANGE")[0].strip() try: price_float = float(price_string.replace("$", "").replace(",", "")) return price_float except ValueError as e: raise e
289a71909753278336c414a0b3c3854aeb60b05f
35,188
def grab_images_and_videos(adir): """Grabs image and video files Args: adir: directory with images Returns: files: image and video files """ return grab_images(adir) + grab_videos(adir)
6acf0559c8e26dde8b179e170693210bc72b43de
35,189
def _get_default_siaf(instrument, aper_name): """ Create instance of pysiaf for the input instrument and aperture to be used later to pull SIAF values like distortion polynomial coefficients and rotation. Parameters ---------- instrument : str The name of the instrument aper_name : str The name of the specific instrument aperture Returns ------- aper : instance of pysiaf """ # Create new naming because SIAF requires special capitalization if instrument == "NIRCAM": siaf_name = "NIRCam" elif instrument == "NIRSPEC": siaf_name = "NIRSpec" else: siaf_name = instrument # Select a single SIAF aperture siaf = pysiaf.Siaf(siaf_name) aper = siaf.apertures[aper_name] return aper
d0b4d72d8bd1323521552452a8531a5339c26f56
35,191
def add_shift_steps_unbalanced( im_label_list_all, shift_step=0): """ Appends a fixed shift step to each large image (ROI) Args: im_label_list_all - list of tuples of [(impath, lblpath),] Returns: im_label_list_all but with an added element to each tuple (shift step) """ return [(j[0], j[1], shift_step) for j in im_label_list_all]
63fc45bc14e54ec5af473ec955bd45602f3c7041
35,192
def load_img_embeddings(source_file): """ Load image embeddings saved as pickle file :param source_file: The pickle file where the embeddings are stored :return: a list of image embeddings """ img_embeddings = load_pickle_file(source_file) img_embed = list(img_embeddings.values()) img_embed = np.array(img_embed) img_embed = img_embed.reshape((img_embed.shape[0], img_embed.shape[2])) return img_embed
775b965d9b90a4aed4e5d68658d9877ca3a24c81
35,193
def are_aabb_colliding(a, b): """ Return True if given AABB are colliding. :param AABBCollider a: AABB a :param AABBCollider b: AABB b :return: True if AABB are colliding :rtype bool: """ a_min = [a.center[i] - a.size3[i] / 2 for i in range(3)] a_max = [a.center[i] + a.size3[i] / 2 for i in range(3)] b_min = [b.center[i] - b.size3[i] / 2 for i in range(3)] b_max = [b.center[i] + b.size3[i] / 2 for i in range(3)] return (a_min[0] <= b_max[0] and a_max[0] >= b_min[0]) and \ (a_min[1] <= b_max[1] and a_max[1] >= b_min[1]) and \ (a_min[2] <= b_max[2] and a_max[2] >= b_min[2])
e4d3174cbde1bcffb8e43a710ad2434fb9e4e783
35,194
def edit_distance(str1, str2): """ Given two sequences, return the edit distance normalized by the max length. """ matrix = [[i + j for j in range(len(str2) + 1)] for i in range(len(str1) + 1)] for i in range(1, len(str1) + 1): for j in range(1, len(str2) + 1): if (str1[i - 1] == str2[j - 1]): d = 0 else: d = 1 matrix[i][j] = min(matrix[i - 1][j] + 1, matrix[i][j - 1] + 1, matrix[i - 1][j - 1] + d) # return matrix return matrix[len(str1)][len(str2)] / max([len(str1), len(str2)])
df8f2b5cd6ef2b20c9f8440fe2f65cc0a6185fcf
35,195
import logging def scoped_logger(module_name: str, config_name: str = "maestral") -> logging.Logger: """ Returns a logger for the module ``module_name``, scoped to the given config. :param module_name: Module name. :param config_name: Config name. :returns: Logger instances scoped to the config. """ return logging.getLogger(scoped_logger_name(module_name, config_name))
30bf30f1502ad4b89ed2ef0dc006aa12f1db0bff
35,196
def parse (line): """Parse line into an array of numbers (`EMPTY`, `OCCUPIED`, or `FLOOR`) for each spot in the seatring area. """ return [ CharToInt[c] for c in line.strip() ]
708a446fb24e595fb4d8fd7b096543f3a56af1e0
35,197
def aic(X, k, likelihood_func): """Akaike information criterion. Args: X (np.ndarray): Data to fit on. k (int): Free parameters. likelihood_func (function): Log likelihood function that takes X as input. """ return 2 * k - 2 * likelihood_func(X)
18ec376d15bdb8190818730b4676febdc01bd476
35,198
from typing import Callable from typing import Any def lazy_formatter_gettext( string: str, lazy_formatter: Callable[[str], str], **variables: Any ) -> LazyString: """Formats a lazy_gettext string with a custom function Example:: def custom_formatter(string: str) -> str: if current_app.config["CONDITIONAL_KEY"]: string += " . Condition key is on" return string hello = lazy_formatter_gettext(u'Hello World', custom_formatter) @app.route('/') def index(): return unicode(hello) """ return LazyString(_wrap_lazy_formatter_gettext, string, lazy_formatter, **variables)
d9a1a88a146443ba7b4d8b2dc114a4f613128573
35,199
def render_color_palette(color: tuple) -> Image.Image: """ Assembles the entire color palette preview from all the render pieces. :param color: the color to lookup :return: the preview image """ pixel, ratio = get_cast_color_info(color) reticle_preview = render_reticle(CAST_COLOR_IMAGE, pixel) gradient = generate_gradient(lookup_pixel(CAST_COLOR_IMAGE, pixel), get_average_gray(color), GRADIENT_SIZE) gradient_bar = _render_gradient(gradient, GRADIENT_SIZE) slider = _render_slider(gradient_bar, ratio) color_location = int((1 - ratio) * len(gradient)) color_preview = _render_color(gradient[color_location], slider, 23) preview = _render_preview(reticle_preview, color_preview) window_ui = _render_window_ui(preview) return window_ui
c4eb383262f66650f5240b4a52fd92fbb8527acb
35,200
def heightmap_get_interpolated_value(hm: np.ndarray, x: float, y: float) -> float: """Return the interpolated height at non integer coordinates. Args: hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions. x (float): A floating point x coordinate. y (float): A floating point y coordinate. Returns: float: The value at ``x``, ``y``. """ return lib.TCOD_heightmap_get_interpolated_value(_heightmap_cdata(hm), x, y)
7319edf4f3adb08bd6e382612c917f579e7ff0b5
35,201
def construct_policy( bucket_name: str, home_directory: str, ): """ Create the user-specific IAM policy. Docs: https://docs.aws.amazon.com/transfer/latest/userguide/ custom-identity-provider-users.html#authentication-api-method """ return { 'Version': '2012-10-17', 'Statement': [{ 'Condition': { 'StringLike': { 's3:prefix': [ f'{home_directory}/*', f'{home_directory}/', f'{home_directory}', ], }, }, 'Resource': f'arn:aws:s3:::{bucket_name}', 'Action': 's3:ListBucket', 'Effect': 'Allow', 'Sid': 'ListHomeDir', }, { "Sid": "AWSTransferRequirements", "Effect": "Allow", "Action": [ "s3:ListAllMyBuckets", "s3:GetBucketLocation", ], "Resource": "*", }, { 'Resource': 'arn:aws:s3:::*', 'Action': [ 's3:PutObject', 's3:GetObject', 's3:DeleteObjectVersion', 's3:DeleteObject', 's3:GetObjectVersion', 's3:GetObjectACL', 's3:PutObjectACL', ], 'Effect': 'Allow', 'Sid': 'HomeDirObjectAccess', }], }
650459810d01b28cc82d320a3b42592d3bb51170
35,202
def read_b2fgmtry(fileloc): """ Modified from omfit_solps.py """ with open(fileloc, 'r') as f: tmp = f.read() tmp = tmp.replace('\n', ' ') tmp = tmp.split("*c") tmp = [[f for f in x.split(' ') if f] for x in tmp] m = {'int': int, 'real': float, 'char': str} b2fgmtry = {} for line in tmp[1:]: if len(line) > 4: b2fgmtry[line[3]] = np.array(list(map(m[line[1]], line[4:]))) else: b2fgmtry[line[3]] = None return b2fgmtry
5a198ed94442f40af7a0f823ac5a4b1ac43488a1
35,203
def random_rotation_matrix(rand=None, key=None): """Return uniform random rotation matrix. rand: array like Three independent random variables that are uniformly distributed between 0 and 1 for each returned quaternion. """ return quaternion_matrix(random_quaternion(rand, key))
7e25403afbe758029fa9773cf8bdbeecb54c076f
35,204
def vea_create(context, values, session=None): """Creates a new VEA instance in the Database""" # If we weren't given a session, then we need to create a new one if not session: session = nova_db_sa_api.get_session() # Create a Transaction around the insert in the Database with session.begin(): vea_ref = pvc_models.VirtualEthernetAdapterDTO() vea_ref.update(values) vea_ref.save(session=session) # Convert the object to a Dictionary before it is returned return jsonutils.to_primitive(vea_ref)
d3d6ea7a6a26df8f0de5d630cadf33e668523ca2
35,205
from orphics import stats def binned_power(imap,bin_edges=None,binner=None,fc=None,modlmap=None,imap2=None,mask=1): """Get the binned power spectrum of a map in one line of code. (At the cost of flexibility and reusability of expensive parts)""" shape,wcs = imap.shape,imap.wcs modlmap = enmap.modlmap(shape,wcs) if modlmap is None else modlmap fc = FourierCalc(shape,wcs) if fc is None else fc binner = stats.bin2D(modlmap,bin_edges) if binner is None else binner p2d,_,_ = fc.power2d(imap*mask,imap2*mask if imap2 is not None else None) cents,p1d = binner.bin(p2d) return cents,p1d/np.mean(mask**2.)
2731935a1acbacea0f5a776ae72ef56f631df043
35,206
import logging def batch_to_dict(batch): """ Batch file contains two columns: FULL/PATH/TO/SAMPLE_bin.13.fa SAMPLE_bin.13 Create a dict with [sample_bin_name] = ["Tigname1", "Tigname2"] :param batch: full path to batch file :return batch_dict: dict described above :return bin_list: list of bin names """ logging.info("Parsing batch file.") batch_dict, batch_paths, bin_list = {}, {}, [] with open(batch, 'r') as fh: for line in fh: parts = line.strip().split('\t') records = SeqIO.index(parts[0], "fasta") tigs = sorted(list(records)) batch_dict[parts[1]] = tigs bin_list.append(parts[1]) logging.info("{} = {}.".format(parts[1], ", ".join(tigs))) batch_paths[parts[1]] = parts[0] return batch_dict, bin_list, batch_paths
eabfff643ceb0afeee8825863a52d9d740fd97af
35,207
def md_link(name: str, url: str) -> str: """Makes strings easier to read when defining markdown links.""" return f"[{name}]({url})"
7fcef4e75e8fd77f81ddca23957fe326db869a01
35,208
def extract_uhs(dstore, what): """ Extracts uniform hazard spectra. Use it as /extract/uhs/mean or /extract/uhs/rlz-0, etc """ oq = dstore['oqparam'] mesh = get_mesh(dstore['sitecol']) rlzs_assoc = dstore['csm_info'].get_rlzs_assoc() dic = {} for kind, hcurves in getters.PmapGetter(dstore, rlzs_assoc).items(what): dic[kind] = calc.make_uhs(hcurves, oq.imtls, oq.poes, len(mesh)) return hazard_items(dic, mesh, investigation_time=oq.investigation_time)
97209cbe923e1e237bfcacabcb9f5611866cb82c
35,209
def geocode_presidents(town): """ Returns a list of all intersections where a numbered street crosses a street named after the corresponding president ("1st and Washington", etc.) Each item in the resulting list is a tuple, with item[0] holding the name of the intersection ("1st and Washington"), and item[1] holding a tuple containing the latitude and longitude of the intersection. Args: town is typically formatted like "City, State, Country", but Google will accept other formats """ points = [] for i in PRESIDENTS: streets = geocoder.get_ordinal_string(i) + " and " + PRESIDENTS[i] intersections = geocoder.geocode_intersection(streets, town) for point in intersections: points.append((streets, point)) return points
b1b257f02b1f78b1af509d30e78a003bb0d71e6a
35,210
def _check_numeric(*, check_func, obj, name, base, func, positive, minimum, maximum, allow_none, default): """Helper function for check_float and check_int.""" obj = check_type(obj, name=name, base=base, func=func, allow_none=allow_none, default=default) if obj is None: return None positive = check_bool(positive, name='positive') if positive and obj <= 0: if name is None: message = 'Parameter must be positive.' else: message = f'Parameter \'{name}\' must be positive.' raise ValueError(message) if minimum is not None: minimum = check_func(minimum, name='minimum') if obj < minimum: if name is None: message = f'Parameter must be at least {minimum}.' else: message = f'Parameter \'{name}\' must be at least {minimum}.' raise ValueError(message) if maximum is not None: maximum = check_func(maximum, name='minimum') if obj > maximum: if name is None: message = f'Parameter must be at most {maximum}.' else: message = f'Parameter \'{name}\' must be at most {maximum}.' raise ValueError(message) return obj
c3a62c5c95efe44dfb5a7dcd2f36a875f3dcdda1
35,212
import sh def cli(args, cook_url=None, flags=None, stdin=None, env=None, wait_for_exit=True): """Runs a CLI command with the given URL, flags, and stdin""" url_flag = f'--url {cook_url} ' if cook_url else '' other_flags = f'{flags} ' if flags else '' cp = sh(f'{command()} {url_flag}{other_flags}{args}', stdin, env, wait_for_exit) return cp
0159cc37314c3804dd616e6a8e3068a1bcc90520
35,213
def cleanup(sender=None, dictionary=None): """Perform a platform-specific cleanup after the test.""" return True
655a4f7192d36aa9b73eca40e587eefd3e37f65d
35,214
def dB2(N,s,ρ=0.5,seed=0): """ Get random numbers for two correlated rBergomi processes, each having N paths and s steps. """ np.random.seed(0) # Following assumes orthogonal variance components equivalent rn = np.random.normal(size=(N,6*s)) # In what follows the 3 indices correspond to process, factor, hybrid # Skew dB111 = rn[:,0*s:1*s] dB112 = rn[:,1*s:2*s] # Curvature dB121 = rn[:,4*s:5*s] dB122 = rn[:,5*s:6*s] # Correlated skew dB211 = ρ*rn[:,0*s:1*s]+np.sqrt(1-ρ**2)*rn[:,2*s:3*s] dB212 = ρ*rn[:,1*s:2*s]+np.sqrt(1-ρ**2)*rn[:,3*s:4*s] # Same curvature dB221 = rn[:,4*s:5*s] dB222 = rn[:,5*s:6*s] # Now prepare 4 hybrid 2D Bms dB11 = np.zeros((N,s,2,1)) # α for first dB11[:,:,0,0] = dB111 dB11[:,:,1,0] = dB112 dB12 = np.zeros((N,s,2,1)) # β for first dB12[:,:,0,0] = dB121 dB12[:,:,1,0] = dB122 dB21 = np.zeros((N,s,2,1)) # α for second dB21[:,:,0,0] = dB211 dB21[:,:,1,0] = dB212 dB22 = np.zeros((N,s,2,1)) # β for second dB22[:,:,0,0] = dB221 dB22[:,:,1,0] = dB222 # Return nicely return np.array([[dB11,dB12],[dB21,dB22]])
2dfe2172bb50fd9b566860f263778f237affcfe9
35,215
def karaoke_perceptual_metric(reference_timestamps, estimated_timestamps): """Metric based on human synchronicity perception as measured in the paper "User-centered evaluation of lyrics to audio alignment" [#lizemasclef2021] The parameters of this function were tuned on data collected through a user Karaoke-like experiment It reflects human judgment of how "synchronous" lyrics and audio stimuli are perceived in that setup. Beware that this metric is non-symmetrical and by construction it is also not equal to 1 at 0. Examples -------- >>> reference_timestamps = mir_eval.io.load_events('reference.txt') >>> estimated_timestamps = mir_eval.io.load_events('estimated.txt') >>> score = mir_eval.align.karaoke_perceptual_metric(reference_onsets, estimated_timestamps) Parameters ---------- reference_timestamps : np.ndarray reference timestamps, in seconds estimated_timestamps : np.ndarray estimated timestamps, in seconds Returns ------- perceptual_score : float Perceptual score, averaged over all timestamps """ validate(reference_timestamps, estimated_timestamps) offsets = estimated_timestamps - reference_timestamps # Score offsets using a certain skewed normal distribution skewness = 1.12244251 localisation = -0.22270315 scale = 0.29779424 normalisation_factor = 1.6857 perceptual_scores = (1.0 / normalisation_factor) * skewnorm.pdf( offsets, skewness, loc=localisation, scale=scale ) return np.mean(perceptual_scores)
830e6ae8cde5dd96aa53beabe0ffabca1e2bfa15
35,216
def buildTraceback(frames, modules): """ Build a chain of mock traceback objects from a serialized Error (or other exception) object, and return the head of the chain. """ last = None first = None for func, fname, ln in frames: fname = modules.get(fname.split('/')[-1], fname) frame = JSFrame(func, fname, ln) tb = JSTraceback(frame, ln) if last: last.tb_next = tb else: first = tb last = tb return first
e6fa610265af765f23588cbb1cae66830007d4a5
35,217
def deployment_update(uuid, values): """Update a deployment by values. :param uuid: UUID of the deployment. :param values: dict with items to update. :raises DeploymentNotFound: if the deployment does not exist. :returns: a dict with data on the deployment. """ return get_impl().deployment_update(uuid, values)
0589a453cdd6d6503b973a0571c58ec8fd476dad
35,218
from typing import List from typing import Tuple def navigate_part_two(commands: List[Tuple[str, int]]) -> Tuple[int, int]: """Navigate and return the horizontal position and depth.""" horizontal: int = 0 depth: int = 0 aim: int = 0 for command, units in commands: if command == 'forward': horizontal += units depth += aim * units elif command == 'down': aim += units elif command == 'up': aim -= units return horizontal, depth
379c31e668ba63fb8bc3b98c28c2cd3087f66c51
35,219
import time from faker import Faker import random def _generate_events_for_day(date): """Generates events for a given day.""" # Use date as seed. seed = int(time.mktime(date.timetuple())) Faker.seed(seed) random_state = random.RandomState(seed) # Determine how many users and how many events we will have. n_users = random_state.randint(low=50, high=100) n_events = random_state.randint(low=200, high=2000) # Generate a bunch of users. fake = Faker() users = [fake.ipv4() for _ in range(n_users)] return pd.DataFrame( { "user": random_state.choice(users, size=n_events, replace=True), "date": pd.to_datetime(date), } )
0ebf0d524460d010fbbf29957276fbf81729cc6e
35,220
def _hessian_vector_product(fun, argnum=0): """Builds a function that returns the exact Hessian-vector product. The returned function has arguments (*args, vector, **kwargs). Note, this function will be incorporated into autograd, with name hessian_vector_product. Once it has been this function can be deleted.""" fun_grad = grad(fun, argnum) def vector_dot_grad(*args, **kwargs): args, vector = args[:-1], args[-1] try: return np.tensordot(fun_grad(*args, **kwargs), vector, axes=vector.ndim) except AttributeError: # Assume we are on the product manifold. return np.sum([np.tensordot(fun_grad(*args, **kwargs)[k], vector[k], axes=vector[k].ndim) for k in range(len(vector))]) # Grad wrt original input. return grad(vector_dot_grad, argnum)
0b4506645b8b5ae1572006f6b64873bf8fa129b2
35,221
def check_for_tags(*tag_args, msg="Inkluderar inte någon av de givna taggarna"): """ Compares the user tags and the test_case tags to see which tests should be be ran. """ def skip_function(): """ replaces test_cases so they are skipped """ raise SkipTest(msg) def decorator(f): """Decorator for overwriting test_case functions""" @wraps(f) def wrapper(self, *args, **kwargs): """Wrapper""" user_tags = set(self.USER_TAGS) if user_tags: test_case_tags = set(tag_args) if not user_tags.intersection(test_case_tags): return skip_function() return f(self, *args, **kwargs) wrapper.__wrapped__ = f # used to assert that method has been decorated return wrapper return decorator
5ddf41d0eb1ce3f8ee5b9c08db027af8e896fce6
35,222
def find_n_max_vals(list_, num): """Function searches the num-biggest values of a given list of numbers. Returns the num maximas list and the index list wrapped up in a list. """ li_ = list_.copy() max_vals = [] #the values max_ind = []# the index of the value, can be used to get the param while num > 0: max_val = max(li_) max_id = li_.index(max_val) max_vals.append(max_val) max_ind.append(max_id) li_[max_id] = 0 #better than deleting num -= 1 # count down return [max_vals, max_ind]
48e274a2e2feac04b285b883ce5948c8f39caff3
35,223
def color_burn(im1, im2): """Darkens the backdrop color to reflect the source color. The color burn formula is defined as: if(Cb == 1) B(Cb, Cs) = 1 else if(Cs == 0) B(Cb, Cs) = 0 else B(Cb, Cs) = 1 - min(1, (1 - Cb) / Cs) See the W3C document: https://www.w3.org/TR/compositing-1/#blendingcolorburn Arguments: im1: A backdrop image (RGB or RGBA). im2: A source image (RGB or RGBA). Returns: The output image. """ return alpha_blend(im1, im2, _color_burn)
04dd7510d14fb88643fd512fc5020924c5163387
35,224
def G_2_by_2(a, b, c, d, williams=1, directional=1): """G test for independence in a 2 x 2 table. Usage: G, prob = G_2_by_2(a, b, c, d, willliams, directional) Cells are in the order: a b c d a, b, c, and d can be int, float, or long. williams is a boolean stating whether to do the Williams correction. directional is a boolean stating whether the test is 1-tailed. Briefly, computes sum(f ln f) for cells - sum(f ln f) for rows and columns + f ln f for the table. Always has 1 degree of freedom To generalize the test to r x c, use the same protocol: 2*(cells - rows/cols + table), then with (r-1)(c-1) df. Note that G is always positive: to get a directional test, the appropriate ratio (e.g. a/b > c/d) must be tested as a separate procedure. Find the probability for the observed G, and then either halve or halve and subtract from one depending on whether the directional prediction was upheld. The default test is now one-tailed (Rob Knight 4/21/03). See Sokal & Rohlf (1995), ch. 17. Specifically, see box 17.6 (p731). """ cells = [a, b, c, d] n = npsum(cells) # return 0 if table was empty if not n: return (0, 1) # raise error if any counts were negative if min(cells) < 0: raise ValueError("G_2_by_2 got negative cell counts(s): must all be >= 0.") G = 0 # Add x ln x for items, adding zero for items whose counts are zero for i in [_f for _f in cells if _f]: G += i * log(i) # Find totals for rows and cols ab = a + b cd = c + d ac = a + c bd = b + d rows_cols = [ab, cd, ac, bd] # exit if we are missing a row or column entirely: result counts as # never significant if min(rows_cols) == 0: return (0, 1) # Subtract x ln x for rows and cols for i in [_f for _f in rows_cols if _f]: G -= i * log(i) # Add x ln x for table G += n * log(n) # Result needs to be multiplied by 2 G *= 2 # apply Williams correction if williams: q = 1 + ((((n / ab) + (n / cd)) - 1) * (((n / ac) + (n / bd)) - 1)) / (6 * n) G /= q p = chi_high(max(G, 0), 1) # find which tail we were in if the test was directional if directional: is_high = (b == 0) or (d != 0 and (a / b > c / d)) p = tail(p, is_high) if not is_high: G = -G return G, p
57150b32a0c5b6416dc3c0a1ef8ee0dc7b357b14
35,226
def test_elapsed_duration(monkeypatch): """ . """ @counter_wrapper def duration(interval: float): """ . """ return interval monkeypatch.setattr(print_utils, "current_unix_timestamp", lambda: 123) monkeypatch.setattr(print_utils, "readable_duration", duration) assert ( print_utils.elapsed_duration(120) == 3 ), "Interval returned using current time" assert ( print_utils.elapsed_duration(120.123, 122.123) == 2 ), "Interval returned using specific end time"
0ac8491ff88e09a09b952273413c51855621e3f8
35,227
def solve(y1,y2) : """ solve SIS lens equation with y1,y2 : relative source position with respect to the lens return : phi,x image position in polar coordinate as arrays of length 2 or 4 """ eq = lambda phi : eq2(phi,y1,y2) step = 0.1 phiTest = np.arange(0,2*np.pi+step,step) test = eq(phiTest)>0 phiI = [] for phi0 in phiTest[np.where(test[:-1] != test[1:])]: root = optimize.brentq(eq,phi0,phi0+step) phiI.append(root%(2*np.pi)) phiI = np.array(phiI) rI = radius(phiI,y1,y2) return phiI,rI
e24bd5935f5c8be3700f00cd4a51d122a0b43215
35,228
def makeNme(segID: int, N, CA, C, O, geo: NmeGeo) -> Residue: """Creates a NME capping residue""" res = makeGly(segID, N, CA, C, O, geo) res.resname = "NME" return res
9335b22a7c578a7eb026d04ba0980d239995ffb7
35,229
import resource def sobjects_metadata_resource(client: Client): """Return resource representing SObject metadata.""" path = f"{client.resources['sobjects']}" @resource class SObjectMetadataResource: """...""" def __init__(self, name): self.name = name @query async def describe(self) -> SObject: """Get SObject metadata.""" async with client.request( method="GET", path=f"{path}/{self.name}/describe" ) as response: metadata = get_codec(JSON, SObject).decode(await response.json()) if metadata.name != self.name: raise NotFoundError return metadata @resource class SObjectsMetadataResource: """...""" @operation async def get(self) -> SObjects: """Get a list of objects.""" async with client.request(method="GET", path=f"{path}/") as response: return get_codec(JSON, SObjects).decode(await response.json()) def __getitem__(self, name: str) -> SObjectMetadataResource: return SObjectMetadataResource(name) return SObjectsMetadataResource()
3c7cd711e0fb01692d43c3b726a8d9e01357b680
35,232
def makeDrinkInfo(rec_id): """ Permet de dresser les infos de la boissons passees en argument :param arg1: id de la boissons (recette) :type arg1: int :return: le nom, prix et les informations utiles (alcool, chaud ou froid) de la boissons :rtype: Json """ price = calculePriceRec(rec_id) nom = recupNameRecFromId(rec_id) alcohol = hasAlcohol(rec_id) cold = isCold(rec_id) drinkInfo = { "name" : nom, "price" : price, "hasAlcohol" :alcohol, "isCold" : cold } return (drinkInfo)
b428c55b71ab2045b8d660f6cb1e587da4723b13
35,233
def get_vars(host): """ parse ansible variables - defaults/main.yml - vars/main.yml - molecule/${MOLECULE_SCENARIO_NAME}/group_vars/all/vars.yml """ base_dir, molecule_dir = base_directory() file_defaults = "file={}/defaults/main.yml name=role_defaults".format(base_dir) file_vars = "file={}/vars/main.yml name=role_vars".format(base_dir) file_molecule = "file={}/group_vars/all/vars.yml name=test_vars".format(molecule_dir) defaults_vars = host.ansible("include_vars", file_defaults).get("ansible_facts").get("role_defaults") vars_vars = host.ansible("include_vars", file_vars).get("ansible_facts").get("role_vars") molecule_vars = host.ansible("include_vars", file_molecule).get("ansible_facts").get("test_vars") ansible_vars = defaults_vars ansible_vars.update(vars_vars) ansible_vars.update(molecule_vars) templar = Templar(loader=DataLoader(), variables=ansible_vars) result = templar.template(ansible_vars, fail_on_undefined=False) return result
e2498edda87bc879b7fe571a6c21674ebf3a9164
35,234
def get_smem_args(smem_args, params): """ return a dict with kernel instance specific size """ result = smem_args.copy() if 'size' in result: size = result['size'] if callable(size): size = size(params) elif isinstance(size, str): size = replace_param_occurrences(size, params) size = int(eval(size)) result['size'] = size return result
52a77346798a7bd8cf417eb729a2a1a2d5b1059e
35,235
from typing import Optional from typing import Iterable from re import T from typing import Sequence from typing import Callable def fork_procs(variant_arg: Optional[Iterable[T]] = None, variant_args: Optional[Iterable[Sequence]] = None) \ -> Callable[[Callable], process.Handle]: """ A decorate to create and fork multiple processes """ procs_dec = procs(variant_arg, variant_args) def decorator(fn: Callable) -> process.Handle: procs = procs_dec(fn) return procs.fork() return decorator
149055123de138388b62e52244e9bbab9f13ebe3
35,237
def compute_coherence_values(dictionary, corpus, texts, limit, start=2, step=3): """ Compute c_v coherence for various number of topics Parameters: ---------- dictionary : Gensim dictionary corpus : Gensim corpus texts : List of input texts limit : Max num of topics Returns:ocs ------- model_list : List of LDA topic models coherence_values : Coherence values corresponding to the LDA model with respective number of topics """ coherence_values = [] model_list = [] for num_topics in range(start, limit, step): model = gensim.models.wrappers.LdaMallet(mallet_path, corpus=corpus, num_topics=num_topics, id2word=dictionary) model_list.append(model) coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v') coherence_values.append(coherencemodel.get_coherence()) return model_list, coherence_values
3b2391aecc67353f6d60bb68f027713ad7e4ea52
35,238
def set_mosflm_beam_centre(detector, beam, mosflm_beam_centre): """detector and beam are dxtbx objects, mosflm_beam_centre is a tuple of mm coordinates. supports 2-theta offset detectors, assumes correct centre provided for 2-theta=0 """ return set_slow_fast_beam_centre_mm(detector, beam, mosflm_beam_centre)
a7b0ed140a4beb05766734fe838351f5cfa0c255
35,239
def getNumColors(path): """ Detect the number of colors in the supplied image (Only up to 8 colors not including the background) NOTE: This feature is experimental and may not work well for ALL images """ im = Image.open(path) # Resize to reduce processing time w, h = im.size wSmall = int(66 * w / max(w, h)) hSmall = int(66 * h / max(w, h)) im = im.resize((wSmall, hSmall)) # Convert into numpy data structure im = im.convert('RGB') im = np.array(im) # Filter to remove non-unique colors # This sequence of filters was experimentally determined # And may not work well for ALL images for i in range(10): im = denoise_bilateral(im, sigma_color=0.025, sigma_spatial=4, multichannel = True) for i in range(5): im = denoise_bilateral(im, sigma_color=0.035, sigma_spatial=4, multichannel = True) for i in range(3): im = denoise_bilateral(im, sigma_color=0.05, sigma_spatial=4, multichannel = True) for i in range(2): im = denoise_bilateral(im, sigma_color=0.06, sigma_spatial=4, multichannel = True) # skio.imshow(im) # skio.show() # return # Reshape into a list of pixels imArray = im.reshape((im.shape[0] * im.shape[1], 3)) bestSilhouette = -1 bestNumClusters = 0 for numClusters in range(2,9): # Cluster the colors clt = KMeans(n_clusters = numClusters) clt.fit(imArray) # Calculate Silhouette Coefficient silhouette = metrics.silhouette_score(imArray, clt.labels_, metric = 'euclidean') # Find the best one if silhouette > bestSilhouette: bestSilhouette = silhouette bestNumClusters = numClusters return bestNumClusters - 1
7b49dbb48c25910220bcf8ec7b9c267c9d0934b0
35,241
def reduce_precision_np(x, npp): """ Reduce the precision of image, the numpy version. :param x: a float tensor, which has been scaled to [0, 1]. :param npp: number of possible values per pixel. E.g. it's 256 for 8-bit gray-scale image, and 2 for binarized image. :return: a tensor representing image(s) with lower precision. """ # Note: 0 is a possible value too. npp_int = npp - 1 x_int = np.rint(x * npp_int) x_float = x_int / npp_int return x_float
eb322b81976ea3a2b56c408ce0b9f5eb11580f04
35,242
from typing import Callable from typing import Union from typing import Optional from typing import Tuple import functools def multi_dut_argument(func) -> Callable[..., Union[Optional[str], Tuple[Optional[str]]]]: """ Used for parse the multi-dut argument according to the `count` amount. """ @functools.wraps(func) def wrapper(*args, **kwargs): return parse_multi_dut_args(_COUNT, func(*args, **kwargs)) return wrapper
ce7523c9e63cdc076dc4ec326ce3bc4572042a54
35,243
def ts2wws(C): """ Convert a stiffness tensor into a skew notation stiffness matrix """ Cv = zeros(3,6) for i in range(3): for j in range(6): ma = skew_mults[i] mb = mandel_mults[j] Cv[i,j] = C[skew_inds[i] + mandel[j]] * ma * mb return Cv
55fb55d32af033c6eeb082ffd2740c40376de1ee
35,244
def _get_oauth2_client_id_and_secret(settings_instance): """Initializes client id and client secret based on the settings""" secret_json = getattr(django.conf.settings, 'GOOGLE_OAUTH2_CLIENT_SECRETS_JSON', None) if secret_json is not None: return _load_client_secrets(secret_json) else: client_id = getattr(settings_instance, "GOOGLE_OAUTH2_CLIENT_ID", None) client_secret = getattr(settings_instance, "GOOGLE_OAUTH2_CLIENT_SECRET", None) if client_id is not None and client_secret is not None: return client_id, client_secret else: raise exceptions.ImproperlyConfigured( "Must specify either GOOGLE_OAUTH2_CLIENT_SECRETS_JSON, or " "both GOOGLE_OAUTH2_CLIENT_ID and " "GOOGLE_OAUTH2_CLIENT_SECRET in settings.py")
1cdb02999af3ab289f262de316bc4afc17add8ac
35,246
def lpp_transform(X, V, ncomp=2): """ Args: -------------- X: n x d. Data matrix V: d x m. Each column of V is a LPP direction. ncomp (<= m <= d): The dimension of transformed data Returns: -------------- tr_X: n x ncomp """ _, m = V.shape if ncomp > m: ncomp = m tr_X = np.dot(X, V[:,0:ncomp]) return tr_X
44b362932e420252689fb87e845665a3bdfe332e
35,248
def U_net(optimizer, activation, metrics): """ Parameters: - optimizer (String): Keras optimizer to use - activation (String): Keras layer activation function to use in hidden layers - metrics to use for model evaluation Returns: (Model) a compiled U-net designed for binary segmentation. """ inputs = tf.keras.Input(shape = (2100, 1400, 3)) # downsampling layers conv_1 = Conv2D(64, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(inputs) conv_2 = Conv2D(64, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(conv_1) pool_1 = MaxPool2D((2,2))(conv_2) conv_3 = Conv2D(128, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(pool_1) conv_4 = Conv2D(128, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(conv_3) pool_2 = MaxPool2D((2,2))(conv_4) conv_5 = Conv2D(256, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(pool_2) conv_6 = Conv2D(256, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(conv_5) pool_3 = MaxPool2D((2,2))(conv_6) conv_7 = Conv2D(512, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(pool_3) conv_8 = Conv2D(512, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(conv_7) pool_4 = MaxPool2D((2,2))(conv_8) conv_9 = Conv2D(1024, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(pool_4) conv_10 = Conv2D(1024, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(conv_9) # upsampling layers upconv_1 = Conv2DTranspose(512, (2,2), strides = (2, 2), padding = 'same')(conv_10) upconv_1 = ZeroPadding2D(padding = ((0, 0), (0, 1)))(upconv_1) # we need to padd with zeroes on the right merge_1 = concatenate([conv_8, upconv_1]) conv_11 = Conv2D(512, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(merge_1) conv_12 = Conv2D(512, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(conv_11) upconv_2 = Conv2DTranspose(256, (2, 2), strides = (2, 2), padding='same')(conv_12) upconv_2 = ZeroPadding2D(padding = ((0,1),(0,0)))(upconv_2) # we need to padd with zeroes on top merge_2 = concatenate([conv_6, upconv_2]) conv_13 = Conv2D(256, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(merge_2) conv_14 = Conv2D(256, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(conv_13) upconv_3 = Conv2DTranspose(128, (2, 2), strides = (2, 2), padding='same')(conv_14) merge_3 = concatenate([conv_4, upconv_3]) conv_15 = Conv2D(128, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(merge_3) conv_16 = Conv2D(128, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(conv_15) upconv_4 = Conv2DTranspose(64, (2, 2), strides = (2, 2), padding='same')(conv_16) merge_4 = concatenate([conv_2, upconv_4]) conv_17 = Conv2D(64, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(merge_4) conv_18 = Conv2D(64, (3,3), activation = activation, kernel_initializer = 'he_normal', padding = 'same')(conv_17) output = Dense(4, activation = 'softmax')(conv_18) model = tf.keras.Model(inputs, output) model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = metrics) return model
009eea82f105d6b5975a83739f52e43855274481
35,249
def create_environment(env_name='', stacked=False, representation='extracted', rewards='scoring', enable_goal_videos=False, enable_full_episode_videos=False, render=False, write_video=False, dump_frequency=1, logdir='', extra_players=None, number_of_left_players_agent_controls=1, number_of_right_players_agent_controls=0, enable_sides_swap=False, channel_dimensions=( observation_preprocessing.SMM_WIDTH, observation_preprocessing.SMM_HEIGHT)): """Creates a Google Research Football environment. Args: env_name: a name of a scenario to run, e.g. "11_vs_11_stochastic". The list of scenarios can be found in directory "scenarios". stacked: If True, stack 4 observations, otherwise, only the last observation is returned by the environment. Stacking is only possible when representation is one of the following: "pixels", "pixels_gray" or "extracted". In that case, the stacking is done along the last (i.e. channel) dimension. representation: String to define the representation used to build the observation. It can be one of the following: 'pixels': the observation is the rendered view of the football field downsampled to 'channel_dimensions'. The observation size is: 'channel_dimensions'x3 (or 'channel_dimensions'x12 when "stacked" is True). 'pixels_gray': the observation is the rendered view of the football field in gray scale and downsampled to 'channel_dimensions'. The observation size is 'channel_dimensions'x1 (or 'channel_dimensions'x4 when stacked is True). 'extracted': also referred to as super minimap. The observation is composed of 4 planes of size 'channel_dimensions'. Its size is then 'channel_dimensions'x4 (or 'channel_dimensions'x16 when stacked is True). The first plane P holds the position of the 11 player of the left team, P[y,x] is one if there is a player at position (x,y), otherwise, its value is zero. The second plane holds in the same way the position of the 11 players of the right team. The third plane holds the active player of the left team. The last plane holds the position of the ball. 'simple115': the observation is a vector of size 115. It holds: - the ball_position and the ball_direction as (x,y,z) - one hot encoding of who controls the ball. [1, 0, 0]: nobody, [0, 1, 0]: left team, [0, 0, 1]: right team. - one hot encoding of size 11 to indicate who is the active player in the left team. - 11 (x,y) positions for each player of the left team. - 11 (x,y) motion vectors for each player of the left team. - 11 (x,y) positions for each player of the right team. - 11 (x,y) motion vectors for each player of the right team. - one hot encoding of the game mode. Vector of size 7 with the following meaning: {NormalMode, KickOffMode, GoalKickMode, FreeKickMode, CornerMode, ThrowInMode, PenaltyMode}. Can only be used when the scenario is a flavor of normal game (i.e. 11 versus 11 players). rewards: Comma separated list of rewards to be added. Currently supported rewards are 'scoring' and 'checkpoints'. enable_goal_videos: whether to dump traces up to 200 frames before goals. enable_full_episode_videos: whether to dump traces for every episode. render: whether to render game frames. Must be enable when rendering videos or when using pixels representation. write_video: whether to dump videos when a trace is dumped. dump_frequency: how often to write dumps/videos (in terms of # of episodes) Sub-sample the episodes for which we dump videos to save some disk space. logdir: directory holding the logs. extra_players: A list of extra players to use in the environment. Each player is defined by a string like: "$player_name:left_players=?,right_players=?,$param1=?,$param2=?...." number_of_left_players_agent_controls: Number of left players an agent controls. number_of_right_players_agent_controls: Number of right players an agent controls. enable_sides_swap: Whether to randomly pick a field side at the beginning of each episode for the team that the agent controls. channel_dimensions: (width, height) tuple that represents the dimensions of SMM or pixels representation. Returns: Google Research Football environment. """ assert env_name players = [('agent:left_players=%d,right_players=%d' % ( number_of_left_players_agent_controls, number_of_right_players_agent_controls))] if extra_players is not None: players.extend(extra_players) c = config.Config({ 'enable_sides_swap': enable_sides_swap, 'dump_full_episodes': enable_full_episode_videos, 'dump_scores': enable_goal_videos, 'players': players, 'level': env_name, 'render': render, 'tracesdir': logdir, 'write_video': write_video, }) env = football_env.FootballEnv(c) if dump_frequency > 1: env = wrappers.PeriodicDumpWriter(env, dump_frequency) assert 'scoring' in rewards.split(',') if "fast" in rewards.split(","): env = wrappers.FastRewardWrapper(env) if "roles" in rewards.split(","): env = wrappers.RoleRewardWrapper(env) if 'checkpoints' in rewards.split(','): env = wrappers.CheckpointRewardWrapper(env) if "reduce" in rewards.split(","): env = wrappers.ReduceRewardWrapper(env) if representation.startswith('pixels'): env = wrappers.PixelsStateWrapper(env, 'gray' in representation, channel_dimensions) elif representation == 'simple115': env = wrappers.Simple115StateWrapper(env) elif representation == 'extracted': env = wrappers.SMMWrapper(env, channel_dimensions) else: raise ValueError('Unsupported representation: {}'.format(representation)) if (number_of_left_players_agent_controls + number_of_right_players_agent_controls == 1): env = wrappers.SingleAgentObservationWrapper(env) env = wrappers.SingleAgentRewardWrapper(env) if stacked: env = wrappers.FrameStack(env, 4) return env
548449ddcb9dd35161ebb7ab65f564b9644fa438
35,250
def self_biosample_id(): """本人的样品编号""" return SELF_BIOSAMPLE_ID
d2fdf081de5248284b0317051d9d2dcc63e4913b
35,251
def exp_process_image_20(img): """Get multiprocess experiment.""" return process_image( img, imgclf.ImageClassifier(), segments_no=20, sample_size=100, random_seed=42)
4cd686fee485106a6004abb4f04fddda7aa722f4
35,252
import json import requests def get_lol_version(): """ Get current League of Legends version """ versions = json.loads(requests.get( "https://ddragon.leagueoflegends.com/api/versions.json").text) # reformats from 10.14.5 to 10.14 latest = ".".join(versions[0].split(".")[:2]) return latest
2702b3375cee503cea561f2965bbafdb17a3f232
35,253
def retrieve_domain_name(module, client, name): """ Retrieve domain name by provided name :return: Result matching the provided domain name or an empty hash """ resp = None try: resp = backoff_get_domain_name(client, name) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == 'NotFoundException': resp = None else: module.fail_json(msg="Error when getting domain_name from boto3: {}".format(e)) except botocore.exceptions.BotoCoreError as e: module.fail_json(msg="Error when getting domain_name from boto3: {}".format(e)) return resp
e88959843c9973c9ac8071316cef9dcaec8ccf91
35,254
def create_BIP122_uri(chain_id, resource_type, resource_identifier): """ See: https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki """ if resource_type not in {BLOCK, TRANSACTION}: raise ValueError("Invalid resource_type. Must be one of 'block' or 'transaction'") elif not is_block_or_transaction_hash(resource_identifier): raise ValueError("Invalid resource_identifier. Must be a hex encoded 32 byte value") elif not is_block_or_transaction_hash(chain_id): raise ValueError("Invalid chain_id. Must be a hex encoded 32 byte value") return parse.urlunsplit([ 'blockchain', remove_0x_prefix(chain_id), "{0}/{1}".format(resource_type, remove_0x_prefix(resource_identifier)), '', '', ])
fc6ca06c094082f748c14250cf67da416aaf5fb9
35,255
import time def draw_down(x, y, threshold, timeout): """ Draws the line down. :param x: X coordinate of click :param y: Y coordinate of click :param threshold: pixel gradient threshold :param timeout: timeout (sec) :return: Y coordinate where pixel gradient is hit """ y_position = y while y_position != height - 1: y_position += 1 if time.time() > timeout: break # Setting the value of the compare image if y_position > height - 11: down_y_compare = height - 11 else: down_y_compare = y_position + 10 # Getting intensities current_intensity = int(image[y_position, x, 0]) # the current intensity of pixel compare_intensity = int(image[down_y_compare, x, 0]) # intensity of pixel you want to compare if abs(current_intensity - compare_intensity) > threshold: return down_y_compare return height
2bfa7a7fbdeea2c5e4b974cf69b473c44273ab61
35,256
def read_read_basis(input_string): """ """ pattern = ('ReadBasis' + one_or_more(SPACE) + capturing(LOGICAL)) block = _get_functional_form_section(input_string) keyword = first_capture(pattern, block) assert keyword is not None return keyword
6e2f0a59bdddb2ac34ec8cf730f9a778a67e8d59
35,257
def _Ipr7ConfigRead(config): """Extracts DPA and grants from IPR7 config JSON. Args: config: A JSON dictionary. Returns: A tuple (dpas, grants) where: dpas: a list of objects of type |dpa_mgr.Dpa|. grants: a list of |data.CbsdGrantInfo|. """ if 'portalDpa' in config: dpa_tag = 'portalDpa' elif 'escDpa' in config: dpa_tag = 'escDpa' else: raise ValueError('Unsupported config file. Please use a IPR7 config file') # Build the DPA dpa_id = config[dpa_tag]['dpaId'] try: dpa_kml_file = config['dpaDatabaseConfig']['filePath'] except KeyError: dpa_kml_file = None points_builder = config[dpa_tag]['points_builder'] dpa = dpa_mgr.BuildDpa(dpa_id, protection_points_method=points_builder, portal_dpa_filename=dpa_kml_file) freq_range_mhz = (config[dpa_tag]['frequencyRange']['lowFrequency'] / 1.e6, config[dpa_tag]['frequencyRange']['highFrequency'] / 1.e6) dpa.ResetFreqRange([freq_range_mhz]) # - add extra properties for the geometry and margin dpa.margin_db = config[dpa_tag]['movelistMargin'] try: dpa_zone = zones.GetCoastalDpaZones()[dpa_id] except KeyError: dpa_zone = zones.GetPortalDpaZones(kml_path=dpa_kml_file)[dpa_id] dpa.geometry = dpa_zone.geometry # Read the CBSDs, assuming all granted, into list of |CbsdGrantInfo|. grants = [] # - first the SAS UUT for domain_proxy_config in config['domainProxies']: grant_requests = domain_proxy_config['grantRequests'] reg_requests = MergeConditionalData(domain_proxy_config['registrationRequests'], domain_proxy_config['conditionalRegistrationData']) grants.extend(data.getGrantsFromRequests(reg_requests, grant_requests, is_managing_sas=True)) # - now the peer SASes. for th_config in config['sasTestHarnessConfigs']: dump_records = th_config['fullActivityDumpRecords'][0] grants.extend(data.getAllGrantInfoFromCbsdDataDump( dump_records, is_managing_sas=False)) return grants, [dpa]
78f9288be544c6a66845eadb42bef30fcf84632c
35,258