content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def ldr_vartime_blockedby_pp_hat(arr_rate, pp_mean_svctime, pp_cap, pp_cv2_svctime):
"""
Approximate unconditional variance of time blocked in ldr waiting for a pp bed.
Modeling pp as an M/G/c queue and using approximation by Whitt.
"""
pp_svcrate = 1.0 / pp_mean_svctime
vartime = qng.ggm_qwait_whitt_varw(arr_rate, pp_svcrate, int(pp_cap), 1.0, pp_cv2_svctime)
return vartime
|
4ec8a552473c07fb65a2b044fda906a01c7b7f1c
| 34,689 |
def identify_crossing_events(df):
"""Identifies pore crossing events in data frame of domain indices.
Given a data frame of domain indices alongside time stamps and particle IDs,
this function identifies crossing events, i.e. a particle moving from one
side of the membrane to the other THROUGH THE PORE REGION. Cases where a
particle moves through the periodic boundary or through the membrane itself
(i.e. outside the cylindrical protein region) are not counted as crossing
events.
The return value is a data frame in which each row corresponds to a
crossing event and the columns identify times at which the particle entered
and exited the pore, the mean of these times, and the ID of the particle
which crosses the pore. Note that the input data frame should contain only
a single unique particle ID, i.e. this function should by run on the domain
index data frame grouped by particle indices. In addition, a further column
contains a crossing number indicating the direction in which the particle
passed the pore.
This is done by first calculating the difference between subsequent domain
indices. Where this difference is zero, the particle stayed in the given
domain and the corresponding row can be ignored. Where this difference is
+1/-1, the particle moved into or out of the pore. Where the difference is
+2/-2, the particle moved across the periodic boundary or through the
membrane.
The time series of domain index differences is then partitioned into
individual series between periodic boundary jump events. In each such
subdivision the target particle is known to start outside the pore domain.
A crossing event can then be identified by averaging over the sum of
pairs of subsequent domain index differences. Note that for a particle that
starts out inside the pore domain at the beginning of the trajectory no
clear crossing direction can be established (i.e. is it going back to the
domain it came from or is it moving across the pore to the opposite domain).
By convention, these events will therefore not be counted as pore crossing
events.
"""
# make copy of input data frame to avoid overwriting contents:
df = df.copy()
# calculate difference between subsequent indices:
df["domain_diff"] = df["domain_idx"].shift(0) - df["domain_idx"].shift(1)
df["t"] = 0.5*(df["t"].shift(0) + df["t"].shift(1))
df = df.dropna()
df = df.drop(columns=["domain_idx"])
# drop cases where particle did not change domain at all:
df = df.loc[np.abs(df["domain_diff"]) != 0.0, ]
# create index for number of jumps across period boundary (or through the
# membrane)
df["pbcjump"] = 0
df.pbcjump[(df.domain_diff == -2) | (df.domain_diff == 2)] = 1
df.pbcjump = df.pbcjump.cumsum()
# drop all pbcjump groupings with less then two non-pbcjump events:
df = df.loc[(df.domain_diff != -2) & (df.domain_diff != 2), ]
df["pbccount"] = df.groupby("pbcjump").domain_diff.transform("count")
df = df.loc[df.pbccount > 1, ]
df = df.drop(columns=["pbccount"])
# handle special case of empty data frame:
if df.empty is True:
# manually add columns:
df["crossing_number"] = None
df["t_enter"] = None
df["t_mean"] = None
df["t_exit"] = None
else:
# aggregate pairwise domain index differences:
df = df.groupby("pbcjump").apply(aggregate_event_pairs)
# remove unneccessary columns and indices:
df = df.drop(columns=["t", "domain_diff", "pbcjump"])
df = df.reset_index(drop=True)
# return data frame:
return(df)
|
583469263c319db59724e56a46c6f422486a230b
| 34,690 |
from datetime import datetime
import calendar
import time
def timecode(acutime):
"""
Takes the time code produced by the ACU status stream and returns
a ctime.
Args:
acutime (float): The time recorded by the ACU status stream,
corresponding to the fractional day of the year
"""
sec_of_day = (acutime-1)*60*60*24
year = datetime.datetime.now().year
gyear = calendar.timegm(time.strptime(str(year), '%Y'))
comptime = gyear+sec_of_day
return comptime
|
41e5298777e1685041018e8aeee046a758ee4912
| 34,691 |
def calc_timedelta_in_years(start, end) -> float:
"""Computes timedelta between start and end dates, in years
To use this function, start and end dates should come
from a series of daily frequency.
Args:
start: start date
end: end date
Returns:
float: time delta in number of years
"""
# datetime representation of number of days in 1 year
one_year = pd.to_timedelta(365.25, unit="D")
one_day = pd.to_timedelta(1, unit="D")
# Compute the duration of the series in terms of number of years
years = (end - start + one_day) / one_year
return years
|
1833b69492b9c16a2b657da658f2f17dce2c3884
| 34,692 |
def listen(recognizer, mic, keywords, uses_google_api):
"""
Listens for a set of (keyword, priority) tuples and returns the response
:param recognizer: speech_recognition Recognizer object
:param mic: speech_recognition Microphone object
:param keywords: Iterable of (keyword, priority) tuples
:param uses_google_api: True if Google API should be used
:return: response string
"""
response = None
with mic as source:
recognizer.adjust_for_ambient_noise(source)
audio = recognizer.listen(source)
try:
if uses_google_api:
response = recognizer.recognize_google(audio)
else:
response = recognizer.recognize_sphinx(audio,
keyword_entries=keywords)
except sr.RequestError:
print('Voice control setup missing or not working.')
except sr.UnknownValueError:
print('Could not recognize speech')
return response
|
1af6674edc6709da7a81e72cbfa84ec2df1eff64
| 34,694 |
from pynetio import Netio
def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the Netio platform."""
host = config.get(CONF_HOST)
username = config.get(CONF_USERNAME)
password = config.get(CONF_PASSWORD)
port = config.get(CONF_PORT)
if not DEVICES:
hass.http.register_view(NetioApiView)
dev = Netio(host, port, username, password)
DEVICES[host] = Device(dev, [])
# Throttle the update for all Netio switches of one Netio
dev.update = util.Throttle(MIN_TIME_BETWEEN_SCANS)(dev.update)
for key in config[CONF_OUTLETS]:
switch = NetioSwitch(
DEVICES[host].netio, key, config[CONF_OUTLETS][key])
DEVICES[host].entities.append(switch)
add_entities(DEVICES[host].entities)
hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, dispose)
return True
|
955a9b62f19eb4478c19339456cd74037f4ffdca
| 34,695 |
def extract_username(message: Message) -> str:
"""
Extracts the appropriate username depending on whether
* it was mentioned in an Entity,
* it's accessible on message.author.id (discord)
* it's accessible on message.author (pyttman dev mode)
:param message:
:return: str
"""
# Default to message.author.id unless provided as an entity
if (username_for_query := message.entities.get(
"username_for_query")) is None:
try:
username_for_query = message.author.id
except AttributeError:
username_for_query = message.author
else:
username_for_query = username_for_query.value
return str(username_for_query)
|
58a181abce89306b65228fd3f51c63925b5a467b
| 34,696 |
def application(app_plan, custom_application, request, lifecycle_hooks):
"""
Creates an application with a application plan defined in the specified fixture
"""
application = custom_application(rawobj.Application(blame(request, "limited_app"), app_plan),
hooks=lifecycle_hooks)
return application
|
6519af0a6aea26b4f4d7a39c325a06c9c993fda6
| 34,697 |
def reward_user_required(view_func):
"""
Decorator for views that checks that the user is logged in and can use
reward points.
"""
def check_user(user):
return can_reward_points_be_used_by(user)
return user_passes_test(check_user)(view_func)
|
aa499dc61d35537fc7e74404e0ead227da46a461
| 34,698 |
def dnv_registry_listing_soup(alphabetLetter, output_file_base):
"""
A method for collecting the list of ships that are in the DNV registry. From this list a list of available dnv-ids can be generated.
:param alphabetLetter: A capital letter of the alphabet
:param output_file_base: The base_name of the output file
:return: Creates a file with db from the collection
"""
url = 'https://exchange.dnv.com/exchange/Main.aspx?extool=VReg&Search=%s' % alphabetLetter
opener = urllib2.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
# open the page
try:
page = opener.open(url)
soup = BeautifulSoup(page.read())
except Exception, m:
print m.message
# try to read the header
try:
validPage = soup.find('title').contents[0]
if 'Exchange' not in validPage.split():
return 'page not found'
except Exception as m:
print m.message
# pick up the table
dataTable = soup.find('table', id='ucMainControl_ToolContainer__ctl1_selectVesselOutputControl_mGrid')
dataRows = dataTable.find_all('tr', attrs={'class':'Data'})
db = {}
j = 0
for row in dataRows:
row_tag = alphabetLetter+str(j)
db[row_tag] = {
'status_s': row.contents[1].text.strip() if row.contents[1].text.strip() else None,
'name_s': row.contents[2].text.strip() if row.contents[2].text.strip() else None,
'dnv_id': row.contents[3].text.strip() if row.contents[3].text.strip() else None,
'dnv_type_s': row.contents[4].text.strip() if row.contents[2].text.strip() else None,
'build_year_n': row.contents[5].text.strip() if row.contents[5].text.strip() else None,
'builder_s': row.contents[6].text.strip() if row.contents[6].text.strip() else None
}
j+=1
if output_file_base:
file_name = output_file_base + '_' + alphabetLetter + '.txt'
db_to_file(db, file_name)
print 'Completed collection of %s-letter ships from DNV exchange db' % alphabetLetter
|
942404c074113b424f38a12af97619843b6109cb
| 34,699 |
from corehq.apps.cloudcare import api
def get_cloudcare_app():
"""
Total hack function to get direct links to the cloud care application pages
"""
app = api.get_cloudcare_app(PACT_DOMAIN, PACT_CLOUD_APPNAME)
app_id = app['_id']
pact_cloudcare = [x for x in app['modules'] if x['name']['en'] == PACT_CLOUDCARE_MODULE]
forms = pact_cloudcare[0]['forms']
ret = dict((f['name']['en'], ix) for (ix, f) in enumerate(forms))
ret['app_id'] = app_id
ret['build_id'] = get_latest_build_id(PACT_DOMAIN, app_id)
return ret
|
3ff30de2549547902039df5bc5a0f140f3402954
| 34,700 |
from typing import Generator
def train_test_k_fold(n_folds: int, n_instances: int, rng: Generator = default_rng()) -> list:
""" Generate train and test indices at each fold.
Args:
n_folds (int): Number of folds
n_instances (int): Total number of instances
random_generator (np.random.Generator): A random generator. Defaults to np.random.default_rng().
Returns:
list: a list of length n_folds. Each element in the list is a list (or tuple)
with two elements: a numpy array containing the train indices, and another
numpy array containing the test indices.
"""
# split the dataset into k splits
split_indices = k_fold_split(n_folds, n_instances, rng)
folds = []
for k in range(n_folds):
test_indices = split_indices[k]
train_indices = np.concatenate(
split_indices[:k] + split_indices[k + 1:]
)
folds.append([train_indices, test_indices])
return folds
|
f3ce954ddf5ff83cd12b852d4e22e0ad7757301f
| 34,701 |
def table_append(row, category='default'):
""" Take any number of string args and put them together as a
HTML table row.
"""
html_row = '</td><td>'.join(row)
html_row = f'<tr><td>{html_row}</td></tr>'
if category == 'header':
html_row = html_row.replace('td>', 'th>')
return html_row
|
cd0aa400c80ebc0ac8aad199439d5fc20d7a99a3
| 34,702 |
import six
def before_sleep_func_accept_retry_state(fn):
"""Wrap "before_sleep" function to accept "retry_state"."""
if not six.callable(fn):
return fn
if func_takes_retry_state(fn):
return fn
@_utils.wraps(fn)
def wrapped_before_sleep_func(retry_state):
# retry_object, sleep, last_result
warn_about_non_retry_state_deprecation(
'before_sleep', fn, stacklevel=4)
return fn(
retry_state.retry_object,
sleep=getattr(retry_state.next_action, 'sleep'),
last_result=retry_state.outcome)
return wrapped_before_sleep_func
|
7354548bdd1da1d59ce4faac4cbc5a1b819a40e2
| 34,703 |
def _calculate_type_helper(primary_type, secondary_types):
"""
:type primary_type: :class:`mbdata.models.ReleaseGroupPrimaryType`
:type secondary_types: :class:`(mbdata.models.ReleaseGroupSecondaryType)`
"""
if primary_type.name == 'Album':
if secondary_types:
secondary_type_list = dict((obj.secondary_type.name, obj.secondary_type)
for obj in secondary_types)
# The first type in the ordered secondary type list
# is returned as the result
for type_ in SECONDARY_TYPE_ORDER:
if type_ in secondary_type_list:
return secondary_type_list[type_]
# If primary type is not 'Album' or
# the secondary type list is empty or does not have
# values from the predetermined secondary order list
# return the primary type
return primary_type
|
24a973acd93b8c5d2cb1f2d2df14afc38c364a9d
| 34,704 |
def detach_all_devices():
"""
Detaches all currently attached devices
"""
process = ractl.detach_all()
if process["status"]:
flash(_("Detached all SCSI devices"))
return redirect(url_for("index"))
flash(process["msg"], "error")
return redirect(url_for("index"))
|
c874441d9a64d30b2f706fcc8e49181378541f36
| 34,706 |
def md5sum(text):
"""Return the md5sum of a text string."""
return md5_constructor(text).hexdigest()
|
29972c7bab3e7a6d2d78644b263bb058eb3677b6
| 34,709 |
def get_requests_to_user(user_id): #myrequests. Requests made to the user
"""
Returns the reviews for a listing given the listing id
"""
requests = ListingRequest.objects.filter(recipient__pk=user_id)
return requests
|
e4a6e74ebf8f153db4f1f2614a7e6b07c082c9c8
| 34,710 |
def descriptor(request):
"""
Replies with the XML Metadata SPSSODescriptor.
"""
acs_url = saml2sp_settings.SAML2SP_ACS_URL
entity_id = _get_entity_id(request)
pubkey = xml_signing.load_cert_data(saml2sp_settings.SAML2SP_CERTIFICATE_FILE)
tv = {
'acs_url': acs_url,
'entity_id': entity_id,
'cert_public_key': pubkey,
}
return xml_response(request, 'saml2sp/spssodescriptor.xml', tv)
|
d739ca1b1792c5c059cbe0974e24229cb9f217dd
| 34,711 |
def type_bframe(stage, bin, data=None):
"""BFrame"""
if data == None:
return 1
if stage == 1:
return (str(data),'')
try:
v = int(data)
if 0 > v or v > 255:
raise
except:
raise PyMSError('Parameter',"Invalid BFrame value '%s', it must be a number in the range 0 to 256" % data)
return v
|
0ee1fe1d82f0f964899e70534989a035020763ab
| 34,712 |
def last(data, ignore_nodata=UNSET) -> ProcessBuilder:
"""
Last element
:param data: An array with elements of any data type.
:param ignore_nodata: Indicates whether no-data values are ignored or not. Ignores them by default. Setting
this flag to `false` considers no-data values so that `null` is returned if the last value is such a value.
:return: The last element of the input array.
"""
return process('last', data=data, ignore_nodata=ignore_nodata)
|
97fdea2baf57e7efcc8aaf55b362852efe95ba60
| 34,714 |
def angle_wrap_pi(x):
"""wrap angle to [-pi, pi).
Arguments:
x -- angle to be wrapped
"""
return (x - np.pi) % (2 * np.pi) - np.pi
|
8a6e4f5e3e9b467cae8afbda09fa35f6184f1247
| 34,715 |
def contains_end_of_message(message, end_sequence):
"""Función que dado un string message, verifica si es que end_sequence es un
substring de message.
Parameters:
message (str): Mensaje en el cual buscar la secuencia end_sequence.
end_sequence (str): Secuencia que buscar en el string message.
Returns:
bool: True si end_sequence es substring de message y False de lo contrario.
"""
return False if message.find(end_sequence) == -1 else True
|
3966e3e2ddf62843c2eb12cf6ae144e53408c360
| 34,716 |
import pandas
def decisionTree(dataFrame:pandas.DataFrame,predictors,outColumn,nFolds:int):
"""
Method for computing accuray and cross-validation using decision-tree
"""
if dataFrame is None:
return None
dataFrame=_encodeLabels(dataFrame)
model = DecisionTreeClassifier()
return classificationModel(model, dataFrame,predictors,outColumn,nFolds)
|
82f6c4e7f7956710cd613cc975aeb8fd6af6e7c1
| 34,717 |
def _cv2_show_tracks(img,
bboxes,
labels,
ids,
classes=None,
thickness=2,
font_scale=0.4,
show=False,
wait_time=0,
out_file=None):
"""Show the tracks with opencv."""
assert bboxes.ndim == 2
assert labels.ndim == 1
assert ids.ndim == 1
assert bboxes.shape[0] == labels.shape[0]
assert bboxes.shape[1] == 5
if isinstance(img, str):
img = mmcv.imread(img)
img_shape = img.shape
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1])
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0])
text_width, text_height = 10, 15
for bbox, label, id in zip(bboxes, labels, ids):
x1, y1, x2, y2 = bbox[:4].astype(np.int32)
score = float(bbox[-1])
# bbox
bbox_color = random_color(id)
bbox_color = [int(255 * _c) for _c in bbox_color][::-1]
cv2.rectangle(img, (x1, y1), (x2, y2), bbox_color, thickness=thickness)
# id
text = str(id)
width = len(text) * text_width
img[y1:y1 + text_height, x1:x1 + width, :] = bbox_color
cv2.putText(
img,
str(id), (x1, y1 + text_height - 2),
cv2.FONT_HERSHEY_COMPLEX,
font_scale,
color=(0, 0, 0))
# score
text = '{:.02f}'.format(score)
width = len(text) * text_width
img[y1 - text_height:y1, x1:x1 + width, :] = bbox_color
cv2.putText(
img,
text, (x1, y1 - 2),
cv2.FONT_HERSHEY_COMPLEX,
font_scale,
color=(0, 0, 0))
if show:
mmcv.imshow(img, wait_time=wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
return img
|
06c4b17c0bcd6bd4442637bff5542437c59562d1
| 34,718 |
def get_centers(bins):
"""Return the center of the provided bins.
Example:
>>> get_centers(bins=np.array([0.0, 1.0, 2.0]))
array([ 0.5, 1.5])
"""
bins = bins.astype(float)
return (bins[:-1] + bins[1:]) / 2
|
31047e21eea7c6d86ba713509fdac42b3b0c33cc
| 34,719 |
def scale_by_yogi(
b1: float = 0.9,
b2: float = 0.999,
eps: float = 1e-3,
eps_root: float = 0.0,
initial_accumulator_value: float = 1e-6
) -> base.GradientTransformation:
"""Rescale updates according to the Yogi algorithm.
Supports complex numbers, see
https://gist.github.com/wdphy16/118aef6fb5f82c49790d7678cf87da29
References:
[Zaheer et al, 2018](https://papers.nips.cc/paper/2018/hash/90365351ccc7437a1309dc64e4db32a3-Abstract.html) #pylint:disable=line-too-long
Args:
b1: decay rate for the exponentially weighted average of grads.
b2: decay rate for the exponentially weighted average of variance of grads.
eps: term added to the denominator to improve numerical stability.
eps_root: term added to the denominator inside the square-root to improve
numerical stability when backpropagating gradients through the rescaling.
initial_accumulator_value: The starting value for accumulators.
Only positive values are allowed.
Returns:
An (init_fn, update_fn) tuple.
"""
def init_fn(params):
value_like = lambda p: jnp.full_like(p, initial_accumulator_value)
mu = jax.tree_map(value_like, params) # First moment
nu = jax.tree_map(value_like, params) # Second Central moment
return ScaleByAdamState(count=jnp.zeros([], jnp.int32), mu=mu, nu=nu)
def update_fn(updates, state, params=None):
del params
mu = _update_moment(updates, state.mu, b1, 1)
nu = jax.tree_multimap(
lambda g, v: v - (1 - b2) * jnp.sign(v - _abs_sq(g)) * _abs_sq(g),
updates, state.nu)
count_inc = numerics.safe_int32_increment(state.count)
mu_hat = _bias_correction(mu, b1, count_inc)
nu_hat = _bias_correction(nu, b2, count_inc)
updates = jax.tree_multimap(
lambda m, v: m / (jnp.sqrt(v + eps_root) + eps), mu_hat, nu_hat)
return updates, ScaleByAdamState(count=count_inc, mu=mu, nu=nu)
return base.GradientTransformation(init_fn, update_fn)
|
c65d1069741755bf5e5a5719b97c6553bfe525b7
| 34,720 |
def download(request):
"""
Serves patients full summary as a downloadable text file.
:param request: The request with user information
:return: Downloadable text file, in lieu of a conventional response
"""
Pat = Patient.objects.all().get(user=request.user)
content = MediInfoExport(Pat, request.user, False)
response = HttpResponse(content, content_type='text/plain')
response['Content-Disposition'] = 'attachment; filename="%s_Info.txt"' % \
str(request.user.get_full_name()).replace(' ', '-')
return response
|
8cae4bbe27853a19848059f0c6bc11c48865f151
| 34,721 |
def gradient_descent(F,x0,args=(),delta=1e-14,gamma0=1e-12,adapt=False,plot=False):
"""
Find a local minimum of a scalar-valued function of a vector (scalar field)
by the Gradient Descent method.
https://en.wikipedia.org/wiki/Gradient_descent
:param function F: Function to minimize. Initial use case is a cost
function computed as a sum of squares of difference
between points on a calculated trajectory and observed
points on the same trajectory
:param numpy vector x0: Initial guess as to minimum of function. This method
will "probably" find the local minimum nearest
to this point
:param float delta: Amount to perturb the function parameters to calculate
the gradient
:param float gamma0: Initial step size. The step size is adaptive after
the first step, so this controls the size of that
first step.
Gradient descent minimizes the function by steps. At each step, it figures
out the gradient of the function. This is a vector which points in the
direction of maximum increase of the function. Since we want to minimize,
we take a step in the opposite direction. Gamma is a scale factor which
determines how far to step in that direction.
\delta_x=\gamma_n*grad(F(x_n)
x_{n+1}=x_{n+1}-\delta_x
Now the only hard part is to figure out the right gamma. A simple
non-working optimizer would use the gradient function to project to zero,
and take a step of that size. Unfortunately, that is only sound if the
minimum is exactly zero. The wiki (boo!) gives a formula for gamma as:
\gamma_n=\frac{(x_n-x_{n-1})^T[grad(F(x_n))-grad(F(x_{n-1}))]}
{norm(grad(F(x_n))-grad(F(x_{n-1})))**2}
Since this requires the gradient both at the current step and the previous one,
we need an initial step size in order to take that first step.
"""
def grad(F,x0,delta,*args):
"""
Estimate the gradient of a scalar field by finite differences
:param function F: Function to calculate the value of the field at a given point
:param numpy vector x0: Point to take the gradient at
:param float delta: Step size to take
:return: Estimate of gradient vector
"""
F0=F(x0,*args)
kd=np.zeros(x0.size)
result=np.zeros(x0.size)
min=True
for i in range(x0.size):
kd[i]=delta
Fp=F(x0+kd,*args)
Fm=F(x0-kd,*args)
if Fp<F0 or Fm<F0:
min=False
result[i]=(Fp-Fm)/(2*delta)
kd[i]=0.0
return (result,F0,min)
#Take the first step
xnm1=x0
gFxnm1,Fxnm1,min=grad(F,x0,delta,*args)
if min:
#won't be able to find an improvement, delta is too big
return x0
xn=xnm1-gamma0*gFxnm1
#Now take steps with dynamic step size
done=False
Fs=[Fxnm1]
xs=[0.0]
ys=[0.0]
zs=[0.0]
while not done:
gFxn,Fxn,min=grad(F,xn,delta,*args)
Fs.append(Fxn)
xs.append(xn[0]-x0[0])
ys.append(xn[1]-x0[1])
zs.append(xn[2]-x0[2])
if adapt:
#Adaptive size (doesn't work for my problem)
dx=xn-xnm1
dF=gFxn-gFxnm1
gamma=np.dot(dx,dF)/np.dot(dF,dF)
else:
gamma=gamma0
xnm1=xn
gFxnm1=gFxn
xn=xnm1-gamma*gFxnm1/np.linalg.norm(gFxnm1)
done=min
if plot:
mpl.rcParams['legend.fontsize'] = 10
fig = plt.figure(3)
ax = fig.gca(projection='3d')
ax.plot(ys, zs, Fs)
plt.show()
return xn
|
b710a768656a8bb0db16eafa87b88c91e83b38fd
| 34,723 |
def superop2pauli_liouville(superop: np.ndarray):
"""
Converts a superoperator into a pauli_liouville matrix. This is achieved by a linear change of basis.
:param superop: a dim**2 by dim**2 superoperator
:return: dim**2 by dim**2 pauli-liouville matrix
"""
dim = int(np.sqrt(superop.shape[0]))
c2p_basis_transform = computational2pauli_basis_matrix(dim)
return c2p_basis_transform @ superop @ c2p_basis_transform.conj().T * dim
|
f7b9cd9a0dce0bf2f1e20c6f8024021acf85ef07
| 34,724 |
def utility_num2columnletters(num):
"""
Takes a column number and converts it to the equivalent excel column letters
:param int num: column number
:return str: excel column letters
"""
def pre_num2alpha(num):
if num % 26 != 0:
num = [num // 26, num % 26]
else:
num = [(num - 1) // 26, 26]
if num[0] > 26:
num = pre_num2alpha(num[0]) + [num[1]]
else:
num = list(filter(lambda x: False if x == 0 else True, num))
return num
return "".join(list(map(lambda x: chr(x + 64), pre_num2alpha(num))))
|
295b8c5391d5250f91781c2f6df1626a0acb8022
| 34,725 |
def binarize(query, mlb):
"""Transform a single query into binary representation
Parameters
----------
query : ndarray, shape = [n_samples, n_classes]
The tags.
n_samples : int
The number of samples in the training set.
Returns
-------
bin_query_vector : ndarray, shape = [n_samples]
Binary query vector.
"""
return mlb.transform([query]).ravel()
|
aafd2072569c0c740b034caa0f8591da231b5b6d
| 34,727 |
from typing import Optional
from typing import Dict
def no_response_from_crawl(stats: Optional[Dict]) -> bool:
"""
Check that the stats dict has received an HTTP 200 response
:param stats: Crawl stats dictionary
:return: True if the dict exists and has no 200 response
"""
if not stats or not isinstance(stats, Dict):
return False
status_codes = stats.get("status_codes", {})
if not status_codes or not isinstance(status_codes, Dict):
return False
return 200 not in status_codes
|
461d3deb9ec6a162dfd7f3f3c0ac73262090c35b
| 34,728 |
def evaluate_surprisals_continuous(text, window_params, tot_params):
"""
Get the probability mass functions for each token's
semantic similarity using a beta distribution.
:param text: text to analyze; results are returned token-wise
Can be a string or a spaCy-parsed document.
:param params: tuple; parameter for scipy.stats.beta distribution
:return:
"""
window_dist = beta(*window_params)
tot_dist = beta(*tot_params)
# if not isinstance(text, spacy.tokens.doc.Doc): text = NLP(text)
sims_5 = [np.nan]
sims_tot = [np.nan]
for i in range(1, len(text)):
try: sims_5.append(cosine(text[max(0, i-5):i].vector, text[i].vector))
except ZeroDivisionError: sims_5.append(np.nan)
try: sims_tot.append(cosine(text[:i].vector, text[i].vector))
except ZeroDivisionError: sims_tot.append(np.nan)
# zip up the dataframe and return it
df = pd.DataFrame({
"Token":[i.text for i in text],
"Position":[i.i for i in text],
"Windowed Similarity":sims_5,
"Totaled Similarity":sims_tot,
"Windowed PDF":[-np.log(window_dist.pdf(i)) if not pd.isnull(i) else np.nan for i in sims_5],
"Totaled PDF":[-np.log(tot_dist.pdf(i)) if not pd.isnull(i) else np.nan for i in sims_tot],
})
return df
|
7fe58fadc0fa9943a47aee1217b1246a8c0d9c13
| 34,730 |
def getUSBFile():
"""
Retrieves USB.ids database from the web.
"""
url = 'http://www.linux-usb.org/usb.ids'
return urllib2.urlopen(url)
|
8199b9694db871ba9dcbd3b1338a416e8f4ac358
| 34,732 |
import time
import math
def get_local_time_zone():
"""Return the current local UTC offset in hours and minutes."""
utc_offset_seconds = -time.timezone
if time.localtime().tm_isdst == 1 and time.daylight:
utc_offset_seconds = -time.altzone
utc_offset_minutes = (utc_offset_seconds // 60) % 60
utc_offset_hours = math.floor(utc_offset_seconds / float(3600)) if \
utc_offset_seconds > 0 else math.ceil(utc_offset_seconds / float(3600))
return int(utc_offset_hours), utc_offset_minutes
|
4e90d0a0bf2e831aaf6629542451e75c0a1942a4
| 34,733 |
def connect_genes(t_trans_to_gene, t_trans_to_q_proj, q_proj_to_q_gene):
"""Create orthology relationships graph."""
o_graph = nx.Graph()
genes = set(t_trans_to_gene.values())
o_graph.add_nodes_from(genes)
q_genes_all = []
print(f"Added {len(genes)} reference genes on graph")
conn_count = 0
for t_trans, t_gene in t_trans_to_gene.items():
projections = t_trans_to_q_proj[t_trans]
q_genes = set(q_proj_to_q_gene[p] for p in projections)
for q_gene in q_genes:
conn_count += 1
q_genes_all.append(q_gene)
o_graph.add_edge(t_gene, q_gene)
q_genes_all = set(q_genes_all)
print(f"Added {len(q_genes_all)} query genes on graph")
print(f"Graph contains {conn_count} connections")
return o_graph
|
f062fd61dbe21472cca609b3f0b43a0663944cb7
| 34,734 |
def gbsGetSelectedBounds():
""" Get bonding box of features from selection
"""
clayer = iface.mapCanvas.currentLayer()
if not clayer or clayer.type() != QgsMapLayer.VectorLayer:
return None
box = clayer.boundingBoxOfSelected()
return box.toRectF()
|
6e82fab64c2356f10b7e00d04a4a6b09ffbec499
| 34,735 |
from typing import Optional
def pixelmatch(
img1: ImageSequence,
img2: ImageSequence,
width: int,
height: int,
output: Optional[MutableImageSequence] = None,
threshold: float = 0.1,
includeAA: bool = False,
alpha: float = 0.1,
aa_color: RGBTuple = (255, 255, 0),
diff_color: RGBTuple = (255, 0, 0),
diff_mask: bool = False,
fail_fast: bool = False,
) -> int:
"""
Compares two images, writes the output diff and returns the number of mismatched pixels.
'Raw image data' refers to a 1D, indexable collection of image data in the
format [R1, G1, B1, A1, R2, G2, ...].
:param img1: Image data to compare with img2. Must be the same size as img2
:param img2: Image data to compare with img2. Must be the same size as img1
:param width: Width of both images (they should be the same).
:param height: Height of both images (they should be the same).
:param output: Image data to write the diff to. Should be the same size as
:param threshold: matching threshold (0 to 1); smaller is more sensitive, defaults to 1
:param includeAA: whether or not to skip anti-aliasing detection, ie if includeAA is True,
detecting and ignoring anti-aliased pixels is disabled. Defaults to False
:param alpha: opacity of original image in diff output, defaults to 0.1
:param aa_color: tuple of RGB color of anti-aliased pixels in diff output,
defaults to (255, 255, 0) (yellow)
:param diff_color: tuple of RGB color of the color of different pixels in diff output,
defaults to (255, 0, 0) (red)
:param diff_mask: whether or not to draw the diff over a transparent background (a mask),
defaults to False
:param fail_fast: if true, will return after first different pixel. Defaults to false
:return: number of pixels that are different or 1 if fail_fast == true
"""
if len(img1) != len(img2):
raise ValueError("Image sizes do not match.", len(img1), len(img2))
if output and len(output) != len(img1):
raise ValueError(
"Diff image size does not match img1 & img2.", len(img1), len(output)
)
if len(img1) != width * height * 4:
raise ValueError(
"Image data size does not match width/height.",
len(img1),
width * height * 4,
)
# fast path if identical
if img1 == img2:
if output and not diff_mask:
for i in range(width * height):
draw_gray_pixel(img1, 4 * i, alpha, output)
return 0
# maximum acceptable square distance between two colors;
# 35215 is the maximum possible value for the YIQ difference metric
maxDelta = 35215 * threshold * threshold
diff = 0
aaR, aaG, aaB = aa_color
diffR, diffG, diffB = diff_color
# compare each pixel of one image against the other one
for y in range(height):
for x in range(width):
pos = (y * width + x) * 4
# squared YUV distance between colors at this pixel position
delta = color_delta(img1, img2, pos, pos)
# the color difference is above the threshold
if delta > maxDelta:
# check it's a real rendering difference or just anti-aliasing
if not includeAA and (
antialiased(img1, x, y, width, height, img2)
or antialiased(img2, x, y, width, height, img1)
):
# one of the pixels is anti-aliasing; draw as yellow and do not count as difference
# note that we do not include such pixels in a mask
if output and not diff_mask:
draw_pixel(output, pos, aaR, aaG, aaB)
else:
# found substantial difference not caused by anti-aliasing; draw it as red
if output:
draw_pixel(output, pos, diffR, diffG, diffB)
if fail_fast:
return 1
diff += 1
elif output:
# pixels are similar; draw background as grayscale image blended with white
if not diff_mask:
draw_gray_pixel(img1, pos, alpha, output)
# return the number of different pixels
return diff
|
95690f4584c7e90c63bb432418bb22068d3ab63e
| 34,737 |
def binary_search(array, target):
""" Does a binary search on to find the index of an element in an array. WARNING - ARRAY HAS TO BE SORTED
Keyword arguments:
array - the array that contains the target
target - the target element for which its index will be returned
returns the index of target in array
"""
lower = 0
upper = len(array)
while lower < upper:
x = lower + (upper - lower) // 2
val = array[x]
if target == val:
return x
elif target > val:
if lower == x:
break
lower = x
elif target < val:
upper = x
|
6dfe09367e2dd7ae2e30f45009fa7059d0da0f18
| 34,738 |
import re
import ast
def _get_matrix_from_string(string):
"""Get a network connection matrix from a string.
Parameters
----------
string : str
String from which to read the matrix. It should have the format of a
string representation of a NumPy array.
Raises
------
FormatError
If the string does not have the correct format.
"""
if string[-1] == '\n':
string = string[:-1]
string = re.sub(r'\[\s+', '[', string)
string = re.sub(r'\s+\]', ']', string)
string = re.sub(r'\s+', ',', string)
try:
matrix = ast.literal_eval(string)
except Exception as err:
raise FormatError('The string could be converted to a matrix.') from err
return matrix
|
1d9a052e7506c379addd7f20ff2af5671f6a82ff
| 34,739 |
import warnings
def classification_report(y_true, y_pred, labels=None, target_names=None,
sample_weight=None, digits=2, output_dict=False,
zero_division="warn"):
"""Build a text report showing the main classification metrics.
Read more in the :ref:`User Guide <classification_report>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
y_pred : 1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
labels : array, shape = [n_labels]
Optional list of label indices to include in the report.
target_names : list of strings
Optional display names matching the labels (same order).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
digits : int
Number of digits for formatting output floating point values.
When ``output_dict`` is ``True``, this will be ignored and the
returned values will not be rounded.
output_dict : bool (default = False)
If True, return output as dict
zero_division : "warn", 0 or 1, default="warn"
Sets the value to return when there is a zero division. If set to
"warn", this acts as 0, but warnings are also raised.
Returns
-------
report : string / dict
Text summary of the precision, recall, F1 score for each class.
Dictionary returned if output_dict is True. Dictionary has the
following structure::
{'label 1': {'precision':0.5,
'recall':1.0,
'f1-score':0.67,
'support':1},
'label 2': { ... },
...
}
The reported averages include macro average (averaging the unweighted
mean per label), weighted average (averaging the support-weighted mean
per label), and sample average (only for multilabel classification).
Micro average (averaging the total true positives, false negatives and
false positives) is only shown for multi-label or multi-class
with a subset of classes, because it corresponds to accuracy otherwise.
See also :func:`precision_recall_fscore_support` for more details
on averages.
Note that in binary classification, recall of the positive class
is also known as "sensitivity"; recall of the negative class is
"specificity".
See also
--------
precision_recall_fscore_support, confusion_matrix,
multilabel_confusion_matrix
Examples
--------
>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 2]
>>> y_pred = [0, 0, 2, 2, 1]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
<BLANKLINE>
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3
<BLANKLINE>
accuracy 0.60 5
macro avg 0.50 0.56 0.49 5
weighted avg 0.70 0.60 0.61 5
<BLANKLINE>
>>> y_pred = [1, 1, 0]
>>> y_true = [1, 1, 1]
>>> print(classification_report(y_true, y_pred, labels=[1, 2, 3]))
precision recall f1-score support
<BLANKLINE>
1 1.00 0.67 0.80 3
2 0.00 0.00 0.00 0
3 0.00 0.00 0.00 0
<BLANKLINE>
micro avg 1.00 0.67 0.80 3
macro avg 0.33 0.22 0.27 3
weighted avg 1.00 0.67 0.80 3
<BLANKLINE>
"""
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
labels_given = True
if labels is None:
labels = unique_labels(y_true, y_pred)
labels_given = False
else:
labels = np.asarray(labels)
# labelled micro average
micro_is_accuracy = ((y_type == 'multiclass' or y_type == 'binary') and
(not labels_given or
(set(labels) == set(unique_labels(y_true, y_pred)))))
if target_names is not None and len(labels) != len(target_names):
if labels_given:
warnings.warn(
"labels size, {0}, does not match size of target_names, {1}"
.format(len(labels), len(target_names))
)
else:
raise ValueError(
"Number of classes, {0}, does not match size of "
"target_names, {1}. Try specifying the labels "
"parameter".format(len(labels), len(target_names))
)
if target_names is None:
target_names = ['%s' % l for l in labels]
headers = ["precision", "recall", "f1-score", "support"]
# compute per-class results without averaging
p, r, f1, s = precision_recall_fscore_support(y_true, y_pred,
labels=labels,
average=None,
sample_weight=sample_weight,
zero_division=zero_division)
rows = zip(target_names, p, r, f1, s)
if y_type.startswith('multilabel'):
average_options = ('micro', 'macro', 'weighted', 'samples')
else:
average_options = ('micro', 'macro', 'weighted')
if output_dict:
report_dict = {label[0]: label[1:] for label in rows}
for label, scores in report_dict.items():
report_dict[label] = dict(zip(headers,
[i.item() for i in scores]))
else:
longest_last_line_heading = 'weighted avg'
name_width = max(len(cn) for cn in target_names)
width = max(name_width, len(longest_last_line_heading), digits)
head_fmt = '{:>{width}s} ' + ' {:>9}' * len(headers)
report = head_fmt.format('', *headers, width=width)
report += '\n\n'
row_fmt = '{:>{width}s} ' + ' {:>9.{digits}f}' * 3 + ' {:>9}\n'
for row in rows:
report += row_fmt.format(*row, width=width, digits=digits)
report += '\n'
# compute all applicable averages
for average in average_options:
if average.startswith('micro') and micro_is_accuracy:
line_heading = 'accuracy'
else:
line_heading = average + ' avg'
# compute averages with specified averaging method
avg_p, avg_r, avg_f1, _ = precision_recall_fscore_support(
y_true, y_pred, labels=labels,
average=average, sample_weight=sample_weight,
zero_division=zero_division)
avg = [avg_p, avg_r, avg_f1, np.sum(s)]
if output_dict:
report_dict[line_heading] = dict(
zip(headers, [i.item() for i in avg]))
else:
if line_heading == 'accuracy':
row_fmt_accuracy = '{:>{width}s} ' + \
' {:>9.{digits}}' * 2 + ' {:>9.{digits}f}' + \
' {:>9}\n'
report += row_fmt_accuracy.format(line_heading, '', '',
*avg[2:], width=width,
digits=digits)
else:
report += row_fmt.format(line_heading, *avg,
width=width, digits=digits)
if output_dict:
if 'accuracy' in report_dict.keys():
report_dict['accuracy'] = report_dict['accuracy']['precision']
return report_dict
else:
return report
|
bf900670dee3ba3988ae987dd1a7067949bd224b
| 34,741 |
def paralog_cn_str(paralog_cn, paralog_qual, min_qual_value=5):
"""
Returns
- paralog CN: string,
- paralog qual: tuple of integers,
- any_known: bool (any of the values over the threshold).
If paralog quality is less than min_qual_value, corresponding CN is replaced with '?' and quality
is replaced with 0. Additionally, quality is rounded down to integers.
"""
paralog_cn_str = []
new_paralog_qual = []
any_known = False
for cn, qual in zip(paralog_cn, paralog_qual):
if qual < min_qual_value:
paralog_cn_str.append('?')
new_paralog_qual.append(0)
else:
paralog_cn_str.append(str(cn))
new_paralog_qual.append(int(qual))
any_known = True
return ','.join(paralog_cn_str), tuple(new_paralog_qual), any_known
|
07012dd9b065622365798ba65024c316cdb8c0c7
| 34,742 |
def offbyK(s1,s2,k):
"""Input: two strings s1,s2, integer k
Process: if both strings are of same length, the function checks if the
number of dissimilar characters is less than or equal to k
Output: returns True when conditions are met otherwise False is returned"""
if len(s1)==len(s2):
flag=0
for i in range(len(s1)):
if s1[i]!=s2[i]:
flag=flag+1
if flag==k:
return True
else:
return False
else:
return False
|
a64c02b85acca64427852fc988ed2f769f750aa7
| 34,743 |
def calc_e_Gx(trainDataArr, trainLabelArr, n, div, rule, D):
"""计算分类错误率"""
e = 0 # 初始化误分类误差率为0
x = trainDataArr[:, n]
y = trainLabelArr
predict = []
if rule == 'LisOne':
L = 1
H = -1
else:
L = -1
H = 1
for i in range(trainDataArr.shape[0]):
if x[i] < div:
predict.append(L)
if y[i] != L:
e += D[i]
elif x[i] >= div:
predict.append(H)
if y[i] != H:
e += D[i]
return np.array(predict), e
|
6b282e078746be5ba90944cfedfabf64e29fc1c6
| 34,744 |
from typing import Dict
from typing import List
from typing import Union
def compute_gap(
gold_mapping: Dict[str, int],
ranked_candidates: List[str],
) -> Union[float, None]:
"""
Method for computing GAP metric.
Args:
gold_mapping: Dictionary that maps gold word to its annotators number.
ranked_candidates: List of ranked candidates.
Returns:
gap: computed GAP score.
"""
if not gold_mapping:
return None
cumsum = np.cumsum(list(gold_mapping.values()))
arange = np.arange(1, len(gold_mapping) + 1)
gap_denominator = (cumsum / arange).sum()
gap_nominator = compute_gap_nominator(ranked_candidates, gold_mapping)
return gap_nominator / gap_denominator
|
1701679c313e96792596ffa6623cb0aec4d2ca2a
| 34,745 |
def SmiNetDate(python_date):
"""
Date as a string in the format `YYYY-MM-DD`
Original xsd documentation: SmiNetLabExporters datumformat (ÅÅÅÅ-MM-DD).
"""
return python_date.strftime("%Y-%m-%d")
|
8d43d99516fed915b344f42da8171689f8f9ef0b
| 34,746 |
def get_node_with_children(node, model):
""" Return a short list of this top node and all its children.
Note, maximum depth of 10. """
if node is None:
return model
new_model = [node]
i = 0 # not really needed, but keep for ensuring an exit from while loop
new_model_changed = True
while model != [] and new_model_changed and i < 10:
new_model_changed = False
append_list = []
for n in new_model:
for m in model:
if m['supercatid'] == n['catid']:
append_list.append(m)
for n in append_list:
new_model.append(n)
model.remove(n)
new_model_changed = True
i += 1
return new_model
|
6ea214063f7937eacec5bbe5abd5c78c5b7badbd
| 34,747 |
def correct_capitalization(s):
"""Capitalizes a string with various words, except for prepositions and articles.
:param s: The string to capitalize.
:return: A new, capitalized, string.
"""
toret = ""
if s:
always_upper = {"tic", "i", "ii", "iii", "iv", "v", "vs", "vs.", "2d", "3d",
"swi", "gnu", "c++", "c/c++", "c#"}
articles = {"el", "la", "las", "lo", "los", "un", "unos", "una", "unas",
"a", "an", "the", "these", "those", "that"}
preps = {"en", "de", "del", "para", "con", "y", "e", "o",
"in", "of", "for", "with", "and", "or"}
words = s.strip().lower().split()
capitalized_words = []
for word in words:
if word in always_upper:
word = word.upper()
elif (not word in articles
and not word in preps):
word = word.capitalize()
capitalized_words.append(word)
toret = ' '.join(capitalized_words)
return toret
|
f49b3203bf7ea19b84ac707bcc506c2571082e39
| 34,748 |
def mockedservice(fake_service=None, fake_types=None,
address='unix:@test', name=None,
vendor='varlink', product='mock', version=1,
url='http://localhost'):
"""
Varlink mocking service
To mock a fake service and merely test your varlink client against.
The mocking feature is for testing purpose, it's allow
you to test your varlink client against a fake service which will
returned self handed result defined in your object who will be mocked.
Example:
>>> import unittest
>>> from varlink import mock
>>> import varlink
>>>
>>>
>>> types = '''
>>> type MyPersonalType (
>>> foo: string,
>>> bar: string,
>>> )
>>> '''
>>>
>>>
>>> class Service():
>>>
>>> def Test1(self, param1: int) -> dict:
>>> '''
>>> return test: MyPersonalType
>>> '''
>>> return {
>>> "test": {
>>> "foo": "bim",
>>> "bar": "boom"
>>> }
>>> }
>>>
>>> def Test2(self, param1: str) -> dict:
>>> '''
>>> return (test: string)
>>> '''
>>> return {"test": param1}
>>>
>>> def Test3(self, param1: int) -> dict:
>>> '''
>>> return (test: int, boom: string, foo: string, bar: 42)
>>> '''
>>> return {
>>> "test": param1 * 2,
>>> "boom": "foo",
>>> "foo": "bar",
>>> "bar": 42,
>>> }
>>>
>>>
>>> class TestMyClientWithMockedService(unittest.TestCase):
>>>
>>> @mock.mockedservice(
>>> fake_service=Service,
>>> fake_types=types,
>>> name='org.service.com',
>>> address='unix:@foo'
>>> )
>>> def test_my_client_against_a_mock(self):
>>> with varlink.Client("unix:@foo") as client:
>>> connection = client.open('org.service.com')
>>> self.assertEqual(
>>> connection.Test1(param1=1)["test"]["bar"], "boom")
>>> self.assertEqual(
>>> connection.Test2(param1="foo")["test"], "foo")
>>> self.assertEqual(
>>> connection.Test3(param1=6)["test"], 12)
>>> self.assertEqual(
>>> connection.Test3(param1=6)["bar"], 42)
First you need to define a sample class that will be passed to your
decorator `mock.mockedservice` and then a service will be initialized
and launched automatically, and after that you just need to connect your
client to him and to establish your connection then now you can
call your methods and it will give you the expected result.
You can also mock some types too, to help you to mock more complex service
and interfaces like podman by example.
You can define the return type by using the method docstring like
the method Test1 in our previous example.
The mocking module is only compatible with python 3 or higher version
of python because this module require annotation to generate interface
description.
If you try to use it with python 2.x it will raise an ``ImportError``.
"""
def decorator(func):
def wrapper(*args, **kwargs):
with MockedService(fake_service, fake_types, name=name,
address=address):
try:
func(*args, **kwargs)
except BrokenPipeError:
# manage fake service stoping
pass
return
return wrapper
return decorator
|
b318f44b3091cf332922a59222795a61d2a0d48e
| 34,749 |
def dsigmoid(x):
"""
return differential for sigmoid
"""
##
# D ( e^x ) = ( e^x ) - ( e^x )^2
# - --------- --------- ---------
# Dx (1 + e^x) (1 + e^x) (1 + e^x)^2
##
return x * (1 - x)
|
685362146d7bfcaa3df47db8a10a04e6accb805d
| 34,750 |
def get_filetype(location):
"""
LEGACY: Return the best filetype for location using multiple tools.
"""
T = get_type(location)
return T.filetype_file.lower()
|
8fcb9f7fc77f4a50e5c20a5d46b7f6699520a314
| 34,751 |
def eps_r_op_2s_AA12(x, AA12, A3, A4, op):
"""Implements the right epsilon map with a non-trivial nearest-neighbour operator.
Uses a pre-multiplied tensor for the ket AA12[s, t] = A1[s].dot(A2[t]).
See eps_r_op_2s_A().
Parameters
----------
x : ndarray
The argument matrix.
AA12: ndarray
The combined MPS ket tensor for the first and second sites.
A3: ndarray
The MPS bra tensor for the first site.
A4: ndarray
The MPS bra tensor for the second site.
op: ndarray
Nearest-neighbour operator matrix elements op[s, t, u, v] = <st|op|uv>
Returns
------
res : ndarray
The resulting matrix.
"""
res = np.zeros((AA12.shape[2], A3.shape[1]), dtype=A3.dtype)
zeros_like = np.zeros_like
for u in xrange(A3.shape[0]):
for v in xrange(A4.shape[0]):
subres = zeros_like(AA12[0, 0])
for s in xrange(AA12.shape[0]):
for t in xrange(AA12.shape[1]):
opval = op[u, v, s, t]
if opval != 0:
subres += opval * AA12[s, t]
res += subres.dot(x.dot((A3[u].dot(A4[v])).conj().T))
return res
|
661528e04d56e78c399f7c0db7964f11eaba3441
| 34,752 |
def _bem_specify_coils(bem, coils, coord_frame, n_jobs):
"""Set up for computing the solution at a set of coils"""
# Compute the weighting factors to obtain the magnetic field
# in the linear potential approximation
coils, coord_frame = _check_coil_frame(coils, coord_frame, bem)
# leaving this in in case we want to easily add in the future
#if method != 'simple': # in ['ferguson', 'urankar']:
# raise NotImplementedError
#else:
func = _bem_lin_field_coeffs_simple
# Process each of the surfaces
rmags = np.concatenate([coil['rmag'] for coil in coils])
cosmags = np.concatenate([coil['cosmag'] for coil in coils])
counts = np.array([len(coil['rmag']) for coil in coils])
ws = np.concatenate([coil['w'] for coil in coils])
lens = np.cumsum(np.r_[0, [len(s['rr']) for s in bem['surfs']]])
coeff = np.empty((len(counts), lens[-1]))
for o1, o2, surf, mult in zip(lens[:-1], lens[1:],
bem['surfs'], bem['field_mult']):
coeff[:, o1:o2] = _lin_field_coeff(surf, mult, rmags, cosmags,
ws, counts, func, n_jobs)
# put through the bem
sol = np.dot(coeff, bem['solution'])
return sol
|
b860dbaf3d844248d75c69d7c45aefabe76b28e9
| 34,753 |
def extract_plate_and_well_names(col_meta, plate_field=PLATE_FIELD, well_field=WELL_FIELD):
"""
Args:
col_meta (pandas df)
plate_field (string): metadata field for name of plate
well_field (string): metadata field for name of well
Returns:
plate_names (numpy array of strings)
well_names (numpy array of strings)
"""
# Extract plate metadata
plate_names = col_meta[plate_field].values
# Extract well metadata
well_names = col_meta[well_field].values
return plate_names, well_names
|
0aa3a34a537183fca17e6575853df628f1204b62
| 34,754 |
import torch
from typing import List
from typing import Any
import itertools
def apply_masked_reduction_along_dim(op, input, *args, **kwargs):
"""Applies reduction op along given dimension to strided x
elements that are valid according to mask tensor.
The op is applied to each elementary slice of input with args and
kwargs with the following constraints:
1. Prior applying the op:
A. if kwargs contains an item with key 'dim_position' then it is
removed from kwargs. The value of 'dim_position' is an
integer that describes the dim argument position: while
typically the dim argument appears at the 0-th position of
the op arguments (excluding input), for instance, sum(input,
dim), then there exists reductions that have extra arguments
prior the dim argument, for instance, norm(input, ord, dim).
B. if args or kwargs contains dim or keepdim arguments, these
will be removed or replaced with None so that the op is
applied to elementary slice using the default dim and keepdim
value.
2. The elementary slice of the input is defined as the flattened
slice that has no masked out elements and when op is applied,
the result will be a scalar value (assuming keepdim=False). For
example, an input tensor to a reduction operation op having
dim=0 and keepdim=True argument:
[[1 * 2 * *]
[* 3 4 * 5]]
(* denotes masked out elements) has the following elementary
slices: [1, 2] and [3, 4, 5]. The result of
apply_masked_reduction_along_dim is
[[op([1, 2], *args0, **kwargs, dim=None, keepdim=False)]
[op([3, 4, 5], *args0, **kwargs, dim=None, keepdim=False)]]
where args0 is args where dim value is replased with None if
present.
Using the same example data, if the op is called with dim=(0, 1)
and keepdim=False, there is one elementary slice: [1, 2, 3, 4,
5]; and the corresponding result of the op is:
op([1, 2, 3, 4, 5], *args0, **kwargs, dim=None, keepdim=False)
3. If the elementary slice is empty, the corresponding output
value is nan if dtype is float, otherwise, 0. An empty
elementary slice corresponds to fully masked-out output, so, the
corresponding specific value of the output will not be important
because we used masked equality check for comparing the results
of masked operations.
"""
# eliminate mask and dim_position keyword arguments:
mask = kwargs.pop('mask', None)
dim_pos = kwargs.pop('dim_position', 0)
dtype = kwargs.get('dtype', input.dtype)
if input.ndim == 0:
# scalar input is an elementary slice
return op(input, *args, **kwargs).to(dtype=dtype)
# eliminate keepdim keyword argument if specified:
keepdim = kwargs.pop('keepdim', False)
# eliminate dim argument that may appear both as args or kwargs
# element:
if dim_pos < len(args):
# dim is specified in args
assert 'dim' not in kwargs, (args, kwargs)
dim = args[dim_pos]
args0 = args[:dim_pos] + (None,) + args[dim_pos + 1:]
else:
# dim may be specified in kwargs
dim = kwargs.pop('dim', None)
args0 = args
# dimensions along which the reduction operation is applied:
dim_ = torch._masked._canonical_dim(dim, input.ndim)
# slices in product(*ranges) define all elementary slices:
ranges: List[Any] = []
# shape of output for the keepdim=True case:
shape = []
for i in range(input.ndim):
if i in dim_:
ranges.append((slice(None),))
shape.append(1)
else:
ranges.append(range(input.shape[i]))
shape.append(input.shape[i])
# keepdim=True version of the output, filled with nan or 0:
output = input.new_full(shape, float('nan') if dtype.is_floating_point else 0, dtype=dtype)
# apply op to all elementary slices:
inpmask = torch._masked._input_mask(input, mask=mask)
for s in itertools.product(*ranges):
# data of an elementary slice is 1D sequence and has only
# masked-in elements:
data = input[s].flatten()[inpmask[s].flatten().argwhere()]
if not data.numel():
# empty elementary slice
continue
output[s][0] = op(data, *args0, **kwargs)
if not keepdim:
# reshape output for the keepdim=False case
shape = [shape[i] for i in range(len(shape)) if i not in dim_]
output = output.reshape(shape)
return output
|
ccc1364404ca359732f85a470284310b852f4287
| 34,755 |
def index_gen(x):
"""Index generator.
"""
indices = np.arange(*x, dtype='int').tolist()
inditer = it.product(indices, indices)
return inditer
|
1ef5cd55ea7a8627bc2a1a14425035a2c5f7172e
| 34,756 |
def pad_xr_dims(input_xr, padded_dims=None):
"""Takes an xarray and pads it with dimensions of size 1 according to the supplied dims list
Inputs
input_xr: xarray to pad
padded_dims: ordered list of final dims; new dims will be added with size 1. If None,
defaults to standard naming scheme for pipeline
Outputs
padded_xr: xarray that has had additional dims added of size 1
Raises:
ValueError: If padded dims includes existing dims in a different order
ValueError: If padded dims includes duplicate names
"""
if padded_dims is None:
padded_dims = ["fovs", "stacks", "crops", "slices", "rows", "cols", "channels"]
# make sure that dimensions which are present in both lists are in same order
old_dims = [dim for dim in padded_dims if dim in input_xr.dims]
if not old_dims == list(input_xr.dims):
raise ValueError("existing dimensions in the xarray must be in same order")
if len(np.unique(padded_dims)) != len(padded_dims):
raise ValueError('Dimensions must have unique names')
# create new output data
output_vals = input_xr.values
output_coords = []
for idx, dim in enumerate(padded_dims):
if dim in input_xr.dims:
# dimension already exists, using existing values and coords
output_coords.append(input_xr[dim])
else:
output_vals = np.expand_dims(output_vals, axis=idx)
output_coords.append(range(1))
padded_xr = xr.DataArray(output_vals, coords=output_coords, dims=padded_dims)
return padded_xr
|
73f558b010527360f47b6558350a929041557cce
| 34,757 |
from datetime import datetime
def get_list_projects_xlsx(proposals):
"""
Excel export of proposals with sharelinks
:param proposals:
:return:
"""
wb = Workbook()
# grab the active worksheet
ws = wb.active
ws.title = "BEP Projects"
ws['A1'] = 'Projects from {}'.format(settings.NAME_PRETTY)
ws['A1'].style = 'Headline 2'
ws['F1'] = "Exported on: " + str(datetime.now())
header = ['Title', 'Track', 'Research Group', 'Responsible', 'email', 'Sharelink']
h = ['A', 'B', 'C', 'D', 'E', 'F']
ws.append(header)
for hr in h:
ws.column_dimensions[hr].width = 25
ws[hr + '2'].style = 'Headline 3'
ws.column_dimensions['F'].width = 100
for p in proposals:
ws.append([p.Title, str(p.Track), str(p.Group), p.ResponsibleStaff.usermeta.get_nice_name(), p.ResponsibleStaff.email,
get_share_link(p.pk)])
return save_virtual_workbook(wb)
|
668e70eb5d9d61ac879a270cdce54953fd7c2f5b
| 34,758 |
import logging
def get(model=None, algorithm=None, trainer=None):
"""Get an instance of the server."""
if hasattr(Config().server, 'type'):
server_type = Config().server.type
else:
server_type = Config().algorithm.type
if server_type in registered_servers:
logging.info("Server: %s", server_type)
registered_server = registered_servers[server_type](model=model, algorithm=algorithm, trainer=trainer)
else:
raise ValueError('No such server: {}'.format(server_type))
return registered_server
|
e2c93998424ea381b8638408512181e5c50a2839
| 34,759 |
def par_impar(n):
"""
Par Impar
Admite un numero y evalua si es par
Parameters
-----------
n : int
Numero a evaluar
Returns
-------
bool
Resultado de evaluar si es par el numero
"""
if n%2 == 0 :
return True
else:
return False
|
c81141b3fad9ed2cdb5537867a7414cd4e7ec03d
| 34,760 |
import csv
def get_attacks_percent (a_data, a_index, dataset= None):
""" Return the % for each attack in a_index of the dataset """
percents = {}
attacks = {}
#for a, index in attacks_map.items():
#percents[a]= 0
for a, index in _attack_classes.items():
percents[a] = 0
total = 0
if dataset is None:
print('Dont open file here')
for row in np.transpose(a_data)[a_index]:
total += 1
for a, index in _attack_classes_num.items():
#print(str(row))
if row[a_index] == index :
percents[a]=percents[a]+1
break
else:
with open(dataset, 'r') as file:
reader = csv.reader(file, delimiter = ',')
for row in reader:
total += 1
for a, index in attacks_map.items():
if row[a_index] == a :
#percents[a]=percents[a]+1
four_attack = _attack_classes[row[variable_index]]
percents[four_attack] = percents[four_attack]+1
break
for a, index in attacks_map.items():
percents[a]= 100*percents[a]/total
return percents
|
bd86b9ef507790aca4be8d7a8a371e8000253065
| 34,761 |
import requests
import json
import collections
def do_login(user, password):
"""Log-in and return auth token"""
login_payload = {
"login": {
"email": user,
"password": password
}
}
login_response = requests.post(URL_LOGIN, json=login_payload)
login_ans = json.loads(login_response.text)
id_token = login_ans['auth']['id_token']
token = collections.namedtuple('AuthToken', ['user_id', 'header'])
token.user_id = login_ans['user']['id']
token.header = {'Authorization': 'Bearer ' + id_token}
return token
|
fe3a8158e7539f69eaa6c7f3daf4e9a5c3fa0770
| 34,762 |
def pow(x, y):
"""Return x raised to the power y.
:type x: numbers.Real
:type y: numbers.Real
:rtype: float
"""
return 0.0
|
618f0e03b7d6f476d7fbde8fcbeb699ce23d2a6c
| 34,763 |
def make_secondary_variables():
"""Make secondary variables for modelling"""
secondary = read_secondary()
secondary_out = secondary.rename(columns={"geography_code": "geo_cd"})[
["geo_cd", "variable", "value"]
]
compl = make_complexity()
return pd.concat([secondary_out, compl])
|
0faaa916c1251fa61b3438f59b05c5ff21f8f253
| 34,764 |
def normalize_tuple(value, rank):
"""Repeat the value according to the rank."""
value = nest.flatten(value)
if len(value) > rank:
return (value[i] for i in range(rank))
else:
return tuple([value[i] for i in range(len(value))] +
[value[-1] for _ in range(len(value), rank)])
|
1c1c105c50399770029e48c05ba998b921e8c834
| 34,765 |
def standard_Purge(*args):
"""
* Deallocates the storage retained on the free list and clears the list. Returns non-zero if some memory has been actually freed.
:rtype: int
"""
return _Standard.standard_Purge(*args)
|
7accaa2d1686ef54a2e233f563ee47f962fa418a
| 34,766 |
def metrics(label: np.ndarray, pred: np.ndarray, num_class: int):
"""
:param label: (h, w)
:param pred: (h, w)
:param num_class:
:return:
"""
label = label.astype(np.uint8)
pred = np.round(pred)
mat: np.ndarray = np.zeros((num_class, num_class))
[height, width] = label.shape
for i in range(height):
for j in range(width):
pixel_label = label[i][j]
pixel_pred = pred[i][j]
mat[pixel_label][pixel_pred] += 1
total_is = np.sum(mat, axis=1) # 水平和
total_n_jis = np.sum(mat, axis=0) # 竖直和
ious = [] # a list of intersection over union for each i
t_n_ii = [] # the total number of pixels of class i that is correctly predicted
total_iou_n_ii = [] # a list of (iou * n_ii) for each i
total_n_ii_divied_t_i = []
for i in range(1, num_class): # calculate iou for class in [1, num_class]
n_ii = mat[i][i] # the number of pixels of class i that is correctly predicted
total_i = total_is[i] # the total number of pixels of class i
total_n_ji = total_n_jis[i] # the total number of pixels predicted to be class i
# Ignore the category that doesn't show in the image.
if total_i == 0:
continue
t_n_ii.append(n_ii)
total_n_ii_divied_t_i.append(n_ii * 1.0 / total_i)
# Calculate iou.
if n_ii == 0:
iou = 0 # intersection over union
else:
iou = (n_ii + 0.0) / (total_i + total_n_ji - n_ii)
total_iou_n_ii.append(iou * total_i)
ious.append(iou)
# print(ious)
pixel_acc = np.sum(t_n_ii) / np.sum(mat[1:, 1:])
mean_acc = np.sum(total_n_ii_divied_t_i) / len(t_n_ii)
mean_intersection_over_union = np.mean(np.array(ious))
frequency_weighted_iu = np.sum(total_iou_n_ii) * 1.0 / np.sum(mat)
return pixel_acc, mean_acc, mean_intersection_over_union, frequency_weighted_iu
|
26409f0645fa0f47b4241cbb2c9804299ed34f22
| 34,767 |
def is_transpositionally_related(set1, set2):
"""
Returns a tuple consisting of a boolean that tells
if the two sets are transpositionally related, the
transposition that maps set1 to set2, and the
transposition that maps set2 to set1. If the boolean
is False, the transpositions are None.
Params:
* set1 (tuple or string): the pitches of the first set
* set2 (tuple or string): the pitches of the second set
"""
if isinstance(set1, tuple):
set1 = _tuple_to_string(set1)
if isinstance(set2, tuple):
set2 = _tuple_to_string(set2)
set1 = normalize(set1)
set2 = normalize(set2)
set1 = normal_form(set1)
set2 = normal_form(set2)
set1_intervals = get_intervals(set1, use_mod_12=True)
set2_intervals = get_intervals(set2, use_mod_12=True)
if set1_intervals != set2_intervals:
return (False, None, None)
# set2 = Tn(set1)
# set1 = Tm(set2)
set2_minus_set1 = [mod_12(x[1] - x[0]) for x in zip(set1, set2)]
if float(sum(set2_minus_set1)) / float(len(set2_minus_set1)) \
== float(set2_minus_set1[0]):
# return (True, n, m)
return (True, set2_minus_set1[0], mod_12(12 - set2_minus_set1[0]))
else:
return (False, None, None)
|
4eb7375de84af2b531b330bf5a0aaa6d3b7825dc
| 34,769 |
from typing import List
def find_dimension_coordinate_mismatch(
first_cube: Cube, second_cube: Cube, two_way_mismatch: bool = True
) -> List[str]:
"""Determine if there is a mismatch between the dimension coordinates in
two cubes.
Args:
first_cube:
First cube to compare.
second_cube:
Second cube to compare.
two_way_mismatch:
If True, a two way mismatch is calculated e.g.
second_cube - first_cube AND
first_cube - second_cube
If False, a one way mismatch is calculated e.g.
second_cube - first_cube
Returns:
List of the dimension coordinates that are only present in
one out of the two cubes.
"""
first_dim_names = [coord.name() for coord in first_cube.dim_coords]
second_dim_names = [coord.name() for coord in second_cube.dim_coords]
if two_way_mismatch:
mismatch = list(set(second_dim_names) - set(first_dim_names)) + list(
set(first_dim_names) - set(second_dim_names)
)
else:
mismatch = list(set(second_dim_names) - set(first_dim_names))
return mismatch
|
64ffb776e652a68aee39ccfcb4b5dc718ca46b44
| 34,770 |
def patch_python(filename, dart=False, python='PYTHONJS', backend=None):
"""Rewrite the Python code"""
code = patch_assert(filename)
## a main function can not be simply injected like this for dart,
## because dart has special rules about what can be created outside
## of the main function at the module level.
#if dart:
# out = []
# main_inserted = False
# for line in code.splitlines():
# if line.startswith('TestError') or line.startswith('TestWarning'):
# if not main_inserted:
# out.append('def main():')
# main_inserted = True
# out.append( '\t'+line )
# else:
# out.append( line )
# code = '\n'.join( out )
a = [
_patch_header,
'PYTHON="%s"'%python,
'BACKEND="%s"'%backend,
code
]
if not dart:
a.append( 'main()' )
return '\n'.join( a )
|
20909844b686e9887aee893c9d7cb2759c64bb75
| 34,771 |
from typing import List
from typing import Union
def get_standard_binary_metrics() -> List[Union[AUC, str, BinaryMetric]]:
"""Return standard list of binary metrics.
The set of metrics includes accuracy, balanced accuracy, AUROC, AUPRC,
F1 Score, Recall, Specificity, Precision, Miss rate,
Fallout and Matthews Correlation Coefficient.
"""
return [
*get_minimal_multiclass_metrics(),
F1Score(name="f1_score"),
BalancedAccuracy(name="balanced_accuracy"),
Specificity(name="specificity"),
MissRate(name="miss_rate"),
FallOut(name="fall_out"),
MatthewsCorrelationCoefficient(name="mcc"),
]
|
7f21eb48a84cda194343c75e9416deb6f7157081
| 34,772 |
def Xor(n):
"""Return a DataSet with n examples of 2-input xor."""
return Parity(2, n, name="xor")
|
5f4682413eb21ecb05506762405347678f7ad699
| 34,773 |
def feature_selection(dataframe, method, missing_value_threshold=60, variance_threshold=0, correlation_threshold=0.75,
target_variable=None,
task=None, algorithm='RandomForest', n_features_to_select=5, scoring=None, cv=5, n_jobs=None):
"""
This function is used for selecting set of important Independent features for given dataset.
Parameters:
dataframe : Dataset in the form of Dataframe as input.
method: Method for Feature Selection;
Valid parameter:['missing_value_filter','low_variance_filter','feature_importance','high_correlation_filter','Forward','Backward']
missing_value_threshold: Mising threshold value for Missing value filter method, default value is 60
variance_threshold: Variance threshold value for Low variance filter method, default value is 0
correlation_threshold: Integer value (0,1),Correlation threshold value for High Correlation Filter method ;default value is 0.75
target_variable: Consider dependent variable of dataset
task: Used for feature importance, forward and backward methods;
Valid parameter:["Classification","Regression"]
#estimators: algorithm to use. used for feature importance, forward and backward methods.
algorithm: algorithm to use. used for feature importance, forward and backward methods.
n_features_to_select: Any Integer value less than total number of independent features in dataset, the number of features to select
for forward and backward method ; default = 5
scoring: metric function defined for Classification and Regression task for forward and backward method.
cv: Integer value, determines the cross-validation splitting strategy.
n_jobs: Number of jobs to run in parallel.
:rtype: Modified data wirh respect to the input method.
"""
# To check if columns dataframe is not empty list
assert len(dataframe) > 0, "Please ensure that Dataframe is not empty"
# To make sure that input provided with Pandas Dataframe
assert (isinstance(dataframe, pd.DataFrame)), "Make sure Input is DataFrame"
# Check supported methods
allowed_method = ['missing_value_filter', 'low_variance_filter', 'feature_importance', 'high_correlation_filter',
'forward', 'backward']
method = method.lower()
assert method in allowed_method, f"Please select *method* from {allowed_method}"
if method == 'missing_value_filter':
# Calculate missing ratio percentage of each column in dataframe
missing_value = dataframe.isnull().sum() / len(dataframe)
# Checking of Missing value Threshold
missing_value_imputed = missing_value[missing_value <= missing_value_threshold]
reduced_data = dataframe[missing_value_imputed.index]
elif method == 'low_variance_filter':
df = dataframe.select_dtypes([np.number])
data_scaled = normalize(df)
data_scaled = pd.DataFrame(data_scaled)
variance = data_scaled.var()
# Checking of Variance Threshold
high_variance_columns = list(variance[variance >= variance_threshold].index)
reduced_data = dataframe.iloc[:, high_variance_columns]
elif method == 'high_correlation_filter':
df_corr = dataframe.corr()
# Retrieving upper triangle correlation coefficient from correlation grid
df_corr = df_corr.mask(np.tril(np.ones(df_corr.shape)).astype(np.bool))
# Checking of Correlation threshold
if correlation_threshold > 0:
reduced_data = df_corr[df_corr >= correlation_threshold].stack().reset_index()
else:
reduced_data = df_corr[df_corr <= correlation_threshold].stack().reset_index()
reduced_data = reduced_data.rename(
columns={"level_0": 'Feature_1', "level_1": 'Feature_2', 0: 'correlation_coefficient'})
elif method == 'feature_importance':
if target_variable is None:
raise ValueError("Please enter a valid target_variable")
# Check supported models
allowed_task = ['classification', 'regression']
if task is None:
raise ValueError(f"Please select *task* from {allowed_task}")
task = task.lower()
assert task in allowed_task, f"Please select *task* from {allowed_task}"
# Check supported models
allowed_algorithm = ["RandomForest", "XGradientBoosting", "DecisionTrees", "ExtraTrees"]
assert algorithm in allowed_algorithm, f"Please select *algorithm* from {allowed_algorithm}"
X = dataframe.drop(target_variable, axis=1)
y = dataframe[target_variable]
# preparation of dataset
X_train, y_train = data_preparation(X, y)
# Checking for algorithm and fitting of algorithm
if task is None:
raise ValueError("Please select Classification or Regression for 'task'")
X = dataframe.drop(target_variable, axis=1)
if algorithm == "RandomForest":
model = RandomForestClassifier() if task == 'classification' else RandomForestRegressor()
elif algorithm == "XGradientBoosting":
model = XGBClassifier() if task == 'classification' else XGBRegressor()
elif algorithm == "DecisionTrees":
model = DecisionTreeClassifier() if task == 'classification' else DecisionTreeRegressor()
elif algorithm == "ExtraTrees":
model = ExtraTreesClassifier() if task == 'classification' else ExtraTreeRegressor()
# Model-fitting
model.fit(X_train, y_train)
reduced_data = pd.DataFrame({'Features': X.columns, 'Importance': model.feature_importances_})
reduced_data = reduced_data.sort_values(by='Importance', ascending=False)
elif method == "forward" or method == "backward":
if target_variable is None:
raise ValueError("Please enter a valid target_variable")
direction = 'forward' if method == 'forward' else 'backward'
# Check supported models
allowed_task = ['classification', 'regression']
if task is None:
raise ValueError(f"Please select *task* from {allowed_task}")
task = task.lower()
assert task in allowed_task, f"Please select *task* from {allowed_task}"
# Check supported models
allowed_algorithm = ["RandomForest", "XGradientBoosting", "DecisionTrees", "ExtraTrees"]
allowed_algorithm = allowed_algorithm + [
"KNearestNeighbour"] if task == 'classification' else allowed_algorithm + ["LogisticRegression",
"LinearRegression"]
assert algorithm in allowed_algorithm, f"Please select *algorithm* from {allowed_algorithm}"
X = dataframe.drop(target_variable, axis=1)
y = dataframe[target_variable]
# prepare input data
X_train, y_train = data_preparation(X, y)
# Checking for algorithm and fitting of algorithm
if algorithm == "RandomForest":
estimator = RandomForestClassifier() if task == 'classification' else RandomForestRegressor()
elif algorithm == "XGradientBoosting":
estimator = XGBClassifier() if task == 'classification' else XGBRegressor()
elif algorithm == "DecisionTrees":
estimator = DecisionTreeClassifier() if task == 'classification' else DecisionTreeRegressor()
elif algorithm == "ExtraTrees":
estimator = ExtraTreesClassifier() if task == 'classification' else ExtraTreeRegressor()
elif algorithm == "KNearestNeighbour":
estimator = KNeighborsClassifier()
elif algorithm == "LinearRegression":
estimator = LinearRegression()
elif algorithm == "LogisticRegression":
estimator = LogisticRegression()
# Fitting of Sequential Feature Selector
feature_selector = SequentialFeatureSelector(estimator=estimator, n_features_to_select=n_features_to_select,
direction=direction,
scoring=scoring, cv=cv, n_jobs=n_jobs).fit(X_train, y_train)
feature_names = X.columns.values
reduced_data = pd.DataFrame()
reduced_data['Features_selected'] = feature_names[feature_selector.get_support()]
return reduced_data
|
1b1b760f39a8e679ab0a3ab5d22f55047c3a71ab
| 34,774 |
import numpy
def shaped_reverse_arange(shape, xp=nlcpy, dtype=numpy.float32):
"""Returns an array filled with decreasing numbers.
Args:
shape(tuple of int): Shape of returned ndarray.
xp(numpy or nlcpy): Array module to use.
dtype(dtype): Dtype of returned ndarray.
Returns:
numpy.ndarray or nlcpy.ndarray:
The array filled with :math:`N, \\cdots, 1` with specified dtype
with given shape, array module.
Here, :math:`N` is the size of the returned array.
If ``dtype`` is ``numpy.bool_``, evens (resp. odds) are converted to
``True`` (resp. ``False``).
"""
dtype = numpy.dtype(dtype)
size = internal.prod(shape)
a = numpy.arange(size, 0, -1)
if dtype == '?':
a = a % 2 == 0
elif dtype.kind == 'c':
a = a + a * 1j
if a.size > 0:
return xp.array(a.astype(dtype).reshape(shape))
else:
return xp.array(a.astype(dtype))
|
3f2634e8299d52a54b2fe2baba41b25187b1c720
| 34,775 |
def then(value):
"""
Creates an action that ignores the passed state and returns the value.
>>> then(1)("whatever")
1
>>> then(1)("anything")
1
"""
return lambda _state: value
|
5cf3f7b64b222a8329e961fa6c8c70f6c2c4cab0
| 34,776 |
def compute_cvm(predictions, masses, n_neighbours=200, step=50):
"""
Computing Cramer-von Mises (cvm) metric on background events: take average of cvms calculated for each mass bin.
In each mass bin global prediction's cdf is compared to prediction's cdf in mass bin.
:param predictions: array-like, predictions
:param masses: array-like, in case of Kaggle tau23mu this is reconstructed mass
:param n_neighbours: count of neighbours for event to define mass bin
:param step: step through sorted mass-array to define next center of bin
:return: average cvm value
"""
predictions = np.array(predictions)
masses = np.array(masses)
assert len(predictions) == len(masses)
# First, reorder by masses
predictions = predictions[np.argsort(masses)]
# Second, replace probabilities with order of probability among other events
predictions = np.argsort(np.argsort(predictions, kind='mergesort'), kind='mergesort')
# Now, each window forms a group, and we can compute contribution of each group to CvM
cvms = []
for window in __rolling_window(predictions, window_size=n_neighbours)[::step]:
cvms.append(__cvm(subindices=window, total_events=len(predictions)))
return np.mean(cvms)
|
cc34cb799211016d04d0431479252fb7fc77f186
| 34,777 |
import tqdm
def get_pmat(index_df:PandasDf, properties:dict) -> tuple((PandasDf, PandasDf)):
"""
Run Stft analysis on signals retrieved using rows of index_df.
Parameters
----------
index_df : PandasDf, experiment index
properties: Dict
Returns
-------
index_df: PandasDf, experiment index
power_df: PandasDf, with power matrix and frequency
"""
# drop rows containing NaNs
index_df = index_df.dropna().reset_index()
index_df = index_df.drop(['index'], axis = 1)
# create empty series dataframe
df = pd.DataFrame(np.empty((len(index_df), 2)), columns = ['freq', 'pmat'], dtype = object)
for i in tqdm(range(len(index_df))): # iterate over dataframe
# get properties
file_properties = index_df[AdiGet.input_parameters].loc[i].to_dict()
# get signal
signal = AdiGet(file_properties).get_data_adi()
# add sampling rate
properties.update({'sampling_rate':int(file_properties['sampling_rate'])})
# Init Stft object with required properties
selected_keys = Properties.types.keys()
selected_keys = list(selected_keys)
# select key-value pairs from dictionary
selected_properties = {x: properties[x] for x in selected_keys}
# convert time series to frequency domain
stft_obj = Stft(selected_properties)
df.at[i, 'freq'], df.at[i, 'pmat'] = stft_obj.run_stft(signal)
return index_df, df
|
79da78dc8c9e63e8f8aee1ac96a079a5d6c626ab
| 34,778 |
def delete_upload_collection(upload_id: str) -> str:
"""Delete a multipart upload collection."""
uploads_db = uploads_database(readonly=False)
if not uploads_db.has_collection(upload_id):
raise UploadNotFound(upload_id)
uploads_db.delete_collection(upload_id)
return upload_id
|
c110ddf2d60e2f55a16b550f48abdfbc99c70975
| 34,779 |
import numpy
def setup_hull(domain,isDomainFinite,abcissae,hx,hpx,hxparams):
"""setup_hull: set up the upper and lower hull and everything that
comes with that
Input:
domain - [.,.] upper and lower limit to the domain
isDomainFinite - [.,.] is there a lower/upper limit to the domain?
abcissae - initial list of abcissae (must lie on either side
of the peak in hx if the domain is unbounded
hx - function that evaluates h(x)
hpx - function that evaluates hp(x)
hxparams - tuple of parameters for h(x) and h'(x)
Output:
list with:
[0]= c_u
[1]= xs
[2]= h(xs)
[3]= hp(xs)
[4]= zs
[5]= s_cum
[6]= hu(zi)
History:
2009-05-21 - Written - Bovy (NYU)
"""
nx= len(abcissae)
#Create the output arrays
xs= numpy.zeros(nx)
hxs= numpy.zeros(nx)
hpxs= numpy.zeros(nx)
zs= numpy.zeros(nx-1)
scum= numpy.zeros(nx-1)
hus= numpy.zeros(nx-1)
#Function evaluations
xs= numpy.sort(abcissae)
for ii in range(nx):
hxs[ii]= hx(xs[ii],hxparams)
hpxs[ii]= hpx(xs[ii],hxparams)
#THERE IS NO CHECKING HERE TO SEE WHETHER IN THE INFINITE DOMAIN CASE
#WE HAVE ABCISSAE ON BOTH SIDES OF THE PEAK
#zi
for jj in range(nx-1):
zs[jj]= (hxs[jj+1]-hxs[jj]-xs[jj+1]*hpxs[jj+1]+xs[jj]*hpxs[jj])/(
hpxs[jj]-hpxs[jj+1])
#hu
for jj in range(nx-1):
hus[jj]= hpxs[jj]*(zs[jj]-xs[jj])+hxs[jj]
#Calculate cu and scum
if isDomainFinite[0]:
scum[0]= 1./hpxs[0]*(numpy.exp(hus[0])-numpy.exp(
hpxs[0]*(domain[0]-xs[0])+hxs[0]))
else:
scum[0]= 1./hpxs[0]*numpy.exp(hus[0])
if nx > 2:
for jj in range(nx-2):
if hpxs[jj+1] == 0.:
scum[jj+1]= (zs[jj+1]-zs[jj])*numpy.exp(hxs[jj+1])
else:
scum[jj+1]=1./hpxs[jj+1]*(numpy.exp(hus[jj+1])-numpy.exp(hus[jj]))
if isDomainFinite[1]:
cu=1./hpxs[nx-1]*(numpy.exp(hpxs[nx-1]*(
domain[1]-xs[nx-1])+hxs[nx-1]) - numpy.exp(hus[nx-2]))
else:
cu=- 1./hpxs[nx-1]*numpy.exp(hus[nx-2])
cu= cu+numpy.sum(scum)
scum= numpy.cumsum(scum)/cu
out=[]
out.append(cu)
out.append(xs)
out.append(hxs)
out.append(hpxs)
out.append(zs)
out.append(scum)
out.append(hus)
return out
|
9848b9cd08724b4c830d7590cd48a2d3047422e7
| 34,780 |
def get_candidates(arrange_mode_attr):
"""
According current `arrange_mode` and `condition`, to find out
candidates data returns to caller
return candidates for displaying
Variables:
arrange_mode: Different mode has different method to select candidates
arrange_condition: The type_id list of data_type will be used by some
arrange_mode
orderById: According to arrange_mode, the candidates should sort by id
or not
conditionAssigned: According to arrange_mode, the candidates should in
arrange_condition or not.
"""
try:
return_msg = {}
return_msg["result"] = "fail"
deal_result = []
try:
arrange_mode = arrange_mode_attr["arrange_mode"]
arrange_condition = arrange_mode_attr.get('condition',[])
except:
return_msg["error"] = "input parameter missing"
return return_msg
orderById = ModeUtil.checkOrderById(arrange_mode)
conditionAssigned = ModeUtil.checkConditionAssigned(arrange_mode)
with TextDao() as textDao:
test_candidates= textDao.findActivities(conditionAssigned,orderById,arrange_mode,arrangeCondition=arrange_condition)
with ImageDao() as imageDao:
image_candidates= imageDao.findActivities(conditionAssigned,orderById,arrange_mode,arrangeCondition=arrange_condition)
candidates = list(test_candidates) + list(image_candidates)
for result_row in candidates:
if len(result_row)==2:
deal_result.append([result_row[0], int(result_row[1])])
elif len(result_row)==3:
deal_result.append([result_row[0], int(result_row[1]), float(result_row[2])])
else:
"DO NOTHING"
candidates = ModeUtil.selectDisplayCandidates(arrange_mode,deal_result)
return_msg["ans_list"] = candidates
return_msg["result"] = "success"
return return_msg
except DB_Exception as e:
return_msg["error"] = gen_error_msg(e.args[1])
return return_msg
|
1be9737ec48804589c8a711f7ae1ae0c70523020
| 34,781 |
def img_to_array(model_input: any) -> any:
"""Converts the incoming image into an array."""
model_input = keras.preprocessing.image.img_to_array(model_input)
return model_input
|
bee59b1d6da102f2f11410f38c3e5587a28cf7b4
| 34,782 |
def add_word_vector_feature(dataset,
propositionSet,
parsedPropositions,
word2VecModel=None,
pad_no=35,
has_2=True,
):
"""Add word2vec feature to the dataset
"""
if word2VecModel is None:
KV = gensim.models.KeyedVectors
word2VecModel = KV.load_word2vec_format(WORD2WEC_EMBEDDING_FILE,
binary=True)
wordVectorFeature = list()
feature_vector = np.zeros(300)
for proposition in parsedPropositions:
propositionVector = list()
for word in proposition:
if word[0] in word2VecModel.vocab:
feature_vector = word2VecModel[word[0]]
propositionVector.append(feature_vector)
wordVectorFeature.append(propositionVector)
wordVectorFeature = np.array(wordVectorFeature)
wordVectorFeature = kp_pad_sequences(wordVectorFeature,
maxlen=pad_no, value=0,
padding='post', dtype=float)
wordVectorFrame = pd.DataFrame({'arg1': propositionSet,
'vector1': wordVectorFeature.tolist()})
dataset = pd.merge(dataset, wordVectorFrame, on='arg1')
if has_2:
wordVectorFrame = wordVectorFrame.rename(columns={'arg1': 'arg2',
'vector1': 'vector2',
})
dataset = pd.merge(dataset, wordVectorFrame, on='arg2')
return dataset
|
d9708b61c1a7f16d3ee35f9dfa4ccc2d0b8c96b7
| 34,783 |
def clustering(vertice):
"""Calcula el coeficiente de clustering de un vertice.
Obs: Devuelve -1 si el coeficiente no es calculable.
Pre: EL vertice existe y es de clase Vertice.
"""
# Cuento las conexiones (por duplicado)
aristas_entre_vecinos = 0
for vecino in vertice.iter_de_adyacentes():
for segundo_vecino in vecino.iter_de_adyacentes():
if vertice.esta_conectado_a(segundo_vecino):
aristas_entre_vecinos += 1
# Calculo coeficiente
try:
ady = vertice.cantidad_adyacentes()
max_aristas_posibles = ady * (ady-1)
return aristas_entre_vecinos / float(max_aristas_posibles)
except ZeroDivisionError:
return -1
|
0654ab7207174c47d9d0b626ca92894e6330612f
| 34,784 |
import requests
def main(formato, full=False):
"""
Get dict of mains and dict of sides.
:formato: str (e.g.: "standard" or "modern")
:full: bool (True for scraping all decks from /full#paper and False for scraping only first decks from /#paper url)
:return:
"""
url_start = "https://www.mtggoldfish.com/metagame/"
if full is True:
url_end = "/full#paper"
else:
url_end = "/#paper"
mainboards = dict()
sideboards = dict()
url = url_start + formato + url_end
print(f"Getting links from {url}")
page = requests.get(url)
links = grab_links(page.text).values()
print(f"{len(links)} links grabbed!!\n")
for link in links:
print(f"Getting data from:\n{link}")
try:
page = requests.get(link).text
name, mainb, side = scrape_deck_page(page)
if name in mainboards:
print(f"{name} is a CONFLICTING NAME and will not be saved.")
else:
mainboards[name] = mainb
sideboards[name] = side
except TimeoutError:
print("The connection FAILED due to a TimeOut Error.")
except Exception as e:
print(e, "\n", link, "will not be scraped")
return mainboards, sideboards
|
2f5bdcb98185e11bafc1b5aba0df28962c6c4890
| 34,785 |
def pipeline(img, mtx, dist):
"""
The pipeline applies all image pre-processing steps to the image (or video frame).
1) Undistort the image using the given camera matrix and the distortion coefficients
2) Warp the image to a bird's-eye view
3) Apply color space conversion
:param img: Input image (BGR)
:param mtx: Camera matrix
:param dist: Distortion coefficients
:return: Binary image, ideally only of the lane lines (in bird's-eye view)
"""
# Undistort image
dst = undistort(img, mtx, dist)
# Apply perpective transfomation
warped = warp(dst)
# Apply color space operations
binary = cvt_color_space(warped)
return binary
|
dd84f0296eb22cc41e0795c4e4c3821deb8e0896
| 34,786 |
def get_coverage_value(coverage_report):
"""
extract coverage from last line:
TOTAL 116 22 81%
"""
coverage_value = coverage_report.split()[-1].rstrip('%')
coverage_value = int(coverage_value)
return coverage_value
|
ffd47b6c4ecec4851aab65dcb208ef776d12e36f
| 34,787 |
import textwrap
def collapse_single_path(digraph, path):
"""
:param digraph: networkx.DiGraph
:param path: list of nodes (simple path of digraph)
:return: networkx.DiGraph with only first and last nodes and one edge between them
The original graph is an attribute of the edge
"""
digraph_ordered = digraph.subgraph(
path
) # in each element node 0 is card, node 1 is text part
res = nx.DiGraph()
# Add first and last nodes with their respective attributes
res.add_node(path[0], **digraph.nodes[path[0]])
res.add_node(path[-1], **digraph.nodes[path[-1]])
# edge_attr = {'full_original_path_graph': digraph}
edge_attr = {}
labels = []
for i, node in enumerate(path):
label = ""
if not i:
continue
# dict: attributes of each edge in order
e_at = digraph_ordered.edges[path[i - 1], node]
edge_attr[f"edge-{i}"] = e_at
label += e_at.get("part_type_full", None) or e_at.get("label") + ":"
if dict(digraph_ordered[node]):
# dict: attributes of each node in order
n_at = dict(digraph_ordered.nodes[node])
edge_attr[f"node-{i}"] = dict(digraph_ordered.nodes[node])
label += n_at.get("label")
labels.append(label)
res.add_edge(
path[0],
path[-1],
**edge_attr,
label="".join(textwrap.wrap(f'{" | ".join(labels)}')),
)
return res
|
f65c98bdc29ffc2cc51f8570f545093fb4afa709
| 34,788 |
import random
def generate_data(train_test_split):
""" Generates the training and testing data from the splited data
:param train_test_split:
train_test_split - array[list[list]]: Contains k arrays of training and test data splices of dataset
Example: [[[0.23, 0.34, 0.33, 0.12, 0.45, 0.68], [0.13, 0.35, 0.01, 0.72, 0.25, 0.08], ....] , .... ,
[[0.12, 0.45, 0.23, 0.64, 0.67, 0.98], [0.20, 0.50, 0.23, 0.12, 0.32, 0.88], ....]]
:param test_index:
test_index - int : Index of the test data to be split from the train_test_split
Example: 5
Yields:
train_data:
train_data - array[list]: Contains k arrays of train data of dataset
Example: [[0.23, 0.34, 0.33, 0.12, 0.45, 0.68], [0.13, 0.35, 0.01, 0.72, 0.25, 0.08], ... , .... ,
[0.12, 0.45, 0.23, 0.64, 0.67, 0.98], [0.20, 0.50, 0.23, 0.12, 0.32, 0.88], ....]
train_data:
test_data - array[list]: Contains k arrays of test data of dataset
Example: [[0.23, 0.34, 0.33, 0.12, 0.45, 0.68], [0.13, 0.35, 0.01, 0.72, 0.25, 0.08], ... , .... ,
[0.12, 0.45, 0.23, 0.64, 0.67, 0.98], [0.20, 0.50, 0.23, 0.12, 0.32, 0.88], ....]
"""
test_index = eval(
input("\nPlease enter the partition number to be used as test data (Press 0 for random partition): "))
while type(test_index) != int:
test_index = eval(input("\nPlease enter an integer values for the partition to be used as test data: "))
split = train_test_split[:]
if test_index != 0:
real_index = test_index - 1
else:
real_index = random.randrange(0, len(split))
test_data = split[real_index]
split.remove(test_data)
train_data = []
for x in split:
for y in x:
train_data.append(y)
return train_data, test_data
|
8de3cbab8b58be3ff7ff289d9aa8d3cd9e2581f8
| 34,789 |
import time
def process_roses(stations, ncpus, roses_fp, discard_obs_fp):
"""
For each station we need one trace for each direction.
Each direction has a data series containing the frequency
of winds within a certain range.
Columns:
sid - stationid
direction_class - number between 0 and 35. 0 represents
directions between 360-005º (north), and so forth by 10 degree
intervals.
speed_range - text fragment from luts.py for the speed class
month - 0 for year, 1-12 for month
Args:
stations (pandas.Dataframe): Processed raw station data
Returns:
filepath where pre-processed wind rose data was saved
"""
print("Preprocessing wind rose frequency counts.")
tic = time.perf_counter()
# drop gusts column, discard obs with NaN in direction or speed
stations = stations.drop(columns="gust_mph").dropna()
# set all nonzero wind speeds with 0 direction to 360. This might not be necessary.
stations.loc[(stations["wd"] == 0) & (stations["ws"] != 0), "wd"] = 360
# first process roses for all available stations - that is, stations
# with data at least as old as 2010-01-01
min_ts = stations.groupby("sid")["ts"].min()
keep_sids = min_ts[min_ts < pd.to_datetime("2010-06-01")].index.values
# stations to be used in the summary
summary_stations = stations[stations["sid"].isin(keep_sids)].copy()
# Set the decade column to "none" to indicate these are for all available data
summary_stations["decade"] = "none"
# set month column to 0 for annual rose data
summary_stations["month"] = 0
# drop calms for chunking to rose
summary_stations = summary_stations[summary_stations["ws"] != 0].reset_index(
drop=True
)
# create summary rose data
# break out into df by station for multithreading
station_dfs = [df for sid, df in summary_stations.groupby("sid")]
with Pool(ncpus) as pool:
summary_roses = pd.concat(pool.map(chunk_to_rose, station_dfs))
print(f"Summary roses done, {round(time.perf_counter() - tic, 2)}s.")
tic = time.perf_counter()
# now assign actual month, break up by month and station and re-process
summary_stations["month"] = summary_stations["ts"].dt.month
station_dfs = [df for items, df in summary_stations.groupby(["sid", "month"])]
with Pool(ncpus) as pool:
monthly_roses = pd.concat(pool.map(chunk_to_rose, station_dfs))
print(f"Monthly summary roses done, {round(time.perf_counter() - tic, 2)}s.")
tic = time.perf_counter()
# now focus on rose data for stations that will allow wind rose comparison
# filter out stations where first obs is more recent than 1991-01-01
keep_sids = min_ts[min_ts < pd.to_datetime("1991-01-01")].index.values
stations = stations[stations["sid"].isin(keep_sids)]
# break out into df by station for multithreading
# add 0 for month column first
stations["month"] = 0
station_dfs = [df for sid, df in stations.groupby("sid")]
# check sufficient data for each station, and return the station date for
# only 2010s and the oldest decade available between 80s and 90s
with Pool(ncpus) as pool:
compare_station_dfs = pool.map(
check_sufficient_comparison_rose_data, station_dfs
)
compare_station_dfs = [df for df in compare_station_dfs if df is not None]
# now can discard observations to achieve sampling parity between decades
with Pool(ncpus) as pool:
adjustment_results = pool.map(adjust_sampling, compare_station_dfs)
# break up tuples of data/discarded data
compare_station_dfs = [tup[0] for tup in adjustment_results]
discarded_obs = pd.concat([tup[1] for tup in adjustment_results])
print(
f"Station data adjusted, chunking comparison roses, {round(time.perf_counter() - tic, 2)}s."
)
tic = time.perf_counter()
# finally can chunk to rose for comparison roses - first filter out calms
compare_station_dfs = [
df[df["ws"] != 0].reset_index(drop=True) for df in compare_station_dfs
]
# then break up by decade for chunking to rose
compare_station_dfs = [
df
for station in compare_station_dfs
for decade, df in station.groupby("decade")
]
with Pool(ncpus) as pool:
compare_roses = pd.concat(pool.map(chunk_to_rose, compare_station_dfs))
roses = pd.concat([summary_roses, monthly_roses, compare_roses])
# concat and pickle it
roses.to_pickle(roses_fp)
discarded_obs.to_csv(discard_obs_fp)
print(f"Comparison roses done, {round(time.perf_counter() - tic, 2)}s.")
print(f"Preprocessed data for wind roses written to {roses_fp}")
print(
f"Discarded observations for comparison wind roses written to {discard_obs_fp}"
)
return roses
|
032e3f16dccd6361b036dcbd47ea41f1d723da0c
| 34,790 |
from typing import Tuple
def find_tsm_marker(content: bytes, initial_key: bytes) -> Tuple[int, int]:
"""Search binary lua for an attribute start and end location."""
start = content.index(initial_key)
brack = 0
bracked = False
for _end, char in enumerate(content[start:].decode("ascii")):
if char == "{":
brack += 1
bracked = True
if char == "}":
brack -= 1
bracked = True
if brack == 0 and bracked:
break
_end += start + 1
return start, _end
|
735bd61ed97654d9f78eee8dce055b06598ffb57
| 34,791 |
import torchvision
def create_fashion_mnist_dataset(train_transforms, valid_transforms):
""" Creates Fashion MNIST train dataset and a test dataset.
Args:
train_transforms: Transforms to be applied to train dataset.
test_transforms: Transforms to be applied to test dataset.
"""
# This code can be re-used for other torchvision Image Dataset too.
train_set = torchvision.datasets.FashionMNIST(
"./data", download=True, train=True, transform=train_transforms
)
valid_set = torchvision.datasets.FashionMNIST(
"./data", download=True, train=False, transform=valid_transforms
)
return train_set, valid_set
|
6d77907a715a9e7eabccb29dc62c4213f6748e10
| 34,792 |
def get_user_profile(request):
"""Method to get a user
Recieves: request, relevant email
Returns: httpresponse showing user
"""
if request.method != "POST":
return HttpResponse("only POST calls accepted", status=404)
#input validation
try:
user = User.objects.get(email=request.session["email"])
return JsonResponse(to_dict(UserProfile.objects.get(user=user)))
except Exception as e:
return HttpResponse(e, status=401)
|
f3298ca1f671fe28600d122ca3ea1554c26107db
| 34,793 |
async def read_product(
*, product_id: int, db_product: Product = Depends(get_product_or_404)
):
"""
Get the product type by id
"""
# Le righe commentate sotto, sostituite dalla nuova Depends
# Nota: il parametro product_id a get_product_or_404 è preso dal path
# p = session.get(Product, product_id)
# if not p:
# raise HTTPException(
# status_code=404,
# detail="Product type not found"
# )
profiling_api(
f"Product:read:by_id:{product_id}",
db_product["start_time"],
db_product["username"],
)
return db_product["db_product"]
|
8d31c7bd94959828a471bb3b521549db93b89ec3
| 34,794 |
def geometry_file_path(prefix, bath, pot):
""" geometry file path
"""
return GEOMETRY_FILE.path([prefix, bath, pot])
|
45afe3bfcb49ecfcae6876e0d1e1bb9f9e15bf80
| 34,795 |
def find_hessian_diag(point, vars=None, model=None):
"""
Returns Hessian of logp at the point passed.
Parameters
----------
model: Model (optional if in `with` context)
point: dict
vars: list
Variables for which Hessian is to be calculated.
"""
model = modelcontext(model)
H = model.fastfn(hessian_diag(model.logpt, vars))
return H(Point(point, model=model))
|
6998b6bf575babfec3fd97890bed315f26f21ac1
| 34,797 |
def apply_with_random_selector(x, func, num_cases):
"""Computes func(x, sel), with sel sampled from [0...num_cases-1].
Args:
x: input Tensor.
func: Python function to apply.
num_cases: Python int32, number of cases to sample sel from.
Returns:
The result of func(x, sel), where func receives the value of the
selector as a python integer, but sel is sampled dynamically.
"""
sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32)
# Pass the real x only to one of the func calls.
return control_flow_ops.merge([
func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case)
for case in range(num_cases)])[0]
|
7dae42b240932fa90e3d6dabceba05375a024c56
| 34,798 |
def fitted_model(dates, spectra_obs, max_iter, avg_days_yr, num_coefficients):
"""Create a fully fitted lasso model.
Args:
dates: list or ordinal observation dates
spectra_obs: list of values corresponding to the observation dates for
a single spectral band
num_coefficients: how many coefficients to use for the fit
max_iter: maximum number of iterations that the coefficients
undergo to find the convergence point.
Returns:
sklearn.linear_model.Lasso().fit(observation_dates, observations)
Example:
fitted_model(dates, obs).predict(...)
"""
coef_matrix = coefficient_matrix(dates, avg_days_yr, num_coefficients)
lasso = linear_model.Lasso(max_iter=max_iter)
model = lasso.fit(coef_matrix, spectra_obs)
predictions = model.predict(coef_matrix)
rmse, residuals = calc_rmse(spectra_obs, predictions, num_pm=num_coefficients)
return FittedModel(fitted_model=model, rmse=rmse, residual=residuals)
|
4754cafc79edfc52f47f925b909e3221c6b16f86
| 34,799 |
def example_bytes(values):
"""Input must be float32 np.array"""
return tf.train.Example(
features=tf.train.Features(
feature={'dosages': _bytes_feature(values.tobytes())}
)
)
|
1db2de7db6b93e414e7636107a40c510dda1cadd
| 34,800 |
def _build_extension_download_url(
extension_name: str, publisher_name: str, version: str
) -> str:
"""
Build the download url for the given parameters.
Just a shortcut for the string formatting.
:param extension_name: Desired extension name.
:type extension_name: str
:param publisher_name: Desired extension publisher's name.
:type publisher_name: str
:param version: Desired extension version.
:type version: str
:return: The formatted download url.
:rtype: str
"""
return MARKETPLACE_DOWNLOAD_LINK.format(
extension_name=extension_name, publisher_name=publisher_name, version=version
)
|
884ad99bb7e2d1c7d4fe7cc53f277962eb47414d
| 34,802 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.