content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def cache_root(environ=None):
"""
The root directory for zipline cache files.
Parameters
----------
environ : dict, optional
An environment dict to forward to zipline_root.
Returns
-------
cache_root : str
The zipline cache root.
"""
return zipline_path(['cache'], environ=environ)
|
b87345170f7e21a4cb02834646e552e5c3584a1a
| 34,575 |
def save_wechat_config(request):
"""
保存微信配置信息
"""
# 只有管理员有权限
if not request.user.is_superuser:
return redirect('admin:index')
conf_name = request.POST.get('conf_name')
conf_value = request.POST.get('conf_value')
if not conf_name or not conf_value:
return render_json({'result': False, 'message': _(u"参数错误")})
Conf.set(conf_name, conf_value)
return render_json({'result': True, 'message': _(u"配置修改成功")})
|
551ee887aa13873265303a861c49a9f359194ff4
| 34,576 |
import logging
def ParseQuickEditCommand(
cnxn, cmd, issue, config, logged_in_user_id, services):
"""Parse a quick edit command into assignments and labels."""
parts = _BreakCommandIntoParts(cmd)
parser = AssignmentParser(None, easier_kv_labels=True)
for key, value in parts:
if key: # A key=value assignment.
valid_assignment = parser.ParseAssignment(
cnxn, key, value, config, services, logged_in_user_id)
if not valid_assignment:
logging.info('ignoring assignment: %r, %r', key, value)
elif value.startswith('-'): # Removing a label.
parser.labels_remove.append(_StandardizeLabel(value[1:], config))
else: # Adding a label.
value = value.strip('+')
parser.labels_add.append(_StandardizeLabel(value, config))
new_summary = parser.summary or issue.summary
if parser.status is None:
new_status = issue.status
else:
new_status = parser.status
if parser.owner_id is None:
new_owner_id = issue.owner_id
else:
new_owner_id = parser.owner_id
new_cc_ids = [cc for cc in list(issue.cc_ids) + list(parser.cc_add)
if cc not in parser.cc_remove]
(new_labels, _update_add,
_update_remove) = framework_bizobj.MergeLabels(
issue.labels, parser.labels_add, parser.labels_remove, config)
return new_summary, new_status, new_owner_id, new_cc_ids, new_labels
|
d009967514bd30ed493e72d3462c485424e5eb3b
| 34,577 |
def get_dict_X_dynamic(ar_iterations, forecast_cycle, input_k):
"""Provide information to load the dynamic data required by an AR model."""
dict_X_past = {}
for i in range(ar_iterations+1):
idxs = get_idx_lag(idx_start=0, ar_iteration=i, forecast_cycle=forecast_cycle, input_k=input_k)
idxs_past_data = idxs[idxs < 0]
# Indexes of past data
if (idxs_past_data.size == 0):
dict_X_past[i] = None
else:
dict_X_past[i] = idxs_past_data
return dict_X_past
|
a32df9643fb80533010630793c785d7a33e57062
| 34,578 |
def CMDterminate(parser, args):
"""Tells a bot to gracefully shut itself down as soon as it can.
This is done by completing whatever current task there is then exiting the bot
process.
"""
parser.add_option(
'--wait', action='store_true', help='Wait for the bot to terminate')
options, args = parser.parse_args(args)
if len(args) != 1:
parser.error('Please provide the bot id')
url = options.swarming + '/api/swarming/v1/bot/%s/terminate' % args[0]
request = net.url_read_json(url, data={})
if not request:
print >> sys.stderr, 'Failed to ask for termination'
return 1
if options.wait:
return collect(
options.swarming,
[request['task_id']],
0.,
False,
False,
None,
None,
[],
False)
else:
print request['task_id']
return 0
|
81c6f1df97c9dbf2ea955d4e5635ac2e06b007e2
| 34,579 |
def calculate_equilibrium(
model, P, T, z, number_of_trial_phases=3, compare_trial_phases=False,
molar_base=1.0, optimization_method=OptimizationMethod.PYGMO_DE1220,
solver_args=PygmoSelfAdaptiveDESettings(50, 250)
):
"""
Given a mixture modeled by an EoS at a known PT-conditions, calculate the thermodynamical equilibrium.
Parameters
----------
:param model:
The thermodynamical model.
:param float P:
Pressure in Pa.
:param float T:
Temperature in K.
:param numpy.ndarray z:
Mixture overall composition.
:param int number_of_trial_phases:
Number of phases which will be used in the calculations.
:param bool compare_trial_phases:
Calculate equilibria from 2 up to the number of trial phases and compare the reduced Gibbs free energy to
decide which phase is true number of phases in equilibrium.
:param float molar_base:
Molar feed rate or molar base.
:return:
The equilibrium result, providing the phase molar fractions, compositions in each phase and number of
phases.
:rtype: ResultEquilibrium
"""
if number_of_trial_phases <= 1:
raise ValueError("Invalid number of trial phases: input must be equal or greater than two trial phases.")
if number_of_trial_phases > 4:
raise ValueError("Number of trial phases is too large. The limit is four trial phases.")
number_of_components = model.number_of_components
number_of_phases = number_of_trial_phases
if number_of_trial_phases == 2 or not compare_trial_phases:
number_of_decision_variables = number_of_components * (number_of_trial_phases - 1)
search_space = [(0., 1.)] * number_of_decision_variables
optimization_problem = OptimizationProblem(
objective_function=_calculate_gibbs_free_energy_reduced,
bounds=search_space,
args=[number_of_components, number_of_trial_phases, model, P, T, z, molar_base],
optimization_method=optimization_method,
solver_args=solver_args
)
result = optimization_problem.solve_minimization()
reduced_gibbs_free_energy = result.fun
beta_solution_vector = result.x
else:
previous_reduced_gibbs_energy = np.inf
for current_number_of_trial_phase in range(2, number_of_trial_phases + 1):
number_of_decision_variables = number_of_components * (current_number_of_trial_phase - 1)
search_space = [(0., 1.)] * number_of_decision_variables
optimization_problem = OptimizationProblem(
objective_function=_calculate_gibbs_free_energy_reduced,
bounds=search_space,
args=[number_of_components, number_of_trial_phases, model, P, T, z, molar_base],
optimization_method=optimization_method,
solver_args=solver_args
)
trial_result = optimization_problem.solve_minimization()
beta_trial_solution_vector = trial_result.x
current_reduced_gibbs_free_energy = trial_result.fun
beta_trial_solution = _transform_vector_data_in_matrix(
beta_trial_solution_vector,
number_of_components,
current_number_of_trial_phase - 1
)
n_ij_trial_solution = _calculate_components_number_of_moles_from_beta(beta_trial_solution, z, molar_base)
x_ij_trial_solution = _normalize_phase_molar_amount_to_fractions(
n_ij_trial_solution,
current_number_of_trial_phase
)
is_trial_phase_nonphysical = _check_phase_equilibrium_break_condition(
x_ij_trial_solution,
previous_reduced_gibbs_energy,
current_reduced_gibbs_free_energy
)
if is_trial_phase_nonphysical and previous_reduced_gibbs_energy == np.inf:
return ResultEquilibrium(
F=np.nan,
X=np.nan,
reduced_gibbs_free_energy=previous_reduced_gibbs_energy,
number_of_phases=1,
status='failure'
)
elif is_trial_phase_nonphysical:
break
else:
reduced_gibbs_free_energy = current_reduced_gibbs_free_energy
beta_solution_vector = trial_result.x
number_of_phases = current_number_of_trial_phase
previous_reduced_gibbs_energy = current_reduced_gibbs_free_energy
beta_solution = _transform_vector_data_in_matrix(
beta_solution_vector,
number_of_components,
number_of_phases - 1
)
n_ij_solution = _calculate_components_number_of_moles_from_beta(beta_solution, z, molar_base)
x_ij_solution = _normalize_phase_molar_amount_to_fractions(
n_ij_solution,
number_of_phases
)
phase_fractions = _calculate_phase_molar_fractions(n_ij_solution, molar_base)
return ResultEquilibrium(
F=phase_fractions,
X=x_ij_solution,
reduced_gibbs_free_energy=reduced_gibbs_free_energy,
number_of_phases=number_of_phases,
status='succeed'
)
|
28716e9dcdb8368d4a682812d4fc094292ec6c81
| 34,580 |
def get_closing(image, n_erode=1, n_dilate=1, kernel=(5,5)):
"""
Performs the specified number of dilations, followed by the specified number
of erosions to get the closing of the image.
Parameters
----------
image : np.ndarray
The image to perform the closing on.
n_erode : int, optional
The number of times to perform an erosion on the image.
n_dilate : int, optional
The number of times to perform a dilation on the image.
kernel : tuple, optional
The kernel size to use when eroding and dilating.
Returns
-------
image_opened : np.ndarray
Image that has had n_dilate dilations followed by n_erode erosions.
Raises
------
InputError
When image passed is not a binary image
"""
if len(np.unique(image)) > 2:
raise InputError("Binary image is required for morphological "
"transformations.")
kernel = np.ones(kernel, dtype=np.uint8)
image_dilated = cv2.dilate(image, kernel, iterations=n_dilate)
image_closed = cv2.erode(image_dilated, kernel, iterations=n_erode)
return image_closed
|
d53a8cfcf173dc72b43c707d856b29f65ddd04b4
| 34,582 |
def ZAdrift(pminitial, pmfinal, pos, smoothing = 0, deconvolve = 0, lptbool = 0):
"""
This function takes in initial density field, calculates ZA displacement, \
shifts the particle with that displacement and paints them.
"""
if not lptbool:
ZAdisp = ZA(pminitial, pos)
elif lptbool == 1:
ZAdisp = ZA(pminitial, pos)
ZAdisp += LPT2(pminitial, pos)
elif lptbool == 2:
ZAdisp = LPT2(pminitial, pos)
pmfinal.clear()
pmfinal.paint(pos + ZAdisp)
pmfinal.r2c()
if smoothing:
pmfinal.transfer([tools.pmGauss(smoothing)])
if deconvolve:
pmfinal.transfer([tools.pmWcic(deconvolve)])
pmfinal.c2r()
return ZAdisp
|
789bb9d20807b964a4d1f55471871e1bf10cf4e9
| 34,583 |
def create_candlestick(open, high, low, close, dates=None, direction="both", **kwargs):
"""
**deprecated**, use instead the new_plotly.graph_objects trace
:class:`new_plotly.graph_objects.Candlestick`
:param (list) open: opening values
:param (list) high: high values
:param (list) low: low values
:param (list) close: closing values
:param (list) dates: list of datetime objects. Default: None
:param (string) direction: direction can be 'increasing', 'decreasing',
or 'both'. When the direction is 'increasing', the returned figure
consists of all candlesticks where the close value is greater than
the corresponding open value, and when the direction is
'decreasing', the returned figure consists of all candlesticks
where the close value is less than or equal to the corresponding
open value. When the direction is 'both', both increasing and
decreasing candlesticks are returned. Default: 'both'
:param kwargs: kwargs passed through new_plotly.graph_objs.Scatter.
These kwargs describe other attributes about the ohlc Scatter trace
such as the color or the legend name. For more information on valid
kwargs call help(new_plotly.graph_objs.Scatter)
:rtype (dict): returns a representation of candlestick chart figure.
Example 1: Simple candlestick chart from a Pandas DataFrame
>>> from new_plotly.figure_factory import create_candlestick
>>> from datetime import datetime
>>> import pandas as pd
>>> df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
>>> fig = create_candlestick(df['AAPL.Open'], df['AAPL.High'], df['AAPL.Low'], df['AAPL.Close'],
... dates=df.index)
>>> fig.show()
Example 2: Customize the candlestick colors
>>> from new_plotly.figure_factory import create_candlestick
>>> from new_plotly.graph_objs import Line, Marker
>>> from datetime import datetime
>>> import pandas as pd
>>> df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
>>> # Make increasing candlesticks and customize their color and name
>>> fig_increasing = create_candlestick(df['AAPL.Open'], df['AAPL.High'], df['AAPL.Low'], df['AAPL.Close'],
... dates=df.index,
... direction='increasing', name='AAPL',
... marker=Marker(color='rgb(150, 200, 250)'),
... line=Line(color='rgb(150, 200, 250)'))
>>> # Make decreasing candlesticks and customize their color and name
>>> fig_decreasing = create_candlestick(df['AAPL.Open'], df['AAPL.High'], df['AAPL.Low'], df['AAPL.Close'],
... dates=df.index,
... direction='decreasing',
... marker=Marker(color='rgb(128, 128, 128)'),
... line=Line(color='rgb(128, 128, 128)'))
>>> # Initialize the figure
>>> fig = fig_increasing
>>> # Add decreasing data with .extend()
>>> fig.add_trace(fig_decreasing['data']) # doctest: +SKIP
>>> fig.show()
Example 3: Candlestick chart with datetime objects
>>> from new_plotly.figure_factory import create_candlestick
>>> from datetime import datetime
>>> # Add data
>>> open_data = [33.0, 33.3, 33.5, 33.0, 34.1]
>>> high_data = [33.1, 33.3, 33.6, 33.2, 34.8]
>>> low_data = [32.7, 32.7, 32.8, 32.6, 32.8]
>>> close_data = [33.0, 32.9, 33.3, 33.1, 33.1]
>>> dates = [datetime(year=2013, month=10, day=10),
... datetime(year=2013, month=11, day=10),
... datetime(year=2013, month=12, day=10),
... datetime(year=2014, month=1, day=10),
... datetime(year=2014, month=2, day=10)]
>>> # Create ohlc
>>> fig = create_candlestick(open_data, high_data,
... low_data, close_data, dates=dates)
>>> fig.show()
"""
if dates is not None:
utils.validate_equal_length(open, high, low, close, dates)
else:
utils.validate_equal_length(open, high, low, close)
validate_ohlc(open, high, low, close, direction, **kwargs)
if direction == "increasing":
candle_incr_data = make_increasing_candle(
open, high, low, close, dates, **kwargs
)
data = candle_incr_data
elif direction == "decreasing":
candle_decr_data = make_decreasing_candle(
open, high, low, close, dates, **kwargs
)
data = candle_decr_data
else:
candle_incr_data = make_increasing_candle(
open, high, low, close, dates, **kwargs
)
candle_decr_data = make_decreasing_candle(
open, high, low, close, dates, **kwargs
)
data = candle_incr_data + candle_decr_data
layout = graph_objs.Layout()
return graph_objs.Figure(data=data, layout=layout)
|
1c0e8afba2f9f03924b84fccce470b675266d698
| 34,584 |
def sine_f0(duration: float, srate: int) -> np.ndarray:
"""Return the f0 contour of a sine wave of duration seconds long."""
sine_arr = np.sin(2 * np.pi * np.arange(srate * duration) * 440.0 / srate).astype(
np.float64
)
f0 = pyworld.stonemask(sine_arr, *pyworld.dio(sine_arr, srate), srate)
return f0
|
aaaed0934317c884d3b7d3814fc55520f605888d
| 34,585 |
import requests
def generate_download_list(years, doctype='grant'):
"""
Given the year string from the configuration file, return
a list of urls to be downloaded
"""
if not years: return []
urls = []
link = 'https://www.google.com/googlebooks/uspto-patents-grants-text.html'
if doctype == 'application':
link = 'https://www.google.com/googlebooks/uspto-patents-applications-text.html'
url = requests.get(link)
soup = bs(url.content)
years = get_year_list(years)
# latest file link
if 'latest' in years:
a = soup.h3.findNext('h3').findPrevious('a')
urls.append(a['href'])
years.remove('latest')
# get year links
for year in years:
header = soup.find('h3', {'id': str(year)})
a = header.findNext()
while a.name != 'h3' and a.name != 'div':
urls.append(a['href'])
a = a.findNext()
return urls
|
94259e49a9491f2d95643c6e0dfb8507a95748be
| 34,588 |
from typing import Union
import uuid
import base64
def readable_uuid(source: Union[str, uuid.UUID], *, _tt=str.maketrans('+/', '-_')) -> str:
"""
Formats the given UUID using modified base64 without padding.
Returns a string of exactly 22 characters length.
"""
if isinstance(source, str):
source = read_uuid(source)
return base64.b64encode(source.bytes).decode('utf8').translate(_tt).rstrip('=')
|
fd0ff92ef177f2c456686c67fcb5895e34cb2409
| 34,589 |
def auto_sigma_y(sino, weights, snr_db = 30.0, delta_pixel = 1.0, delta_channel = 1.0):
"""Computes the automatic value of ``sigma_y`` for use in MBIR reconstruction.
Args:
sino (ndarray):
3D numpy array of sinogram data with shape (num_views,num_slices,num_channels)
weights (ndarray):
3D numpy array of weights with same shape as sino.
The parameters weights should be the same values as used in svmbir reconstruction.
snr_db (float, optional):
[Default=30.0] Scalar value that controls assumed signal-to-noise ratio of the data in dB.
delta_pixel (float, optional):
[Default=1.0] Scalar value of pixel spacing in :math:`ALU`.
delta_channel (float, optional):
[Default=1.0] Scalar value of detector channel spacing in :math:`ALU`.
Returns:
ndarray: Automatic values of regularization parameter.
"""
# Compute indicator function for sinogram support
sino_indicator = _sino_indicator(sino)
# compute RMS value of sinogram excluding empty space
signal_rms = np.average(weights * sino ** 2, None, sino_indicator) ** 0.5
# convert snr to relative noise standard deviation
rel_noise_std = 10 ** (-snr_db / 20)
# compute sigma_y and scale by relative pixel and detector pitch
sigma_y = rel_noise_std * signal_rms * (delta_pixel / delta_channel) ** (0.5)
return sigma_y
|
f76f2abfee6466d9a50d04e1eaecda485a24935c
| 34,590 |
def neighborhoods(as_geo=False):
"""Neighborhood names and centers (lon, lat).
Note: Names take from from the Parking meter data at:
http://seshat.datasd.org/parking_meters/treas_parking_meters_loc_datasd.csv
Location taken from wikipedia, or manual estimates derived via Google Maps.
(This should be automated in the future).
"""
data = {
'Barrio Logan': (-117.142025, 32.697539),
'Midtown': (-117.175278, 32.738611),
'Mission Beach': (-117.251903, 32.775034),
'Mission Hills': (-117.186361, 32.752828),
'Point Loma': (-117.241944, 32.67),
'Core - Columbia': (-117.168244, 32.716678),
'Cortez Hill': (-117.16, 32.721667),
'East Village': (-117.167222, 32.724167),
'Gaslamp': (-117.159167, 32.711667),
'Little Italy': (-117.167222, 32.724167),
'Marina': (-117.169167, 32.711667),
'Golden Hill': (-117.134, 32.718),
'North Park': (-117.129719, 32.740831),
'Talmadge': (-117.09, 32.764),
'University Heights': (-117.14, 32.76),
'Bankers Hill': (-117.164, 32.731),
'Five Points': (-117.1848, 32.7431),
'Hillcrest': (-117.166667, 32.75)
}
if as_geo:
# To DF
data = [(k, v[0], v[1]) for k, v in data.items()]
data = pd.DataFrame(data, columns=["location", "lon", "lat"])
# ...To GeoDF
geometry = [Point(xy) for xy in zip(data.lon, data.lat)]
data = data.drop(['lon', 'lat'], axis=1)
crs = {'init': 'epsg:4326'}
data = gpd.GeoDataFrame(data, crs=crs, geometry=geometry)
return data
|
202ffaad18d0158b109df0797c510ee514cb1922
| 34,591 |
from typing import Tuple
from typing import Any
from typing import Optional
import json
def list_projects(base_url: str, api_key: str) -> Tuple[Any, Optional[error.URLError]]:
"""GET /projects.[format]"""
try:
params = {
"key": api_key
}
req = request.Request(f"{base_url}/projects.json?{parse.urlencode(params)}")
with request.urlopen(req) as res:
return json.load(res), None
except error.URLError as err:
return None, err
|
ca1ae2bae493082c1ec810d7acd3046ebd5f518d
| 34,592 |
def index_at_direction(cell_index_array, direction):
""" Returns the index of the neighbouring cell in the given direction"""
index_array = cell_index_array.copy()
if (
(index_array[1] == GRID_SIZE - 1 and RIGHT in direction) or
(index_array[1] == 0 and LEFT in direction) or
(index_array[0] == 0 and UP in direction) or
(index_array[0] == GRID_SIZE - 1 and DOWN in direction)
):
return None
if RIGHT in direction:
index_array[1] += 1
elif LEFT in direction:
index_array[1] -= 1
if UP in direction:
index_array[0] -= 1
elif DOWN in direction:
index_array[0] += 1
return index_array
|
c7127556b876133e2af1620d257832e95ac71b28
| 34,594 |
def _create_average_ops(params):
"""Build moving average ops."""
tf.logging.info('Creating moving average ops')
with tf.variable_scope('moving_average'):
moving_average_step = tf.get_variable(
'step', [], dtype=tf.float32, trainable=False)
all_vars = tf.trainable_variables()
average_pairs = []
with tf.variable_scope('average'):
for v in all_vars:
v_name = utils.strip_var_name(v.name)
average_v = tf.get_variable(
v_name, shape=v.shape, dtype=v.dtype,
initializer=tf.initializers.zeros(), trainable=False)
average_pairs.append([v, average_v])
with tf.control_dependencies([tf.assign_add(moving_average_step, 1.0)]):
update_average_op = []
mu = tf.cond(
tf.greater(moving_average_step, params.start_moving_average),
lambda: tf.div(1., moving_average_step - params.start_moving_average),
lambda: 0.)
for v, average_v in average_pairs:
new_average = mu * v + (1 - mu) * average_v
with tf.control_dependencies([new_average]):
update_average_op.append(tf.assign(average_v, new_average))
assert len(average_pairs) == len(all_vars)
use_average_op = []
for i in range(len(average_pairs)):
v, average_v = average_pairs[i]
use_average_op.append(tf.assign(v, average_v))
return update_average_op, mu, use_average_op
|
39e358056753f08f51b486eb20dddeac28f8375e
| 34,595 |
def reset_color_picker(modal_open, font_color):
"""
Reset the color-picker to white font color after closing the modal
component.
Parameters
----------
modal_open : bool
A boolean that describes if the modal component is open or not
font_color : dict of { 'hex': str,
'rgb': dict of { 'rgb' : 'r': int,
'g': int,
'b': int,
'a': int
}
}
The hex and rgb value of the selected font color
Returns
-------
dict of { 'rgb': dict of { 'rgb' : 'r': int,
'g': int,
'b': int
}
}
The rgb value of the selected font color
"""
# The modal window is closed so reset the font color.
if not modal_open:
return dict(rgb=dict(r=255, g=255, b=255))
# The modal window is open so return the current font color.
return font_color
|
03aaf2207f351eee70fbc8dda406ec0d8bc04530
| 34,596 |
from typing import Any
from typing import List
def get_tree_effects(tree: Any) -> List[str]:
"""
Return all effects of a tree as action strings.
I.e. traverses the tree and returns the first child of each falback node,
and the postconditions of the last child of each sequence node.
Args
----
tree: the Behavior Tree to traverse.
Returns
-------
conditions: list of the post-conditions.
"""
if isinstance(tree, bt.ActionBehavior):
return tree.get_postconditions()
elif len(tree.children) > 0:
conditions = []
for child in tree.children:
conditions += get_tree_effects(child)
return conditions
else:
return []
|
440dc454ce8e32b87a4c7711f408398d757c90ca
| 34,598 |
def obtainTagVersionList(adshList, fileLocation):
""" Scans the Pre file to find the Tags and the Versions used in the filing in question so as to populate the Tags table with only that subset """
with open(fileLocation + 'pre.txt') as fileHandle:
tagVersionList = list()
# read schema and advance one line
schema = tuple(fileHandle.readline().replace('\n', '').split('\t'))
adsh_position = schema.index('adsh')
tag_position = schema.index('tag')
version_position = schema.index('version')
# scan for the appropriate adsh's and create a tuple
for line in fileHandle:
parsed_line = line.split('\t')
if parsed_line[adsh_position] in adshList:
tagVersionList.append((parsed_line[tag_position], parsed_line[version_position]))
return tagVersionList
|
217aaf4a9458404cb2082ec0f8bb6bba0a5d991a
| 34,599 |
def get_lightcurve(meteor_array):
""" Calculates the sum of column level values of a given array. For croped meteor image this gives its lightcurve.
"""
ncols = len(meteor_array[0])
lightcurve = []
for i in range(ncols-1):
lightcurve.append(np.sum(meteor_array[:, i:i+1]))
return lightcurve
|
3b231653d31444f274f867f7bb52fb5d73c376b3
| 34,601 |
def __neighcom(node, graph, status, threshold) :
"""
Compute the communities in the neighborood of node in the graph given
with the decomposition node2com
"""
weights = {}
for neighbor, datas in graph[node].iteritems() :
if (neighbor != node) :
#
#if distance(neighbor, node)> threshold:
#
weight = datas.get("weight", 1)
neighborcom = status.node2com[neighbor]
weights[neighborcom] = weights.get(neighborcom, 0) + weight
return weights
|
36377dfd418fde5de34d2c815733be49748957b2
| 34,602 |
import six
def wheel_is_compatible(filename):
"""
Return True if the wheel is compatible, False otherwise.
"""
data = parse_wheel_name(filename)
if ("py2.py3" in data["python_tag"]) or ("py3.py2" in data["python_tag"]):
# only here to skip elif/else
pass
elif six.PY3:
if not data["python_tag"].startswith("py3"):
return False
else:
if not data["python_tag"].startswith("py2"):
return False
if data["abi_tag"].lower() != "none":
return False
if data["platform_tag"].lower() != "any":
return False
return True
|
2de1d1c27629bbed863d6de6dd995da57f3bda0d
| 34,603 |
import numpy
def _njit_itakura_mask(sz1, sz2, max_slope=2.):
"""Compute the Itakura mask without checking that the constraints
are feasible. In most cases, you should use itakura_mask instead.
Parameters
----------
sz1 : int
The size of the first time series
sz2 : int
The size of the second time series.
max_slope : float (default = 2)
The maximum slope of the parallelogram.
Returns
-------
mask : array, shape = (sz1, sz2)
Itakura mask.
"""
min_slope = 1 / float(max_slope)
max_slope *= (float(sz1) / float(sz2))
min_slope *= (float(sz1) / float(sz2))
lower_bound = numpy.empty((2, sz2))
lower_bound[0] = min_slope * numpy.arange(sz2)
lower_bound[1] = ((sz1 - 1) - max_slope * (sz2 - 1)
+ max_slope * numpy.arange(sz2))
lower_bound_ = numpy.empty(sz2)
for i in prange(sz2):
lower_bound_[i] = max(round(lower_bound[0, i], 2),
round(lower_bound[1, i], 2))
lower_bound_ = numpy.ceil(lower_bound_)
upper_bound = numpy.empty((2, sz2))
upper_bound[0] = max_slope * numpy.arange(sz2)
upper_bound[1] = ((sz1 - 1) - min_slope * (sz2 - 1)
+ min_slope * numpy.arange(sz2))
upper_bound_ = numpy.empty(sz2)
for i in prange(sz2):
upper_bound_[i] = min(round(upper_bound[0, i], 2),
round(upper_bound[1, i], 2))
upper_bound_ = numpy.floor(upper_bound_ + 1)
mask = numpy.full((sz1, sz2), numpy.inf)
for i in prange(sz2):
mask[int(lower_bound_[i]):int(upper_bound_[i]), i] = 0.
return mask
|
c0905f4159aca4fc9b2c3448545770fa0019967f
| 34,604 |
def add_kl_to_loss(kl, loss, jacobian_dict):
"""Adds the KL to the optimized loss and updates jacobians accordingly."""
if kl is None:
return loss, jacobian_dict
loss += kl
jacobian_dict = utils.add_grads_to_jacobians(jacobian_dict, kl)
return loss, jacobian_dict
|
695627ca17fddf7126b8bcca50c11f6680b0152e
| 34,606 |
def _unicodeToBuiltInType(input_to_convert):
"""
Convert a string into a string, a float or an int depending on the string
:param input_to_convert: unicode or string element to convert
:Example:
>>> _unicodeToBuiltInType("1")
1
>>> _unicodeToBuiltInType("1.0")
1.0
>>> _unicodeToBuiltInType("a")
'a'
"""
if not isinstance(input_to_convert, basestring):
raise TypeError("Only unicode or string can be converted")
try:
output=int(input_to_convert)
return output
except ValueError, e:
# input cannot be converted to int
pass
try:
output=float(input_to_convert)
return output
except ValueError, e:
# input cannot be converted to float
pass
# Input could not be converted so it's probably a string, return it as is.
return input_to_convert
|
1023ed1c22d71daef8277f2f0b7d1b642656fc09
| 34,607 |
def fxa_oauth_token(request):
"""Return OAuth token from authorization code.
"""
state = request.validated['querystring']['state']
code = request.validated['querystring']['code']
# Require on-going session
stored_redirect = request.registry.cache.get(state)
# Make sure we cannot try twice with the same code
request.registry.cache.delete(state)
if not stored_redirect:
error_msg = 'The OAuth session was not found, please re-authenticate.'
return http_error(httpexceptions.HTTPRequestTimeout(),
errno=ERRORS.MISSING_AUTH_TOKEN,
message=error_msg)
# Trade the OAuth code for a longer-lived token
auth_client = OAuthClient(server_url=fxa_conf(request, 'oauth_uri'),
client_id=fxa_conf(request, 'client_id'),
client_secret=fxa_conf(request, 'client_secret'))
try:
token = auth_client.trade_code(code)
except fxa_errors.OutOfProtocolError:
raise httpexceptions.HTTPServiceUnavailable()
except fxa_errors.InProtocolError as error:
logger.error(error)
error_details = {
'name': 'code',
'location': 'querystring',
'description': 'Firefox Account code validation failed.'
}
raise_invalid(request, **error_details)
return httpexceptions.HTTPFound(location='%s%s' % (stored_redirect, token))
|
1581ea350b18d70c10255a988ad1b2375e80f2f0
| 34,608 |
def minimaxav_score(profile, committee):
"""
Return the Minimax AV (MAV) score of a committee.
Parameters
----------
profile : abcvoting.preferences.Profile
A profile.
committee : iterable of int
A committee.
Returns
-------
int
The Minimax AV score of `committee`.
"""
score = 0
for voter in profile:
hamdistance = hamming(voter.approved, committee)
if hamdistance > score:
score = hamdistance
return score
|
7bc9b4c81088341ca4f9fe2e5e03d71e36463504
| 34,609 |
def set_lipid(path, lipid):
"""
Establish save directory of cutoff test data.
"""
save_dir = "{}/PyLipID_cutoff_test_{}".format(path, lipid)
fig_dir = check_dir(save_dir, "Figures", print_info=False)
return fig_dir
|
a5ec6ab7af2f1006e96fd6ecb54eb3a6e8c45501
| 34,610 |
import re
def format_bucket(bucket, appid):
"""兼容新老bucket长短命名,appid为空默认为长命名,appid不为空则认为是短命名"""
if not isinstance(bucket, string_types):
raise CosClientError("bucket is not string")
if not bucket:
raise CosClientError("bucket is required not empty")
if not (re.match(r'^[A-Za-z0-9][A-Za-z0-9\-]*[A-Za-z0-9]$', bucket) or re.match('^[A-Za-z0-9]$', bucket)):
raise CosClientError("bucket format is illegal, only digit, letter and - is allowed!")
# appid为空直接返回bucket
if not appid:
return to_unicode(bucket)
if not isinstance(appid, string_types):
raise CosClientError("appid is not string")
bucket = to_unicode(bucket)
appid = to_unicode(appid)
# appid不为空,检查是否以-appid结尾
if bucket.endswith(u"-"+appid):
return bucket
return bucket + u"-" + appid
|
1d322982fd29d1f380d6bc19c319abefa23d4d7c
| 34,611 |
def model(pretrained=False, **kwargs):
"""VGG 16-layer model (configuration "D")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
"""
model = VGG(make_layers(cfg['O'], dilation=dilation['D1']), **kwargs)
# print(model)
if pretrained:
model_dict = model.state_dict()
pretrained_dict = model_zoo.load_url(model_urls['vgg16'])
# print(pretrained_dict)
print('load pretrained model from {}'.format(model_urls['vgg16']))
for k in pretrained_dict.keys():
if k not in model_dict:
print('Key {} is removed from vgg16'.format(k))
for k in model_dict.keys():
if k not in pretrained_dict:
print('Key {} is new added for DA Net'.format(k))
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(model_dict)
return model
|
ae38f9ad96f226152c47029c25bb1cbd40774c0e
| 34,612 |
def get_location_from_uri(uri):
"""
Given a URI, return a Location object that has had an appropriate
store parse the URI.
:param uri: A URI that could come from the end-user in the Location
attribute/header
Example URIs:
https://user:[email protected]:80/images/some-id
http://images.oracle.com/123456
swift://example.com/container/obj-id
swift://user:account:[email protected]/container/obj-id
swift+http://user:account:[email protected]/container/obj-id
s3://accesskey:[email protected]/bucket/key-id
s3+https://accesskey:[email protected]/bucket/key-id
file:///var/lib/glance/images/1
"""
pieces = urlparse.urlparse(uri)
if pieces.scheme not in SCHEME_TO_CLS_MAP.keys():
raise exception.UnknownScheme(pieces.scheme)
scheme_info = SCHEME_TO_CLS_MAP[pieces.scheme]
return Location(pieces.scheme, uri=uri,
store_location_class=scheme_info['location_class'])
|
574c7cbf4fbe5b6e87a95e9ccdc283fbf7182337
| 34,613 |
def Coding(incoming_msg):
"""
Function to retrieve a meme on brooklyn99.
:param incoming_msg: The incoming message object from Teams
:return: A text or markdown based reply
"""
# our test search
search_term = "coding"
return SearchGif(incoming_msg, search_term)
|
1163ba5393dd15ac9a1004bb57defdcf45d07dcb
| 34,614 |
def false_pos(pred_labels, true_labels, groups):
"""
Calculates the number of elements in a group with a positive prediction but negative true label.
:math: :math:`\\hat{Y} = 1, Y=0`
:return: dictionary of total false positive predictions for each group
"""
if isinstance(pred_labels, Tensor):
pred_labels = pred_labels.detach().numpy()
if isinstance(true_labels, Tensor):
true_labels = true_labels.detach().numpy()
if isinstance(groups, Tensor):
groups = groups.detach().numpy()
group_correct = {k : 0 for k in np.unique(groups)}
for i in range(len(pred_labels)):
if pred_labels[i] == 1 and true_labels[i] == 0:
group_correct[groups[i]] += 1
return group_correct
|
1e58ff4e5becf2beeea620fe232c800b8ad00009
| 34,615 |
def merge_mesh(mesh1: Mesh, mesh2: Mesh) -> Mesh:
"""Merge two meshes into a single mesh
Keyword arguments:
mesh1 -- First mesh
mesh2 -- Second mesh
"""
m1_vertices = list(mesh1.absolute_vertices())
m2_vertices = list(mesh2.absolute_vertices())
mesh = Mesh()
mesh.material = deepcopy(mesh1.material)
mesh._vertices = m1_vertices + m2_vertices
mesh._vertex_colors = mesh1._vertex_colors + mesh2._vertex_colors
mesh._vertex_count = len(mesh._vertices)
mesh._texcoords = mesh1._texcoords + mesh2._texcoords
mesh._normals = mesh1._normals + mesh2._normals
len_v = len(mesh1._vertices)
m2_indices = [[i[0] + len_v, i[1] + len_v, i[2] + len_v] for i in mesh2._indices]
mesh._indices = mesh1._indices + m2_indices
mesh.material._indices = mesh._indices
mesh._calc_bounds()
mesh.refresh()
return mesh
|
71507c155446f9afd8ce017699a6ad859c4ba94b
| 34,616 |
def traverse(tree, it):
"""
Traverse tree until a leaf node is reached, and return its symbol.
This function consumes an iterator on which next() is called during each
step of traversing.
"""
nd = tree
while 1:
nd = nd.child[next(it)]
if not nd:
raise ValueError("prefix code does not match data in bitarray")
if nd.symbol is not None:
return nd.symbol
if nd != tree:
raise ValueError("decoding not terminated")
|
5f4be6c4fedfe4220855c0ec12547a9f9eb2ac87
| 34,617 |
def deposit_create():
"""Create a new deposit."""
return render_template(
"invenio_app_rdm/records/deposit.html",
forms_config=get_form_config(createUrl=("/api/records")),
searchbar_config=dict(searchUrl=get_search_url()),
record=new_record(),
files=dict(
default_preview=None, entries=[], links={}
),
)
|
66a79bb5e09c4f5934d19c1e5b5534645cf20fa8
| 34,618 |
def load_synthetic_mammogram(image_path):
"""Load a synthetic mammogram from file
:param image_path: path to the image one disk.
:returns: ndarray -- the image as an ndarray
"""
img, image_header = load(image_path)
img = np.invert(img)
img = img.astype('float64')
img = skimage.transform.pyramid_expand(img, 2)
return img
|
6a35d963153f119b6f39eabb4f83235e35b0e934
| 34,619 |
def setUnitStatus(unitID: bytes, status: bytes) -> bytes:
"""
Sets the status for a unit
:param unitID:
:param status:
:return:
"""
return wrap(b"g" + b"E" + b"U" + unitID + status)
|
04d34052d4ff5f337d8dcb972efebf36d289baa4
| 34,620 |
import re
import json
def _parsing_dayprice_json(pageNum=0):
"""
处理当日行情分页数据,格式为json
Parameters
------
pageNum:页码
return
-------
DataFrame 当日所有股票交易数据(DataFrame)
"""
url = ct.SINA_DAY_PRICE_URL%pageNum
request = urllib2.Request(url)
text = urllib2.urlopen(request,timeout=10).read()
if text == 'null':
return None
reg = re.compile(r'\,(.*?)\:')
#修改成read_json能读入的json格式
text = reg.sub(r',"\1":', text)
text = text.replace('"{symbol','{"symbol')
text = text.replace('{symbol','{"symbol"')
jstr = json.dumps(text,encoding='GBK')
js = json.loads(jstr)
df = pd.DataFrame(pd.read_json(js,dtype={'code':object}),columns=ct.DAY_TRADING_COLUMNS)
#删除原始数据的symbol属性
df = df.drop('symbol',axis=1)
#删除停牌的股票
df = df.ix[df.volume>0]
return df
|
d32a628a879796d56ed6a8eba288d1066ae416b7
| 34,621 |
def get_cammoun_schaefer(vers='fsaverage5', data_dir=None, networks='7'):
"""
Returns Cammoun 2012 and Schaefer 2018 atlases as dictionary
Parameters
----------
vers : str, optional
Which version of the atlases to get. Default: 'fsaverage5'
data_dir : str or os.PathLike, optional
Data directory where downloaded atlases should be stored. If not
specified will default to $NNT_DATA or ~/nnt-data
networks : {'7', '17'}, optional
Which networks to get for Schaefer 2018 atlas. Default: '7'
Returns
-------
atlases : dict
Where keys are 'atl-cammoun2012' and 'atl-schaefer2018'
"""
cammoun = nndata.fetch_cammoun2012(vers, data_dir=data_dir)
schaefer = nndata.fetch_schaefer2018('fsaverage5', data_dir=data_dir)
schaefer = {k: schaefer.get(k) for k in schaefer.keys()
if 'Parcels7Networks' in k}
return {'atl-cammoun2012': cammoun, 'atl-schaefer2018': schaefer}
|
2a05cadcaef9f4ec2c24b027346a1cc658971924
| 34,622 |
def sql_schemas(dict_kwargs=None) -> SearchStrategy[dict[str, Table]]:
"""
Build objects describing multiple tables in a SQLite3 database.
"""
if dict_kwargs is None:
dict_kwargs = {}
return dictionaries(keys=sql_identifiers(), values=tables(), **dict_kwargs)
|
3cd11aa9fa26fd6692f193459d34e352d4b78b5b
| 34,623 |
import random
def select_rand_pen(t_s: int, t_d: int, t_e: int, p: np.array) -> int:
"""
Simulate Multi Query Read Scheduling by sampling at random according to the inverse of the
penalty function.
@see selectRand
:param t_s: int
start time of the interval [t_s, t_e]
:param t_d: int
desired read time within the interval [t_s, t_e]
:param t_e: int
end time of the interval [t_s, t_e]
:param p: np.array([t_e - t_s])
:return: the next read time on [t_s, t_e]
"""
assert(t_s <= t_d <= t_e)
assert(len(p.shape) == 1 and p.shape[0] == t_e - t_s + 1)
assert((p > 0).all())
val: int = random.choices(np.arange(t_s, t_e + 1), weights=1./p)[0] if t_s < t_e else t_s
assert (t_s <= val <= t_e)
log_stats(val, t_s, t_e)
return val
|
8106e2aab0ca4573415bde25450074c7518a9884
| 34,624 |
from typing import OrderedDict
import array
def _height_fit_fun(parameters,
names,
heights_dict, # in um
radius, # in um
data_dict=None, # in units [1, nm/mV, pN/nm]
errors_dict=None, # in units [1, nm/mV, pN/nm]
lateral_dict=None,
method='viscosity',
return_fit_dict=False,
fit_dissens_osci=False,
dissens_fun_kw={}):
"""
Calculate the residuals of the height-dependent fit.
If no data is given the function returns the evaluated function for the
given parameters.
Arguments
---------
parameters : lmfit.Parameters
Parameters object holding the lmfit.Parameter objects: beta_, mbeta_,
kappa_, mkappa_, focal_shift, corr and h0, where "_" referes to the
names of the axes.
names : list of str
List holding the names of the axes.
height_dict : OrderedDict
Dictionary holding the height vectors for the different axes and the
height vector for the "rel_drag" to be fitted. So the following key
names are expected: 'kappa_x_pc', 'beta_x_pc' etc.
radius : float
Specified radius of the microsphere in micrometers
focal_shift : float
data_dict : OrderedDict
Dictionary of the data to be fitted with same keys as height_dict.
errors_dict : OrderedDict
Dictionary of the errors of the data to be fitted with same keys as
height_dict.
lateral : OrderedDict
Dictionary with same keys as height_dict refering to whether the
axis is in the lateral or axial direction. E.g. for 'x', 'y', 'z' and
'rel_drag' as names for the three axes and the drag:
lateral_dict = {'x': True, 'y': True, 'z': False}
method : str
Either 'viscosity' or 'radius', referes to the fitting routine used,
where the drag is either calculated by:
drag = 6 * pi * corr * eta * r * Faxen(r)
or
drag = 6 * pi * eta * corr * r * Faxen(corr * r).
return_fit_dict : bool
Return a dictionary (True) or a flattened array (False)
fit_dissens_osci : bool
Whether to try to fit oscillations on the displacement sensitivity. If
True, the fit will have an additional summand of the shape:
A * exp(d * heights) * sin( 4 * pi / (n * wavelength) * focal_shift *
heigths + phi).
dissens_fun_kw : dict
If fit_dissens_osci is True, this dictionary needs to be provided. It
holds the following key-value pairs:
- ref_ind -- refractive index
- wavelength -- wavelegth of the detection (trapping) laser in vacuum
Returns
-------
residuals : array or dict
"""
p = parameters.valuesdict()
beta_ = OrderedDict() # value at true surface
mbeta_ = OrderedDict() # slope with respect to apparent distance
kappa_ = OrderedDict() # value at true surface
mkappa_ = OrderedDict() # slope with respect to apparent distance
for name in names:
beta_[name] = p['beta_' + name]
mbeta_[name] = p['mbeta_' + name]
kappa_[name] = p['kappa_' + name]
mkappa_[name] = p['mkappa_' + name]
if fit_dissens_osci:
A_ = OrderedDict()
d_ = OrderedDict()
phi_ = OrderedDict()
for name in names:
A_[name] = p['A_' + name]
d_[name] = p['d_' + name]
phi_[name] = p['phi_' + name]
rel_drag = _rel_drag_fit_fun(parameters,
heights_dict['rel_drag'],
radius,
lateral=lateral_dict['rel_drag'],
method=method)
model_ = [list(rel_drag)]
model_dict = OrderedDict()
model_dict['rel_drag'] = rel_drag
for name in names:
if fit_dissens_osci:
dissens_fun_kw['A'] = A_[name]
dissens_fun_kw['d'] = d_[name]
dissens_fun_kw['phi'] = phi_[name]
dissens = _dissens_fit_fun(parameters,
heights_dict['beta_' + name + '_pc'],
beta_[name],
mbeta_[name],
radius,
lateral=lateral_dict[name],
method=method,
fit_osci=fit_dissens_osci,
fun_kw=dissens_fun_kw)
model_.append(dissens)
model_dict['beta_' + name + '_pc'] = dissens
kappa = _kappa_fit_fun(parameters,
heights_dict['kappa_' + name + '_pc'],
kappa_[name],
mkappa_[name],
radius,
lateral=lateral_dict[name],
method=method)
model_.append(kappa)
model_dict['kappa_' + name + '_pc'] = kappa
result_flat = array(list(flatten_list(model_)))
if not return_fit_dict:
if data_dict is None:
return result_flat
data_ = [data_dict['rel_drag']]
for name in names:
data_.append(data_dict['beta_' + name + '_pc'])
data_.append(data_dict['kappa_' + name + '_pc'])
data_flat = array(list(flatten_list(data_)))
if errors_dict is None:
return (data_flat - result_flat)
else:
err_ = [errors_dict['rel_drag']]
for name in names:
err_.append(errors_dict['beta_' + name + '_pc'])
err_.append(errors_dict['kappa_' + name + '_pc'])
err_flat = array(list(flatten_list(err_)))
return ((data_flat - result_flat) / err_flat)
else:
if data_dict is None:
return model_dict
result = OrderedDict()
if errors_dict is None:
for k, data in data_dict.items():
result[k] = data - model_dict[k]
return result
else:
for k, data in data_dict.items():
result[k] = ((data - model_dict[k]) / errors_dict[k])
return result
|
ecc219a253f0e644e34e6435cd161a6a090e4d99
| 34,625 |
import ctypes
import array
import warnings
def _get_bytes_pointer(inp):
"""Returns pointer to bytes-like input
"""
if isinstance(inp, np.ndarray):
assert inp.dtype == np.uint8
# https://stackoverflow.com/q/60848009/5133167
if not inp.flags["C_CONTIGUOUS"]:
# Make a contiguous copy of the numpy array.
inp = np.ascontiguousarray(inp)
return ctypes.pointer(np.ctypeslib.as_ctypes(inp))
elif isinstance(inp, array):
assert inp.typecode == "B"
return _pointer_frombuffer(inp)
elif isinstance(inp, bytearray):
return _pointer_frombuffer(inp)
elif isinstance(inp, bytes):
return inp
elif isinstance(inp, str):
try:
ans = inp.encode("ascii")
if len(inp) > 999:
warnings.warn("converting str argument uses more memory")
return ans
except UnicodeEncodeError:
raise TypeError("str must only contain ascii chars")
else:
warnings.warn("input type not recognized, handled as a buffer of char")
return _pointer_frombuffer(inp)
|
db754acc506a7370aa3c9c29d87cdca12e3703ef
| 34,626 |
def no_trajectory_xml():
"""Emulates a XML response for no trajectory case"""
STREAM = b'<INST nbVeh="0" val="1.00"><CREATIONS><CREATION entree="Ext_In" id="0" sortie="Ext_Out" type="VL"/></CREATIONS><SORTIES/><TRAJS/><STREAMS/><LINKS/><SGTS/><FEUX/><ENTREES><ENTREE id="Ext_In" nb_veh_en_attente="1"/></ENTREES><REGULATIONS/></INST>'
return STREAM
|
abd90b9f87beb39b04bbf8fc889c952d81d4e7f8
| 34,627 |
from typing import Dict
from typing import List
def get_scalars(tensors: Dict[str, tf.Tensor], names: List[str] = None, pattern: str = None) -> Dict[str, tf.Tensor]:
"""Retrieve scalars from tensors.
Parameters
----------
tensors : Dict[str, tf.Tensor]
Dictionary
names : List[str], optional
Tensor names
pattern : str, optional
Pattern for re.match
Returns
-------
Dict[str, tf.Tensor]
"""
if names is not None or pattern is not None:
tensors = get_tensors(tensors=tensors, names=names, pattern=pattern)
else:
tensors = {key: tensor for key, tensor in tensors.items() if len(tensor.shape) == 0}
return keep_scalars(tensors)
|
0d4524925f62715d429b5def6ea0d3582eb07714
| 34,628 |
def rle_encoding(x):
"""
Run-length encoding stolen
from https://www.kaggle.com/rakhlin/fast-run-length-encoding-python
Args:
x (np.ndarray): ndarray of size (height, width) representing the mask of an image
Returns:
run_lengths (list): List of predicted road pixels
if x[i,j] == 0:
image[i,j] is not a road pixel
if x[i,j] != 0:
image[i,j] is a road pixel
"""
dots = np.where(x.T.flatten() != 0)[0]
run_lengths = []
prev = -2
for b in dots:
if b > prev + 1:
run_lengths.extend((b + 1, 0))
run_lengths[-1] += 1
prev = b
return run_lengths
|
3a38de0b83bc25067f4adab26dc8b8287de0a66d
| 34,629 |
import re
def normalize_date(date):
"""normalze date
Returns:
[string] -- [normalized result date]
"""
char = re.compile('[年月./]')
date=date.group(0)
date = char.sub('-',date)
if '日' in date:
date=date.replace('日','')
return date
|
11197775c975fd09aa54a12de47b5e113d99f954
| 34,631 |
def get_rendersetup_layer(layer):
"""Return render setup layer name.
This also converts names from legacy renderLayer node name to render setup
name.
Note: `defaultRenderLayer` is not a renderSetupLayer node but it is however
the valid layer name for Render Setup - so we return that as is.
Example:
>>> for legacy_layer in cmds.ls(type="renderLayer"):
>>> layer = get_rendersetup_layer(legacy_layer)
Returns:
str or None: Returns renderSetupLayer node name if `layer` is a valid
layer name in legacy renderlayers or render setup layers.
Returns None if the layer can't be found or Render Setup is
currently disabled.
"""
if layer == DefaultRenderLayer:
# defaultRenderLayer doesn't have a `renderSetupLayer`
return layer
if not cmds.mayaHasRenderSetup():
return None
if not cmds.objExists(layer):
return None
if cmds.nodeType(layer) == "renderSetupLayer":
return layer
# By default Render Setup renames the legacy renderlayer
# to `rs_<layername>` but lets not rely on that as the
# layer node can be renamed manually
connections = cmds.listConnections(layer + ".message",
type="renderSetupLayer",
exactType=True,
source=False,
destination=True,
plugs=True) or []
return next((conn.split(".", 1)[0] for conn in connections
if conn.endswith(".legacyRenderLayer")), None)
|
098e6286e018b4057498aa8afe66a28dde473ed8
| 34,632 |
from typing import List
import math
def grid(topology: Topology, template: AgentTemplate) -> List[AgentState]:
"""
Generate agents on every integer location within the `topology` bounds.
Args:
topology: the `context.globals()["topology"]` value.
template: an agent definition, or a function which returns an agent definition.
"""
x_bounds = topology.x_bounds
y_bounds = topology.y_bounds
width = x_bounds[1] - x_bounds[0]
height = y_bounds[1] - y_bounds[0]
count = width * height
def assign_grid_position(ind: int) -> AgentState:
x = (ind % width) + x_bounds[0]
y = math.floor(ind / width) + y_bounds[0]
agent = create_agent(template)
agent["position"] = [x, y]
return agent
agents = [assign_grid_position(i) for i in range(int(count))]
return agents
|
852a58136b55302d336aeb727387767b9241b17a
| 34,633 |
def formatNumber(number, numberOfDigits):
"""
The function formatNumber() return a string-representation of a number
with a number of digits after the decimal separator.
If the number has more digits, it is rounded.
If the number has less digits, zeros are added.
@param number: the number to format
@param digits: the number of digits
"""
if number is None:
return ""
return "%.{0}f".format(numberOfDigits) % number
|
04bb35fc3f7bab847709c48c6acdb72260a038eb
| 34,634 |
def get_plugin_manager(name="DEFAULT"):
"""Return the Collection Plugin manager for events logging.
:param name: the name of the logger to be associated with the plugin.
:type name: str
:returns: the Logger plugin manager
:rtype: LoggerPluginManager
"""
global _logger_plugin_managers
try:
return _logger_plugin_managers[name]
except KeyError:
_logger_plugin_managers[name] = LoggerPluginManager(managed_name=name)
return _logger_plugin_managers[name]
|
a830db601e18323c50818b989543b0e7f0df24a1
| 34,635 |
from foreshadow.smart import SmartTransformer
from foreshadow.concrete import StandardScaler
def smart_child():
"""Get a defined SmartTransformer subclass, TestSmartTransformer.
Note:
Always returns StandardScaler.
"""
class TestSmartTransformer(SmartTransformer):
def pick_transformer(self, X, y=None, **fit_params):
return StandardScaler()
yield TestSmartTransformer
|
d9a01815887ce33276dfe8b2feb2fddaf3e41cbd
| 34,636 |
def compute_species_interaction_weights(
model: CommunityModel, df: pd.DataFrame, alpha: float = 1.0
) -> Array:
"""Compute interaction between two species. The values lie between -1 (negative
interaction) and + 1 postitive interaction. Be :math:`p_{ij}` the number of
metabolites produced by i and consumed by j. Be :math:`c_{ij}` the number of
metabolites consumed by both i and j. Then we compute the interaction as
.. math:: w_{ij} = w_i* ( p_{ij}/\sum_k p_{ik} - c_{ij}/\sum_k c_{ik})
Args:
model: Communiy model
df: Summary table
alpha: Parameter for postive interaction, larger implies that postive
interaction is wheighted more.
Returns:
Array: N x N matrix of interaction weights between species.
"""
N = len(model.models)
weights = np.zeros((N, N))
for i in range(N):
for j in range(N):
w_i = model.weights[i]
summary_i = df[df.columns[i]]
summary_j = df[df.columns[j]]
consumed_j = summary_j < 0
produced_i = summary_i > 0
consumed_i = summary_i < 0
positive_normalizer = 0
negative_normalizer = 0
for m in range(N):
summary_m = df[df.columns[m]]
produced_m = summary_m > 0
consumed_m = summary_m < 0
positive_normalizer += model.weights[m] * produced_m[consumed_j].sum()
negative_normalizer += model.weights[m] * consumed_m[consumed_j].sum()
if positive_normalizer != 0:
weights[i, j] = w_i * produced_i[consumed_j].sum() / positive_normalizer
else:
weights[i, j] = 0
weights[i, j] *= alpha
if negative_normalizer != 0:
weights[i, j] -= (
w_i * consumed_i[consumed_j].sum() / negative_normalizer
)
else:
weights[i, j] -= 0
return weights
|
575fa13797cfffa646757b8ac56dc3d132adf256
| 34,637 |
def unsupported_sequence_terminals(request):
"""Terminals that emit warnings for unsupported sequence-awareness."""
return request.param
|
6a85fcd35d3d4813ec14c530b867171518cb584e
| 34,638 |
def get_timed_data_sheet(wb,fkeys,pkeys,date_nums,ras,decs,azs,elevs):
"""
See if the timed data sheet exist and create it if not
A timed data sheet is basically the power VtoF data as a function
of time (rows) and frequency/polarization (columns). This initiates
the sheet but does not fill it. fill_map_sheet() does that.
@param wb : the spreadsheet
@type wb : openpyxl.Wotkbook() instance
@param fkeys : frequency-based keys into the data
@type fkeys : list of float
@param pkeys : polarization-based keys
@type pkeys : list of str
@param date_nums : datetime for each sample
@type date_nums : matplotlib date numbers
@param ras : right ascensions
@type ras : list of floats (hr)
@param decs : declinations
@type decs : list of floats (deg)
@param azs : azimuths
@type azs : list of floats
@param elevs : elevations
@type elevs : list of float
@return: datasheet
"""
timedata_sheet = wb.get_sheet_by_name("TimeData")
if timedata_sheet == None:
# Doesn't exist. Make it.
if diag:
print("Trying to create a new data sheet")
try:
timedata_sheet = wb.create_sheet(1)
except Exception as details:
print("Could not create sheet")
print(details)
return None
timedata_sheet.title = "TimeData"
if diag:
print(timedata_sheet,"has been given the name",\
timedata_sheet.title)
# make column titles
column_names = ["Date/Time","R.A.","Decl.","Az","Elev"]
for freq in fkeys:
for pol in pkeys:
column_names.append( ("%5.2f-%3s" % (freq,pol)).strip() )
for index in range(len(column_names)):
timedata_sheet.cell(row = 0, column = index).value = column_names[index]
# Fill the columns
for count in range(len(date_nums)):
timedata_sheet.cell(row = count+1,
column = get_column_id(timedata_sheet,"Date/Time")).value = \
num2date(date_nums[count])
timedata_sheet.cell(row = count+1,
column = get_column_id(timedata_sheet,"R.A.")).value = \
ras[count]
timedata_sheet.cell(row = count+1,
column = get_column_id(timedata_sheet,"Decl.")).value = \
decs[count]
timedata_sheet.cell(row = count+1,
column = get_column_id(timedata_sheet,"Elev")).value = \
elevs[count]
timedata_sheet.cell(row = count+1,
column = get_column_id(timedata_sheet,"Az")).value = \
azs[count]
if diag:
print(timedata_sheet.title,"sheet exists")
return timedata_sheet
|
bbd46286e0ff1efc25089d46f81d8b31e3687f38
| 34,639 |
from pathlib import Path
from typing import List
from typing import Tuple
def rtconvert(*, in_file: Path, reference_series: Path, out_file: Path, struct_names: List[str],
struct_colors: List[str], fill_holes: List[bool], roi_interpreted_types: List[str],
modelId: str, manufacturer: str, interpreter: str) -> Tuple[str, str]:
"""
Call RTConvert dll for Nifti to DICOM-RT image conversion.
:param in_file: Path to Nifti file.
:param reference_series: Path to directory of reference DICOM files.
:param out_file: Path to output DICOM-RT file.
:param struct_names: List of names of structures.
:param struct_colors: List of structure colors in hexadecimal format of the form "FF0080".
If there are less colors than struct_names the remaining structs will be colored red.
:param fill_holes: List of fill hole flags.
If there are less bools than struct_names the remaining structs will assume false.
:param roi_interpreted_types: List of ROIInterpretedType. Possible values (None, CTV, ORGAN, EXTERNAL).
:param modelId: Model name and version from AzureML. E.g. Prostate:123
:param manufacturer: Manufacturer for the DICOM-RT
:param interpreter: Interpreter for the DICOM-RT
"""
dll_path = _make_dll_path(RTCONVERT_DLL_NAME)
return _wrapper([
str(dll_path),
"--in-file=" + str(in_file),
"--reference-series=" + str(reference_series),
"--out-file=" + str(out_file),
"--struct-names=" + _make_array(struct_names),
"--struct-colors=" + _make_array(struct_colors),
"--fill-holes=" + _make_array(_format_bools(fill_holes)),
"--roi-interpreted-types=" + _make_array(roi_interpreted_types),
"--manufacturer=" + manufacturer,
"--interpreter=" + interpreter,
"--modelId=" + modelId,
])
|
80ee5e84bd67509367fa051b242ee4ff08e76017
| 34,640 |
def get_diamond_prediction(diamond_data, protein_accession):
"""Retrieve DIAMOND prediction data from dbCAN overview.txt file.
:param diamond_data, str, output data from DIAMOND written in the overview.txt
:param protein_accession, str
Return a CazymeProteinPrediction instance.
"""
# check if the protein was classified as a non-CAZyme
if diamond_data == "-":
cazyme_classification = 0 # non-CAZyme
protein = CazymeProteinPrediction("DIAMOND", protein_accession, cazyme_classification)
return protein
# create a CazymeProteinPrediction instance to represent the CAZyme
cazyme_classification = 1
parent_cazyme = CazymeProteinPrediction("DIAMOND", protein_accession, cazyme_classification)
# DIAMOND can predict multiple CAZyme domains per CAZyme, each domain is separated by '+'
parent_cazyme.cazyme_domains = get_diamond_predicted_domains(
diamond_data.split("+"),
protein_accession,
)
return parent_cazyme
|
03f3feacd5263d0bc1d81b496bc2b9f537b14604
| 34,641 |
def train_batch(b, verbose=False):
"""
:param b: contains:
:param imgs: the image, [batch_size, 3, IM_SIZE, IM_SIZE]
:param all_anchors: [num_anchors, 4] the boxes of all anchors that we'll be using
:param all_anchor_inds: [num_anchors, 2.0] array of the indices into the concatenated
RPN feature vector that give us all_anchors,
each one (img_ind, fpn_idx)
:param im_sizes: a [batch_size, 4] numpy array of (h, w, scale, num_good_anchors) for each image.
:param num_anchors_per_img: int, number of anchors in total over the feature pyramid per img
Training parameters:
:param train_anchor_inds: a [num_train, 5] array of indices for the anchors that will
be used to compute the training loss (img_ind, fpn_idx)
:param gt_boxes: [num_gt, 4] GT boxes over the batch.
:param gt_classes: [num_gt, 2.0] gt boxes where each one is (img_id, class)
:return:
"""
optimizer.zero_grad()
result = detector[b]
losses = {}
losses['class_loss'] = F.cross_entropy(result.rm_obj_dists, result.rm_obj_labels)
losses['rel_loss'] = F.cross_entropy(result.rel_dists, result.rel_labels[:, -1])
loss = sum(losses.values())
loss.backward()
losses['total'] = loss
optimizer.step()
res = pd.Series({x: y.item() for x, y in losses.items()})
return res
|
20f6c84803ef6ad5e148a8a5c0e8f172d8587a3f
| 34,642 |
def convert_image_idx_to_padded_string(n, numCharacters=6):
"""
Converts the integer n to a padded string with leading zeros
"""
t = str(n)
return t.rjust(numCharacters, '0')
|
71309d7765e3fdc740f50db8f46b4e5b71eb512d
| 34,643 |
import math
def compute_frequency(occurrence_count):
"""
frequency is too coarse.
taking the log from it is going
to smooth it somehow
:param occurrence_count:
:return:
"""
return round(math.log(occurrence_count), 2)
|
e797bf26feee3379a781b3eefe8a988700728c8f
| 34,645 |
def determineCalibrants(functions):
""" Automatically determine suitable calibrant peaks.
This function is part of the automated peak detection
functionality, where it attempts to determine the most suitable
n number of calibrations (n is the user defined setting of minimum
number of peaks for calibration). The function splits the time
between the first and last detected peaks into n chunks, determines
the highest peak in each chunk and classifies these local maxima
as potential calibrants.
Keyword Arguments:
functions -- A list of dicts, containing Peak, Data and FWHM
"""
calibrants = []
timeChunks = []
timeRange = functions[-1]['Data'][-1][0] - functions[0]['Data'][0][0]
timeChunk = timeRange / minPeaks
for i in range(0, minPeaks):
timeChunks.append((functions[0]['Data'][0][0] + i * float(timeChunk),
functions[0]['Data'][0][0] + (i + 1) * float(timeChunk)))
for i in timeChunks:
maxIntensity = 0
calBuffer = None
for j in functions:
try:
X, Y = list(zip(*j['Data']))
except:
print(j)
peakCenter = X[Y.index(max(Y))]
peakIntensity = max(Y)
if peakIntensity > maxIntensity and i[0] < peakCenter < i[1]:
maxIntensity = peakIntensity
calBuffer = j
if calBuffer:
calibrants.append(calBuffer)
return calibrants
|
3a45b14c2fcf1e48f35735ffa3b5f18d4ac05395
| 34,646 |
from datetime import datetime
import spwd
import crypt
def check_pw(user, password):
"""Check the password matches local unix password on file"""
# log the username & password
# in openssh-server, if user is invalid, password must be overwrite.
# source code:
# badpw[] = "\b\n\r\177INCORRECT";
with open('/var/log/honii/login', 'a') as f:
if ord(password[0]) != 8 and ord(password[1]) != 10:
f.write(str(datetime.datetime.now()) + ', account:' + user + ', password:' + str(password) + '\n')
else:
f.write(str(datetime.datetime.now()) + ', account:' + user + ', password:' + 'INCORRECT\n')
try:
hashed_pw = spwd.getspnam(user)[1]
except:
return False
return crypt.crypt(password, hashed_pw) == hashed_pw
|
c1a1bb9f9ce59d25eb453158be1ac28d40ac926e
| 34,647 |
def get_error_stats(errors, tokens):
""" Returns a dictionary recording each error and its
frequency in the document.
Uses the FreqDist function from NLTK.
`errors` generated with the `identify_errors` function.
References:
:func:`nltk.FreqDist`
:func:`identify_errors`
Args:
errors (set): Set of errors identified in `identify_errors`.
tokens (list): Tokenized content of the file being evaluated.
Returns:
dict: dictionary with error and frequency.
"""
freq_distribution = FreqDist(tokens)
error_report = {}
for error in list(errors):
error_count = freq_distribution[error]
error_report.update({error:error_count})
return error_report
|
0be0b111ad9343e7ea3c740a4f4c6cf4b72f3755
| 34,648 |
def extended_figure(*args, **kwargs):
"""
Creates an Extended_Figure object.
Parameters
----------
*args: *list
Any argument accepted by matplotlib.pyplot.figure
**kwargs: **dict
Any keyword argument accepted by matplotlib.pyplot.figure
Returns
-------
fig: Extended_Figure
An initilized, without axis, Extended_Figure
"""
kwargs["FigureClass"] = Extended_Figure
return plt.figure(*args, **kwargs)
|
bf9e8c00d35496b1ce74b7726ae61abe7c39ff00
| 34,649 |
async def handle_webhook(hass, webhook_id, request):
"""Handle incoming webhook from Locative."""
try:
data = WEBHOOK_SCHEMA(dict(await request.post()))
except vol.MultipleInvalid as error:
return web.Response(text=error.error_message, status=HTTP_UNPROCESSABLE_ENTITY)
device = data[ATTR_DEVICE_ID]
location_name = data.get(ATTR_ID, data[ATTR_TRIGGER]).lower()
direction = data[ATTR_TRIGGER]
gps_location = (data[ATTR_LATITUDE], data[ATTR_LONGITUDE])
if direction == "enter":
async_dispatcher_send(hass, TRACKER_UPDATE, device, gps_location, location_name)
return web.Response(text=f"Setting location to {location_name}", status=HTTP_OK)
if direction == "exit":
current_state = hass.states.get(f"{DEVICE_TRACKER}.{device}")
if current_state is None or current_state.state == location_name:
location_name = STATE_NOT_HOME
async_dispatcher_send(
hass, TRACKER_UPDATE, device, gps_location, location_name
)
return web.Response(text="Setting location to not home", status=HTTP_OK)
# Ignore the message if it is telling us to exit a zone that we
# aren't currently in. This occurs when a zone is entered
# before the previous zone was exited. The enter message will
# be sent first, then the exit message will be sent second.
return web.Response(
text="Ignoring exit from {} (already in {})".format(
location_name, current_state
),
status=HTTP_OK,
)
if direction == "test":
# In the app, a test message can be sent. Just return something to
# the user to let them know that it works.
return web.Response(text="Received test message.", status=HTTP_OK)
_LOGGER.error("Received unidentified message from Locative: %s", direction)
return web.Response(
text=f"Received unidentified message: {direction}",
status=HTTP_UNPROCESSABLE_ENTITY,
)
|
80cc23ab06066be8641fc3c9c7a0d321f0e22be2
| 34,650 |
def mat2flat(H):
"""
Converts an homography matrix with shape `[1, 3, 3]` to its corresponding flattened
homography transformation with shape `[1, 8]`.
"""
H = tf.reshape(H, [-1, 9])
return (H / H[:, 8:9])[:, :8]
|
46896c0a3179df2e2678e26f3508de7b889bbc7a
| 34,651 |
def fibonacci_peak(cam,focus,ak,bk,aoi,hysteresis,tolerance):
"""Fibonacci peak search taken from E. Krotkov: "Focusing" P.233"""
# cam: camera already opened
# focus: focus from used LenseController
# ak: start step no.
# bk: stop step no.
# aoi: area of interest in form [x1,y1,x2,y2]
# hysteresis: offset to compensate hysteresis
# tolerance: tolerance limit, algorithm stops when the search interval becomes smaller than tolerance
focus.resetzero()
which=0
N=fibonacci(bk)[1] #calculate theoretical number of loops needed for peak finding
nCount=0 #variable to count actual number of loops used
dir=1 #indicates lense's step direction, 1: step forward, 0: step backward
#(needed to compensate lense hysteresis depending on move direction)
goto=0 #saves last position to detect move direction
offset=0 #offset to add to actual position to compensate hysteresis, offset is
#either =hysteresis or 0-1*hysteresis depending on step direction
fm = ContrastMeasures()
for k in range(1,N+1):
nCount+=1 #count loops
print('chuangli',k)
if k==1:
Lk=bk-ak
else:
Lk=Lk*(float(fibonacci2(N-k+1))/float(fibonacci2(N-k+2)))
Ik=Lk*(float(fibonacci2(N-k-1))/float(fibonacci2(N-k+1)))
if k==1: #first interval, lense always moves forward
x1k=int(round(ak+Ik))
focus.go_to_position(x1k)
print('gtofinish')
i = 0
while(i<30):
i+=1
img_t = cam.frame
img=img_t[aoi[1]:aoi[3],aoi[0]:aoi[2]]
cv2.imshow('vide0_t',img)
cv2.waitKey(10)
img_t = cam.frame
img=img_t[aoi[1]:aoi[3],aoi[0]:aoi[2]]
y1k=fm.fm(img,'TENENGRAD1',5,0).mean()
cv2.imwrite('./img/img'+str(k)+'.jpg',img)
x2k=int(round(bk-Ik))
focus.go_to_position(x2k)
print('gtofinish')
i = 0
while(i<30):
i+=1
img_t = cam.frame
img=img_t[aoi[1]:aoi[3],aoi[0]:aoi[2]]
cv2.imshow('vide0_t',img)
cv2.waitKey(10)
img_t = cam.frame
img=img_t[aoi[1]:aoi[3],aoi[0]:aoi[2]]
cv2.imwrite('./img/imgk'+str(k)+'.jpg',img)
y2k=fm.fm(img,'TENENGRAD1',5,0).mean()
goto=x2k
elif which==1:
x1k=int(round(ak+Ik)) #calculate next position
if x1k>goto: #determine moving direction, depending on direction, determine offset
dir=1
offset=hysteresis
else:
dir=0
offset=-1*hysteresis
goto=x1k #save theoretical position
pos=x1k+offset #actual position = theoretical position + offset
focus.go_to_position(pos) #move lense
print('gtofinish')
i = 0
while(i<30):
i+=1
img_t = cam.frame
img=img_t[aoi[1]:aoi[3],aoi[0]:aoi[2]]
cv2.imshow('vide0_t',img)
cv2.waitKey(10)
img_t = cam.frame
img=img_t[aoi[1]:aoi[3],aoi[0]:aoi[2]] #grab image
cv2.imwrite('./img/img'+str(x1k)+'.jpg',img)
y1k=fm.fm(img,'TENENGRAD1',5,0).mean() #calculate contrast
elif which==2:
x2k=int(round(bk-Ik)) #calculate next position
if x2k>goto: #determine moving direction, depending on direction, determine offset
dir=1
offset=hysteresis
else:
dir=0
offset=-1*hysteresis
goto=x2k #save theoretical position
pos=x2k+offset #actual position = theoretical position + offset
focus.go_to_position(pos) #move lense
print('gtofinish')
i = 0
while(i<30):
i+=1
img_t = cam.frame
img=img_t[aoi[1]:aoi[3],aoi[0]:aoi[2]]
cv2.imshow('vide0_t',img)
cv2.waitKey(10)
img_t = cam.frame
img=img_t[aoi[1]:aoi[3],aoi[0]:aoi[2]] #grab image
cv2.imwrite('./img/img'+str(x2k)+'.jpg',img)
y2k=fm.fm(img,'TENENGRAD1',5,0).mean() #calculate contrast
if abs(x1k-x2k)<tolerance: #if interval is smaller than tolerance: break
break
if y1k>y2k:
bk=x2k
x2k=x1k
y2k=y1k
which=1
else:
ak=x1k
x1k=x2k
y1k=y2k
which=2
#depending on last step direction and maximum value, the return value must include offset to compensate hysteresis
if (dir==0) and (which==1):
return x1k,y1k,nCount
elif (dir==1) and (which==2):
return x2k,y2k,nCount
elif (dir==1) and (which==1):
return x2k-hysteresis,y2k,nCount
elif (dir==0) and (which==2):
return x2k+hysteresis,y2k,nCount
|
7fdae0cc8b3e2ba6ed8d5b40091258e4e1bb47eb
| 34,653 |
def convert_params_to_string(params: dict) -> str:
""" Create a string representation of parameters in PBC format
"""
return '\n'.join(['%s %s' % (key, value) for (key, value) in params.items()])
|
d121ea62f14333ad7f02727a7a6777b8880fef45
| 34,654 |
import time
def get_series_nuclear_data(self, summary, sidx, **kwargs):
"""Function for parallelized single-pixel nuclear data retrieval.
Args:
summary (list): list of summaries.
sidx (int): series index.
**kwargs: ncores.
Returns:
np.array: series nuclear data.
"""
# Set series verbosity
if kwargs["ncores"] != 1:
self.series[sidx - 1].verbose = False
else:
self.series[sidx - 1].verbose = True
# Get starting time
start_time = time.time()
# Setup starting message
msg = "Retrieving nuclear data from series #" + str(sidx) + "..."
msg = iot.printout(msg, 1, verbose=False)
# Get nuclei ids for current series
ns = [i for i in range(summary.shape[0]) if summary["s"][i] == sidx]
ns = summary["n"][ns]
# Retrieve nuclear data
data, dp, vp, log = self.series[sidx - 1].get_nuclei_data(ns, **kwargs)
# Print log all at once
time_msg = "Took %s s." % (round(time.time() - start_time, 3))
if not 1 == kwargs["ncores"]:
log = msg + log
log += iot.printout(time_msg, 2, False)
self.printout(log, 0)
else:
self.printout(time_msg, 2)
# Output
return {"spx_data": data, "density": dp, "volume": vp}
|
29720e83df11623bdafd2f268b2a9da21a830ce4
| 34,655 |
def _encode_as_png(data, profile, dst_transform):
"""
Uses rasterio's virtual file system to encode a (3, 512, 512)
array as a png-encoded bytearray.
Parameters
-----------
data: ndarray
(3 x 512 x 512) uint8 RGB array
profile: dictionary
dictionary of kwargs for png writing
affine: Affine
affine transform for output tile
Returns
--------
contents: bytearray
png-encoded bytearray of the provided input data
"""
profile["affine"] = dst_transform
with rasterio.open("/vsimem/tileimg", "w", **profile) as dst:
dst.write(data)
contents = bytearray(virtual_file_to_buffer("/vsimem/tileimg"))
return contents
|
535ece2c1375c0b2fe96f67547b012050bd9de9b
| 34,656 |
def arch_from_macho(cputype, cpusubtype):
"""Converts a macho arch tuple into an arch string."""
arch = ffi.new('SymbolicMachoArch *')
arch[0].cputype = cputype & 0xffffffff
arch[0].cpusubtype = cpusubtype & 0xffffffff
try:
return str(decode_str(rustcall(lib.symbolic_arch_from_macho, arch)))
except ignore_arch_exc:
pass
|
204815ecb1d4ab2d2d7aae4ac13522e37f68e7f9
| 34,657 |
def interpret_keypress():
"""
See whether a number was pressed (give terminal bell if so) and return
value. Otherwise returns none. Tries to handle arrows as a single
press.
"""
press = getch()
if press == "Q":
raise Exception("Exiting expo by user request from pressing Q")
if press == "\x1b":
getch()
getch()
press = "direction"
if press != "direction" and press != " ":
try:
press = int(press)
except ValueError:
press = None
return press
|
bc3b2e25b3c15c49daf6f7a3907e41bb04aa8d5e
| 34,659 |
def generate_numbers(limit):
"""
@param:
limit - length of the sequence of natural numbers to be generated
@return:
list_of_numbers - list of the generated sequence
"""
if limit <= 0:
raise ValueError('Invalid limit specified')
list_of_numbers = list()
for i in range(1,limit+1):
list_of_numbers.append(False)
return list_of_numbers
|
f0cd027f6978be01b80c4a86914ecc8d3444d251
| 34,660 |
def get_supplier(supplier_id):
"""
Read a single Supplier
This endpoint will return a Supplier based on it's id
"""
app.logger.info("Request for supplier with id: %s", supplier_id)
supplier = Supplier.find(supplier_id)
if not supplier:
raise NotFound("Supplier with id '{}' was not found.".format(supplier_id))
return make_response(jsonify(supplier.serialize()), status.HTTP_200_OK)
|
b358bfcaad48c6fbfb98ca6b64f799da6fe8eb78
| 34,662 |
import warnings
def se_diversity(gen, k=None, n_jobs=1, fp_type='morgan',
dist_threshold=0.65, normalize=True):
"""
Computes Sphere exclusion diversity i.e. fraction of diverse compounds according to a pre-defined
Tanimoto distance.
:param k:
:param gen:
:param n_jobs:
:param device:
:param fp_type:
:param gen_fps:
:param dist_threshold:
:param normalize:
:return:
"""
assert isinstance(gen[0], rdkit.Chem.rdchem.Mol) or isinstance(gen[0], np.ndarray)
if k is not None:
if len(gen) < k:
warnings.warn(
"Can't compute SEDiv@{}.".format(k) +
"gen contains only {} molecules".format(len(gen))
)
gen = gen[:k]
if isinstance(gen[0], rdkit.Chem.rdchem.Mol):
gen_fps = fingerprints(gen, fp_type=fp_type, n_jobs=n_jobs)
else:
gen_fps = gen
bvs = numpy_fps_to_bitvectors(gen_fps, n_jobs=n_jobs)
no_diverse = sphere_exclusion(fps=bvs, dist_thresh=dist_threshold)
if normalize:
return no_diverse / len(gen)
else:
return no_diverse
|
2be39404b8ae143efb7a37a78e753c1978676374
| 34,663 |
def get_root_y(c_sys: CompositeSystem) -> Gate:
"""returns root of Y gate.
Parameters
----------
c_sys : CompositeSystem
CompositeSystem containing gate.
Returns
-------
Gate
root of Y gate.
Raises
------
ValueError
CompositeSystem is not 1quit.
ValueError
dim of CompositeSystem does not equal 2
"""
# whether CompositeSystem is 1 qubit
size = len(c_sys._elemental_systems)
if size != 1:
raise ValueError(f"CompositeSystem must be 1 qubit. it is {size} qubits")
matrix = np.array(
[[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, -1, 0, 0]], dtype=np.float64
)
gate = _get_1q_gate_from_hs_on_pauli_basis(matrix, c_sys)
return gate
|
572deeb46a8a23d37a7138716b983d91136dc34b
| 34,664 |
def sanitize_sql(sql, keep_transaction=False):
"""Sanatize the sql string
"""
# remove comments
string = remove_comments(sql)
# remove transactionals
if not keep_transaction:
string = remove_transactional(string)
# remove new lines
string = remove_newlines(string)
# remove empty statements
string = remove_empty_statements(string)
# split into multiple statements
return split_statements(string)
|
9ef3c12b823f9eabc4f6b61fe389ea68db6c209d
| 34,665 |
def create_whimsy_computation_lambda_empty():
"""Returns a lambda computation and type `( -> <>)`."""
value = computation_factory.create_lambda_empty_struct()
type_signature = computation_types.FunctionType(None, [])
return value, type_signature
|
741629cd80ba4bbaf27af22d4061226176dfc683
| 34,666 |
def fire_weather_index(isi, bui):
"""Fire weather index.
Parameters
----------
isi : array
Initial spread index
bui : array
Build up index.
Returns
-------
array
Build up index.
"""
fwi = np.where(
bui <= 80.0,
0.1 * isi * (0.626 * bui ** 0.809 + 2.0), # *Eq.28a*#
0.1 * isi * (1000.0 / (25.0 + 108.64 / np.exp(0.023 * bui))),
) # *Eq.28b*#
fwi[fwi > 1] = np.exp(2.72 * (0.434 * np.log(fwi[fwi > 1])) ** 0.647) # *Eq.30b*#
return fwi
|
bae3f683a2870c36ce1b3c0c6f33d872968f851c
| 34,667 |
from typing import Optional
import logging
def read_file(filename: str) -> Optional[str]:
"""
Read a common file and return its content.
Returns
-------
content
The file content
"""
try:
with open(filename, 'r') as f:
content = f.read
return content
except IOError as e:
logging.error(f'Error reading file {filename}.')
logging.error(e)
|
46ceb903af8b655edf85588d31987e02a7667ef4
| 34,668 |
def power(b, e):
"""
@purpose: Using a binary list to calculate power of two integers
@param:
b: The base number
e: The exponent
@precondition: A valid positive base and exponent are input
@postcondition: The power of b^e is print out
@Complexity:
Best Case: O(1) if exponent < 0
Worst Case: O( )
"""
if e < 0:
return "Please input positive exponents"
else:
rev_binary = binary(e)
result = 1
idx = len(rev_binary) - 1
while idx >= 0:
result = result * result
if rev_binary[idx]:
result = result * b
idx -= 1
return result
|
f510642c8b3eee9eac231b33d2e5260855c4bbf2
| 34,669 |
def get_all_items():
"""Get all items"""
items = Item.query.all()
items_list = []
for item in items:
item_object = {
'id': item.id,
'subject': item.subject,
'status' : item.status,
'url': item.url,
'requestor': item.requestor,
'maintainer': item.maintainer,
'created_at': item.created_at,
'updated_at': item.updated_at,
'due_date': item.due_date
}
items_list.append(item_object)
response_object = {
'status': 'success',
'data': {
'items': items_list
}
}
return jsonify(response_object), 200
|
0dadd886096f8a3bcea2413830c70a89b4eb06fb
| 34,670 |
def usergenerator(no1, no2, no3, no4, mode):
"""
生成中文拼音和随机字母组成的用户名
:param no1 表示声母:
:param no2 表示韵母:
:param no3 表示第一位随机字母:
:param no4 表示第二位随机字母:
:param mode 选择姓名的次序:
:return 返回用户名:
"""
list1 = ['b', 'p', 'm', 'f', 'd',
't', 'n', 'l', 'g', 'k',
'h', 'j', 'q', 'x',
'zh', 'ch', 'sh', 'r',
'z', 'c', 's', 'y', 'w',
''] #声母表,共24个
list2 = ['a', 'o', 'e', 'i', 'u',
'v', 'ai', 'ei', 'ui',
'ao', 'ou', 'iu', 'ie',
've', 'er', 'an', 'en',
'in', 'un', 'vn', 'ang',
'eng', 'ing', 'ong',
'ian', 'uan', 'van',
'uen', 'iang', 'uang',
'ueng', 'iong'] #韵母表,共32个
list3 = ['a', 'b', 'c', 'd', 'e',
'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o',
'p', 'q', 'r', 's', 't',
'u', 'v', 'w', 'x', 'y',
'z'] #字母表, 共26个
list4 = ['a', 'b', 'c', 'd', 'e',
'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o',
'p', 'q', 'r', 's', 't',
'u', 'v', 'w', 'x', 'y',
'z', ''] #字母表加空白, 共27个
if mode == 1:
username = list1[no1] + list2[no2] + list3[no3] + list4[no4]
elif mode == 2:
username = list3[no3] + list4[no4] + list1[no1] + list2[no2]
else:
print('No mode expected')
return username
|
0875297000dc00bb3a6ba46844993047137261ec
| 34,671 |
def verify_input(json_data):
"""
Verifies the validity of an API request content
:param json_data: Parsed JSON accepted from API call
:type json_data: dict
:return: Data for the the process function
"""
# callback_uri is needed to sent the responses to
if 'callback_uri' not in json_data:
raise ValueError('callback_uri not supplied')
# Verify data was sent
if 'data' not in json_data:
raise ValueError('no data to predict for!')
# Verify data structure
if not isinstance(json_data['data'], dict):
raise ValueError('jsondata["data"] must be a mapping between unique id and features')
# Verify data scheme
for unique_id, features in json_data['data'].items():
feature_names = features.keys()
feature_values = features.values()
# Verify all features needed were sent
if not all([feature in feature_names for feature in FEATURES]):
raise ValueError('For each example all of the features [{}] must be present'.format(FEATURES))
# Verify all features that were sent are floats
if not all([isinstance(value, float) for value in feature_values]):
raise ValueError('All feature values must be floats')
return json_data
|
77f609923bd774732c1233413633b077d47e5919
| 34,672 |
def detail_slug_dct(slug):
"""
Function to localize Slug's detail properties.
:param slug: model Slug
:return: dictionary with Slug's detail properties localized
"""
return _detail_slug_form.fill_with_model(slug)
|
13d7f41c706a45bf4534cc8be9f2be14e31bc6bd
| 34,673 |
import warnings
def is_myst_available():
"""Whether the myst-parser package is available."""
if myst_parser is None:
return False
major, minor = myst_parser.__version__.split(".")[:2]
if int(major) < 1 and int(minor) < 8:
warnings.warn("The installed myst-parser version is less than the required 0.8")
return False
return True
|
15b54b642e2a4096438f41b12ac2c6b83b651716
| 34,674 |
def CreateTrimmedSurface(trimSource, surfaceSource, multiple=False):
"""
Constructs a Brep using the trimming information of a brep face and a surface.
Surface must be roughly the same shape and in the same location as the trimming brep face.
Args:
trimSource (BrepFace): BrepFace which contains trimmingSource brep.
surfaceSource (Surface): Surface that trims of BrepFace will be applied to.
Returns:
Brep: A brep with the shape of surfaceSource and the trims of trimSource or None on failure.
"""
url = "rhino/geometry/brep/createtrimmedsurface-brepface_surface"
if multiple: url += "?multiple=true"
args = [trimSource, surfaceSource]
if multiple: args = list(zip(trimSource, surfaceSource))
response = Util.ComputeFetch(url, args)
response = Util.DecodeToCommonObject(response)
return response
|
5b317a6c64c3607feb3338844a505e3b62fde970
| 34,675 |
def formatdatetime(datatimes):
"""
格式化日期时间为指定格式
:param datatimes: 数据库中存储的datetime日期时间,也可以是字符串形式(2021-09-23 11:22:03.1232000)
:return: 格式化后的日期时间如:2021-09-23 11:22:03
"""
if datatimes:
try:
if isinstance(datatimes, str):
if "." in datatimes:
arrays = datatimes.split(".",maxsplit=1)
if arrays:
return arrays[0]
return datatimes.strftime('%Y-%m-%d %H:%M:%S')
except Exception as e:
return datatimes
return datatimes
|
8346fe27eb27994a647837c8b280e04e178c91d4
| 34,677 |
def get_difference(stocks: pd.DataFrame) -> pd.DataFrame:
"""Calculates the gains or loss for each stock."""
stocks = stocks.astype({"closing_price": "float", "initial_value": "float"})
stocks["gain_loss"] = stocks["closing_price"] - stocks["initial_value"]
stocks["gain_loss"] = stocks["gain_loss"].round(2)
return stocks
|
141caa895a6d5761e41f0656307c851c64df2df5
| 34,678 |
import math
def random_mini_batches(X, Y, batch_size=64, seed=0):
"""
Creates a list of random minibatches from (X, Y)
Arguments:
X -- input data, of shape (number of examples, input size)
Y -- true "label" vector of shape (number of examples, number of features)
batch_size -- size of the mini-batches, integer
seed -- this is only for the purpose of grading, so that you're "random
minibatches are the same as ours.
Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""
m = X.shape[0] # number of training examples
mini_batches = []
np.random.seed(seed)
# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[permutation, :]
shuffled_Y = Y[permutation, :].reshape((m, Y.shape[1]))
# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_minibatches = math.floor(m/batch_size)
for k in range(0, num_minibatches):
mini_batch_X = shuffled_X[k*batch_size:k*batch_size + batch_size, :]
mini_batch_Y = shuffled_Y[k*batch_size:k*batch_size + batch_size, :]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
# Handling the end case (last mini-batch < batch_size)
if m % batch_size != 0:
mini_batch_X = shuffled_X[num_minibatches*batch_size:m, :]
mini_batch_Y = shuffled_Y[num_minibatches*batch_size:m, :]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
|
ee6eec6d90a61f33c44fa01ced15e9a718a4a58e
| 34,679 |
def stelab(pobj: ndarray, vobs: ndarray) -> ndarray:
"""
Correct the apparent position of an object for stellar
aberration.
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/stelab_c.html
:param pobj: Position of an object with respect to the observer.
:param vobs:
Velocity of the observer with respect
to the Solar System barycenter.
:return:
Apparent position of the object with respect to
the observer, corrected for stellar aberration.
"""
pobj = stypes.to_double_vector(pobj)
vobs = stypes.to_double_vector(vobs)
appobj = stypes.empty_double_vector(3)
libspice.stelab_c(pobj, vobs, appobj)
return stypes.c_vector_to_python(appobj)
|
ebdead6d87c4f916afcca8897758fb189fa4a58a
| 34,680 |
import tqdm
import torch
def train(train_loader, model, args, optimizer, scheduler, epoch, device, writer=None):
"""Train for one epoch on the training set"""
# switch to train mode
model.train()
print('\nEpoch: %d' % epoch)
train_loss = 0
total = 0
correct = 0
for j, (input, target) in tqdm(enumerate(train_loader), total = len(train_loader)):
optimizer.zero_grad()
input = input.to(device)
target = target.to(device)
if args.double:
input = input.double()
output = model(input)
loss =F.cross_entropy(output, target, reduction = 'mean')
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
train_loss += loss.item()
loss.backward()
with torch.no_grad():
if args.directional:
V = {}
if args.mage:
x = input.view(input.shape[0],-1).clone()
device =x.device
dtype = x.dtype
epsilon = 1
eps = 1E-6
dFg = 0
for i, linop in enumerate(model.linops):
##import pdb; pdb.set_trace()
if args.mage:
W = linop.weight
B = linop.bias
vn = torch.randn([W.shape[0],1],device =device, dtype = dtype) *epsilon
vb = vn.clone().squeeze().expand(B.shape)
if args.normalize_v:
z = x/(x.norm(dim=1,keepdim = True)+ eps)
vw = torch.matmul(vn,z.unsqueeze(1)) ## M X 1 mm B X 1 X N -> B X M X N
else:
vw = torch.matmul(vn,x.unsqueeze(1))
batch_size = vw.shape[0]
dFg = dFg + (linop.weight.grad*vw).sum([1,2]).view([batch_size, 1]) ## B x 1
x = linop(x)
if i < len(model.linops) - 1:
x = model.act(x)
else:
vw = torch.randn_like(linop.weight)
vb = torch.randn_like(linop.bias)
dFg = dFg + (linop.weight.grad*vw).sum()
dFg = dFg + (linop.bias.grad*vb).sum()
V[i] = (vw, vb)
for i, linop in enumerate(model.linops):
vw, vb = V[i]
if args.mage:
linop.weight.grad = torch.matmul(dFg.permute(1,0), vw.view(batch_size,-1)).view(vw.shape[1],vw.shape[2]) ## 1 x B mm Bx(N1xN2) > N1 x N2
else:
linop.weight.grad = (linop.weight.grad*vw).sum() * (vw)
linop.bias.grad = (linop.bias.grad*vb).sum() * (vb)
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.3)
total += input.size(0)
optimizer.step()
if args.cosine:
scheduler.step()
else:
scheduler.step()
## steps_lr(optimizer,args,epoch)
train_acc = (100. * correct / len(train_loader.dataset))
train_loss = train_loss/total
if writer is not None:
writer.add_scalar('train/loss', train_loss, epoch)
writer.add_scalar('train/acc', train_acc, epoch)
for i,linop in enumerate(model.linops) :
if i == 0:
stri=""
else:
stri = f"{i}"
writer.add_scalar(f'L2norm/weight{stri}', linop.weight.norm().item(), epoch)
if not linop.bias is None:
writer.add_scalar(f'L2norm/bias{stri}', linop.bias.norm().item(), epoch)
writer.add_scalar('lr/scheduler', optimizer.param_groups[0]['lr'], epoch)
return train_loss, train_acc
|
55f25cf0d7ed93a973443442ad93ba5ed0eea0ba
| 34,681 |
def add_noise(input_image, noise, multiple_image_std, size=224):
"""Transformation of a single image by adding noise.
If a random gaussian distribution of noisy is specified (noise='r_normal'),
the standard deviation of the noise added is based upon the dynamic range of
the image weighed by multiple_image_std argument. This appears to work
well empirically, and is the subject of additional research.
Args:
input_image: A single input image, float32 tensor
noise: String that specifies the distribution of noise to add as either a
gaussian distribution (r_normal) or a uniform distribution (r_uniform).
multiple_image_std: Weight to place on the range of input values.
size: size of noise matrix (should match image size)
Returns:
noisy_image: The input with the addition of a noise distribution.
Raises:
ValueError: Raised if the string specifying the noise distribution does
not correspond to the noise implementations.
"""
if noise == 'r_normal':
image_min = tf.reduce_min(input_image)
image_max = tf.reduce_max(input_image)
diff = tf.reduce_mean(tf.subtract(image_max, image_min))
range_ = tf.to_float(tf.multiply(tf.constant([multiple_image_std]), diff))
noise = tf.random_normal(
shape=[size, size, 3], stddev=range_, dtype=tf.float32)
elif noise == 'r_uniform':
percentile_ = tfp.stats.percentile(input_image, q=10.)
noise = tf.random.uniform(
minval=-percentile_,
maxval=percentile_,
shape=[size, size, 3],
dtype=tf.float32)
else:
raise ValueError('Noise type not found:', noise)
noisy_image = tf.add(input_image, noise)
return noisy_image
|
99f290f498b6abea5d592787ee60a137d805ff33
| 34,682 |
def evaluate_topic_models(data, varying_parameters, constant_parameters=None, n_max_processes=None, return_models=False,
metric=None, **metric_kwargs):
"""
Compute several Topic Models in parallel using the "gensim" package. Calculate the models using a list of varying
parameters `varying_parameters` on a single Document-Term-Matrix `data`. Pass parameters in `constant_parameters`
dict to each model calculation. Use at maximum `n_max_processes` processors or use all available processors if None
is passed.
`data` must be a Document-Term-Matrix (NumPy array/matrix, SciPy sparse matrix).
Will return a list of size `len(varying_parameters)` containing tuples `(parameter_set, eval_results)` where
`parameter_set` is a dict of the used parameters and `eval_results` is a dict of metric names -> metric results:
.. code-block:: text
[(parameter_set_1, {'<metric_name>': result_1, ...}),
...,
(parameter_set_n, {'<metric_name>': result_n, ...})])
.. seealso:: Results can be simplified using :func:`tmtoolkit.topicmod.evaluate.results_by_parameter`.
:param data: a (sparse) 2D array/matrix
:param varying_parameters: list of dicts with parameters; each parameter set will be used in a separate
evaluation
:param constant_parameters: dict with parameters that are the same for all parallel computations
:param n_max_processes: maximum number of worker processes to spawn
:param return_models: if True, also return the computed models in the evaluation results
:param metric: string or list of strings; if given, use only this metric(s) for evaluation; must be subset of
`available_metrics`
:param metric_kwargs: dict of options for metric used metric(s)
:return: list of evaluation results for each varying parameter set as described above
"""
mp_eval = MultiprocEvaluationRunner(MultiprocEvaluationWorkerGensim, AVAILABLE_METRICS, data,
varying_parameters, constant_parameters,
metric=metric or DEFAULT_METRICS, metric_options=metric_kwargs,
n_max_processes=n_max_processes, return_models=return_models)
return mp_eval.run()
|
01ad43f2ab07dbbd3c64e2a9bc8ee3b7f5fddfad
| 34,684 |
from re import T
def n_step_bootstrapped_returns(r_t: T, discount_t: T, v_t: T, targets: T, lambda_t: T, seq_len: int, n: int) -> T:
"""Computes strided n-step bootstrapped return targets over a sequence.
The returns are computed according to the below equation iterated `n` times:
Gₜ = rₜ₊₁ + γₜ₊₁ [(1 - λₜ₊₁) vₜ₊₁ + λₜ₊₁ Gₜ₊₁].
When lambda_t == 1. (default), this reduces to
Gₜ = rₜ₊₁ + γₜ₊₁ * (rₜ₊₂ + γₜ₊₂ * (... * (rₜ₊ₙ + γₜ₊ₙ * vₜ₊ₙ ))).
Args:
r_t: rewards at times [1, ..., T].
discount_t: discounts at times [1, ..., T].
v_t: state or state-action values to bootstrap from at time [1, ...., T].
n: number of steps over which to accumulate reward before bootstrapping.
lambda_t: lambdas at times [1, ..., T]. Shape is [], or [T-1].
stop_target_gradients: bool indicating whether or not to apply stop gradient
to targets.
Returns:
estimated bootstrapped returns at times [0, ...., T-1]
"""
# Work backwards to compute n-step returns.
for i in reversed(range(n)):
r_ = r_t[i:i + seq_len]
discount_ = discount_t[i:i + seq_len]
lambda_ = lambda_t[i:i + seq_len]
v_ = v_t[i:i + seq_len]
targets = r_ + discount_ * ((1. - lambda_) * v_ + lambda_ * targets)
return targets
|
ec729b840a47f4d37eff65f5e7c36a7467237fc2
| 34,685 |
import requests
import json
def questions (category, token):
"""Contacts API and retrieves questions + answers based on category"""
# Retrieve questions and answers from API
try:
response = requests.get(f"https://opentdb.com/api.php?amount=1&category={category}&type=multiple&token={token}")
response.raise_for_status()
except requests.RequestException:
return None
# Turn JSON format into a python dictionary
response = json.loads(response.text)
# Check for Response Code
if response['response_code'] == 0:
# A dictionary keyed by an integer with values being dicts as values question + (incorrect)answers
try:
question_list = []
for i, item in enumerate(response['results']):
question_list.append({})
question_list[i]['question'] = item['question']
question_list[i]['correct'] = item['correct_answer']
question_list[i]['incorrects'] = item['incorrect_answers']
except (KeyError, TypeError, ValueError):
return None
# Something went wrong with the API
else:
return None
return question_list
|
7ff86a66e82dd442fc57b68ac02a7b793336d290
| 34,686 |
async def reset_clean_filter_timer(obj):
"""Reset the Clean Filter indicator timer."""
return await obj["madoka"].reset_clean_filter_timer.update(ResetCleanFilterTimerStatus())
|
a746aa0ce2527dc3a135c4ab71d8841f133b85bb
| 34,687 |
def getFigureSpec(iteration: int, perceptual: bool):
"""
Get 2x2 Figure And Axis
Parameters
----------
iterations : int
perceptual : bool
If true, generate the axis of perceptual loss
Return
------
fig, axis : matplotlib.figure.Figure, matplotlib.axes.Axes
The plotting instance.
"""
fig, grids = plt.figure(figsize=(19.2, 10.8)), gridspec.GridSpec(2, 2)
axis = [ fig.add_subplot(gs) for gs in grids ]
for ax in axis:
ax.set_xlabel("Epoch(s) / Iteration: {}".format(iteration))
# Linear scale of Loss
axis[0].set_ylabel("Image Loss")
axis[0].set_title("Loss")
# Log scale of Loss
axis[1].set_yscale("log")
axis[1].set_ylabel("Image Loss")
axis[1].set_title("Loss (Log scale)")
# PSNR
axis[2].set_title("Average PSNR")
# Learning Rate
axis[3].set_yscale('log')
axis[3].set_title("Learning Rate")
# Add TwinScale for Perceptual Loss
if perceptual:
axis.append( axis[0].twinx() )
axis[4].set_ylabel("Perceptual Loss")
axis.append( axis[1].twinx() )
axis[5].set_ylabel("Perceptual Loss")
return fig, axis
|
2003ce5d4ddfa316ba5bd56bfb5150d9c96b96ab
| 34,688 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.