content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import gzip def read_consanguineous_samples(path, cutoff=0.05): """ Read inbreeding coefficients from a TSV file at the specified path. Second column is sample id, 6th column is F coefficient. From PLINK: FID, IID, O(HOM), E(HOM), N(NM), F Additional columns may be present but will be ignored. """ consanguineous_samples = {} myopen = gzip.open if path.endswith('.gz') else open with myopen(path) as inf: _ = inf.readline() for line in inf: cols = line.strip().split() if float(cols[5]) > cutoff: consanguineous_samples[cols[1]] = True return consanguineous_samples
be3515e6704966ae927bfaff2594be9191063889
34,340
from re import T def component(graph: Graph[T], node: T) -> Graph[T]: """Returns the connected component that contains the given vertex, as a new Graph object. A vertex with no incident edges is itself a component. A graph that is itself connected has exactly one component, consisting of the whole graph. """ res: Graph = Graph() _component(graph, node, res, visited=set()) return res
6d1d23b28e35f291e79369f39e66d7444f0395ba
34,341
import six from datetime import datetime import typing def _deserialize(data, klass): """Deserializes dict, list, str into an object. :param data: dict, list or str. :param klass: class literal, or string of class name. :return: object. """ if data is None: return None if klass in six.integer_types or klass in (float, str, bool): return _deserialize_primitive(data, klass) if klass == object: return _deserialize_object(data) if klass == date: return deserialize_date(data) if klass == datetime: return deserialize_datetime(data) if isinstance(klass, typing.GenericMeta): # pylint: disable=no-member if klass.__extra__ == list: return _deserialize_list(data, klass.__args__[0]) if klass.__extra__ == dict: return _deserialize_dict(data, klass.__args__[1]) else: return deserialize_model(data, klass) # I don't think we are supposed to be able to get here, but the # above conditionals potentially make it possible, so return None # explicitly here instead of falling out. return None
7f008dc9edcdb433fe6561f5ad30695e8103c347
34,342
def smooth(data, fwhm, mask = 0): """ smooth Parameters --------------------- data an object of class field fwhm mask a numpy.nd array, with the same dimensions as the data Returns --------------------- An object of class field with Examples --------------------- # 1D example f = pr.wfield(50,10) smooth_f = pr.smooth(f, 8) plt.plot(smooth_f.field) # 2D example f = pr.wfield((50,50), 10) smooth_f = pr.smooth(f, 8) plt.imshow(smooth_f.field[:,:,1]) # 2D example with mask f = pr.wfield((50,50), 10) mask = np.zeros((50,50), dtype = 'bool') mask[15:35,15:35] = 1 smooth_f = pr.smooth(f, 8, mask) plt.imshow(smooth_f.field[:,:,1]) """ # Convert a numpy array to a field if necessary if isinstance(data, np.ndarray): data = pr.make_field(data) # If a non-zero mask is supplied used this instead of the mask associated with data if np.sum(np.ravel(mask)) > 0: data.mask = mask # Calculate the standard deviation from the fwhm sigma = pr.fwhm2sigma(fwhm) for i in np.arange(data.fibersize): data.field[...,i] = gaussian_filter(data.field[...,i] * data.mask, sigma = sigma) * data.mask return data
feba63fe44605c4c59ca9b83794daad046ac3244
34,343
def get_xy_coords(xda): """Return the dimension name for x and y coordinates e.g. XC or XG Parameters ---------- xda : xarray DataArray with all grid information Returns ------- x,y : str with e.g. 'XC' or 'YC' """ x = 'XC' if 'XC' in xda.coords else 'XG' y = 'YC' if 'YC' in xda.coords else 'YG' return x,y
6aca5de1eda17df617027c742a06f97cf77af1d5
34,344
def remote_docker(client_ip, docker_host, *args): """ Run ``docker`` on ``client_ip``. :param bytes docker_host: The DOCKER_HOST environment variable to set before running ``docker``. :param args: Other command line arguments to supply to ``docker``. :returns: A ``Deferred`` when the command has completed or failed. """ return remote_command( client_ip, ('DOCKER_TLS_VERIFY=1', 'DOCKER_HOST={}'.format(docker_host), 'docker') + args, )
cbbff3fdd1460c61dbbc48b4833bede2a60312aa
34,347
def aggregate_f(loc_fscore, length_acc, vessel_fscore, fishing_fscore, loc_fscore_shore): """ Compute aggregate metric for xView3 scoring Args: loc_fscore (float): F1 score for overall maritime object detection length_acc (float): Aggregate percent error for vessel length estimation vessel_fscore (float): F1 score for vessel vs. non-vessel task fishing_fscore (float): F1 score for fishing vessel vs. non-fishing vessel task loc_fscore_shore (float): F1 score for close-to-shore maritime object detection Returns: aggregate (float): aggregate metric for xView3 scoring """ # Note: should be between zero and one, and score should be heavily weighted on # overall maritime object detection! aggregate = loc_fscore * (1 + length_acc + vessel_fscore + fishing_fscore + loc_fscore_shore) / 5 return aggregate
c3120882e50710d6874def60ad85e7a8be47c5d7
34,349
def index(request): """ Index view: shows a form with a list of ticket that one can buy """ ticket_types = TicketType.objects.all() form = TicketsForm(ticket_types,[], request.POST) if form.is_valid(): data = form.cleaned_data p = TicketPurchase() print data if data['coupon']: coupon = Coupon.objects.get(data['coupon']) p.coupon = coupon p.additional_contribution = data['donation'] or 0 tickets = [] for type_ in ticket_types: key = 'quantity:%d'%type_.id if key in data: for i in range(data[key]): tickets.append(Ticket(ticket_type=type_)) request.session['purchase'] = p request.session['tickets'] = tickets return redirect('/register/') return render_to_response( "index.html", dict(form=form), context_instance=RequestContext(request))
997ed750187586077d5ca24d17326d5f5510382e
34,350
from typing import Union def _on_vertex( easting: Union[int, float], northing: Union[int, float], resolution: int ) -> bool: """Test if point lies on vertex.""" return ( True if (int(easting) % resolution == 0) and (int(northing) % resolution == 0) else False )
06902474da9bfc49e209ada65d160c0fa7f28cbf
34,351
def add_jitter(df, jitter): """ Adds jitter to a data set based on a random normal distribution. Requirements: numpy, pandas """ return abs(df + np.random.normal(df, jitter, size=len(df)))
dc03d1506db3e21908a02a370122b8735167606b
34,352
import torch import itertools def collate_fn(batch): """Creates mini-batch tensors from the list of tuples (query, positive, negatives). Args: data: list of tuple (query, positive, negatives). - query: torch tensor of shape (3, h, w). - positive: torch tensor of shape (3, h, w). - negative: torch tensor of shape (n, 3, h, w). Returns: query: torch tensor of shape (batch_size, 3, h, w). positive: torch tensor of shape (batch_size, 3, h, w). negatives: torch tensor of shape (batch_size, n, 3, h, w). """ batch = list(filter(lambda x: x is not None, batch)) if len(batch) == 0: return None, None, None, None, None query, positive, negatives, indices = zip(*batch) query = data.dataloader.default_collate(query) positive = data.dataloader.default_collate(positive) neg_counts = data.dataloader.default_collate([x.shape[0] for x in negatives]) negatives = torch.cat(negatives, 0) indices = list(itertools.chain(*indices)) return query, positive, negatives, neg_counts, indices
d6e4985b7b0e248f05e78684a2a09136da865799
34,353
def complete_graph(number_of_vertices, name="Complet graph", directed=False): """ Construction of a complete graph. The number of edges is exactly n*(n-1)/2 (where n is the number of vertices) :param number_of_vertices: :param name: :param directed: False for undirected graph :return: the complete graph """ # The comprehension list is used to give every possible case of edge. list_of_vertices = vertices_generation(number_of_vertices) constructed_graph = Graph({s: {} for s in list_of_vertices}, name) [constructed_graph.add_edge(s, t, directed) for s in range(1, number_of_vertices + 1) for t in range(s, number_of_vertices + 1) if s != t] return constructed_graph
e603583abcc6e1de10f057965bf587cde1eebcc0
34,354
def obv(df, price, volume, obv): """ The On Balance Volume (OBV) is a cumulative total of the up and down volume. When the close is higher than the previous close, the volume is added to the running total, and when the close is lower than the previous close, the volume is subtracted from the running total. Parameters: df (pd.DataFrame): DataFrame which contain the asset price. price (string): the column name of the price of the asset. volume (string): the column name of the volume of the asset. obv (string): the column name for the on balance volume values. Returns: df (pd.DataFrame): Dataframe with obv of the asset calculated. """ df["diff"] = df[price].diff() df = df.fillna(1) df.loc[df["diff"] > 0, obv + "_sign"] = 1 df.loc[df["diff"] < 0, obv + "_sign"] = -1 df.loc[df["diff"] == 0, obv + "_sign"] = 0 volume_sign = df[volume] * df[obv + "_sign"] df[obv] = volume_sign.cumsum() df.drop(["diff", obv + "_sign"], axis=1, inplace=True) return df
19f4c456ed501523d2b349e2766d482bd1fef13b
34,355
def is_data(line): """ Function utilized by itertool's groupby method in determining the delimiter between our blocks of data. """ return True if line.strip() else False
da3db970c5c5a3169446513cb4148ffedf598095
34,356
def update_license(license_id, **kwargs): """ Replace the License with given ID with a new License """ updated_license = licenses_api.get_specific(id=license_id).content for key, value in iteritems(kwargs): if value: setattr(updated_license, key, value) response = utils.checked_api_call( licenses_api, 'update', id=int(license_id), body=updated_license) if response: return utils.format_json(response.content)
c500224309e71d0e14a641980deaa75714a9c117
34,357
def _browse_device(device_id: MediaId, device: Device) -> BrowseMediaSource: """Return details for the specified device.""" device_info = NestDeviceInfo(device) return BrowseMediaSource( domain=DOMAIN, identifier=device_id.identifier, media_class=MEDIA_CLASS_DIRECTORY, media_content_type=MEDIA_TYPE_VIDEO, children_media_class=MEDIA_CLASS_VIDEO, title=DEVICE_TITLE_FORMAT.format(device_name=device_info.device_name), can_play=False, can_expand=True, thumbnail=None, children=[], )
76f36c2cf5eedad06f527d78aa45fac1d6ea6b11
34,358
def get_organization_suggestions(config, donl_type): """ Get organization suggestions for a given type :param dict[str, Any] config: The configuration to use for selecting DONL organizations :param str donl_type: The DONL type to get suggestions for :rtype: list of dict[str, any] :return: The list of organization suggestions """ return get_uri_suggestions(config, 'authority', 'organization', donl_type)
6d306c49bc7671707479b5327e69a74320ebf3a6
34,359
def make_func_entry(func, name=None, description=None, params=None): """ Create a function docstring entry for a swig interface file. func - a doxyxml object from which documentation will be extracted. name - the name of the C object (defaults to func.name()) description - if this optional variable is set then it's value is used as the description instead of extracting it from func. params - a parameter list that overrides using func.params. """ if params is None: params = func.params params = [prm.declname for prm in params] if params: sig = "Params: (%s)" % ", ".join(params) else: sig = "Params: (NONE)" templ = "{description}\n\n" + sig return make_entry(func, name=name, templ=utoascii(templ), description=description)
d5fb2067d0c69bc5cffc47376f3f91573c5cc1d4
34,360
import copy def instance_update(context, instance_uuid, values, session=None): """Updates an existing VM instance in the Database""" values = copy.deepcopy(values) power_specs = values.pop('power_specs', None) #Merge in the existing MetaData if they asked for Partial Updates _instance_merge_metadata(context, instance_uuid, values) #Delegate to the OpenStack method to actually update the Instance inst_ref = db_api.instance_update(context, instance_uuid, values) #If there were PowerSpecs provided, then insert them now if power_specs is not None and inst_ref is not None: instance_power_specs_update( context, instance_uuid, power_specs, session) #Query the Instance again to make sure the PowerSpecs is populated inst_ref = db_api.instance_get_by_uuid(context, inst_ref['uuid']) return inst_ref
80296ff02a320bdf3192802bbde50d8adc6778c5
34,361
from bs4 import BeautifulSoup def xkcdt(): """ Return the title of the most recent xkcd, taken from the wesite's source code. """ page=BeautifulSoup(urllib2.urlopen('https://xkcd.com'),'lxml') return page.title.string
55f90a86d8e0410743a968bf1c3351f23709b728
34,363
import warnings def log_cpm_hvg(adata: ad.AnnData, n_genes: int = 1000) -> ad.AnnData: """Normalize logCPM HVG Normalize data to log counts per million and select n_genes highly variable genes """ adata = log_cpm(adata) if adata.n_vars < n_genes: warnings.warn( f"Less than {n_genes} genes, setting 'n_genes' to {int(adata.n_vars * 0.5)}" ) n_genes = int(adata.n_vars * 0.5) sc.pp.highly_variable_genes(adata, n_top_genes=n_genes, flavor="cell_ranger") adata = adata[:, adata.var["highly_variable"]].copy() return adata
ee9cda4caedde03d81fbc361a5c70d90c7bfc1f7
34,364
def c_string_arguments(encoding='UTF-8', *strings): """ Convenience function intended to be passed to in_format which allows easy arguments which are lists of null-terminated strings. """ payload = b"" # Add each string, followed by a null character. for string in strings: payload += string.encode(encoding) payload += b"\0" return payload
5c93afae01d199f31a27f658e133024c8fb9f92f
34,365
async def create_mirror(request): """ Create a debian aptly mirror. --- description: Create a debian aptly mirror. tags: - Mirrors consumes: - application/x-www-form-urlencoded parameters: - name: name in: query required: true type: string description: name of the mirror - name: url in: query required: true type: string description: http://host of source - name: distribution in: query required: true type: string description: trusty, wheezy, jessie, etc. - name: components in: query required: false type: array description: components to be mirrored default: main - name: keys in: query required: false type: array uniqueItems: true collectionFormat: multi allowEmptyValue: true minItems: 0 items: type: string description: repository keys - name: keyserver in: query required: false type: string description: host name where the keys are - name: is_basemirror in: query required: false type: boolean description: use this mirror for chroot - name: architectures in: query required: false type: array description: i386,amd64,arm64,armhf,... - name: version in: query required: false type: string - name: armored_key_url in: query required: false type: string - name: basemirror_id in: query required: false type: string - name: download_sources in: query required: false type: boolean - name: download_installer in: query required: false type: boolean produces: - text/json responses: "200": description: successful "400": description: mirror creation failed. "412": description: key error. "409": description: mirror already exists. "500": description: internal server error. "503": description: aptly not available. "501": description: database error occurred. """ params = await request.json() mirror = params.get("name") url = params.get("url") mirror_distribution = params.get("distribution") components = params.get("components", []) keys = params.get("keys", []) keyserver = params.get("keyserver") is_basemirror = params.get("is_basemirror") architectures = params.get("architectures", []) version = params.get("version") key_url = params.get("armored_key_url") basemirror_id = params.get("basemirror_id") download_sources = params.get("download_sources") download_installer = params.get("download_installer") if not components: components = ["main"] if not isinstance(is_basemirror, bool): return ErrorResponse("is_basemirror not a bool") args = { "create_mirror": [ mirror, url, mirror_distribution, components, keys, keyserver, is_basemirror, architectures, version, key_url, basemirror_id, download_sources, download_installer, False, "strict" ] } await enqueue_aptly(args) return OKResponse("Mirror {} successfully created.".format(mirror))
b6e60120580f25a967f19ec5ec7fff3fd0fa9478
34,366
def anneal(c_max, step, iteration_threshold): """Anneal function for anneal_vae (https://arxiv.org/abs/1804.03599). Args: c_max: Maximum capacity. step: Current step. iteration_threshold: How many iterations to reach c_max. Returns: Capacity annealed linearly until c_max. """ return min(c_max * 1., c_max * 1. * (step) / iteration_threshold)
ca6cbb5fe109e5d6b36870b398604ee79042827f
34,367
import json def update_timer_interval(acq_state, chart_data_json_str, chart_info_json_str, active_channels, samples_to_display): """ A callback function to update the timer interval. The timer is temporarily disabled while processing data by setting the interval to 1 day and then re-enabled when the data read has been plotted. The interval value when enabled is calculated based on the data throughput necessary with a minimum of 500 ms and maximum of 4 seconds. Args: acq_state (str): The application state of "idle", "configured", "running" or "error" - triggers the callback. chart_data_json_str (str): A string representation of a JSON object containing the current chart data - triggers the callback. chart_info_json_str (str): A string representation of a JSON object containing the current chart status - triggers the callback. active_channels ([int]): A list of integers corresponding to the user selected active channel checkboxes. samples_to_display (float): The number of samples to be displayed. Returns: """ chart_data = json.loads(chart_data_json_str) chart_info = json.loads(chart_info_json_str) num_channels = int(len(active_channels)) refresh_rate = 1000*60*60*24 # 1 day if acq_state == 'running': # Activate the timer when the sample count displayed to the chart # matches the sample count of data read from the HAT device. if 0 < chart_info['sample_count'] == chart_data['sample_count']: # Determine the refresh rate based on the amount of data being # displayed. refresh_rate = int(num_channels * samples_to_display / 2) if refresh_rate < 500: refresh_rate = 500 # Minimum of 500 ms return refresh_rate
1bc695ab2e5d63d4734d27417efc3d17a5e3a471
34,368
def constant_change_luminance(img): """ luminance noise added to image :param img: image: numpy input image :return: blurred image """ # constant [-25, 25] constant = np.random.randint(-25, 25, size=(img.shape[0], img.shape[1], 1)) new_img = np.clip(img.astype(np.float32) - constant, 0.0, 255.0).astype(np.uint8) return new_img
e5e11a49db0c2ac051f7e8fb881f724ed94a1ad6
34,369
def rectify(x): """Rectify activation function :math:`\\varphi(x) = \\max(0, x)` Parameters ---------- x : float32 The activation (the summed, weighted input of a neuron). Returns ------- float32 The output of the rectify function applied to the activation. """ # The following is faster than T.maximum(0, x), # and it works with nonsymbolic inputs as well. # Thanks to @SnipyHollow for pointing this out. Also see: # https://github.com/Lasagne/Lasagne/pull/163#issuecomment-81765117 return 0.5 * (x + abs(x))
f781c4a382d211fbcadfe599c470523d3a59c2f1
34,370
def login_form(): """Show login form.""" return render_template("login_form.html", loggingin=True)
9f70323f1936f9b68200e3e1c75dfd52c262bc44
34,371
from typing import Union from typing import Sequence def truncate_batches(*xl: Union[dy.Expression, Batch, Mask, recurrent.UniLSTMState]) \ -> Sequence[Union[dy.Expression, Batch, Mask, recurrent.UniLSTMState]]: """ Truncate a list of batched items so that all items have the batch size of the input with the smallest batch size. Inputs can be of various types and would usually correspond to a single time step. Assume that the batch elements with index 0 correspond across the inputs, so that batch elements will be truncated from the top, i.e. starting with the highest-indexed batch elements. Masks are not considered even if attached to a input of :class:`Batch` type. Args: *xl: batched timesteps of various types Returns: Copies of the inputs, truncated to consistent batch size. """ batch_sizes = [] for x in xl: if isinstance(x, dy.Expression) or isinstance(x, expression_seqs.ExpressionSequence): batch_sizes.append(x.dim()[1]) elif isinstance(x, Batch): batch_sizes.append(len(x)) elif isinstance(x, Mask): batch_sizes.append(x.batch_size()) elif isinstance(x, recurrent.UniLSTMState): batch_sizes.append(x.output().dim()[1]) else: raise ValueError(f"unsupported type {type(x)}") assert batch_sizes[-1] > 0 ret = [] for i, x in enumerate(xl): if batch_sizes[i] > min(batch_sizes): if isinstance(x, dy.Expression) or isinstance(x, expression_seqs.ExpressionSequence): ret.append(x[tuple([slice(None)]*len(x.dim()[0]) + [slice(min(batch_sizes))])]) elif isinstance(x, Batch): ret.append(mark_as_batch(x[:min(batch_sizes)])) elif isinstance(x, Mask): ret.append(Mask(x.np_arr[:min(batch_sizes)])) elif isinstance(x, recurrent.UniLSTMState): ret.append(x[:,:min(batch_sizes)]) else: raise ValueError(f"unsupported type {type(x)}") else: ret.append(x) return ret
a39a4e8fec318b8e27ce6df1029051c07e058180
34,373
def get_loss_f(**kwargs_parse): """Return the loss function given the argparse arguments.""" return Loss(lamL1attr=kwargs_parse["lamL1attr"])
0389a9ca1799d7f98965caed7c0474543ed3c24a
34,374
def input_reading_mod(input_dir, input): """This helper convert input""" with open('%s/%s' %(input_dir, input), 'r') as input_fid: pred = input_fid.readlines() det = [x.strip('\n') for x in pred] return det
34fd8e5fe53d809ee1cc870c031bca8691756a63
34,376
async def connect(config, loop, protocol=None, session=None): """Connect and logins to an Apple TV.""" if config.identifier is None: raise exceptions.DeviceIdMissingError("no device identifier") service = config.main_service(protocol=protocol) supported_implementations = { const.PROTOCOL_DMAP: DmapAppleTV, const.PROTOCOL_MRP: MrpAppleTV, } implementation = supported_implementations.get(service.protocol, None) if not implementation: raise exceptions.UnsupportedProtocolError() # If no session is given, create a default one if session is None: session = await net.create_session(loop=loop) # AirPlay service is the same for both DMAP and MRP airplay = AirPlayAPI(config, loop) atv = implementation(loop, session, config, airplay) await atv.connect() return atv
1f6357737ce93a69e0b75093a5da8c72aebbb660
34,377
def _is_none(s: str) -> bool: """Check if a value is a text None.""" if s == 'None': return True return False
b7a6118b2c04c965d808911405d23a168f0fbff3
34,378
def get_C_and_Ic(Cin_est, Icin_est, f01, f02on2): """Get the capacitance and critical current for a transmon of a certain frequency and anharmonicity. Args: Cin_est (float): Initial guess for capacitance (in fF) Icin_est (float): Initial guess for critical current (in nA) f01 (float): Transmon frequency (in GHz) f02on2 (float): 02/2 frequency (in GHz) Returns: tuple: [C,Ic] from levels_vs_ng_real_units that gives the specified frequency and anharmonicity """ xrr = opt.minimize(lambda x: cos_to_mega_and_delta(x[0], x[1], f01, f02on2), [Cin_est, Icin_est], tol=1e-4, options={ 'maxiter': 100, 'disp': True }) return xrr.x
ad7597b1e525a5d5818d6f79058cbe1213d38e2a
34,379
def read_positionfixes_postgis(sql, con, geom_col="geom", **kwargs): """Reads positionfixes from a PostGIS database. Parameters ---------- sql : str SQL query e.g. "SELECT * FROM positionfixes" con : str, sqlalchemy.engine.Connection or sqlalchemy.engine.Engine Connection string or active connection to PostGIS database. geom_col : str, default 'geom' The geometry column of the table. **kwargs Further keyword arguments as available in GeoPanda's GeoDataFrame.from_postgis(). Returns ------- GeoDataFrame A GeoDataFrame containing the positionfixes. Examples -------- >>> pfs = ti.io.read_postifionfixes_postgis("SELECT * FROM postionfixes", con, geom_col="geom") """ pfs = gpd.GeoDataFrame.from_postgis(sql, con, geom_col, **kwargs) return ti.io.read_positionfixes_gpd(pfs, geom_col=geom_col)
f55f6934f675c76a99e544243b0f1cf779820e44
34,380
import logging def get_model(letters, max_length): """Create a LSTM model.""" logging.info("Create model") input_dim = len(letters) logging.info("input_dim=%i", input_dim) model = Sequential() model.add(LSTM(8, return_sequences=True, input_shape=(max_length, len(letters)))) model.add(Dropout(0.2)) model.add(LSTM(8, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(2, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) return model
0506c1f892ca2518b95c9edfc4deedfd8ebd4174
34,381
def _group_auto_update_helper(auto_update): """Helper that prepares the given group auto update for JSON serialization. :param GroupAutoUpdate auto_update: the auto update to serialize :return: dictionary suitable for JSON serialization :rtype: dict """ fields = { 'to': auto_update.recipient } if auto_update.add_word_pair[0]: fields.setdefault('add', {})['first_word'] = \ auto_update.add_word_pair[0] if auto_update.add_word_pair[1]: fields.setdefault('add', {})['second_word'] = \ auto_update.add_word_pair[1] if auto_update.remove_word_pair[0]: fields.setdefault('remove', {})['first_word'] = \ auto_update.remove_word_pair[0] if auto_update.remove_word_pair[1]: fields.setdefault('remove', {})['second_word'] = \ auto_update.remove_word_pair[1] return fields
fd95526cbea8d4888b7e581ab5eec5260f557517
34,383
import pyemd def emd(hist1, hist2, cost_matrix='sift'): """ earth mover's distance by robjects(lpSovle::lp.transport) require: lpsolve55-5.5.0.9.win32-py2.7.exe CommandLine: python -m vtool.distance --test-emd Example: >>> # DISABLE_DOCTEST >>> from vtool.distance import * # NOQA >>> hist1, hist2 = testdata_hist() >>> emd_dists = emd(hist1, hist2) >>> result = ub.repr2(emd_dists, precision=2) >>> #xdoctest: +IGNORE_WHITESPACE >>> print(result) np.array([ 2063.99, 2078.02, 2109.03, 2011.99, 2130.99, 2089.01, 2030.99, 2294.98, 2026.02, 2426.01]) References: pip install pyemd https://github.com/andreasjansson/python-emd http://www.cs.huji.ac.il/~werman/Papers/ECCV2008.pdf http://stackoverflow.com/questions/15706339/compute-emd-2umpy-arrays-using-opencv http://www.cs.huji.ac.il/~ofirpele/FastEMD/code/ http://www.cs.huji.ac.il/~ofirpele/publications/ECCV2008.pdf """ if cost_matrix == 'sift': # Build cost matrix where bin-to-bin cost is 0, # neighbor cost is 1, and other cost is 2 N = 8 cost_matrix = np.full((128, 128), 2) i, j = np.meshgrid(np.arange(128), np.arange(128)) cost_matrix[i == j] = 0 absdiff = np.abs(i - j) is_neighbor = np.abs(np.minimum(absdiff, N - absdiff)) == 1 cost_matrix[is_neighbor] = 1.0 # print(cost_matrix[0:16, 0:16]) if len(hist1.shape) == 2: dist = np.array( [ pyemd.emd(hist1_.astype(np.float), hist2_.astype(np.float), cost_matrix) for hist1_, hist2_ in zip(hist1, hist2) ] ) else: dist = pyemd.emd(hist1.astype(np.float), hist2.astype(np.float), cost_matrix) return dist
21a364ef673190ce2a25175154bd275ebc764506
34,385
def equal_angle_stereographic_projection_conv_YZ_plane(x,y,z): """Function to take 3D grid coords for a cartesian coord system and convert to 2D equal area projection.""" Y = y/(1+x) Z = z/(1+x) return Y,Z
121b24f20ef0ff7f0655a4b39c7ede70c632ef2a
34,386
def download_past_trees(test: bool, number: int): """ Download a number of past trees :param number: number of trees to download from the latest """ trees = [] key = "badger-tree.json" bucket = env_config.bucket response = s3.list_object_versions(Prefix=key, Bucket=bucket) versions = response["Versions"][:number] for version in versions: console.log(version["Key"], version["VersionId"]) s3_client_obj = s3.get_object( Bucket=bucket, Key=version["Key"], VersionId=version["VersionId"] ) trees.append(s3_client_obj["Body"].read()) return trees
810ebc9ca714e4b9377bb7dd5d0cba0e9dd4089f
34,387
import re def read_init_values(srclines, init_names=None): """ srclines - an ODE-file content in the list of strings, if init_names is None all parameters will be read init_names - the list of parameters names return: the dict of parameters, where keys=pars_names, values are parsed from srclines """ vars_list=[] i_init_lines = np.nonzero([re.search('^ *(init) (.+)$', line, flags=re.IGNORECASE) is not None for line in srclines])[0] for i in i_init_lines: vars_list+=re.findall('([a-z0-9_]+) *= *([0-9\.e\-\+]+)', srclines[i].lower(), flags=re.IGNORECASE) d = dict(vars_list) if init_names is None: return d else: return {pn:d[pn] for pn in init_names}
e793399c4d258134e3767c067b1754bcd820c430
34,388
def getCategorySentiments(termSentiData,trainLexicon,finalDF): """ Module to extract category-wise sentiment scores and generate final dataframe with predicted and true sentiment Args: termSentiData: dictionary of aspect terms and its sentiment trainLexicon: Lexicon of defining terms under each category finalDF: data frame with predicted and true category labels Returns: finaDF: data frame with predicted and true category sentiment labels """ categorySentiScore={} for key,values in termSentiData.iteritems(): if len(values)>0: for k,v in values.iteritems(): for entKey,entVal in trainLexicon.iteritems(): if k in entVal: if entKey in categorySentiScore: categorySentiScore[entKey] += v else: categorySentiScore[entKey] = v predictedCategory = finalDF['predictedCategory'] predictedCategorySentiment=[] for category in predictedCategory: if category in categorySentiScore.keys(): if categorySentiScore[category] > 0: predictedCategorySentiment.append('pos') elif categorySentiScore[category] == 0: predictedCategorySentiment.append('neu') elif categorySentiScore[category] < 0: predictedCategorySentiment.append('neg') else: predictedCategorySentiment.append('neu') finalDF['predictedCategorySentiment'] = predictedCategorySentiment return finalDF
d8efc2ea0d1ffb18d3949f104c21ce6eae923a2e
34,389
def get_test_pipeline(): """Return an arbitrary pipeline definition.""" return { 'sg1': [ 'step1', 'step2', {'step3key1': 'values3k1', 'step3key2': 'values3k2'}, 'step4' ], 'sg2': False, 'sg3': 77, 'sg4': None }
036cfdca7324be6940e1ed095292b0ac494ab771
34,390
def get_package_type(name): """ Returns the package type. Available package types are defined in PackageType. Only ASR9K supports Service Packs concept Example: asr9k-px-4.3.2.sp-1.0.0 or asr9k-px-4.3.2.k9-sp-1.0.0 """ if name.find(SMU_INDICATOR) != -1: return PackageType.SMU elif name.find(SP_INDICATOR) != -1: return PackageType.SERVICE_PACK elif name.find(TAR_INDICATOR) != -1: return PackageType.SOFTWARE else: return PackageType.PACKAGE
89543d14c83f666c102dd11f3e093552b03c84d9
34,391
def merge(df1, df2, on=None, how="left"): """ DESCRIPTION ----------- Merge two pandas dataframes on a common field name or specified fields in each frame. PARAMETERS ---------- df1 : pd.DataFrame A pandas dataframe instance df2 : pd.DataFrame A pandas dataframe instance on : str, list A string or list representing the field(s) to join on. If a list is passed, it is assumed multiple values are passed for separate fields. Otherwise, it is assumed that a common field name is present between the two dataframes. how : str The method of joining the two frames (left, right, outer, inner) RETURNS ------- A pandas dataframe instance merged from two provided dataframes MODIFICATIONS ------------- Created : 4/29/19 """ if isinstance(on, list): return pd.merge(df1, df2, left_on=on[0], right_on=on[1], how=how) elif isinstance(on, str): return pd.merge(df1, df2, on=on, how=how) else: raise ValueError(f"merge_df function expected a list or string object, got {type(on)}")
f297fcc005bdb6425ebb5306eae285c747ab46be
34,392
def resident_required(a_view): """居住者権限を持つユーザのみ実行を許可する 居住者権限を持つユーザとは 1 つ以上の community.Unit と関連づけられたユーザ. 不許可なら 403 Forbidden を返す. Args: a_view (func): ビュー関数 """ def _wrapped_view(request, *args, **kwargs): if request.user.unit_set.count(): return a_view(request, *args, **kwargs) else: return HttpResponseForbidden('resident required') return login_required(_wrapped_view)
db211cb5861bfd1c47d23fc30b20a7ebf3080a4b
34,393
import logging def _stdout_logging(level): """Setup logging to stdout and return logger's `info` method. """ formatter = logging.Formatter( '%(levelname)s %(asctime)s %(module)s %(funcName)s(): %(message)s', '%Y-%m-%d %H:%M:%S') stdout = logging.StreamHandler() stdout.setLevel(level) stdout.setFormatter(formatter) log.setLevel(level) log.addHandler(stdout) return log.info
a2fff81c0425b35f855c0372607d708f1c2aa3b4
34,395
def standardize_phone(raw: str) -> str: """Make sure it's 10 digits, remove everything else >>> standardize_phone("(555) 555-1212") '5555551212' """ raw = [x for x in raw if x.isnumeric()] raw = "".join(raw) if len(raw) != 10: raw = None return raw
a0d3afc2ffdaffee9d084ed7f50d49a1e3a023e0
34,396
async def find(req): """ Get a list of all existing group documents. """ cursor = req.app["db"].groups.find() return json_response([virtool.utils.base_processor(d) async for d in cursor])
d78fb6d84c18cbcdf07ee6d3699d58bd539e5fb2
34,397
from typing import Union from typing import List from typing import Dict from typing import Any def template_readable_response(responses: Union[dict, List[dict], str]) -> Union[str, List[Dict[str, Any]]]: """ Creates a readable response for responses that have fields in the form of: { 'defaultValue': null, 'editable': true, 'key': 'sr_type', 'keyCaption': 'Service Record Type', 'mandatory': false, 'type': 'list', 'value': 2 } :param responses: The response to turn to human readable """ readable_response = [] if isinstance(responses, dict): responses = [responses] if isinstance(responses, str): return responses for response in responses: if 'info' in response: for response_info in response['info']: response_entry = {} for key in TEMPLATE_OUTPUTS: response_entry[key] = response_info[key] if key in response_info else None readable_response.append(response_entry) return readable_response
56b416aae9e254453855c27910d2e4d20365b6fc
34,398
def rehtml(content): """ does unicode bullshit :param content: :return: """ doc = UnicodeDammit(content, is_html=True) parser = ht.HTMLParser(encoding=doc.original_encoding) root = ht.fromstring(content, parser=parser) return root
157a1659c0b5af469acfddc175eb37376f1914af
34,399
def center_film(structure): """ Centers a film at z=0 Args: structure: AiiDA structure returns: AiiDA structure """ if structure.pbc != (True, True, False): raise TypeError('Only film structures having surface normal to z are supported') sorted_struc = sort_atoms_z_value(structure) sites = sorted_struc.sites shift = [0, 0, -(sites[0].position[2]+sites[-1].position[2])/2.0] return move_atoms_incell(sorted_struc, shift)
121a9252e5a0da2e50f4b7fdf95a7c37a1245695
34,400
def get_stop_response(): """ end the session, user wants to quit the game """ speech_output = STOP_MESSAGE return response(speech_response(speech_output, True))
4843b735859428a4d12337a7b26f42ed40900c2f
34,401
import re def __extract_clusters_from_html(html): """Parse the clusters of a balancer manager page. :param html: The raw HTML of the balancer manager page. :returns: a list of clusters. """ clusters = [] for section in re.findall('(<h3>.+?)<hr />', html.replace('\n', '')): cluster = _parse_cluster(section) clusters.append(cluster) return clusters
2c5077e264a7bf853886d55c2e9c64b149da40a0
34,402
from typing import Union def _value_to_int(value: Union[int, str]) -> int: """String value to int.""" try: return int(value) except ValueError as error: raise Exception("The value is not integer")
635afb6d75edec8df64b12dad8db7dd408502250
34,403
import calendar def era5_temp_anomalies(obs_directory, save_directory, start_range='1999-01-01', end_range='2019-12-31', save=False, author=None): """ Create ERA5 temperature hindcast anomalies. Args: obs_directory (str): Directory where files are located. save_directory (str): Directory where to save files. start (str): Start of hindcasts. Defaults to '1999-01-01'. end (str): End of hindcasts. Defaults to '2020-12-31'. save (boolean): Set to True if want to save climatology as netCDF. Defaults to False. author (str): Author of file. Defaults to None. """ # -- open and smooth obs climo clima = xr.open_dataset(f'{save_directory}era5_temp_clim_gpcp_data.nc') climCyclical = xr.concat([clima['clim'], clima['clim'], clima['clim']], dim='time') climSmooth = climCyclical.rolling(time=31, min_periods=1, center=True).mean(skipna=True).rolling( time=31, min_periods=1, center=True).mean(skipna=True) climSmooth = climSmooth.isel(time=slice(365,365 * 2)) climSmooth = climSmooth.transpose('time','lat','lon') # -- reduce mem usage del climCyclical del clima # -- add lead time to climo climCyclicalObs = xr.concat([climSmooth, climSmooth, climSmooth], dim='time') climFinal = np.zeros((climSmooth.shape[0],45,climSmooth.shape[1],climSmooth.shape[2])) for i in range(365): climFinal[i,:,:,:] = climCyclicalObs[365+i:365+i+45,:,:] # -- create time arrays for subsequent indexing d_mon = pd.date_range(start=start_range, end=end_range, freq='W-MON') d_dly = pd.date_range(start=start_range, end=end_range, freq='D') d_mon = d_mon[~((d_mon.day==29)&(d_mon.month==2))] d_dly = d_dly[~((d_dly.day==29)&(d_dly.month==2))] # -- create daily obs for final anom computation d_daily = pd.date_range(start=start_range, end=str(int((end_range)[:4])+1)+'-12-31', freq='D') d_daily = d_daily[~((d_daily.day==29)&(d_daily.month==2))] for num, t in enumerate(d_daily): tmax = xr.open_dataset( f"{obs_directory}era5_tmax_regrid/e5.oper.fc.sfc.minmax.128_201_mx2t.ll025sc.{t.strftime('%Y%m%d')}.nc")['MX2T'] tmin = xr.open_dataset( f"{obs_directory}era5_tmin_regrid/e5.oper.fc.sfc.minmax.128_202_mn2t.ll025sc.{t.strftime('%Y%m%d')}.nc")['MN2T'] avg_temp = (tmin + tmax) / 2 if num == 0: varObs = np.zeros((len(d_daily),climSmooth.shape[1],climSmooth.shape[2])) lats = tmin.y.values lons = tmin.x.values varObs[num,:,:] = avg_temp # -- add lead time to daily obs varFinal = np.zeros((int(len(d_mon)),45,climSmooth.shape[1],climSmooth.shape[2])) for num, i in enumerate(d_mon): varFinal[num,:,:,:] = varObs[int(np.argwhere(d_dly==np.datetime64(i))[0]):int(np.argwhere(d_dly==np.datetime64(i))[0])+45,:,:] # -- compute obs anomalies anom = np.zeros((int(len(d_mon)),45,climSmooth.shape[1],climSmooth.shape[2])) for num, i in enumerate(d_mon): doy_indx = i.dayofyear - 1 if calendar.isleap(int(i.year)) and i.month > 2: doy_indx = doy_indx - 1 anom[num,:,:,:] = varFinal[num,:,:,:] - climFinal[doy_indx,:,:,:] # -- data_assemble = xr.Dataset({ 'anom': (['time','lead','lat','lon'], anom), 'date_range': (['date_range'], d_mon), }, coords = {'lead': (['lead'], np.arange(0,anom.shape[1],1)), 'time': (['time'], np.arange(1,anom.shape[0]+1,1)), 'lat' : (['lat'], lats), 'lon' : (['lon'], lons) }, attrs = {'File Author' : author}) if not save: return data_assemble if save: data_assemble.to_netcdf(f'{save_directory}era5_temp_anom_gpcp_data.nc')
7c49cc3aad3c9b92e9520f0b709d4118f59afec3
34,404
def is_supported(browser): """ 指定したブラウザがサポート対象かチェック Attributes: browser (str): チェック対象ブラウザ Returns: bool: ブラウザのサポート有無 """ return browser in _browser_modules
d3e49446b8c333f72b5e652899491b46960fd2ae
34,405
from typing import Sequence from typing import Tuple import operator def pie_marker( ratios: Sequence[float], res: int = 50, direction: str = "+", start: float = 0.0, ) -> Tuple[list, list]: """ Create each slice of pie as a separate marker. Parameters: ratios(list): List of ratios that add up to 1. res: Number of points around the circle. direction: '+' for counter-clockwise, or '-' for clockwise. start: Starting position in radians. Returns: xys, ss: Tuple of list of xy points and sizes of each slice in the pie marker. """ if np.abs(np.sum(ratios) - 1) > 0.01: print("Warning: Ratios do not add up to 1.") if direction == '+': op = operator.add elif direction == '-': op = operator.sub xys = [] # list of xy points of each slice ss = [] # list of size of each slice start = float(start) for ratio in ratios: # points on the circle including the origin (0,0) and the slice end = op(start, 2 * np.pi * ratio) n = round(ratio * res) # number of points forming the arc x = [0] + np.cos(np.linspace(start, end, n)).tolist() y = [0] + np.sin(np.linspace(start, end, n)).tolist() xy = np.column_stack([x, y]) xys.append(xy) ss.append(np.abs(xy).max()) start = end return xys, ss
61522394a5356f1a7c0e9e2e112c0025ae7dc9cc
34,406
def indref_dust_wolff_2009(wav): """ This function returns the index of refraction for dust. The data used are nominally taken from Wolff (2009), which extends from 236 nm to 98.5423 micron. There are only 5 points in our wavelength region of interest. For the moment, we use the compendium provided by the Ames GCM group at http://spacescience.arc.nasa.gov/mars-climate-modeling-group/brief.html. They assume an r_eff of 1.5 micron and a var_eff of 0.5, lognormal. Input: wavelength in nm Output: complex index of refraction, calculated using interpolation For values outside the range encompassed by the data (i.e. <236 nm or >98.5423 micron) the constant value at 52 nm and 98.5423 micron respectively is used. """ refwav_um,N_r, N_i=np.genfromtxt('./Raw_Data/ComplexRefractionIndices/Dust_Refractive_Indicies.txt', skip_header=1, skip_footer=0, usecols=(0, 1, 2), unpack=True)#wavelength in microns, real refractive index, imaginary refractive index. #index of refraction at 263 nm, for padding refwav_um_minval=refwav_um[0] N_r_minval=N_r[0] N_i_minval=N_i[0] #index of refraction at 98.5423 um, for padding refwav_um_maxval=refwav_um[-1] N_r_maxval=N_r[-1] N_i_maxval=N_i[-1] #Create functionalized forms of indices for linear interpolation N_r_func=interp.interp1d(refwav_um, N_r, kind='linear') N_i_func=interp.interp1d(refwav_um, N_i, kind='linear') wav_um=wav*nm2micron if (type(wav)==float or type(wav)==np.float64): #branch: have to treat floats and arrays separately. if wav_um<refwav_um_minval: return N_r_minval+1.j*N_i_minval elif wav_um>refwav_um_maxval: return N_r_maxval+1.j*N_i_maxval else: return N_r_func(wav_um)+1.j*N_i_func(wav_um) else: result=np.zeros(np.shape(wav_um), dtype=np.complex) result[wav_um<refwav_um_minval]=N_r_minval+1.j*N_i_minval result[wav_um>refwav_um_maxval]=N_r_maxval+1.j*N_i_maxval inds=np.where((wav_um>=refwav_um_minval) & (wav_um<=refwav_um_maxval)) result[inds]=N_r_func(wav_um[inds])+1.j*N_i_func(wav_um[inds]) return result
864bc7efd908c9da47f050e82315f1ddd48ad500
34,407
def select_columns( df: pd.DataFrame, *args, invert: bool = False, ) -> pd.DataFrame: """ Method-chainable selection of columns. Not applicable to MultiIndex columns. It accepts a string, shell-like glob strings `(*string*)`, regex, slice, array-like object, or a list of the previous options. This method does not mutate the original DataFrame. Optional ability to invert selection of columns available as well. Functional usage example: ```python import pandas as pd import janitor as jn df = pd.DataFrame(...) df = jn.select_columns('a', 'b', 'col_*', invert=True) ``` Method-chaining example: ```python df = (pd.DataFrame(...) .select_columns('a', 'b', 'col_*', invert=True)) ``` :param df: A pandas DataFrame. :param args: Valid inputs include: an exact column name to look for, a shell-style glob string (e.g., `*_thing_*`), a regular expression, a callable which is applicable to each Series in the DataFrame, or variable arguments of all the aforementioned. A sequence of booleans is also acceptable. :param invert: Whether or not to invert the selection. This will result in the selection of the complement of the columns provided. :returns: A pandas DataFrame with the specified columns selected. """ # applicable for any # list-like object (ndarray, Series, pd.Index, ...) # excluding tuples, which are returned as is search_column_names = [] for arg in args: if is_list_like(arg) and (not isinstance(arg, tuple)): search_column_names.extend([*arg]) else: search_column_names.append(arg) if len(search_column_names) == 1: search_column_names = search_column_names[0] full_column_list = _select_column_names(search_column_names, df) if invert: return df.drop(columns=full_column_list) return df.loc[:, full_column_list]
a0881fbcf078f4c501b5dd0d706b7801ab47794d
34,409
def compute_distance(location_1, location_2): """ Euclidean distance between 3D points. Parameters ---------- location_1 : carla.Location Start point of the measurement. location_2 : carla.Location End point of the measurement. """ x = location_2.x - location_1.x y = location_2.y - location_1.y z = location_2.z - location_1.z norm = np.linalg.norm([x, y, z]) + np.finfo(float).eps return norm
8511a59cb949a355ceaaeb85035474285412ba49
34,410
def ewma_2d(x, halflife): """ Exponentially Weighted Moving Average, optimised for 2D data sets. """ assert x.ndim == 2 assert np.isfinite(halflife) and halflife > 0 decay_coefficient = np.exp(np.log(0.5) / halflife) out = np.empty_like(x, dtype=np.float64) for i in range(out.shape[0]): if i == 0: out[i, :] = x[i, :] sum_prior = 1 first_weight = 1 else: first_weight *= decay_coefficient sum_i = sum_prior + first_weight for j in range(x.shape[1]): out[i, j] = (decay_coefficient * out[i - 1, j] * sum_prior + x[i, j]) / sum_i sum_prior = sum_i return out
23232e3050dd6280a1a0819ad5261a8c9545cfd3
34,411
def DT2str(dt): """ convert a datetime to a string in the GNOME format. """ dt_string = "%3i, %3i, %5i, %3i, %3i"%(dt.day, dt.month, dt.year, dt.hour, dt.minute) return dt_string
7d0b26c9d4517738be448e2ab897b1ffb419179f
34,412
def get_active_lines(lines, comment_char="#"): """ Returns lines, or parts of lines, from content that are not commented out or completely empty. The resulting lines are all individually stripped. This is useful for parsing many config files such as ifcfg. Parameters: lines (list): List of strings to parse. comment_char (str): String indicating that all chars following are part of a comment and will be removed from the output. Returns: list: List of valid lines remaining in the input. Examples: >>> lines = [ ... 'First line', ... ' ', ... '# Comment line', ... 'Inline comment # comment', ... ' Whitespace ', ... 'Last line'] >>> get_active_lines(lines) ['First line', 'Inline comment', 'Whitespace', 'Last line'] """ return list(filter(None, (line.split(comment_char, 1)[0].strip() for line in lines)))
b49c8cd034c8fa8e7dcf0b5153c8d5bcce52a1f3
34,413
def is_shutout(goalie_dict, goalies_in_game): """ Checks whether current goalie game can be considered a shutout. """ # only goalies that played and didn't concede any goals can have a shutout if (goalie_dict['games_played'] and not goalie_dict['goals_against']): # if more than two goalies (for both teams) were in the game, we # have to check whether goalies shared a game with no goals against if len(goalies_in_game) > 2: # counting goalies per team goalies_per_team_cnt = 0 for team, _ in goalies_in_game: if team == goalie_dict['team']: goalies_per_team_cnt += 1 # if current team had more than one goalie in the game, this can't # be a personal shutout if goalies_per_team_cnt > 1: return False # games lost in overtime or the shootout are no shutouts regardless if goalie_dict['sl'] or goalie_dict['ol']: return False # only games solely played with no goals against throughout regulation, # overtime, and shootout are shutouts return True return False
c9aa7adead449366e8845b562fd04b98396321cc
34,414
def phase_segmentation(image, threshold, area_bounds=[0.5, 6.0], ip_dist=0.160): """ Segement a phase image and return the mask. Parameters ---------- image : 2d-array The phase image to be segmented. This image will be converted to a float type. threshold : float Threshold value for the segmentation. This function will select objects below this threshold value. area_bounds : list, default=[0.5, 6.0] Area bounds for identified objects. This should be a list of two entries. ip_dist : int or float, default = 0.160 Interpixel distance for the camera. This should be in units of microns per pixel. Returns ------- final_seg : 2d-array Final, labeled segmentation mask. """ # First is to convert the image to a float. im_float = (image - image.min()) / (image.max() - image.min()) # Do a background subtraction. im_blur = skimage.filters.gaussian(im_float, sigma=50.0) im_sub = im_float - im_blur # Apply the threshold. im_thresh = im_sub < threshold # Note that we are using the provided arg # Label the image and apply the area bounds. im_lab = skimage.measure.label(im_thresh) props = skimage.measure.regionprops(im_lab) approved_objects = np.zeros_like(im_lab) for prop in props: area = prop.area * ip_dist**2 if (area > area_bounds[0]) & (area < area_bounds[1]): approved_objects += im_lab == prop.label # Clear the border and relabel. im_border = skimage.segmentation.clear_border(approved_objects > 0) final_seg = skimage.measure.label(im_border) # Return the final segmentation mask return final_seg
a4eeb7dd8f9602c0dada2a62f3e2cabda3036950
34,415
from datetime import datetime def _fix_other_columns(df): """ Fills all other columns using reasonably similar rows. """ cols_to_fill1 = [ "season", "workingday", "weathersit", "temp", "atemp", "hum", "windspeed", "cnt", ] dhour = datetime.timedelta(hours=1) dday = datetime.timedelta(days=1) null_idxs = df[df.isna().any(axis=1)].index for idx in null_idxs: if (idx - dhour).dayofweek == idx.dayofweek: similar_row = df.loc[idx - dhour] else: similar_row = df.loc[idx + dhour] if similar_row.isna().any(): similar_row = df.loc[idx - dday] df.loc[idx, cols_to_fill1] = similar_row[cols_to_fill1] cols_to_fill2 = ["season", "holiday"] for idx in null_idxs: candidates = df[ (~df.isna().any(axis=1)) & (df.index.day == idx.day) & (df.index.month == idx.month) & (df.index.year == idx.year) ] similar_row = candidates.iloc[0, :] df.loc[idx, cols_to_fill2] = similar_row[cols_to_fill2] return df
c710d6342dbcf1c340479a7dc3b8eacfeee7cfb1
34,416
def storage_get_all_by_project(context, project_id, marker, limit, sort_key, sort_dir): """Get all storages belonging to a project.""" return IMPL.storage_get_all_by_project(context, project_id, marker, limit, sort_key, sort_dir)
aa8e20ce1fda6e80a7e9033ede16aa2f457557ce
34,417
def evaluate_parentheses(token): """ Evaluates parentheses. Parameters ---------- token : ``Token`` Returns ------- new_token : ``Token`` The final evaluated token. """ new_token = evaluate_tokens(token.sub_tokens) new_token.start = token.start new_token.end = token.end return new_token
7f0b3044fd25c3d0ae958abadea668ca07dec3c3
34,418
def typprice( client, symbol, timeframe="6m", opencol="open", highcol="high", lowcol="low", closecol="close", ): """This will return a dataframe of typical price for the given symbol across the given timeframe Args: client (pyEX.Client): Client symbol (string): Ticker timeframe (string): timeframe to use, for pyEX.chart highcol (string): column to use to calculate lowcol (string): column to use to calculate closecol (string): column to use to calculate Returns: DataFrame: result """ df = client.chartDF(symbol, timeframe) typ = t.TYPPRICE(df[highcol].values, df[lowcol].values, df[closecol].values) return pd.DataFrame( { highcol: df[highcol].values, lowcol: df[lowcol].values, closecol: df[closecol].values, "typprice": typ, } )
3d7e8621a9c85e48913df15d59944a480c0cda35
34,419
import json def evaluate_grants(path_to_gt_json, path_to_test_json): """ This function measures the micro recall of the grantIDs identified by a system. Input: - gt_json: Path to ground truth .json file - test_json: Path to user submitted .json file Output: - Float value of micro recall ATTENTION: The .json files are expected to have the structure (keywords, number of elements etc.) as explicitly mentioned in the corresponding guidelines """ # Load gt data from json with open(path_to_gt_json, 'r') as f: gt_json = json.load(f) # Load test data from json with open(path_to_test_json, 'r') as f: test_json = json.load(f) # Predicted True Positive Count tp = 0 # True Positive denom = 0 # Mapping between articles-grants in ground truth json y_true = {} # Mapping between articles-grants in test json y_pred = {} for i, ar in enumerate(gt_json['articles']): # temporary list of grants for each article tmp = [] for grant in ar['grantList']: # if a specific grant is bound to some grantID if 'grantID' in grant: # !! LOWERCASE NORMALISATION !! tmp.append(grant['grantID'].lower()) # Keep unique grantIDs for each article y_true[ar['pmid']] = set(tmp) # Do the same for the test .json. Lowercase and uniquify as well y_pred[test_json['articles'][i]['pmid']] = set([gr['grantID'].lower() for gr in test_json['articles'][i]['grantList'] if 'grantID' in gr]) # For each article for pmid, true in y_true.iteritems(): # Find the count of intersecting grantIDs between the # ground truth and the predicted lists. # These are the true predicted positive grantIDs tp += len(true.intersection(y_pred[pmid])) # True Positive count denom += len(true) return tp/float(denom)
465bfb885780983ac5df05d590f0570dee52d6bd
34,420
def read_puzzle(board, input_puzzle): """ Reads unsolved puzzle If the string given is a filename with .txt of .sud suffix, the puzzle is read from the file, otherwise a string containing the puzzle is considered Expected format: 1 line, row-wise saved values where unknown cells are marked with anything other than numbers 1-9 Example: 829.5...7.....2....64.7.1922.87364..7135..9.........3.64..1.8....52....113..6.2.. """ if any(x in input_puzzle for x in [".txt", ".sud"]): with open(input_puzzle, "rU") as f: line = f.readline().rstrip() else: line = input_puzzle for i in range(n): for j in range(n): if (line[i*n+j] in "123456789"): board[i][j] = [int(line[i*n+j])] return 0
b8c44230fdccebb6122ab16f924ee10dd6e3e171
34,421
from typing import get_args import dataclasses def dataclass_from_dict(klass, d): """ Converts a dictionary based on a dataclass, into an instance of that dataclass. Recursively goes through lists, optionals, and dictionaries. """ if is_type_SpecificOptional(klass): # Type is optional, data is either None, or Any if not d: return None return dataclass_from_dict(get_args(klass)[0], d) elif is_type_Tuple(klass): # Type is tuple, can have multiple different types inside i = 0 klass_properties = [] for item in d: klass_properties.append(dataclass_from_dict(klass.__args__[i], item)) i = i + 1 return tuple(klass_properties) elif dataclasses.is_dataclass(klass): # Type is a dataclass, data is a dictionary fieldtypes = {f.name: f.type for f in dataclasses.fields(klass)} return klass(**{f: dataclass_from_dict(fieldtypes[f], d[f]) for f in d}) elif is_type_List(klass): # Type is a list, data is a list return [dataclass_from_dict(get_args(klass)[0], item) for item in d] elif issubclass(klass, bytes): # Type is bytes, data is a hex string return klass(hexstr_to_bytes(d)) elif klass.__name__ in unhashable_types: # Type is unhashable (bls type), so cast from hex string return klass.from_bytes(hexstr_to_bytes(d)) else: # Type is a primitive, cast with correct class return klass(d)
434f05ba49db17016c175155b89986f044c914e3
34,422
def depolarization_factor(wl): """Bucholtz 95 Table 1 Depolarization factor as fct of wavelength in nm""" rho = np.array([[0.200, 4.545], [0.205, 4.384], [0.210, 4.221], [0.215, 4.113], [0.220, 4.004], [0.225, 3.895], [0.230, 3.785], [0.240, 3.675], [0.250, 3.565], [0.260, 3.455], [0.270, 3.400], [0.280, 3.289], [0.290, 3.233], [0.300, 3.178], [0.310, 3.178], [.32, 3.122], [.33, 3.066], [.34, 3.066], [.35, 3.01], [.37, 3.01], [.38, 2.955], [0.4, 2.955], [0.45, 2.899], [0.5, 2.842], [0.55, 2.842], [0.6, 2.786], [0.75, 2.786], [0.8, 2.73], [1., 2.73] ]).transpose() rho[0] *= 1000 rho[1] *= 0.01 idx = array_tools.find_closest(rho[0], wl) return rho[1][idx]
ccc2212391e1439b74f5399e82a9bc8c7825b14b
34,423
def draw_line (surface, color, a, b, width=1): """draw_line (...) -> Rect Draws a line on a surface. The 'color' argument needs to match the pygame color style. 'a' and 'b' are sequences of the x- and y-coordinate on the surface and 'width' denotes the width of the line in pixels. The return value is the bounding box of the affected area. The following example would draw a horizontal black line on the specified surface (the surface must be big enough): draw_line (surface, (0, 0, 0), (5, 5), (5, 10)) Note: This function is just a wrapper around pygame.draw.line() and thus all documentation about it can be applied to this function, too. """ return draw.line (surface, color, a, b, width)
33519d943fad5979e5ccadb1ce03c4d35baea497
34,424
def judge_all_tests(judge: LocalJudge, verbose_level, score_dict, total_score): """Judge all tests for given program. If `--input` is set, there is only one input in this judgement. """ judge.build() report = Report( report_verbose=verbose_level, score_dict=score_dict, total_score=total_score ) for test in judge.tests: returncode, output_filepath = judge.run(test.input_filepath) accept, diff = judge.compare(output_filepath, test.answer_filepath, returncode) report.table.append({"test": test.test_name, "accept": accept, "diff": diff}) return report.print_report()
9f442cdd9a38f17528f6802f76c6ceddabfe6022
34,426
import re def generate_per_sample_fastq_command(forward_seqs, reverse_seqs, barcode_fps, mapping_file, output_dir, params_str): """Generates the per-sample FASTQ split_libraries_fastq.py command Parameters ---------- forward_seqs : list of str The list of forward seqs filepaths reverse_seqs : list of str The list of reverse seqs filepaths barcode_fps : list of str The list of barcode filepaths mapping_file : str The path to the mapping file output_dir : str The path to the split libraries output directory params_str : str The string containing the parameters to pass to split_libraries_fastq.py Returns ------- str The CLI to execute Raises ------ ValueError - If barcode_fps is not an empty list - If there are run prefixes in the mapping file that do not match the sample names """ if barcode_fps: raise ValueError('per_sample_FASTQ can not have barcodes: %s' % (', '.join(basename(b) for b in barcode_fps))) sn_by_rp = get_sample_names_by_run_prefix(mapping_file) samples = [] errors = [] for fname in forward_seqs: fn = basename(fname) # removing extentions: fastq or fastq.gz if 'fastq' in fn.lower().rsplit('.', 2): f = fn[:fn.lower().rindex('.fastq')] else: f = fn m = [v for v in sn_by_rp if f.startswith(v)] # removing study_id, in case it's present if re.match(r"^[0-9]+\_.*", f): f = basename(fn).split('_', 1)[1] mi = [v for v in sn_by_rp if f.startswith(v)] # the matches is the largest between m/mi, if they are the same size # we are gonna use m matches = m if len(m) > len(mi) else mi if matches: len_matches = len(matches) if len_matches != 1: errors.append('%s has %s matches.' % (f, len_matches)) for m in matches: samples.append(sn_by_rp[m]) del sn_by_rp[m] else: errors.append('%s has NO matches' % f) if errors: raise ValueError('Errors found:\n%s' % '\n'.join(errors)) cmd = str("split_libraries_fastq.py --store_demultiplexed_fastq " "-i %s --sample_ids %s -o %s %s" % (','.join(forward_seqs), ','.join(samples), output_dir, params_str)) return cmd
44d3cef9cca598a8ce36a46637bfa288c49a5f98
34,427
def renderInlineStyle(d): """If d is a dict of styles, return a proper style string """ if isinstance(d, (str, int, float)): result = str(d) else: style=[] for k,v in d.items(): style.append("{}:{};".format(k, v)) separator = ' ' result = separator.join(style) return result
f08ea415e4fa29404b7c879f2346832dc84d2e67
34,428
from typing import cast def selftest(silent: bool=False) -> bool: """Run a simple self-test of DHParser. """ if not silent: print("DHParser selftest...") print("\nSTAGE I: Trying to compile EBNF-Grammar:\n") builtin_ebnf_parser = get_ebnf_grammar() docstring = str(builtin_ebnf_parser.__doc__) # type: str i = docstring.find('::') if i >= 0: docstring = docstring[i + 2::] ebnf_src = docstring[docstring.find('@'):] ebnf_transformer = get_ebnf_transformer() ebnf_compiler = get_ebnf_compiler('EBNF') result, errors, _ = compile_source( ebnf_src, None, builtin_ebnf_parser, ebnf_transformer, ebnf_compiler) generated_ebnf_parser = cast(str, result) if has_errors(errors, ERROR): if not silent: print("Selftest FAILED :-(") print("\n\n".join(str(err) for err in errors)) return False if not silent: print(generated_ebnf_parser) print("\n\nSTAGE 2: Selfhosting-test: " "Trying to compile EBNF-Grammar with generated parser...\n") selfhosted_ebnf_parser = compileDSL(ebnf_src, None, generated_ebnf_parser, ebnf_transformer, ebnf_compiler) # ebnf_compiler.gen_transformer_skeleton() if not silent: print(selfhosted_ebnf_parser) return True
6353abac840ee7a66b2a40133f427ec9ae91f8f2
34,429
def bounding_box(grid, cell_kji0, points_root = None, cache_cp_array = False): """Returns the xyz box which envelopes the specified cell, as a numpy array of shape (2, 3).""" result = np.zeros((2, 3)) cp = grid.corner_points(cell_kji0, points_root = points_root, cache_cp_array = cache_cp_array) result[0] = np.min(cp, axis = (0, 1, 2)) result[1] = np.max(cp, axis = (0, 1, 2)) return result
e526a4ee029a02d224bd264aee9c160a5ecdaa85
34,430
def test_dup_args_in_call(x): """The naive gradient update rule fails when a function's arguments contain the same variable more than once.""" return x * x
978f4f6e901b4b4aba01bbad098c107eacab59f3
34,432
def snake_to_camel_case(snake_text): """ Converts snake case text into camel case test_path --> testPath :param snake_text:str :return: str """ components = snake_text.split('_') # We capitalize the first letter of each component except the first one with # the 'title' method and join them together. return components[0] + ''.join(x.title() for x in components[1:])
b42e1393cf99b88e2ebbcf4b38643c770e218ceb
34,433
def compute_accuracy(dist, labels, threshold): """ Compute the average accuracy over the given set of images. dist: computed distance between pair of images. labels: true class labels threshold: decision threshold. """ trueclass = np.sum(np.logical_and((dist <= threshold).reshape(dist.shape[0], 1), labels == 1) ) + np.sum(np.logical_and((dist > threshold).reshape(dist.shape[0], 1), labels != 1)) accuracy = float(trueclass) / len(labels) return accuracy
d59388c89fe5da610ca51fb7198cd52aa063502b
34,434
def http_take_solver(): """Return the string of answer""" request_data = request.get_json() answers = ai.take_solver(request_data) return jsonify({"answers": answers})
c11977b0180037f4e458f526533ce604ff10859a
34,436
def create_organization( *, db_session: Session = Depends(get_db), organization_in: OrganizationCreate ): """ Create a new organization. """ organization = get_by_name(db_session=db_session, name=organization_in.name) if organization: raise HTTPException( status_code=400, detail="An organization with this name already exists." ) organization = create(db_session=db_session, organization_in=organization_in) return organization
7511a20a1588b122f02d0c930c3a6e209907a482
34,437
import networkx def check_all(logic_forms: list, checks=None, verbose=False) -> list: """ Do all Logic Form Graph checking. Parameter: logic forms (list): logical forms verbose (bool): enable printing details Returns: lf_graphs (list): dicts of id (int) and a graph (LogicalFormGraph) """ lf_graphs = lfg.create_logic_form_graphs_from_logic_forms(logic_forms) num_lfs = {'base': len(lf_graphs)} if verbose: print_all(lf_graphs) # check tree if not all(networkx.is_tree(g['graph'].graph) for g in lf_graphs): print("WARNING: not all Logic Form Graphs are trees!") # do checks if checks is None: checks = CHECKS for check in checks: lf_graphs = cp.check_pred_all(lf_graphs, mode=check) num_lfs[check] = len(lf_graphs) if verbose: print(f'# lfs after predicate {check}: {num_lfs[check]}') # check equivalency equivalent_ids = ce.check_logic_forms_eq(lf_graphs) elem_num = sum(len(id_set) for id_set in equivalent_ids) uniqlf_num = len(lf_graphs) - elem_num + len(equivalent_ids) num_lfs['unique'] = uniqlf_num if verbose: print('Numbers of unique lfs: ', uniqlf_num) sorted_ids = sorted([tuple(sorted(id_set)) for id_set in equivalent_ids]) print(f'Equivalent logical forms: {sorted_ids}') print(f'LF check summary: {num_lfs}') return lf_graphs
21bc30647ab379e98566bf7dc1e7dd3d0e88e86b
34,438
def remove_noise(line,minsize=8): """Remove small pixels from an image.""" if minsize==0: return line bin = (line>0.5*amax(line)) labels,n = morph.label(bin) sums = measurements.sum(bin,labels,range(n+1)) sums = sums[labels] good = minimum(bin,1-(sums>0)*(sums<minsize)) return good
0ee16876ed90f84be1abcd911689dafafad7ef96
34,439
def get_wide_dword(*args): """ get_wide_dword(ea) -> uint64 Get two wide words (4 'bytes') of the program at 'ea'. Some processors may access more than 8bit quantity at an address. These processors have 32-bit byte organization from the IDA's point of view. This function takes into account order of bytes specified in \inf{is_be()}this function works incorrectly if \ph{nbits} > 16 @param ea (C++: ea_t) """ return _ida_bytes.get_wide_dword(*args)
4d8574128bfca6a48e595516c4e9bee6a9bbfc75
34,440
import copy def corrupt(x, mask=None): """Take an input tensor and add uniform masking. Parameters ---------- x : Tensor/Placeholder Input to corrupt. mask: none Returns ------- x_corrupted : Tensor 50 pct of values corrupted. """ cor = copy.deepcopy(x) if mask is not None: for i in range(x.shape[0]): cor[i] *= mask[i] shuffle_indices = np.random.permutation(np.arange(cor.shape[0])) shuffle_data = cor[shuffle_indices] x = x[shuffle_indices] return shuffle_data, x n = np.random.normal(0, 0.1, (x.shape[0], x.shape[1])) # y = x + n # fig, axs = plt.subplots(2, n_examples, figsize=(10, 2)) # for example_i in range(n_examples): # axs[0][example_i].imshow( # # np.reshape(test_xs[example_i, :], (28, 28))) # np.reshape(y[example_i, :], (15, 15))) # axs[1][example_i].imshow( # # np.reshape([recon[example_i, :] + mean_img], (28, 28))) # np.reshape([x[example_i, :]], (15, 15))) # print ('Plot complete now showing...') # fig.show() # plt.draw() # plt.title("1st function - dataset ones but used our dataset") # plt.waitforbuttonpress() return x + n # return tf.multiply(x, tf.cast(tf.random_uniform(shape=tf.shape(x), # minval=0, # maxval=2, # dtype=tf.int32), tf.float32))
f8b91f07012bd231570981824a0759b40f30f4b0
34,441
def bvi(model, guide, claims, learning_rate=1e-5, num_samples=1): """perform blackbox mean field variational inference on simpleLCA. This methods take a simpleLCA model as input and perform blackbox variational inference, and returns a list of posterior distributions of hidden truth and source reliability. Concretely, if s is a source then posterior(s) is the probability of s being honest. And if o is an object, or more correctly, is a random variable that has the support as the domain of an object, then posterior(o) is the distribution over these support. The underlying truth value of an object could be computed as the mode of this distribution. """ data = make_observation_mapper(claims) conditioned_lca = pyro.condition(lca_model, data=data) pyro.clear_param_store() # is it needed? svi = pyro.infer.SVI(model=conditioned_lca, guide=lca_guide, optim=pyro.optim.Adam({ "lr": learning_rate, "betas": (0.90, 0.999) }), loss=pyro.infer.TraceGraph_ELBO(), num_samples=num_samples) return svi
bb7469efd4615156219f0f514200784a50a84ad6
34,442
from pathlib import Path import json def load_metadata(bucket: str, prefix: str) -> dict[str, dict]: """ Get general export metadata file and table status metadatas. The former contains column names / types as well as a string containig schema and table name. Export metadata contains info about the overall RDS snapshot export. For example { 'exportTaskIdentifier': 'v2-r1000-20210307-snapshot', 'sourceArn': 'arn:aws:rds:us-west-2:025524405457:cluster-snapshot:rds:v2-production-r1000-cluster-2021-03-07-08-50', 'exportOnly': [], 'snapshotTime': 'Mar 7, 2021 8:50:42 AM', 'taskStartTime': 'Mar 8, 2021 5:32:17 AM', 'taskEndTime': 'Mar 8, 2021 8:04:43 AM', 's3Bucket': 'skupos-partner-snowflake-121345678', 's3Prefix': 'v2-r1000-', 'exportedFilesPath': 'v2-r1000-/v2-r1000-20210307-snapshot', 'iamRoleArn': 'arn:aws:iam::025524405457:role/service-role/skuposRDS-export-s3-role', 'kmsKeyId': 'arn:aws:kms:us-west-2:025524405457:key/c86308ac-ca14-40b0-af6f-832e507461db', 'status': 'COMPLETE', 'percentProgress': 100, 'totalExportedDataInGB': 28057.983845219016, } Tables metadata is a list of dicts containing table metadata for tables in the input schema. Each table metadata object for a successfully exported table looks like { 'tableStatistics': { 'extractionStartTime': 'Mar 8, 2021 7:35:14 AM', 'extractionEndTime': 'Mar 8, 2021 7:35:42 AM', 'partitioningInfo': { 'numberOfPartitions': 1, 'numberOfCompletedPartitions': 1, }, }, 'schemaMetadata': { 'originalTypeMappings': [ { 'columnName': 'stranscd', 'originalType': 'bigint', 'expectedExportedType': 'int64', 'originalCharMaxLength': 0, 'originalNumPrecision': 19, 'originalDateTimePrecision': 0, }, { 'columnName': 'descrpt', 'originalType': 'text', 'expectedExportedType': 'binary (UTF8)', 'originalCharMaxLength': 65535, 'originalNumPrecision': 0, 'originalCharsetName': 'latin1', 'originalDateTimePrecision': 0, }, ], }, 'status': 'COMPLETE', 'sizeGB': 8.046627044677734e-07, 'target': 'tdlinx.tdlinx.stranscd', # inferred keys 'schema': 'tdlinx', 'table': 'stranscd', } A skipped export still contains a 'target' key but might include a 'warningMessage'. There does not appear to be any retention of indices. The type mappings are used to create tables. We transform the metadata stored in s3 by converting some lists to (order-preserving) dicts and renaming the column metadata fields. The original metadata files generated by AWS are enveloped and cached at `~/.cache/snowflow/{prefix}/metadata.json` Args: bucket: Bucket in which the RDS export is located. This should be accessible by the Snowflake AWS Integration. prefix: Export prefix pointing to the actual content dir containing export metadata and data. For example, "snapshots/{rds_instance}/{date}" Returns: A dict containing general export metadata under the 'info' key and table metadata under the 'tables_info' key. The dict keyed by 'tables_info' contains a single key containg a list of dicts. Each element contains metadata about a specific table, namely the column names, datatypes, export status, and "target". The "target" value typically looks like "{{schema}}.{{schema}.{{table}}", and corresponds to an s3 path fragment "{{schema}}/{{schema}}.{{table}}". Sometimes """ metapath = Path("~/.cache/snowflow", prefix, "metadata.json").expanduser() metapath.parent.mkdir(parents=True, exist_ok=True) # Grab the two export_*.json metadata files, combine into a single json # file and cache the output. if not metapath.exists(): logger.info(f"Pulling export metadata from s3://{bucket}/{prefix}.") prefix = str(Path(prefix, "export_")) summaries = boto3.resource("s3").Bucket(bucket).objects.filter(Prefix=prefix) # Look for the "export_tables_info*" and "export_info*" json files and # load them into a buffer. buf = {} for summary in summaries: okey = summary.key if "tables_info" in okey: key = "tables" elif "export_info" in okey: key = "export" else: continue obj = summary.get() data = json.loads(obj["Body"].read().decode()) buf[key] = data with metapath.open("w") as mfile: logger.info(f"Caching metadata in {metapath}.") json.dump(buf, mfile) else: logger.info(f"Loading cached export metadata from {metapath}.") with metapath.open() as mfile: buf = json.load(mfile) if 'export' not in buf and 'tables' not in buf: raise ValueError(f'No metadata found for RDS export at s3://{bucket}/{prefix}') # Embed table status in main metadata, remove some extraneous layering. # Convert table lists to lookups. Order is preserved. meta = buf["export"] schemas = meta.setdefault("schemas", {}) # Group the table metadata by schema and add some default objects. for table in buf["tables"]["perTableStatus"]: # Parse the "target" key for each table's metadata into "schema" # and "table". target = table["target"] try: _, schema, name = target.split(".") except ValueError: schema = target name = target table["schema"] = schema table["name"] = name # Some tables are skipped, e.g., if the db is empty, so they won't have # type mappings. Add empty objects here. table["columns"] = [] # Rename fields for each column metadata and convert list to dict. for column in table.get("schemaMetadata", {}).pop("originalTypeMappings", []): tcolumn = { "name": column.pop("columnName", None), "original_type": column.pop("originalType", None), "exported_type": column.pop("expectedExportedType", None), "char_max_length": column.pop("originalCharMaxLength", None), "num_precision": column.pop("originalNumPrecision", None), "datetime_precision": column.pop("originalDateTimePrecision", None), "charset": column.pop("originalCharsetName", None), } table["columns"].append(column | tcolumn) if schema not in schemas: schemas[schema] = {"tables": []} schemas[schema]["tables"].append(table) return meta
578b7cb312d1490a9d9ded1574b9e5a445d93d5d
34,443
from datetime import datetime def get_dbtbl(options: list): """Handles dbtbl (available lobby table) calls.""" main.terminate_incorrect_lobbies() order = None resort = None for option in options: option = option.strip("'") if option.startswith("order="): order = option[6:] elif option.startswith("resort="): resort = option[7:] lastupdate = datetime.now() lastupdate = lastupdate.strftime("%H:%M:%S") entrypos = 0 currlobby = 0 buttonstring = "" pingstring = "" newlobbystring = data_from_file("dbtbl.dcml") newlobbystring = newlobbystring.replace("//LASTUPDATE", lastupdate) for (lid, lobj) in main.lobbies.items(): buttonstringtemp = "#apan[%APANLOBBYN](%SB[x:0,y:ENTRYPOS-2,w:100%,h:20]," \ "{GW|open&join_game.dcml\\00&delete_old=true^id_room=LOBBYID\\00|LW_lockall},8) " \ "#font(BC12,BC12,BC12)" \ "#ping[%PINGLOBBYN](%SB[x:86%+30,y:ENTRYPOS+4,w:14,h:20],IPADDR)" buttonstringtemp = buttonstringtemp.replace("ENTRYPOS", str(entrypos)) buttonstringtemp = buttonstringtemp.replace("LOBBYID", str(lid)) buttonstringtemp = buttonstringtemp.replace("IPADDR", reverseip(lobj.ip_address)) buttonstringtemp = buttonstringtemp.replace("LOBBYN", str(currlobby)) buttonstring += buttonstringtemp entrypos += 21 pingstringtemp = ''',21,"GAMETITLE","GAMEHOST","GAMETYPE","CURRENT_PLAYERS/MAX_PLAYERS",""''' pingstringtemp = pingstringtemp.replace("GAMETITLE", lobj.game_title) pingstringtemp = pingstringtemp.replace("GAMEHOST", lobj.host.player_name) pingstringtemp = pingstringtemp.replace("GAMETYPE", GAME_TYPES[lobj.game_type]) pingstringtemp = pingstringtemp.replace("CURRENT_PLAYERS", str(lobj.players)) pingstringtemp = pingstringtemp.replace("MAX_PLAYERS", str(lobj.max_players)) currlobby += 1 pingstring += pingstringtemp newlobbystring = newlobbystring.replace("//BUTTONSTRING", buttonstring) newlobbystring = newlobbystring.replace("//PINGSTRING", pingstring) return newlobbystring
f0c14f2cabc7a600b1296ed012b5c2b814a90708
34,444
def compare_parsed_text(seq_list, auto_stripped_text): """ This is a stupid workaround to the fact that bs4 parsers generally suck. Tries to measure whether parsing was "successful" by looking at the automatically scraped text of the policy to the text we parse here. Note: can't match/replace entire elements at a time because of weirdness in how certain things get scraped by bs4. In: sequential list of elements, stripped text of policy HTML doc. Out: sentence-tokenized version of remaining text. """ for element in seq_list: element_segment_list = element.content_string.splitlines() for segment in element_segment_list: try: auto_stripped_text = auto_stripped_text.replace(segment.strip(), "", 1) except ValueError: pass # do nothing! return sent_tokenize(auto_stripped_text)
c1bc7b2fd87dbd90082a434f7193cfed08d3164d
34,445
import ctypes def repmi(instr, marker, value, lenout=None): """ Replace a marker with an integer. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/repmi_c.html :param instr: Input string. :type instr: str :param marker: Marker to be replaced. :type marker: str :param value: Replacement value. :type value: int :param lenout: Optional available space in output string. :type lenout: int :return: Output string. :rtype: str """ if lenout is None: lenout = ctypes.c_int(len(instr) + len(marker) + 15) instr = stypes.stringToCharP(instr) marker = stypes.stringToCharP(marker) value = ctypes.c_int(value) out = stypes.stringToCharP(lenout) libspice.repmi_c(instr, marker, value, lenout, out) return stypes.toPythonString(out)
c366f8a2077cc51bfff5f2d7e2f0b019e48c09f7
34,446
def _get_parameter_state(sender_owner, sender_type, param_name, component): """Return ParameterState for named parameter of a Mechanism requested by owner """ # Validate that component is a Mechanism or Projection if not isinstance(component, (Mechanism, Projection)): raise ParameterStateError("Request for {} of a component ({}) that is not a {} or {}". format(PARAMETER_STATE, component, MECHANISM, PROJECTION)) try: return component._parameter_states[param_name] except KeyError: # Check that param (named by str) is an attribute of the Mechanism if not (hasattr(component, param_name) or hasattr(component.function, param_name)): raise ParameterStateError("{} (in specification of {} {}) is not an attribute " "of {} or its function" .format(param_name, sender_type, sender_owner.name, component)) # Check that the Mechanism has a ParameterState for the param if not param_name in component._parameter_states.names: raise ParameterStateError("There is no ParameterState for the parameter ({}) of {} " "specified in {} for {}". format(param_name, component.name, sender_type, sender_owner.name))
11c72ad6bdf4bd28f25c771d4d4283b88522e1a2
34,447
def start_volume( mdserver_name ): """ Start up an existing metadata server for a volume. Return 1 on success. """ global conf ctl_root = VOLUME_CTL_ROOT( conf, {'NAME': mdserver_name} ) config_file = VOLUME_CONF_PATH( ctl_root ) md_logfile = LOGFILE_PATH( ctl_root ) md_pidfile = PIDFILE_PATH( ctl_root ) # Get this server's configuration file try: md_conf = read_config( config_file ) except Exception, e: raise MDMethodFailed( 'start_volume', "read config exception = '%s'" % e ) # make sure we're not running... if is_volume_running( md_pidfile ): return 1 try: assert os.path.isdir( ctl_root ), "Control directory does not exist" assert os.path.isfile( config_file ), "Config file does not exist" assert os.path.isdir( md_conf['MDROOT'] ), "Master copy '%s' does not exist" % (md_conf['MDROOT']) except AssertionError, e: raise MDInternalError( "Server is not fully set up: %s" % str(e) ) try: assert not os.path.isfile( md_pidfile ) except AssertionError, e: raise MDInternalError( "Server is already running" ) # fire up the binary md_proc = subprocess.Popen( [conf['MD_BINARY'], '-c', config_file, '-l', md_logfile ], close_fds = True ) rc = md_proc.wait() if rc != 0: # could not start the server # make sure we remove runtime files, just in case try: os.unlink( md_pidfile ) except: pass raise MDMethodFailed( "start_volume", "rc = %s when starting metadata server" % rc ) return 1
1d8ed9310d9e67f3ca77f97eed935b0ff45661a6
34,448
from typing import Any def _pycall_path_dest_only( x1: int, y1: int, x2: int, y2: int, handle: Any ) -> float: """A TDL function which samples the dest coordinate only.""" return ffi.from_handle(handle)(x2, y2)
808a50335bc3c70aa49f6fe198beb4817655dc8a
34,449
from datetime import datetime def calculate_leap_seconds(year, month, day): """ get the leap seconds for the given year to convert GPS time to UTC time .. note:: GPS time started in 1980 .. note:: GPS time is leap seconds ahead of UTC time, therefore you should subtract leap seconds from GPS time to get UTC time. =========================== =============================================== Date Range Leap Seconds =========================== =============================================== 1981-07-01 - 1982-07-01 1 1982-07-01 - 1983-07-01 2 1983-07-01 - 1985-07-01 3 1985-07-01 - 1988-01-01 4 1988-01-01 - 1990-01-01 5 1990-01-01 - 1991-01-01 6 1991-01-01 - 1992-07-01 7 1992-07-01 - 1993-07-01 8 1993-07-01 - 1994-07-01 9 1994-07-01 - 1996-01-01 10 1996-01-01 - 1997-07-01 11 1997-07-01 - 1999-01-01 12 1999-01-01 - 2006-01-01 13 2006-01-01 - 2009-01-01 14 2009-01-01 - 2012-07-01 15 2012-07-01 - 2015-07-01 16 2015-07-01 - 2017-01-01 17 2017-01-01 - ????-??-?? 18 =========================== =============================================== """ # make the date a datetime object, easier to test given_date = datetime.date(int(year), int(month), int(day)) # made an executive decision that the date can be equal to the min, but # not the max, otherwise get an error. for leap_key in sorted(leap_second_dict.keys()): if ( given_date < leap_second_dict[leap_key]["max"] and given_date >= leap_second_dict[leap_key]["min"] ): return int(leap_key) return None
236d71d4827c4647999aef90e8f9f7ee49053f85
34,450
import re def convert_vpc_name_to_vpc(possible_vpc_id, error_on_exit=True): """ Convert a given VPC name into the VPC ID. If the input VPC name looks like an existing VPC ID, then return the VPC immediately. If the VPC with the given VPC name exists, then return the VPC. If there is no such VPC, it prints an error and exits if error_on_exit. Otherwise returns None """ if possible_vpc_id is None: raise NoneVPCID() ec2 = get_ec2_connection() if re.match(r'^vpc-[0-9a-f]+$', possible_vpc_id): vpcs = list(ec2.vpcs.filter(Filters=[{'Name': 'vpc-id', 'Values': [possible_vpc_id]}])) if len(vpcs) <= 0: if error_on_exit: error_exit("Cannot find a VPC ID name '%s'" % possible_vpc_id) return None return vpcs[0] vpcs = list(ec2.vpcs.filter(Filters=[{'Name': 'tag:Name', 'Values': [possible_vpc_id]}])) if len(vpcs) <= 0: if error_on_exit: error_exit("Cannot find a VPC '%s'" % possible_vpc_id) return None vpc_ids = [i.id for i in vpcs] if 1 < len(vpc_ids): if error_on_exit: error_exit("There are multiple VPCs with name='%s'.\nCandidates are:\n\t%s" % (possible_vpc_id, "\n\t".join(vpc_ids))) return None return vpcs[0]
3b5f644001bf12a3d2b1758a9bb045ee2e8e88b1
34,451
def preprocess_person(hh_dat, person_dat): """ This function preprocesses person-level features and merge with household data. Nominal categorical variables, such as years of age are transformed into continuous values. Input: Preprocessed household-level data Original perosn-level data Output: A data frame with preprocessed household + person features Each raw represents a unique household ID <Person-level features and categories> a. AGE: Each category was mapped using the middle point of the age range 1 -> 2.0 (0-4 years old) 2 -> 8.0 (5-11 years old) 3 -> 13.5 (12-15 years) 4 -> 16.5 (16-17 years) 5 -> 21.0 (18-24 years) 6 -> 29.5 (25-34 years) 7 -> 39.5 (35-44 years) 8 -> 49.5 (45-54 years) 9 -> 59.5 (55-64 years) 10 -> 69.5 (65-74 years) 11 -> 79.5 (75-84 years) 12 -> 89.5 (85 or years older) b. RACE_WHITE: only for 18+ olds 0: Non-white 1: White NaN: missing or N/A c. RACE_BLACK: only for 18+ olds 0: Non-black 1: Black NaN: missing or N/A d. RACE_ASIAN: only for 18+ olds 0: Non-asian 1: Asian NaN: missing or N/A e. RACE_HISPANIC: only for 18+ olds 0: Non-hispanic 1: Hispanic NaN: missing or N/A f. YEARS_AFTERHIGH: calculated from education categories using discretion 1 -> 0.0 (Less than high school) 2 -> 0.0 (High school graduate) 3 -> 1.0 (Some college) 4 -> 2.0 (Vocational/technical training) 5 -> 2.0 (Associates degree) 6 -> 4.0 (Bachelor degree) 7 -> 6.0 (Graduate/post-graduate degree) NaN -> missing or N/A g. EMPLOYED: 0: Unemplyed (homemaker, retired, or not employed) 1: employed (full time, part time, self-employed, volunteer/intern) h. STUDENT: 0: No 1: Yes (full time or part time student) """ ps = person_dat[[HOUSEHOLD_ID, PERSON_ID]].copy() ps[AGE] = person[AGE].replace([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [2.0, 8.0, 13.5, 16.5, 21.0, 29.5, 39.5, 49.5, 59.5, 69.5, 79.5, 89.5]) ps[RACE_WHITE] = person[RACE_WHITE] ps[RACE_BLACK] = person[RACE_BLACK] ps[RACE_ASIAN] = person[RACE_ASIAN] ps[RACE_HISPANIC] = person[RACE_HISPANIC] ps[YEARS_AFTERHIGH] = person[EDUCATION].replace([1, 2, 3, 4, 5, 6, 7], [0.0, 0.0, 1.0, 2.0, 2.0, 4.0, 6.0]) ps[EMPLOYED] = person[EMPLOYED].replace([1, 2, 3, 4, 5, 6, 7], [1, 1, 1, 1, 0, 0, 0]) ps[STUDENT] = person[STUDENT].replace([1, 2, 3], [0, 1, 1]) # Summarize personal level data to household level, by calculating means of each features ps_household = ps.groupby([HOUSEHOLD_ID], as_index = False).agg( {AGE: 'mean', RACE_WHITE: 'mean', YEARS_AFTERHIGH: 'mean', RACE_BLACK: 'mean', RACE_ASIAN: 'mean', RACE_HISPANIC: 'mean', EMPLOYED: 'mean', STUDENT: 'mean'}) # Rename the variables, as they are collapsed by averaging ps_household.rename(columns={AGE: MEAN_AGE, RACE_WHITE: PROP_WHITE, RACE_BLACK: PROP_BLACK, RACE_ASIAN: PROP_ASIAN, RACE_HISPANIC: PROP_HISPANIC, YEARS_AFTERHIGH: YEAR_EDUCATION, EMPLOYED: PROP_EMPLOYED, STUDENT: PROP_STUDENT, PERSON_ID: PERSON_COUNT}, inplace=True) # merge person level data with household level hh_plus_ps = pd.merge(left=hh_dat, right=ps_household, how='inner', left_on=HOUSEHOLD_ID, right_on = HOUSEHOLD_ID) return(hh_plus_ps)
5becaeb1141ad72a85128340d2c9f47e5899f0e9
34,452