content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import ast def get_import_stmt_str(alias_list, import_src=None, max_linechars=88): """ Construct an import statement by building an AST, convert it to source using astor.to_source, and then return the string. alias_list: List of strings to use as ast.alias `name`, and optionally also `asname entries. If only one name is listed per item in the alias_list, the `asname` will be instantiated as None. import_src: If provided, the import statement will be use the `ast.ImportFrom` class, otherwise it will use `ast.Import`. Relative imports are permitted for "import from" statements (such as `from ..foo import bar`) however absolute imports (such as `from foo import bar`) are recommended in PEP8. max_linechars: Maximum linewidth, beyond which the import statement string will be multilined with `multilinify_import_stmt_str`. """ alias_obj_list = [] assert type(alias_list) is list, "alias_list must be a list" for alias_pair in alias_list: if type(alias_pair) is str: alias_pair = [alias_pair] assert len(alias_pair) > 0, "Cannot import using an empty string" assert type(alias_pair[0]) is str, "Import alias name must be a string" if len(alias_pair) < 2: alias_pair.append(None) al = ast.alias(*alias_pair[0:2]) alias_obj_list.append(al) if import_src is None: ast_imp_stmt = ast.Import(alias_obj_list) else: import_level = len(import_src) - len(import_src.lstrip(".")) import_src = import_src.lstrip(".") ast_imp_stmt = ast.ImportFrom(import_src, alias_obj_list, level=import_level) import_stmt_str = to_source(ast.Module([ast_imp_stmt])) if len(import_stmt_str.rstrip(nl)) > max_linechars: return multilinify_import_stmt_str(import_stmt_str) else: return import_stmt_str
f4c7dad79b7c949bd7e9045b9c9ae474a09303d2
34,217
def convert_into_decimal(non_binary_number: str, base: int) -> int: """ Converts a non binary string number into a decimal number :param non_binary_number: :param base: :return: a decimal number """ decimal_number = 0 for digit in range(len(non_binary_number)): decimal_number += int(non_binary_number[digit]) * base ** abs((digit - (len(non_binary_number) - 1))) return decimal_number
fecdd152000399fbc33a259a647118b0607daac9
34,218
from typing import Sequence def sgld_sweep() -> Sequence[SGMCMCConfig]: """sweep for vanilla sgld.""" sweep = [] for learning_rate in [ 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2 ]: for prior_variance in [0.01, 0.1, 0.5]: sweep.append(SGMCMCConfig(learning_rate, prior_variance)) return tuple(sweep)
9f64505c8aa7efb33f2fbc4a7e0756ef896ee9c3
34,219
def stringify(num): """ Takes a number and returns a string putting a zero in front if it's single digit. """ num_string = str(num) if len(num_string) == 1: num_string = '0' + num_string return num_string
7cf37776bc774d02bce0b2016d41b26b8ab94cf7
34,220
def euc_distance(vertex, circle_obstacle): """ Finds the distance between the point and center of the circle. vertex: Vertex in question. circle_obstacle: Circle obstacle in question. return: Distance between the vertex and the center of the circle. """ x = vertex[0] - circle_obstacle.position[0] y = vertex[1] - circle_obstacle.position[1] dist = ((x ** 2) + (y ** 2)) ** 0.5 return dist
60ed338eb7a81fc282196c38d41cecda8f28efb7
34,222
def less(x, y): """ Returns the truth value of (x < y) element-wise. Parameters ---------- x : tensor Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64. y : tensor A Tensor. Must have the same type as x. Returns ------- A Tensor of type bool. Examples --------- >>> import tensorlayerx as tlx >>> x = tlx.ops.constant(value=[1, 2, 3]) >>> y = tlx.ops.less(x, x) """ return tf.math.less(x, y)
6db5cf54e7f23e174050676f7f1e319e8dd6982d
34,223
def decision_tree_learning(examples: list, attributes: list, parent_examples, importance_function: callable): """ Decision tree learning algorithm as given in figure 18.5 in Artificial Intelligence A Modern Approach. :param examples: list of dictionaries containing examples to learn from :param attributes: list of all attributes in the examples :param parent_examples: list of all parent examples (can be the same as `examples` when first running) :param importance_function: function that takes an attribute (str) and a list of examples and returns a number representing the importance of that attribute :return: DecisionTree, a decision tree """ if not examples: return plurality_value(parent_examples) elif examples_have_same_classification(examples): return examples[0]["classification"] elif not attributes: return plurality_value(examples) else: imp = [importance_function(a, examples) for a in attributes] A = attributes[imp.index(max(imp))] # essentially like argmax tree = DecisionTree(attr=A) for vk in get_attribute_values(A, examples): exs = [e for e in examples if e.get(A) == vk] att = [a for a in attributes if a != A] subtree = decision_tree_learning(exs, att, examples, importance_function) tree.add_branch(vk=vk, subtree=subtree) return tree
df9dd631b5df38451e03cfab65d8a8c0f6a218eb
34,225
def modified_bessel(times, bes_A, bes_Omega, bes_s, res_begin, bes_Delta): """ Not Tested. """ b = np.where(times > res_begin + bes_Delta / 2., special.j0(bes_s * bes_Omega * (- res_begin + times - bes_Delta / 2.) ), (np.where(times < res_begin - bes_Delta / 2., special.j0(bes_Omega * (res_begin - times - bes_Delta / 2.) ), 1))) return bes_A * b
1afcb27b53b364199289dff2bd7850fe6e5027fa
34,226
def predict_csr_val(csr_op, rs1_val, csr_val, csr_mask): """ Predicts the CSR reference value, based on the current CSR operation. Args: csr_op: A string of the CSR operation being performed. rs1_val: A bitarray containing the value to be written to the CSR. csr_val: A bitarray containing the current value of the CSR. csr_mask: A bitarray containing the CSR's mask. Returns: A hexadecimal string of the predicted CSR value. """ prediction = None # create a zero bitarray to zero extend immediates zero = bitarray(uint=0, length=csr_val.len - 5) if csr_op == 'csrrw': prediction = csr_read(csr_val, csr_mask) csr_write(rs1_val, csr_val, csr_mask) elif csr_op == 'csrrs': prediction = csr_read(csr_val, csr_mask) csr_write(rs1_val | prediction, csr_val, csr_mask) elif csr_op == 'csrrc': prediction = csr_read(csr_val, csr_mask) csr_write((~rs1_val) & prediction, csr_val, csr_mask) elif csr_op == 'csrrwi': prediction = csr_read(csr_val, csr_mask) zero.append(rs1_val[-5:]) csr_write(zero, csr_val, csr_mask) elif csr_op == 'csrrsi': prediction = csr_read(csr_val, csr_mask) zero.append(rs1_val[-5:]) csr_write(zero | prediction, csr_val, csr_mask) elif csr_op == 'csrrci': prediction = csr_read(csr_val, csr_mask) zero.append(rs1_val[-5:]) csr_write((~zero) & prediction, csr_val, csr_mask) return f"0x{prediction.hex}"
1e8be22540b89db9719ea078dbb4e1d11e53bdcc
34,227
def request(url: str, args: dict = None, method: str = 'GET'): """ Custom Method that requests data from requests_session and confirms it has a valid JSON return """ response = request_session(url, method, args) try: # you only come here if we can understand the API response return response.json() except ValueError: return None except AttributeError: return None
603712a7aa2978fc00e664eaebf18929108064e3
34,228
def create_se3(ori, trans=None): """ Args: ori (np.ndarray): orientation in any following form: rotation matrix (shape: :math:`[3, 3]`) quaternion (shape: :math:`[4]`) euler angles (shape: :math:`[3]`). trans (np.ndarray): translational vector (shape: :math:`[3]`) Returns: np.ndarray: a transformation matrix (shape: :math:`[4, 4]`) """ rot = to_rot_mat(ori) out = np.eye(4) out[:3, :3] = rot if trans is not None: trans = np.array(trans) out[:3, 3] = trans.flatten() return out
c564b8e3761b737bfc95c94e5134c57cec05805e
34,230
def build_negative_log_likelihood( image, telescope_description, oversampling, min_lambda, max_lambda, spe_width, pedestal, hole_radius=0 * u.m, ): """Create an efficient negative log_likelihood function that does not rely on astropy units internally by defining needed values as closures in this function """ # get all the neeed values and transform them into appropriate units optics = telescope_description.optics mirror_area = optics.mirror_area.to_value(u.m ** 2) mirror_radius = np.sqrt(mirror_area / np.pi) focal_length = optics.equivalent_focal_length cam = telescope_description.camera.geometry camera_frame = CameraFrame(focal_length=focal_length, rotation=cam.cam_rotation) cam_coords = SkyCoord(x=cam.pix_x, y=cam.pix_y, frame=camera_frame) tel_coords = cam_coords.transform_to(TelescopeFrame()) pixel_x = tel_coords.fov_lon.to_value(u.rad) pixel_y = tel_coords.fov_lat.to_value(u.rad) pixel_diameter = 2 * ( np.sqrt(cam.pix_area[0] / np.pi) / focal_length * u.rad ).to_value(u.rad) min_lambda = min_lambda.to_value(u.m) max_lambda = max_lambda.to_value(u.m) hole_radius_m = hole_radius.to_value(u.m) def negative_log_likelihood( impact_parameter, phi, center_x, center_y, radius, ring_width, optical_efficiency_muon, ): """ Likelihood function to be called by minimizer Parameters ---------- impact_parameter: float Impact distance from telescope center center_x: float center of muon ring in the telescope frame center_y: float center of muon ring in the telescope frame radius: float Radius of muon ring ring_width: float Gaussian width of muon ring optical_efficiency_muon: float Efficiency of the optical system Returns ------- float: Likelihood that model matches data """ # center_x *= self.unit # center_y *= self.unit # radius *= self.unit # ring_width *= self.unit # impact_parameter *= u.m # phi *= u.rad # Generate model prediction prediction = image_prediction_no_units( mirror_radius_m=mirror_radius, hole_radius_m=hole_radius_m, impact_parameter_m=impact_parameter, phi_rad=phi, center_x_rad=center_x, center_y_rad=center_y, radius_rad=radius, ring_width_rad=ring_width, pixel_x_rad=pixel_x, pixel_y_rad=pixel_y, pixel_diameter_rad=pixel_diameter, oversampling=oversampling, min_lambda_m=min_lambda, max_lambda_m=max_lambda, ) # scale prediction by optical efficiency of array prediction *= optical_efficiency_muon sq = 1 / np.sqrt( 2 * np.pi * (pedestal ** 2 + prediction * (1 + spe_width ** 2)) ) diff = (image - prediction) ** 2 denom = 2 * (pedestal ** 2 + prediction * (1 + spe_width ** 2)) expo = np.exp(-diff / denom) + 1e-16 # add small epsilon to avoid nans value = sq * expo return -2 * np.log(value).sum() return negative_log_likelihood
10c481448b1b2eb2e09eb4d76dda228bc6ed894d
34,231
import collections def _ParseParameterType(type_string): """Parse a parameter type string into a JSON dict for the DF SQL launcher.""" type_dict = {'type': type_string.upper()} if type_string.upper().startswith('ARRAY<') and type_string.endswith('>'): type_dict = collections.OrderedDict([ ('arrayType', _ParseParameterType(type_string[6:-1])), ('type', 'ARRAY') ]) if type_string.startswith('STRUCT<') and type_string.endswith('>'): type_dict = collections.OrderedDict([('structTypes', _ParseStructType(type_string[7:-1])), ('type', 'STRUCT')]) if not type_string: raise exceptions.Error('Query parameter missing type') return type_dict
213a6d6e119c76da7fc6193493e11b57e260f200
34,233
import time def get_now_utc_epoch(): """ Returns the epoch :return: """ return int(time.time())
7e9836908aed9598bab1f01365fe255aa43a94e0
34,234
from typing import List def get_top_words(text: str, blacktrie: dict, top_n: int) -> List[str]: """Get top words in a string, excluding a predefined list of words. Args: text (str): Text to parse blacktrie (dict): Trie built from a blacklist of words to ignore top_n (int): Number of top words to return Returns: List[str]: List of top N words sorted by most frequently occuring to least frequently occuring """ found_words = {} lower_text = text.lower() current_word = "" current_lower_word = "" current_node = blacktrie text_len = len(text) idx = 0 while idx < text_len: char = text[idx] lower_char = lower_text[idx] if lower_char in current_node: # char in blacktrie, get rest of word and see if that's still true current_word += char current_lower_word += lower_char current_node = current_node[lower_char] elif lower_char in VALID_WORD_CHARS: # char not in blacktrie and is a valid word char current_word += char current_lower_word += lower_char current_node = blacktrie elif None in current_node: # Word in blacktrie, ignore current_word = "" current_lower_word = "" current_node = blacktrie elif current_word: # Non-word char found and not at an end node of the trie, update found_words if current_lower_word in found_words: found_words[current_lower_word]["count"] += 1 elif len(current_lower_word) > 1 or current_lower_word in set("ai"): found_words[current_lower_word] = {"word": current_word, "count": 1} current_word = "" current_lower_word = "" current_node = blacktrie if idx + 1 >= text_len and current_word: if current_lower_word in found_words: found_words[current_lower_word]["count"] += 1 elif len(current_lower_word) > 1 or current_lower_word in set("ai"): found_words[current_lower_word] = {"word": current_word, "count": 1} current_word = "" current_lower_word = "" current_node = blacktrie idx += 1 sorted_word_list = filter(lambda x: not x.isdigit(), [ v["word"] for _, v in sorted(found_words.items(), key=lambda x: x[1]["count"], reverse=True) ]) return list(sorted_word_list)[:top_n]
20839162d06447f7651c1051ed88feef9d62db72
34,235
def get_fluid_colors(fXs, fVs, normalize=False): ## I realized that with limited data, this coloring does not make much sense """ Given the velocity field (Ux, Uy) at positions (X,Y), compute for every x in (X,Y) if the position is contributing to the inflow or the outflow. This can be obtained by u*x (scalar product). If this quantity is positive, then it's an outflow, if it is negative it's an inflow. """ ret = [np.dot(x,v) for x,v in zip(fXs, fVs)] if normalize: mi=min(ret) mx=max(ret) assert(mi<0 and mx>0) ret = [r/mi if r<0 else r/mx for r in ret] return np.array(ret)
cda836658f30c7f8cfd96d774f2654e2a056de51
34,236
def getitem(x, item): """returns specific item of a tensor (Functional). # Arguments item: Item list. # Returns A new functional object. """ validate_functional(x) res = x.copy() ys = [] lmbd = [Lambda(lambda xx: xx.__getitem__(item)) for xx in x.outputs] for l, y in zip(lmbd, x.outputs): # l.name = "slice/" + l.name.split("_")[-1] ys.append(l(y)) res.outputs = ys return res
7854bad7ff67aa3d04be7e26b25785832ce04522
34,237
import torch from typing import Optional def norm_range( data: torch.Tensor, min: float, max: float, per_channel: bool = True, out: Optional[torch.Tensor] = None ) -> torch.Tensor: """ Scale range of tensor Args: data: input data. Per channel option supports [C,H,W] and [C,H,W,D]. min: minimal value max: maximal value per_channel: range is normalized per channel out: if provided, result is saved in here Returns: torch.Tensor: normalized data """ if out is None: out = torch.zeros_like(data) out = norm_min_max(data, per_channel=per_channel, out=out) _range = max - min out = (out * _range) + min return out
52f36f0b9a74d8813ee72bc7a773620e92c4923b
34,238
def get_mvarg(size_pos, position="full"): """Take xrandrs size&pos and prepare it for wmctrl (MVARG) format MVARG: <G>,<X>,<Y>,<W>,<H> * <G> - gravity, 0 is default """ allowed = ["left", "right", "top", "bottom", "full"] if position not in allowed: raise ValueError(f"Position has to be one of {allowed}") size, x, y = size_pos.split("+") w, h = size.split("x") if position == "left": w = int(w) // 2 if position == "right": w = int(w) // 2 x = int(x) + w return f"0,{x},{y},{w},{h}"
0b8a9c3f5ca7e24212502a3f2c76b18167deef6e
34,239
def fr2date(edate, **kwargs): """ Wrapper function for :func:`date2date` with French input and standard output date formats That means `date2date(edate, fr=True, **kwargs)`; but *fr* given in call will overwrite *fr=True*. Examples -------- >>> edate = ['12/11/2014 12:00', '01/03/2015 17:56:00', ... '01/12/1990', '04/05/1786'] >>> print(", ".join(fr2date(edate))) 12.11.2014 12:00, 01.03.2015 17:56:00, 01.12.1990, 04.05.1786 >>> print(", ".join(fr2date(edate, full=True))) 12.11.2014 12:00:00, 01.03.2015 17:56:00, 01.12.1990 00:00:00, 04.05.1786 00:00:00 >>> print(fr2date(list(edate), format='%Y%m%d%H%M%S')) ['20141112120000', '20150301175600', '19901201000000', '17860504000000'] >>> print(fr2date(tuple(edate))) ('12.11.2014 12:00', '01.03.2015 17:56:00', '01.12.1990', '04.05.1786') >>> print(fr2date(np.array(edate))) ['12.11.2014 12:00' '01.03.2015 17:56:00' '01.12.1990' '04.05.1786'] >>> print(fr2date(edate[0])) 12.11.2014 12:00 2-digit year >>> edate = ['12/11/14 12:00', '01/03/15 17:56:00', '01/12/90'] >>> print(", ".join(fr2date(edate))) 12.11.2014 12:00, 01.03.2015 17:56:00, 01.12.1990 >>> print(", ".join(fr2date(edate, full=True))) 12.11.2014 12:00:00, 01.03.2015 17:56:00, 01.12.1990 00:00:00 """ if 'fr' not in kwargs: kwargs.update({'fr': True}) return date2date(edate, **kwargs)
4bdf32e344585caa159d64bcdaa3e870b41f8633
34,240
def convert_species_tuple2chianti_str(species): """ Convert a species tuple to the ion name format used in `chiantipy`. Parameters ----------- species: tuple (atomic_number, ion_number) Returns -------- str ion name in the chiantipy format Examples --------- >>> convert_species_tuple2chianti_str((1,0)) 'h_1' >>> convert_species_tuple2chianti_str((14,1)) 'si_2' """ atomic_number, ion_number = species chianti_ion_name = convert_atomic_number2symbol(atomic_number).lower() + '_' + str(ion_number + 1) return chianti_ion_name
d37aa9c9a9e186febc4ef6df2f3b53f9110ace7a
34,241
import hashlib def vote(request, village_no, day_no): """投票処理""" vote_id = request.POST['vote'] login_id = request.session.get('login_id', False) participant = VillageParticipant.objects.get(village_no=village_no, pl=login_id, cancel_flg=False) ability = VillageParticipantExeAbility.objects.get(village_participant_id=participant.id, day_no=day_no) ability.vote = hashlib.sha256(vote_id.encode('utf-8')).hexdigest() ability.save() # 村メイン画面に戻る return HttpResponseRedirect(reverse('pywolf:village', args=(village_no, day_no)))
4935ee87645d037e9455e61c588168f3f276f8ce
34,243
def read_header_offsets(file, block_size): """Reads the PBDF header (not checking the included file size) and returns the list of offsets adjusted to match decrypted data positions. Args: file: The decrypted input file. block_size (int): The block size in bytes at which end a checksum is placed. Returns: The list of offsets, adjusted to point to decrypted file positions. """ _ = read_int32(file) num_offsets = read_int32(file) offsets = list(read_int32s(file, num_offsets)) for i in range(num_offsets): offsets[i] -= offsets[i] // block_size * 4 return offsets
cf2d5c89083bebf3dff1b92bd2365e1a62b2f97e
34,244
def level_2_win_play(x): """ Probability that a deck with x SSGs will win on the play using level two reasoning :param int x: SSGs in deck :return float: """ return sum([ level_2_hand_odds_play(i, x) * mull_to_play(i, x) for i in range(0, 8) ])
94834ad0cc603b2923c0f5c441def95196197c25
34,245
def getfullargspec(func): """Get the names and default values of a function's arguments. A tuple of seven things is returned: (args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults annotations). 'args' is a list of the argument names. 'varargs' and 'varkw' are the names of the * and ** arguments or None. 'defaults' is an n-tuple of the default values of the last n arguments. 'kwonlyargs' is a list of keyword-only argument names. 'kwonlydefaults' is a dictionary mapping names from kwonlyargs to defaults. 'annotations' is a dictionary mapping argument names to annotations. The first four items in the tuple correspond to getargspec(). """ if ismethod(func): func = func.__func__ if not isfunction(func): raise TypeError('{!r} is not a Python function'.format(func)) args, varargs, kwonlyargs, varkw = _getfullargs(func.__code__) return FullArgSpec(args, varargs, varkw, func.__defaults__, kwonlyargs, func.__kwdefaults__, func.__annotations__)
d239d6d9b7399689157d6a5f025148e287f06b68
34,246
import json def get_json(file_path): """ Faz a leitura de um arquivo Json com codificacao utf-8, apenas para arquivos dentro do diretorio folhacerta_settings :param file_path: (string) nome do arquivo json com extensao :return: Dicionario com os dados do json """ with open(file_path, encoding='utf-8') as data_json: return json.load(data_json)
bd475d7427705026ad17d32d25a1a016d6c6f93d
34,247
def color_array(arr, alpha=1): """ take an array of colors and convert to an RGBA image that can be displayed with imshow """ img = np.zeros(arr.shape + (4,)) for row in range(arr.shape[0]): for col in range(arr.shape[1]): c = mpl.colors.to_rgb(arr[row, col]) img[row, col, 0:3] = c img[row, col, 3] = alpha return img
dbfdf7e78788365f6bc0bb61b7c7607aec79e250
34,248
def showturtle(): """Makes the turtle visible. Aliases: showturtle | st No argument. Example (for a Turtle instance named turtle): >>> turtle.hideturtle() >>> turtle.showturtle() """ return __SingletonTurtle().showturtle()
011edcca34c25d42831826c73f8a823d992448b7
34,249
def get_setting(db, name): """ Get a specific setting @param db The database connection @param name The setting's name @return The setting's value """ result = _query(db, "SELECT value FROM settings WHERE name=%(name)s;", { "name" : name }) if len(result) > 0: return getattr(result[0], "value") return None
1a82faf9e2f222328d9deb9c0beb19a8a7b22862
34,250
def check_table_exists(client: AitoClient, table_name: str) -> bool: """check if a table exists in the instance :param client: the AitoClient instance :type client: AitoClient :param table_name: the name of the table :type table_name: str :return: True if the table exists :rtype: bool """ existing_tables = get_existing_tables(client) return table_name in existing_tables
b45a7cbe8a896040903af6f5ece177d53773d098
34,252
def bytes_to_str(s, encoding='latin-1'): """Extract null-terminated string from bytes.""" if b'\0' in s: s, _ = s.split(b'\0', 1) return s.decode(encoding, errors='replace')
7d98d91443ab16478f1b8ecba39311110e92009c
34,253
from typing import Pattern import re from typing import Optional from typing import Match from typing import AnyStr from typing import Dict def get_time_delta(time_string: str) -> timedelta: """ Takes a time string (1 hours, 10 days, etc.) and returns a python timedelta object :param time_string: the time value to convert to a timedelta :type time_string: str :returns: datetime.timedelta for relative time :type datetime.timedelta """ rel_time: Pattern = re.compile( pattern=r"((?P<hours>\d+?)\s+hour)?((?P<minutes>\d+?)\s+minute)?((?P<seconds>\d+?)\s+second)?((?P<days>\d+?)\s+day)?", # noqa flags=re.IGNORECASE, ) parts: Optional[Match[AnyStr]] = rel_time.match(string=time_string) if not parts: raise Exception(f"Invalid relative time: {time_string}") # https://docs.python.org/3/library/re.html#re.Match.groupdict parts: Dict[str, str] = parts.groupdict() time_params = {} if all(value == None for value in parts.values()): raise Exception(f"Invalid relative time: {time_string}") for time_unit, magnitude in parts.items(): if magnitude: time_params[time_unit]: int = int(magnitude) return timedelta(**time_params)
8a1df45286f0994e1f9aab4f4209ea14f639e8b9
34,254
def lens_of(data): """Apply len(x) to elemnts in data.""" return len(data)
e10cba2bd801afd8f41dd0b15bfc23b7849c06ba
34,255
from typing import Any def _format_phone( phone: Any, output_format: str, fix_missing: str, split: bool, errors: str ) -> Any: """ Function to transform a phone number instance into the desired format. The last component of the returned tuple contains a code indicating how the input value was changed: 0 := the value is null 1 := the value could not be parsed 2 := the value is cleaned and the cleaned value is DIFFERENT than the input value 3 := the value is cleaned and is THE SAME as the input value (no transformation) """ country_code, area_code, office_code, station_code, ext_num, status = _check_phone(phone, True) if status == "null": return (np.nan, np.nan, np.nan, np.nan, np.nan, 0) if split else (np.nan, 0) if status == "unknown": if errors == "raise": raise ValueError(f"unable to parse value {phone}") result = phone if errors == "ignore" else np.nan return (result, np.nan, np.nan, np.nan, np.nan, 1) if split else (result, 1) if split: missing_code = "1" if fix_missing == "auto" and area_code else np.nan country_code = country_code if country_code else missing_code area_code = area_code if area_code else np.nan ext_num = ext_num if ext_num else np.nan return country_code, area_code, office_code, station_code, ext_num, 2 if output_format == "nanp": # NPA-NXX-XXXX area_code = f"{area_code}-" if area_code else "" ext_num = f" ext. {ext_num}" if ext_num else "" result = f"{area_code}{office_code}-{station_code}{ext_num}" elif output_format == "e164": # +NPANXXXXXX print(country_code) if country_code is None and area_code: country_code = "+1" else: country_code = "+" + country_code if area_code else "" area_code = area_code if area_code else "" ext_num = f" ext. {ext_num}" if ext_num else "" result = f"{country_code}{area_code}{office_code}{station_code}{ext_num}" elif output_format == "national": # (NPA) NXX-XXXX area_code = f"({area_code}) " if area_code else "" ext_num = f" ext. {ext_num}" if ext_num else "" result = f"{area_code}{office_code}-{station_code}{ext_num}" return result, 2 if phone != result else 3
97341088f03f5d276339c83d0061bbfec28933b9
34,256
def mvg_all_joints(jLs, face_keypoints=True, upper_sternum=True, upper_body=True, lower_body=True, wsize=6): """ :param jLs: list of lists with length 54 derived from text file including x,y,z coordinates for each joint as separately list. :type jLs: list :param face_keypoints: 15 face keypoints in total, defaults to True :type face_keypoints: bool, optional :param upper_sternum: 3 upper sternum keypoints in total, defaults to True :type upper_sternum: bool, optional :param upper_body: 18 upper body keypoints in total, defaults to True :type upper_body: bool, optional :param lower_body: 18 lower body keypoints in total, defaults to True :type lower_body: bool, optional :param wsize: windows size of moving average filter, defaults to 6 :type wsize: int, optional :return: maximum 54 arrays for all body joints :rtype: list of arrays """ if wsize <= 2: raise ValueError('Windows size is recommended to be at least 3.') if face_keypoints == False and upper_sternum == False and lower_body == False and upper_body == False: raise NotImplementedError('There are no keypoints to filter.') mvg_joints = [] mvg = MovingAverage() if face_keypoints: # Nose mvg_nose_x = mvg.moving_average(jLs[0], wsize) mvg_nose_y = mvg.moving_average(jLs[1], wsize) mvg_nose_z = mvg.moving_average(jLs[2], wsize) # Eyes mvg_reye_x = mvg.moving_average(jLs[42], wsize) mvg_reye_y = mvg.moving_average(jLs[43], wsize) mvg_reye_z = mvg.moving_average(jLs[44], wsize) mvg_leye_x = mvg.moving_average(jLs[45], wsize) mvg_leye_y = mvg.moving_average(jLs[46], wsize) mvg_leye_z = mvg.moving_average(jLs[47], wsize) # Ears mvg_rear_x = mvg.moving_average(jLs[48], wsize) mvg_rear_y = mvg.moving_average(jLs[49], wsize) mvg_rear_z = mvg.moving_average(jLs[50], wsize) mvg_lear_x = mvg.moving_average(jLs[51], wsize) mvg_lear_y = mvg.moving_average(jLs[52], wsize) mvg_lear_z = mvg.moving_average(jLs[53], wsize) mvg_joints.extend( [mvg_nose_x, mvg_nose_y, mvg_nose_z, mvg_reye_x, mvg_reye_y, mvg_reye_z, mvg_leye_x, mvg_leye_y, mvg_leye_z, mvg_rear_x, mvg_rear_y, mvg_rear_z, mvg_lear_x, mvg_lear_y, mvg_lear_z] ) if upper_sternum: # Upper sternum mvg_upster_x = mvg.moving_average(jLs[3], wsize) mvg_upster_y = mvg.moving_average(jLs[4], wsize) mvg_upster_z = mvg.moving_average(jLs[5], wsize) mvg_joints.extend( [mvg_upster_x, mvg_upster_y, mvg_upster_z] ) if upper_body: # Right upper body side mvg_rs_x = mvg.moving_average(jLs[6], wsize) mvg_rs_y = mvg.moving_average(jLs[7], wsize) mvg_rs_z = mvg.moving_average(jLs[8], wsize) mvg_rel_x = mvg.moving_average(jLs[9], wsize) mvg_rel_y = mvg.moving_average(jLs[10], wsize) mvg_rel_z = mvg.moving_average(jLs[11], wsize) mvg_rw_x = mvg.moving_average(jLs[12], wsize) mvg_rw_y = mvg.moving_average(jLs[13], wsize) mvg_rw_z = mvg.moving_average(jLs[14], wsize) mvg_ls_x = mvg.moving_average(jLs[15], wsize) mvg_ls_y = mvg.moving_average(jLs[16], wsize) mvg_ls_z = mvg.moving_average(jLs[17], wsize) mvg_lel_x = mvg.moving_average(jLs[18], wsize) mvg_lel_y = mvg.moving_average(jLs[19], wsize) mvg_lel_z = mvg.moving_average(jLs[20], wsize) mvg_lw_x = mvg.moving_average(jLs[21], wsize) mvg_lw_y = mvg.moving_average(jLs[22], wsize) mvg_lw_z = mvg.moving_average(jLs[23], wsize) mvg_joints.extend( [mvg_rs_x, mvg_rs_y, mvg_rs_z, mvg_rel_x, mvg_rel_y, mvg_rel_z, mvg_rw_x, mvg_rw_y, mvg_rw_z, mvg_ls_x, mvg_ls_y, mvg_ls_z, mvg_lel_x, mvg_lel_y, mvg_lel_z, mvg_lw_x, mvg_lw_y, mvg_lw_z] ) if lower_body: # Right lower body side mvg_rh_x = mvg.moving_average(jLs[24], wsize) mvg_rh_y = mvg.moving_average(jLs[25], wsize) mvg_rh_z = mvg.moving_average(jLs[26], wsize) mvg_rk_x = mvg.moving_average(jLs[27], wsize) mvg_rk_y = mvg.moving_average(jLs[28], wsize) mvg_rk_z = mvg.moving_average(jLs[29], wsize) mvg_ra_x = mvg.moving_average(jLs[30], wsize) mvg_ra_y = mvg.moving_average(jLs[31], wsize) mvg_ra_z = mvg.moving_average(jLs[32], wsize) # Left lower body side mvg_lh_x = mvg.moving_average(jLs[33], wsize) mvg_lh_y = mvg.moving_average(jLs[34], wsize) mvg_lh_z = mvg.moving_average(jLs[35], wsize) mvg_lk_x = mvg.moving_average(jLs[36], wsize) mvg_lk_y = mvg.moving_average(jLs[37], wsize) mvg_lk_z = mvg.moving_average(jLs[38], wsize) mvg_la_x = mvg.moving_average(jLs[39], wsize) mvg_la_y = mvg.moving_average(jLs[40], wsize) mvg_la_z = mvg.moving_average(jLs[41], wsize) mvg_joints.extend( [mvg_rh_x, mvg_rh_y, mvg_rh_z, mvg_rk_x, mvg_rk_y, mvg_rk_z, mvg_ra_x, mvg_ra_y, mvg_ra_z, mvg_lh_x, mvg_lh_y, mvg_lh_z, mvg_lk_x, mvg_lk_y, mvg_lk_z, mvg_la_x, mvg_la_y, mvg_la_z] ) return mvg_joints
cf6b2d5092cbbf902fe33902efbb4ca9dbe32d74
34,257
def check_in_all_models(models_per_expt): """ Check intersection of which models are in all experiments :param models_per_expt: an ordered dictionary of expts as keys with a list of valid models :return: list of models that appear in all experiments """ in_all = None for key, items in models_per_expt.items(): if in_all is None: in_all = set(items) else: in_all.intersection_update(items) return in_all
75e17b8558a592471dda8a855959f60c40b06759
34,258
import torch def _translate_x(video: torch.Tensor, factor: float, **kwargs): """ Translate the video along the vertical axis. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): How much (relative to the image size) to translate along the vertical axis. """ _check_fill_arg(kwargs) translation_offset = factor * video.size(-1) return F_t.affine( video, [1, 0, translation_offset, 0, 1, 0], fill=kwargs["fill"], interpolation="bilinear", )
925a9dc0b67b70330937b38cc1694c8cebd93e1c
34,259
import numpy def get_volume_pixeldata(sorted_slices): """ the slice and intercept calculation can cause the slices to have different dtypes we should get the correct dtype that can cover all of them :type sorted_slices: list of slices :param sorted_slices: sliced sored in the correct order to create volume """ slices = [] combined_dtype = None for slice_ in sorted_slices: slice_data = _get_slice_pixeldata(slice_) slice_data = slice_data[numpy.newaxis, :, :] slices.append(slice_data) if combined_dtype is None: combined_dtype = slice_data.dtype else: combined_dtype = numpy.promote_types(combined_dtype, slice_data.dtype) # create the new volume with with the correct data vol = numpy.concatenate(slices, axis=0) # Done # if rgb data do separate transpose if len(vol.shape) == 4 and vol.shape[3] == 3: vol = numpy.transpose(vol, (2, 1, 0, 3)) else: vol = numpy.transpose(vol, (2, 1, 0)) return vol
f935a3b820211fe1535a95d24f021cc2e8d48fbe
34,260
import logging def read_val_dataframe_from_hdf5(input_pattern, val_fold=0): """Reads the hdf5 tables for the validation fold only. Args: input_pattern: String with the path for the hdf5 with a '%d' for the fold. val_fold: Integer. The zero-based validation fold num. Returns: A pandas dataframe containing the validation data loaded from hdf5 """ logging.info('The validation path is : %s', input_pattern % val_fold) return io_utils.read_dataframe_from_hdf5(input_pattern % val_fold)
894e59c893b6e2eb7beaa7bd2dd67ac2eeca7a99
34,261
from pathlib import Path def hash_file(hash_obj, fout: Path): """Create a hash of the file. Parameters hash_obj () The hash object fout (Path) : Path to file to be written. Return str : If fout was found. None : If fout was not found. """ try: with fout.open('rb') as f: buf = f.read(config.BUF_SIZE) while len(buf) > 0: hash_obj.update(buf) buf = f.read(config.BUF_SIZE) except FileNotFoundError: return None return hash_obj.hexdigest()
b57b87b192dbd63a3cd3136ffd7a6b98fd8ed7dd
34,262
import scipy def Get_Wav_EMA_PerFile(EMA_file, Wav_file, F, EmaDir, MFCCpath, BeginEnd, XvectorPath, cfg): """Return mean and variance normalised ema, mfcc, and x-vectors if required (of the cross-corpus). Parameters ---------- EMA_file: str path to ema file Wav_file: str path to mfcc file F: int sentence number from MOCHA-TIMIT EMADir: str Directory to EMA data MFCCpath: str Directory to MFCC data BeginEnd: array Start and end of a speech segment XvectorPath: str Path to xvector directory cfg: main.Configuration Configuration file Returns ------- If x-vectors are required, return preprocessed ema and mfcc features along w the x-vectors for each speech chunk. Else, return preprocessed ema and mfcc features. """ EmaMat = scipy.io.loadmat(EmaDir + EMA_file) EMA_temp = EmaMat['EmaData'] EMA_temp = np.transpose(EMA_temp)# time X 18 Ema_temp2 = np.delete(EMA_temp, [4,5,6,7,10,11,14,15,16,17], 1) # time X 12 MeanOfData = np.mean(Ema_temp2, axis=0) Ema_temp2 -= MeanOfData C = 0.5*np.sqrt(np.mean(np.square(Ema_temp2), axis=0)) Ema = np.divide(Ema_temp2, C) # Mean & variance normailized [aE,bE] = Ema.shape #print F.type EBegin = np.int(BeginEnd[0,F]*100) # start of a speech segment EEnd = np.int(BeginEnd[1,F]*100) # end of the segment feats = np.loadtxt(MFCCpath + Wav_file[:-4] + '.txt')#np.asarray(htkfile.data) MFCC_G = feats TimeStepsTrack = EEnd - EBegin ## X-vector Embeddings SPK_emd = np.loadtxt(XvectorPath + Wav_file[:-4] + '.txt') # load x-vectors, given a wav file name if cfg.x_vectors: return Ema[EBegin:EEnd,:], MFCC_G[EBegin:EEnd,:cfg.mfcc_dim], SPK_emd # with out return Ema[EBegin:EEnd,:], MFCC_G[EBegin:EEnd,:cfg.mfcc_dim]
91d77fb4dd2a3202f7c94db2fa7a029c9562b63a
34,263
def is_class_name(class_name): """ Check if the given string is a python class. The criteria to use is the convention that Python classes start with uppercase :param class_name: The name of class candidate :type class_name: str :return: True whether the class_name is a python class otherwise False """ return class_name.capitalize()[0] == class_name[0]
2b4b6a09f2a112f7e8163f3caf97fdfca0c93e12
34,264
def is_pesummary_json_file_deprecated(path): """Determine if the results file is a deprecated pesummary json file Parameters ---------- path: str path to results file """ return _is_pesummary_json_file(path, _check_pesummary_file_deprecated)
49ddd8f84e259cf26955220013bcfe7003bcca5d
34,265
def popart(image_array): """ Applique la fonction popart 4 fois avec des paramètres un peu différents :return: une image avec moins de couleurs. """ h = get_image_height(image_array) w = get_image_width(image_array) small_height = h // 2 small_width = w // 2 small_image = image_array[0:small_height * 2:2, 0:small_width * 2:2, CANAUX_RGB] new_image = np.zeros(image_array.shape, dtype=image_array.dtype) hue_delta = 0 for i in range(2): for j in range(2): new_image[i * small_height:(i + 1) * small_height, j * small_width:(j + 1) * small_width, CANAUX_RGB] = popart_one( small_image, hue_delta) hue_delta += 45 return new_image
77b8af2bc5db976289a94118d8e01789c535b2b0
34,266
from AugSeg.get_instance_group import extract from AugSeg.affine_transform import transform_image, transform_annotation from datasetsAug.roidb import combined_roidb_for_training def _get_image_blob(roidb, coco): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) # Sample random scales to use for each image in this batch scale_inds = np.random.randint( 0, high=len(cfg.TRAIN.SCALES), size=num_images) processed_ims = [] im_scales = [] for i in range(num_images): im = cv2.imread(roidb[i]['image']) assert im is not None, \ 'Failed to read image \'{}\''.format(roidb[i]['image']) # AUG BEGIN-------------------------------- backupim = im backuproidb = roidb[i] try: img_id = roidb[i]['id'] ann_ids = coco.getAnnIds(imgIds=img_id) anns = coco.loadAnns(ann_ids) background, instances_list, transforms_list, groupbnds_list, groupidx_list = extract(anns, im) new_img = transform_image(background, instances_list, transforms_list) new_ann = transform_annotation(anns, transforms_list, groupbnds_list, groupidx_list, background.shape[1], background.shape[0]) im = new_img new_roidb, ratio_list, ratio_index = combined_roidb_for_training( \ ('coco_2017_train',), cfg.TRAIN.PROPOSAL_FILES, \ img_id, new_ann, coco ) if roidb[i]['flipped']: roidb[i] = new_roidb[1] else: roidb[i] = new_roidb[0] except: roidb[i] = backuproidb im = backupim # AUG END---------------------------------- # If NOT using opencv to read in images, uncomment following lines # if len(im.shape) == 2: # im = im[:, :, np.newaxis] # im = np.concatenate((im, im, im), axis=2) # # flip the channel, since the original one using cv2 # # rgb -> bgr # im = im[:, :, ::-1] if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = blob_utils.prep_im_for_blob( im, cfg.PIXEL_MEANS, [target_size], cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale[0]) processed_ims.append(im[0]) # Create a blob to hold the input images [n, c, h, w] blob = blob_utils.im_list_to_blob(processed_ims) return blob, im_scales, roidb
637983405303c304bdf480feca7ea29f1a06d6a6
34,267
def solve_lu(A, P, B, options=MATPROP.NONE): """ Solve a system of linear equations, using LU decomposition. Parameters ---------- A: af.Array - A 2 dimensional arrayfire array representing the coefficients of the system. - This matrix should be decomposed previously using `lu_inplace(A)`. P: af.Array - Permutation array. - This array is the output of an earlier call to `lu_inplace(A)` B: af.Array A 1 or 2 dimensional arrayfire array representing the constants of the system. Returns ------- X: af.Array A 1 or 2 dimensional arrayfire array representing the unknowns in the system. """ X = Array() safe_call(backend.get().af_solve_lu(c_pointer(X.arr), A.arr, P.arr, B.arr, options.value)) return X
96eb1f222618c5b17db48a69535204b6246b873f
34,268
import mimetypes def guess_type(filename, strict=False, default="application/octet-stream"): """ Wrap std mimetypes.guess_type to assign a default type """ content_type, encoding = mimetypes.guess_type(filename, strict=strict) if content_type is None: content_type = default return content_type, encoding
ae3dae1d005797b2dc96cd893f4a79d20922e6a2
34,269
def _lookup_alias(aliases, value): """ Translate to a common name if our value is an alias. :type aliases: dict of (str, [str]) :type value: str :rtype: str >>> _lookup_alias({'name1': ['alias1']}, 'name1') 'name1' >>> _lookup_alias({'name1': ['alias1', 'alias2']}, 'alias1') 'name1' >>> _lookup_alias({'name1': ['alias1', 'alias2']}, 'alias2') 'name1' >>> _lookup_alias({'name1': ['alias1']}, 'name2') 'name2' """ better_name = [name for (name, aliases) in aliases.items() if value in aliases] return better_name[0] if better_name else value
df0641b1f8aca964f76afd2a83fb91a587d52e1d
34,270
def triplet_loss(anchor, positive, negative, alpha): """Calculate the triplet loss according to the FaceNet paper Args: anchor: the embeddings for the anchor images. positive: the embeddings for the positive images. negative: the embeddings for the negative images. Returns: the triplet loss according to the FaceNet paper as a float tensor. """ with tf.name_scope('triplet_loss') as scope: pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), 1) neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1) basic_loss = tf.add(tf.subtract(pos_dist,neg_dist), alpha) loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0) return loss
7c3d218833e86f62a0de493ff8dc1045fd3a7788
34,271
import json def loadConfig() -> list: """Loads configuration from CONFIG_PATH Returns: [list] -- the CONFIG_VARS as loaded from CONFIG_PATH """ configData = json.load(open(CONFIG_PATH, 'r', encoding='utf-8')) returnValue = [] # make sure we're not missing anything for configItem in CONFIG_VARS: if configItem not in configData: # We can't use core.log() because config.loglevel doesn't exist yet print(f"E: {configItem} not found in config.json") else: returnValue.append(configData[configItem]) return returnValue
f115cd8896ca5d52086f4054cc7fb5a05c230d0e
34,272
import httpx async def get_corrected_name_api(keyphrase: str) -> str: """ Get corrected artist name via Last.fm API method artist.getCorrection. See: https://last.fm/api/show/artist.getCorrection :param keyphrase: Name of an artist or a band. :return: Corrected artist name. """ async with httpx.AsyncClient() as client: res = await client.get( f"https://ws.audioscrobbler.com/2.0/" f"?method=artist.getcorrection&artist={_quote(keyphrase)}" f"&api_key={LASTFM_API_KEY}&format=json" ) res.raise_for_status() parsed = res.json() name = parsed["corrections"]["correction"]["artist"]["name"] return name
befe2f89b233bf0453873d710531483e61832786
34,273
def missing_columns(df, missing_threshold=0.6): """Find missing features Parameters ---------- df : pd.DataFrame, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. missing_threshold : float, default=0.6 Count all features with a missing rate greater than `missing_threshold`. Returns ------- t : All features with a missing rate greater than `missing_threshold` """ assert 1>=missing_threshold>=0, "`missing_threshold` should be one of [0, 1]." t = (1-df.count()/len(df)).reset_index() t.columns = ['feature_name', 'missing_rate'] t = t[t.missing_rate>=missing_threshold].reset_index(drop=True) return t
4d31673670d894556b6571a0233ec36c8452570a
34,274
import re import yaml def read_message(raw_data: bytes): """Reads a UDP raw message, split the metadata, and decode data. :param raw_data: Raw UDP packet :type raw_data: bytes :return: Metadata and decoded data required for packet reassembly. :rtype: tuple """ header, data = read_raw_message(raw_data) #'device/endpoint:encoding:id:sequence' match = re.search("(.*?)/(.*?):(.*?):(.*?):(.*?):(.*)", header) device = match[1] endpoint = match[2] encoding = match[3] id = match[4] sequence = match[5] max_sequence = match[6] if encoding == "yaml": decoded_data = yaml.load(data.decode("utf-8"), Loader=yaml.Loader) else: decoded_data = data return ( device, endpoint, decoded_data, encoding, int(id), int(sequence), int(max_sequence), )
bd039b55f579971be6750519bcc79f5ac6670ea4
34,276
def is_ordered(treap): """ Utility to check that every node in the given Treap satisfies the following: Rules: - if v is a child of u, then v.priority <= u.priority - if v is a left child of u, then v.key < u.key - if v is a right child of u, then v.key > u.key """ # iterate through all nodes in the heap for node in treap: # check parent (if not root) if node != treap.root and (node.priority > node.parent.priority): print("Node {} and parent ({}) have mismatched priorities.".format(node, node.parent)) return False # check left and right. All are optional, technically if node.left and (node.key < node.left.key): print("Node {} and left child ({}) have mismatched keys.".format(node, node.left)) return False if node.right and (node.key > node.right.key): print("Node {} and right child ({}) have mismatched keys.".format(node, node.right)) return False return True
38b7fd7690931e017e9ece52b6cba09dbb708400
34,278
def log_prob(x, df, loc, scale): """Compute log probability of Student T distribution. Note that scale can be negative. Args: x: Floating-point `Tensor`. Where to compute the log probabilities. df: Floating-point `Tensor`. The degrees of freedom of the distribution(s). `df` must contain only positive values. loc: Floating-point `Tensor`; the location(s) of the distribution(s). scale: Floating-point `Tensor`; the scale(s) of the distribution(s). Returns: A `Tensor` with shape broadcast according to the arguments. """ # Writing `y` this way reduces XLA mem copies. y = (x - loc) * (tf.math.rsqrt(df) / scale) log_unnormalized_prob = -0.5 * (df + 1.) * log1psquare(y) log_normalization = ( tf.math.log(tf.abs(scale)) + 0.5 * tf.math.log(df) + 0.5 * np.log(np.pi) + tfp_math.log_gamma_difference(0.5, 0.5 * df)) return log_unnormalized_prob - log_normalization
6714c53e1be59aaa8c9194ea30b6e51d665caba9
34,279
def get_cleaned_query_data_http_error(handler, *args): """ 同上 :param handler: :param args: :return: """ data = {} for k in args: try: data[k] = clean_data(handler.get_query_argument(k)) except MissingArgumentError: raise HTTPError(400) return data
f5513034be8cd9082a3ad632c77ed4d364644819
34,281
import http from datetime import datetime def CreateOrUpdateActivity(request, program, activity=None): """Creates or updates an activity. Caller must provide the program. Activity is optional when creating a new one. Args: request: A request. program: A models.Program under which we are either creating or updating the activity. activity: Optional activity. If available, this method will handle the update of the given activity. If not available a new one is created. Returns: http response. """ is_update = activity is not None if activity: assert activity.parent() == program activity_formset = formsets.formset_factory(forms.ActivityScheduleForm, formset= forms.ActivityScheduleFormSet, extra=0, can_delete=True) if request.method == 'POST': formset = activity_formset(request.POST, request.FILES) if formset.PrepareCreateUpdate(request.user, program, activity): formset.CreateUpdateSchedules(activity) return http.HttpResponseRedirect(urlresolvers.reverse( 'ShowProgram', kwargs=dict(program_key=program.key()))) else: #Some errors are in the forms if not formset.IsScheduleAvailable(): #We undo the delete in every form we send back. User can not delete #all forms. for index in range(len(formset.forms)): #We need to change the data in the request form because the deletion #field is a special field added at the formset level, not directly #accessible at the form level like anyother field/form attribute. #There is probably a way to set the value of deletion to false, but #nothing straightforward/obvious, so changing POST data instead. param_id = 'form-%s-%s' % (index, formsets.DELETION_FIELD_NAME) request.POST[param_id] = '' assert not formset.forms[index].IsDeleted() else: #GET if is_update: form_data = forms.ActivityScheduleFormSet.BuildPostData(request.user, activity) formset = activity_formset(form_data) assert formset.is_valid() else: # User wants to create a new activity. user_now = request.user.GetLocalTime(datetime.datetime.utcnow()) user_now = user_now.replace(second=0, microsecond=0) a_start = user_now + datetime.timedelta(minutes=60) a_end = a_start + datetime.timedelta(minutes=60) a_start_time = format.FormatTime(a_start) a_end_time = format.FormatTime(a_end) formset = activity_formset(initial=[{'start_date': a_start.date(), 'start_time': a_start_time, 'end_date': a_end.date(), 'end_time': a_end_time, 'owner': program.owner.email}]) # We put the access point rooms. access_points_info = ap_utils.GetAccessPointsInfo(utils.AccessPointType.ROOM) access_point_names = simplejson.dumps(access_points_info['uris']) access_point_keys = simplejson.dumps(access_points_info['keys']) access_point_tzs = simplejson.dumps(access_points_info['timezone_names']) data = {'formset': formset, 'is_update': is_update, 'program': program, 'access_point_names': access_point_names, 'access_point_keys': access_point_keys, 'access_point_tzs': access_point_tzs} context = template.RequestContext(request, data) return shortcuts.render_to_response('manage_activity.html', context)
15ddb2a423a82f4a3ebfda43b20a697be54d0d1d
34,282
import json def dowork(lon, lat): """ Actually do stuff""" pgconn = get_dbconn('postgis') cursor = pgconn.cursor() res = dict(mcds=[]) cursor.execute(""" SELECT issue at time zone 'UTC' as i, expire at time zone 'UTC' as e, product_num, product_id from text_products WHERE pil = 'SWOMCD' and ST_Contains(geom, ST_GeomFromEWKT('SRID=4326;POINT(%s %s)')) ORDER by product_id DESC """, (lon, lat)) for row in cursor: url = ("http://www.spc.noaa.gov/products/md/%s/md%04i.html" ) % (row[3][:4], row[2]) res['mcds'].append( dict(spcurl=url, year=row[0].year, utc_issue=row[0].strftime(ISO9660), utc_expire=row[1].strftime(ISO9660), product_num=row[2], product_id=row[3])) return json.dumps(res)
4acc671cd3701562866c237b06267f7b5038413b
34,283
from scdali.models.gp import SparseGP def run_interpolation( A, D, cell_state, kernel='Linear', num_inducing=800, maxiter=2000, return_prior_mean=False, n_cores=1): """Run scDALI interpolation of allelic rates for each region. A, D are assumed to be n-by-d, where n is the number of cells and d the number of regions to model. Args: A: Alternative counts for each cell and region. D: Total counts for each cell and region. cell_state: Matrix of cell states, e.g. clusters or coordinates in a low-dimensional cell-state space. kernel: Kernel function for GP interpolation, e.g. 'Linear' or 'RBF'. num_inducing: Number of inducing points for the GP model maxiter: Max iterations for GP optimization. return_prior_mean: Return the estimated GP prior mean. n_cores: Number of cores to use. Returns: Estimated posterior mean and variances for each region. """ D = atleast_2d_column(D) A = atleast_2d_column(A) if A.shape != D.shape: raise ValueError('A and D need to be of the same shape.') if cell_state is None: raise ValueError('Interpolation requires cell_state to be specified') init_kwargs = {} fit_kwargs = {} init_kwargs['kernel'] = kernel init_kwargs['num_inducing'] = num_inducing fit_kwargs['maxiter'] = maxiter init_kwargs['E'] = cell_state n_cores = min(n_cores, D.shape[1]) print('[scdali] Processing %d regions on %d core(s) ... ' % (D.shape[1], n_cores), flush=True) callbacks = [] callbacks.append(create_method_callback('compute_posterior', E=cell_state)) if return_prior_mean: callbacks.append(create_method_callback('get_prior_mean')) show_progress = False if n_cores > 1 else True f = partial( run_model, SparseGP, init_kwargs=init_kwargs, fit_kwargs=fit_kwargs, callbacks=callbacks, show_progress=show_progress) results = process_parallel( f, mat_dict={'A':A, 'D':D}, n_cores=n_cores) out = dict() out['posterior_mean'] = np.asarray([r[0][0].flatten() for r in results]).T out['posterior_var'] = np.asarray([r[0][1].flatten() for r in results]).T if return_prior_mean: out['prior_mean'] = [float(r[1]) for r in results] return out
ccc07014ebae18a37e878f34c968b84b23995a5f
34,284
def extended_knapsack_dp(value_set, weight_set, total_allowed_weight, max_number_of_elements): """Knapsack with limited number of elements allowed. Notes ----- The rows are the number of elements in value_set Columns are the number of weights, ranging from 0 to weight_set. The third dimension is solution for the `max_number_of_elements` allowed. So this differs a little from the normal version of the knapsack where we link to the previous 3 dimension if the current element is selected. i Parameters ---------- value_set : [int] weight_set : [int] total_allowed_weight : int max_number_of_elements : int Returns ------- int Maximum sum weight possible. """ number_of_elements = len(value_set) # Just bounding the problem as the user can give ridiculous inputs. This is not an unbounded knapsack problem. max_number_of_elements = min(max_number_of_elements, number_of_elements) total_allowed_weight = min(total_allowed_weight, sum(weight_set)) # Create a 3D dp table. 2D internal table is a singular knapsack table, outer dimension for number of elements allowed. dp_table = [ [ [0 for _ in range(total_allowed_weight + 1)] for _ in range(number_of_elements + 1) ] for _ in range(max_number_of_elements + 1) ] for dimension in range(1, max_number_of_elements + 1): for row in range(1, len(value_set) + 1): for current_weight in range(1, total_allowed_weight + 1): element_weight = weight_set[row - 1] if current_weight < element_weight: dp_table[dimension][row][current_weight] = dp_table[dimension][row -1][current_weight] else: #if dp_table[dimension - 1][row][column - element_weight] + value_set[row - 1] > sum(value_set): dp_table[dimension][row][current_weight] = max( dp_table[dimension][row -1][current_weight], #Current element is not selected. dp_table[dimension - 1][row -1][current_weight - element_weight] + value_set[row - 1] ) return dp_table[max_number_of_elements][row][current_weight]
85527b28706a92eeb822594a0a98e90e4e6f6257
34,285
def get_matrix_rbf(X, var, have_var=True): """e^-||(x_i - x_j)||/ 2*var^2 RBF""" (rows, _) = X.shape K = np.empty((rows, rows)) for i in range(rows): c = np.sum(np.abs(X - X[i]) ** 2, axis=-1) ** (1. / 2) # norm if (have_var): c = c / (2 * (var ** 2)) K[i] = c w = np.exp(- K.T) return w
b5260a44a1abca1ddbf9703a68e9a562feb22dc6
34,287
import time import logging def buildDict(filterKeys=None, mapColumns=False, targetDatasets=None): """ Maps the dataset names, contained tables, and contained columns in the projects BigQuery. Args: filterKeys (LIST of STRING): A list of substrings, one of which must be included in the table name for the table to be included in the final dictionary. If no filterKeys are pass all tables are included. mapColumns (BOOL): A boolean flag that indicates if the columns of every tables should be mapped or not targetDatasets (LIST of STRING): list of dataset which are to be mapped Returns: DICT: {"table_id": { "datasets": A list of names of datasets that contain this table, "columns": A list of lists. Each containing column names of this for it's respective dataset, "masterCol": A list containing all the column names present amgonst instances of this table in various datasets }} """ def identifyCols(build): """ Condenses lists of lists of column names into one list containing every unique column name Args: Build DICT: {"table_id": { "datasets": A list of names of datasets that contain this table, "columns": A list of lists. Each containing column names of this for it's respective dataset }} Returns: DICT: {"table_id": { "datasets": A list of names of datasets that contain this table, "columns": A list of lists. Each containing column names of this for it's respective dataset, "masterCol": A list containing all the column names present amgonst instances of this table in various datasets }} """ def allColumns(colLists): master_list = [] master_low = [] for formatted_list in colLists: lows = [name.lower() for name in formatted_list] for name_low, name_formatted in zip(lows, formatted_list): if name_low not in master_low and name_low != 'agent': master_list.append(name_formatted) master_low.append(name_low) return master_list for key in build.keys(): cols = allColumns(build[key]['columns']) build[key]['masterCol'] = cols return build start = time.time() datasets = list(client.list_datasets()) if targetDatasets: datasets = [dataset for dataset in datasets if dataset.dataset_id in targetDatasets] if stage == 'test': datasets = [dataset for dataset in datasets if 'test' in dataset.dataset_id] logging.info("Building Dict with {} datasets".format(len(datasets))) logging.info("Datasets: {}".format([dataset.dataset_id for dataset in datasets])) build = mapDatasets(datasets, mapColumns, filterKeys) if mapColumns: build = identifyCols(build) logging.info("The function buildDict \ needed {} seconds to complete".format( round(time.time() - start), 0)) return build
882ab375eacd946f8d3751055076566d30a1af46
34,289
from functools import reduce def build_gaussian_pyramid(im, max_levels, filter_size): """ Construct a Gaussian pyramid for a given image :param im: a grayscale image with double values in [0,1] :param max_levels: the maximal number of levels in the resulting pyramid. :param filter_size: the size of the Gaussian filter (an odd scalar that represents a squared filter) to be used in constructing the pyramid filter :return: tuple(pyr, filter_vec) where: pyr: the resulting pyramid as a standard python array with maximum length of max_levels, where each element of the array is a grayscale image. filter_vec: normalized row vector of shape(1, filter_size) used for the pyramid construction """ pyr = [im] filter_vec = create_filter(filter_size) i = 1 # counter to keep track of levels rows, cols = im.shape while i < max_levels and min(rows, cols) > MIN_RES: pyr.append(reduce(pyr[i - 1], filter_vec)) rows, cols = pyr[i].shape i += 1 return pyr, filter_vec
9e7975695a3ba435644595ea6c2ce1e876d022b1
34,290
def broadcast_weeks(start, end): """return broadcast weeks with start, end for date range""" starts = broadcast_week_starts(start, end) return [(start, start+timedelta(days=6)) for start in starts]
1a19fb8128104c480d2c2bd2ccd2b3c4e7a2d428
34,292
def _aix_iqn(): """ Return iSCSI IQN from an AIX host. """ ret = [] aix_cmd = "lsattr -E -l iscsi0 | grep initiator_name" aix_ret = salt.modules.cmdmod.run(aix_cmd) if aix_ret[0].isalpha(): try: ret.append(aix_ret.split()[1].rstrip()) except IndexError: pass return ret
f51a1f95bb42db9f8bc42ae26f8409074d3c81f7
34,293
def generate_token(user): """ Currently this is workaround since the latest version that already has this function is not published on PyPI yet and we don't want to install the package directly from GitHub. See: https://github.com/mattupstate/flask-jwt/blob/9f4f3bc8dce9da5dd8a567dfada0854e0cf656ae/flask_jwt/__init__.py#L145 """ jwt = current_app.extensions['jwt'] token = jwt.jwt_encode_callback(user) return token
e357d33f0ba8ee5a80f1d45d3576e0676ca6660d
34,294
from typing import Counter def calculate_lines_per_gloss(lines): """ Calculates lines per gloss of lines Parameters ---------- lines : list lines in the corpus Returns ------- number : int the count of lines per gloss """ line_counts = [len(x[1]) for x in lines] equaled = list() number = 1 for i, line in enumerate(line_counts): if i == 0: equaled.append(False) else: equaled.append(line == line_counts[i - 1]) if False not in equaled[1:]: # All lines happen to have the same length for i in range(2, 6): if len(lines) % i == 0: number = i else: false_intervals = list() ind = 0 for i, e in enumerate(equaled): if i == 0: continue if not e: false_intervals.append(i - ind) ind = i false_intervals.append(i + 1 - ind) counter = Counter(false_intervals) number = max(counter.keys(), key=lambda x: (counter[x], x)) if number > 10: prev_maxes = set([number]) while number > 10: prev_maxes.add(number) number = max(x for x in false_intervals if x not in prev_maxes) return number
5e7a3ab4b819f4a7dd0cc7053eb09a5572e5f448
34,296
def random_selection(population: np.ndarray, mut_p: float) -> np.ndarray: """Randomly select genes to mutate Args: population (np.ndarray): Population of chromosomes chromosome_size (int): Number of genes per chromosome mut_p (float): Mutation probability Returns: np.ndarray: Mask of elements from population to mutate """ return np.random.rand(*population.shape) < mut_p
b498bf816d085aa1cd4a2f68d144e4b4df051d77
34,297
def _combo_runner(fn, combos, constants, split=False, parallel=False, num_workers=None, executor=None, verbosity=1, pool=None): """Core combo runner, i.e. no parsing of arguments. """ executor = _choose_executor_depr_pool(executor, pool) n = prod(len(x) for _, x in combos) ndim = len(combos) kws = {'fn': fn, 'combos': combos, 'constants': constants, 'n': n, 'ndim': ndim, 'verbosity': verbosity} # Custom pool supplied if executor is not None: results = _combo_runner_executor(executor=executor, **kws) # Else for parallel, by default use a process pool-exceutor elif parallel or num_workers: results = _combo_runner_parallel(num_workers=num_workers, **kws) # Evaluate combos sequentially else: results = _combo_runner_sequential(**kws) return tuple(unzip(results, ndim)) if split else results
86a57d1800457166395ae2baa4e04ca8ea4c0cdf
34,298
from typing import Sequence import fnmatch def _should_ignore(fd_name: str, patterns: Sequence[str]) -> bool: """Return whether `fd_name` should be ignored according to `patterns`. Examples -------- >>> fd_name = "google/protobuf/empty.proto" >>> pattern = "google/protobuf/*" >>> _should_ignore(fd_name, [pattern]) True >>> fd_name = "foo/bar" >>> _should_ignore(fd_name, [pattern]) False """ return any(fnmatch.fnmatchcase(fd_name, pattern) for pattern in patterns)
8bf698afddbda869e26ebcaa98e1f4e950117c08
34,300
def unc_inertia_eval(awg, afg, bout, bi, mw, ed, out_xml): """ Unconventional aircraft Moment of Inertia analysis main function. It dvides the cases defined and evaluates them calling the function in the with_fuse_geom subfolder. Source: An introduction to mechanics, 2nd ed., D. Kleppner and R. Kolenkow, Cambridge University Press. ARGUMENTS (class) awg --Arg.: AircraftWingGeometry class. (class) afg --Arg.: AircraftFuseGeometry class. (class) bout --Arg.: BalanceOutputs class. (class) bi --Arg.: BalanceInputs class. (class) mw --Arg.: MassesWeights class. (class) ed --Arg.: EngineData class. ##======= Classes are defined in the InputClasses folder =======## RETURN (float_array) fx --Out.: Array containing the x-coordinates of the fuselage nodes. (float_array) fy --Out.: Array containing the y-coordinates of the fuselage nodes. (float_array) fz --Out.: Array containing the z-coordinates of the fuselage nodes. (float_array) wx --Out.: Array containing the x-coordinates of the wing nodes. (float_array) wy --Out.: Array containing the y-coordinates of the wing nodes. (float_array) wz --Out.: Array containing the z-coordinates of the wing nodes. (class) bout --Out.: Updated BalanceOutputs class. """ center_of_gravity_seg = [] mass_component = [] log.info('---------- Inertia Evaluation ---------') if bi.USER_EN_PLACEMENT: (bout.Ixxen, bout.Iyyen, bout.Izzen, bout.Ixyen, bout.Iyzen,\ bout.Ixzen) = lumpedmassesinertia.engine_inertia(\ bout.center_of_gravity, ed) else: (bout.Ixxen, bout.Iyyen, bout.Izzen, bout.Ixyen, bout.Iyzen,\ bout.Ixzen) = (0, 0, 0, 0, 0, 0) # Max Payload Configuration log.info('------------ Lumped mass Inertia ------------') log.info('--------- Max Payload configuration ---------') (fx, fy, fz, Ixxf, Iyyf, Izzf, Ixyf, Iyzf, Ixzf)\ = lumpedmassesinertia.fuselage_inertia(\ bi.SPACING_FUSE, bout.center_of_gravity, mw.mass_seg_i,\ afg, out_xml) (wx, wy, wz, Ixxw, Iyyw, Izzw, Ixyw, Iyzw, Ixzw)\ = lumpedmassesinertia.wing_inertia(\ bi.WPP, bi.SPACING_WING, afg.fuse_nb, bout.center_of_gravity,\ mw.mass_seg_i, awg, out_xml) rd = check_rounding(Izzf + Izzw + bout.Izzen,\ Ixyf + Ixyw + bout.Ixyen) bout.Ixx_lump = round(Ixxf + Ixxw + bout.Ixxen,rd) bout.Iyy_lump = round(Iyyf + Iyyw + bout.Iyyen,rd) bout.Izz_lump = round(Izzf + Izzw + bout.Izzen,rd) bout.Ixy_lump = round(Ixyf + Ixyw + bout.Ixyen,rd) bout.Iyz_lump = round(Iyzf + Iyzw + bout.Iyzen,rd) bout.Ixz_lump = round(Ixzf + Ixzw + bout.Ixzen,rd) # Zero Fuel Configuration log.info('---------- Zero Fuel configuration ----------') (fx, fy, fz, Ixxf2, Iyyf2, Izzf2, Ixyf2, Iyzf2, Ixzf2)\ = lumpedmassesinertia.fuselage_inertia(bi.SPACING_FUSE,\ bout.cg_zfm, mw.ms_zfm, afg, out_xml) (wx, wy, wz, Ixxw2, Iyyw2, Izzw2, Ixyw2, Iyzw2, Ixzw2)\ = lumpedmassesinertia.wing_inertia(bi.WPP, bi.SPACING_WING,\ afg.fuse_nb, bout.cg_zfm, mw.ms_zfm, awg, out_xml) bout.Ixx_lump_zfm = round(Ixxf2 + Ixxw2 + bout.Ixxen,rd) bout.Iyy_lump_zfm = round(Iyyf2 + Iyyw2 + bout.Iyyen,rd) bout.Izz_lump_zfm = round(Izzf2 + Izzw2 + bout.Izzen,rd) bout.Ixy_lump_zfm = round(Ixyf2 + Ixyw2 + bout.Ixyen,rd) bout.Iyz_lump_zfm = round(Iyzf2 + Iyzw2 + bout.Iyzen,rd) bout.Ixz_lump_zfm = round(Ixzf2 + Ixzw2 + bout.Ixzen,rd) # Zero Payload Configuration log.info('--------- Zero Payload configuration --------') (fx, fy, fz, Ixxf3, Iyyf3, Izzf3, Ixyf3, Iyzf3, Ixzf3)\ = lumpedmassesinertia.fuselage_inertia(bi.SPACING_FUSE,\ bout.cg_zpm, mw.ms_zpm, afg, out_xml) (wx, wy, wz, Ixxw3, Iyyw3, Izzw3, Ixyw3, Iyzw3, Ixzw3)\ = lumpedmassesinertia.wing_inertia(bi.WPP, bi.SPACING_WING,\ afg.fuse_nb, bout.cg_zpm, mw.ms_zpm, awg, out_xml) bout.Ixx_lump_zpm = round(Ixxf3 + Ixxw3 + bout.Ixxen,rd) bout.Iyy_lump_zpm = round(Iyyf3 + Iyyw3 + bout.Iyyen,rd) bout.Izz_lump_zpm = round(Izzf3 + Izzw3 + bout.Izzen,rd) bout.Ixy_lump_zpm = round(Ixyf3 + Ixyw3 + bout.Ixyen,rd) bout.Iyz_lump_zpm = round(Iyzf3 + Iyzw3 + bout.Iyzen,rd) bout.Ixz_lump_zpm = round(Ixzf3 + Ixzw3 + bout.Ixzen,rd) # OEM Configuration log.info('------------- OEM configuration -------------') (fx, fy, fz, Ixxf4, Iyyf4, Izzf4, Ixyf4, Iyzf4, Ixzf4)\ = lumpedmassesinertia.fuselage_inertia(bi.SPACING_FUSE,\ bout.cg_oem, mw.ms_oem, afg, out_xml) (wx, wy, wz, Ixxw4, Iyyw4, Izzw4, Ixyw4, Iyzw4, Ixzw4)\ = lumpedmassesinertia.wing_inertia(bi.WPP, bi.SPACING_WING,\ afg.fuse_nb, bout.cg_oem, mw.ms_oem, awg, out_xml) bout.Ixx_lump_oem = round(Ixxf4 + Ixxw4 + bout.Ixxen,rd) bout.Iyy_lump_oem = round(Iyyf4 + Iyyw4 + bout.Iyyen,rd) bout.Izz_lump_oem = round(Izzf4 + Izzw4 + bout.Izzen,rd) bout.Ixy_lump_oem = round(Ixyf4 + Ixyw4 + bout.Ixyen,rd) bout.Iyz_lump_oem = round(Iyzf4 + Iyzw4 + bout.Iyzen,rd) bout.Ixz_lump_oem = round(Ixzf4 + Ixzw4 + bout.Ixzen,rd) # User Configuration if bi.USER_CASE: log.info('------------- User configuration ------------') (fx, fy, fz, Ixxfu, Iyyfu, Izzfu, Ixyfu, Iyzfu, Ixzfu)\ = lumpedmassesinertia.fuselage_inertia(bi.SPACING_FUSE,\ bout.cg_user, mw.ms_user, afg, out_xml) (wx, wy, wz, Ixxwu, Iyywu, Izzwu, Ixywu, Iyzwu, Ixzwu)\ = lumpedmassesinertia.wing_inertia(bi.WPP, bi.SPACING_WING,\ afg.fuse_nb, bout.cg_user, mw.ms_user, awg, out_xml) bout.Ixx_lump_user = round(Ixxfu + Ixxwu + bout.Ixxen,rd) bout.Iyy_lump_user = round(Iyyfu + Iyywu + bout.Iyyen,rd) bout.Izz_lump_user = round(Izzfu + Izzwu + bout.Izzen,rd) bout.Ixy_lump_user = round(Ixyfu + Ixywu + bout.Ixyen,rd) bout.Iyz_lump_user = round(Iyzfu + Iyzwu + bout.Iyzen,rd) bout.Ixz_lump_user = round(Ixzfu + Ixzwu + bout.Ixzen,rd) bout.Ixxen = round(bout.Ixxen, rd) bout.Iyyen = round(bout.Iyyen, rd) bout.Izzen = round(bout.Izzen, rd) bout.Ixyen = round(bout.Ixyen, rd) bout.Iyzen = round(bout.Iyzen, rd) bout.Ixzen = round(bout.Ixzen, rd) return(bout, fx, fy, fz, wx, wy, wz)
cff3ebe8f0e613c5742c3d16bae29dfcc0998d2a
34,301
import json def str2body(v): """ convert str to json data or keep original string :param v: :return: """ try: return json.loads(v) except: return v
5785d9dca1d1120a4827feb93382d1d0bf68519a
34,302
from datetime import datetime def get_default_law_key(): """ Default key needs to be unique timestamp until changed """ x = str(datetime.now()) key = x[5:25] return key
569d1ff7cc9c6d0e95dded80c1e068ff885e95c7
34,303
def _evaluate_Delaunay_component( subgraph_RE_comp: nx.Graph, subgraph_R_comp: nx.Graph, subgraph_E_comp: nx.Graph, num_R: int, ): """ Phase 3 Evaluates given graph-connected component. :param subgraph_RE_comp: Delaunay graph of the component containing R and E points.. :param subgraph_R_comp: Delaunay graph of component restricted to R. :param subgraph_E_comp: Delaunay graph of component restricted to E. :param num_R: total number of R points. :return: indices of R points in the component; indices of E points in the component; component consistency score; component quality score; number of heteroeneous edges in the component; total number of edges in the component """ comp_R_idxs = np.array(list(subgraph_R_comp.nodes())) comp_E_idxs = np.array(list(subgraph_E_comp.nodes())) - num_R comp_consistency = _get_graph_consistency(len(comp_R_idxs), len(comp_E_idxs)) comp_quality, num_comp_RE_edges, num_total_comp_edges = _get_graph_quality( subgraph_RE_comp, subgraph_R_comp, subgraph_E_comp ) return ( comp_R_idxs, comp_E_idxs, comp_consistency, comp_quality, num_comp_RE_edges, num_total_comp_edges, )
98f12800201cf89f3a92c07d93d9b446e019ec60
34,304
def abcd_normalize(A=None, B=None, C=None, D=None): """Check state-space matrices and ensure they are two-dimensional. If enough information on the system is provided, that is, enough properly-shaped arrays are passed to the function, the missing ones are built from this information, ensuring the correct number of rows and columns. Otherwise a ValueError is raised. Parameters ---------- A, B, C, D : array_like, optional State-space matrices. All of them are None (missing) by default. Returns ------- A, B, C, D : array Properly shaped state-space matrices. Raises ------ ValueError If not enough information on the system was provided. """ A, B, C, D = map(_atleast_2d_or_none, (A, B, C, D)) MA, NA = _shape_or_none(A) MB, NB = _shape_or_none(B) MC, NC = _shape_or_none(C) MD, ND = _shape_or_none(D) p = _choice_not_none(MA, MB, NC) q = _choice_not_none(NB, ND) r = _choice_not_none(MC, MD) if p is None or q is None or r is None: raise ValueError("Not enough information on the system.") A, B, C, D = map(_none_to_empty_2d, (A, B, C, D)) A = _restore(A, (p, p)) B = _restore(B, (p, q)) C = _restore(C, (r, p)) D = _restore(D, (r, q)) return A, B, C, D
2292347708f93570d96062d6e94058e55c96b112
34,307
def extract_full_symbol(full_symbol: str): """ :return: (symbol, exchange) """ tmp = full_symbol.split(' ') if len(tmp) < 4: return "unknwonsymbol", Exchange.SHFE symbol = tmp[2] + tmp[3] exchange_str = tmp[0] ex = Exchange(exchange_str) if ex in [Exchange.SHFE, Exchange.DCE, Exchange.INE]: symbol = symbol.lower() return symbol, ex
7e031bfb969215092765a33cdb93377a6c98d922
34,309
def remove(user_id): """User removing""" user = User.query.get(user_id) db.session.delete(user) db.session.commit() flash('User "%s" successfully remove' % user.name, 'success') return redirect(url_for('backend.index'))
33ced3d0e54a3edcc04e89440faca6778dd65944
34,310
from typing import Dict from typing import List from typing import Tuple def phonemes_to_sentences( arpabet: Dict[str, List[List[str]]], data: Tuple[List[list], ...], print_every: int, of: int, ) -> Tuple[str, ...]: """Convert list of phoneme lists to sentences.""" data = [ ( " ".join([phonetic_to_word(arpabet, [p]) for p in d]), (print("Line:", i, "of", of) if i % print_every == 0 else ""), ) for i, d in enumerate(data, 1) ] return list(zip(*data))[0]
25f21e79f5029a80adeb4bd277c273db1e0caf31
34,311
def butter_bandpass_filter(flux, lowcut, fs, order=3): """ Apply a Butterworth high-pass filter. Args: flux (array): The flux array. lowcut (float): The frequency cut off. fs (array): The frequency array. order (Optional[int]): The order of the Butterworth filter. Default is 3. """ nyq = 0.5 * fs low = lowcut / nyq b, a = sps.butter(order, lowcut, btype='highpass') y = sps.lfilter(b, a, flux) return y
aed17a9f43292a5c7274e3ad0d708aabf14e4404
34,313
def main(filepath=None): """execution starts here""" # print("main():") if filepath==None: filepath = r"C:\Program Files\7-Zip\7z.exe" print("Getting Metadata From File: " + filepath) parser = hachoir.parser.createParser(str(filepath)) metadata = hachoir.metadata.extractMetadata(parser) # See what keys you can extract # https://stackoverflow.com/questions/14546533/hachoir-retrieving-data-from-a-group if not metadata: print("No Metadata Found!") return None else: for k in metadata._Metadata__data: if k: # print(k) # print all keys if metadata.has(k): print(f"key: `{k}` value:") for x in metadata.getValues(k): print(x) print("\n") # print(metadata.get("comment", index=0)) # print(metadata.getItem("comment", index=0)) # print(metadata.__iter__) print(metadata) metadata_dict = metadata.exportDictionary()["Metadata"] for k, v in metadata_dict.items(): print(f"key: `{k}` Value: `{v}`") # print(metadata_dict["Creation date"]) # #array: # print(metadata.getValues("creation_date")) # for x in metadata.getValues("creation_date"): # print(x)
eb6f8d3086cd3e527be7a7d2f4c79453fed2f21c
34,314
def calculate_background_gradient(u, v, w, weights, u_back, v_back, Cb=0.01): """ Calculates the gradient of the background cost function. For each u, v this is given as 2*coefficent*(analysis wind - background wind). Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field weights: Float array Weights for each point to consider into cost function u_back: 1D float array Zonal winds vs height from sounding w_back: 1D float array Meridional winds vs height from sounding Cb: float Weight of background constraint to total cost function Returns ------- y: float array value of gradient of background cost function """ the_shape = u.shape u_grad = np.zeros(the_shape) v_grad = np.zeros(the_shape) w_grad = np.zeros(the_shape) for i in range(the_shape[0]): u_grad[i] = Cb*2*(u[i]-u_back[i])*(weights[i]) v_grad[i] = Cb*2*(v[i]-v_back[i])*(weights[i]) y = np.stack([u_grad, v_grad, w_grad], axis=0) return y.flatten()
bab0558148faf3694c7b5c4db174af69c70fd526
34,315
def read_embedding_vocabularies(filenames): """ Reads every vector embedding file in the given collection of filenames, and returns the union of their vocabularies. (The files are assumed to be hdf5 files containing dataframes, and the vocabularies are their indices. """ result = pd.Index([]) for filename in filenames: vectors = load_hdf(filename) result = result.union(vectors.index) return result
17c72725cc8fe06ac000a00eb76fc19bb98e6dc5
34,316
def sorted_keys(lut: dict) -> list: """returns sorted lut keys if env_flags[sorted] is set to True""" if env_flags['sorted'] is True or str(env_flags['sorted']).lower() == 'true': return sorted(lut.keys(), key=lambda x: x) return lut.keys()
db801d14096af85de679ccf26c7ef3045b992a69
34,317
def sigmax(dim=2): """Qiskit wrapper of sigma-X operator. """ if dim == 2: return ops.sigmax() else: raise Exception('Invalid level specification of the qubit subspace')
a27ec81ad0396167c6207120a031375816b463ec
34,318
def is_relative_path(p): """ Return True if path is relative """ p = p.replace('\\', '/') if p and p[0] == '/': return False if sabnzbd.WIN32 and p and len(p) > 2: if p[0].isalpha() and p[1] == ':' and p[2] == '/': return False return True
0368ea2588344f90eb915f7144f0b60145b13b74
34,319
import types def setting_keybord( is_admin: bool, language: str, session_timeout: int ) -> types.InlineKeyboardMarkup: """انشاء كيبورد الاعدادات المعطيات: is_admin (bool): هل الكيبورد مرسل لادمن language (str): لغة االكيبورد session_timeout (int): وقت الجلسة المخرجات: types.InlineKeyboardMarkup: كيبورد الاعدادات """ change_password_button = get_message("change_password_button", language=language) change_language_button = get_message("change_language_button", language=language) session_timeout_button = get_message("session_timeout_button", language=language) bot_configuration_button = get_message( "bot_configuration_button", language=language ) bot_messages_button = get_message("bot_messages_button", language=language) infinity_session_timeout = get_message( "infinity_session_timeout", language=language ) back_button = get_message("back_button", language=language) mod = lambda num: num % max_session_timeout session_timeout = mod(session_timeout) session_timeout_word = ( infinity_session_timeout if session_timeout == 0 else hours2words(session_timeout, language=language) ) rows = [] if is_admin: rows.append( { bot_configuration_button: { "callback_data": f"update{callback_split_chr}bot_messages" }, bot_messages_button: { "callback_data": f"update{callback_split_chr}bot_configuration" }, } ) rows.extend( [ { change_password_button: { "callback_data": f"run{callback_split_chr}change_password" }, change_language_button: { "callback_data": f"run{callback_split_chr}change_language" }, }, { session_timeout_button + " 👇": { "callback_data": f"print{callback_split_chr}{session_timeout_button}" }, }, # if session_timeout == 0, in button will be '♾' { session_timeout_word: { "callback_data": f"print{callback_split_chr}{session_timeout_word}" } }, { # use `mod` to return `0` if `session_timeout+1` == `max_session_timeout` # and return `max_session_timeout` if `session_timeout-1` == '-1' "⬅️": { "callback_data": f"updatek{callback_split_chr}setting{callback_split_chr}{mod(session_timeout-1)}" }, "➡️": { "callback_data": f"updatek{callback_split_chr}setting{callback_split_chr}{mod(session_timeout+1)}" }, }, { back_button: {"callback_data": f"update{callback_split_chr}home_page"}, }, ] ) return _quick_markup(rows)
c53f2dd95dae6bb972789ab81d1d15ba6ddb5be4
34,320
def IoU(bbox1, bbox2): """Compute IoU of two bounding boxes Args: bbox1 - 4-tuple (x, y, w, h) where (x, y) is the top left corner of the bounding box, and (w, h) are width and height of the box. bbox2 - 4-tuple (x, y, w, h) where (x, y) is the top left corner of the bounding box, and (w, h) are width and height of the box. Returns: score - IoU score """ x1, y1, w1, h1 = bbox1 x2, y2, w2, h2 = bbox2 score = 0 ### YOUR CODE HERE leftIntBox = max(x1, x2) rightIntBox = min(x1 + w1, x2 + w2) topIntBox = max(y1, y2) bottomIntBox = min(y1 + h1, y2 + h2) intersection = (rightIntBox - leftIntBox) * (bottomIntBox - topIntBox) union = w1 * h1 + w2 * h2 score = intersection / (union - intersection) ### END YOUR CODE return score
dfb7aabac557a4ca71fe989da94e3775233d734b
34,321
def filter_red_pen(rgb, output_type="bool"): """ Create a mask to filter out red pen marks from a slide. Args: rgb: RGB image as a NumPy array. output_type: Type of array to return (bool, float, or uint8). Returns: NumPy array representing the mask. """ result = ( filter_red( rgb, red_lower_thresh=150, green_upper_thresh=80, blue_upper_thresh=90 ) & filter_red( rgb, red_lower_thresh=110, green_upper_thresh=20, blue_upper_thresh=30 ) & filter_red( rgb, red_lower_thresh=185, green_upper_thresh=65, blue_upper_thresh=105 ) & filter_red( rgb, red_lower_thresh=195, green_upper_thresh=85, blue_upper_thresh=125 ) & filter_red( rgb, red_lower_thresh=220, green_upper_thresh=115, blue_upper_thresh=145 ) & filter_red( rgb, red_lower_thresh=125, green_upper_thresh=40, blue_upper_thresh=70 ) & filter_red( rgb, red_lower_thresh=200, green_upper_thresh=120, blue_upper_thresh=150 ) & filter_red( rgb, red_lower_thresh=100, green_upper_thresh=50, blue_upper_thresh=65 ) & filter_red( rgb, red_lower_thresh=85, green_upper_thresh=25, blue_upper_thresh=45 ) ) if output_type == "bool": pass elif output_type == "float": result = result.astype(float) else: result = result.astype("uint8") * 255 return result
33f78f9048754e306fbd1a9a783eff79a7442ed8
34,323
import shutil def project_delete(request, project_slug): """ Make a project as deleted on POST, otherwise show a form asking for confirmation of delete. """ project = get_object_or_404(request.user.projects.live(), slug=project_slug) if request.method == 'POST': # Remove the repository checkout shutil.rmtree(project.doc_path, ignore_errors=True) # Delete the project and everything related to it project.delete() project_dashboard = reverse('projects_dashboard') return HttpResponseRedirect(project_dashboard) return render_to_response( 'projects/project_delete.html', {'project': project}, context_instance=RequestContext(request) )
0bd8bd63a51892438fb321487d8538630fe21854
34,324
def compose_left(*funcs): """Compose sync and async functions to operate in series. Returns a function that applies other functions in sequence. The returned function will be an async function iff at least one of the functions in the sequence is async. Functions are applied from left to right so that ``compose_left(f, g, h)(x, y)`` is the same as ``h(g(f(x, y)))``. >>> inc = lambda i: i + 1 >>> compose_left(inc, str)(3) '4' See Also: compose pipe """ return compose(*reversed(funcs))
ea02215c46b369cea993dc5565937807e76b584f
34,325
def squarefree_part(x, timeout_duration=20, use_ecm=True): """return the squarefree part of x or 'NO DATA (timed out)'""" F = squarefree_and_factorization( x=x, timeout_duration=timeout_duration, use_ecm=use_ecm ) if isinstance(F, str): return F else: return F[0]
3143aa9032b65f22631488a7f8dd96b0ae71cb4c
34,326
def unix_time_to_id(unix_time): """ Converts the given unix time to id. Parameters ---------- unix_time : `int`, `float` The unix time to convert to id. Returns ------- id_ : `int` """ return (floor(unix_time*1000.)-DISCORD_EPOCH)<<22
50b40ab1e23971b8ba44cfdd6546158b42415d66
34,327
def method_withBadName_with_bad_params_on_single_line(myBadlyNamedParam, my_other_Bad_name): """Provide parameters with bad names on single line.""" return myBadlyNamedParam + my_other_Bad_name
10857c53fb36ef96ebfc4cd10b52b412b600836a
34,328
async def async_setup_platform( hass, config, async_add_devices, discovery_info: object = {} ): """Set up Loxone Sensor from yaml""" value_template = config.get(CONF_VALUE_TEMPLATE) if value_template is not None: value_template.hass = hass # Devices from yaml if config != {}: # Here setup all Sensors in Yaml-File new_sensor = LoxoneCustomSensor(**config) async_add_devices([new_sensor]) return True return True
36a896270e448b50121d685aa3048006b7246abe
34,329
from datetime import datetime def build_cal_args(args): """Determine the year/month. Return list [year] or [year, month]""" t = datetime.date.today() m, y = t.month, t.year x = None if len(args) == 0: # no args - print default calendar x = [y, m] elif len(args) == 1: # cal + ==> next month if args[0] == '+': x = [y + 1, 1] if (m == 12) else [y, m + 1] # cal - ==> prev month elif args[0] == '-': x = [y - 1, 12] if (m == 1) else [y, m - 1] # cal jun+ or cal 12+ ==> given month for next year elif args[0].endswith('+'): m = month2num(args[0][:-1]) x = [y + 1, int(args[0][:-1])] if (m == 0) else [y + 1, m] # cal jun- or cal 12- ==> given month for prev year elif args[0].endswith('-'): m = month2num(args[0][:-1]) x = [y - 1, int(args[0][:-1])] if (m == 0) else [y - 1, m] # cal 0nn ==> assume as year elif args[0].startswith('0'): x = [int(args[0])] # cal numeric ==> assume as month if in 1..12 elif args[0].isnumeric(): m = int(args[0]) x = [y, m] if (1 <= m <= 12) else [m] # cal any ==> convert month if possible or let cal handle it else: m = month2num(args[0]) x = [int(args[0])] if (m == 0) else [y, m] elif len(args) == 2: # cal month year m = month2num(args[0]) x = [int(args[1]), int(args[0])] if (m == 0) \ else [int(args[1]), m] return x
241630f6a15f1a8c2ac195740aba8a7307b763ba
34,330
def _dice(array): """Given an array containing true/false positive/negative columns for the 'shadow' class, calculates the dice coefficient.""" v = {'TP': 0, 'TN': 0, 'FP': 0, 'FN': 0} for val in v: v[val] = float(np.sum(array['Shadow ' + val])) dice = v['TP'] / ((v['FP'] + v['TP']) + (v['TP'] + v['FN'])) return dice
644f1e5d982b9d5239f2b339ae4bdd14c10ebc73
34,335
import math def euclidian_dist(p1, p2): """ p1 and p2 must both be of len 2 where p1 = (x1,y1); p2 = (x2,y2)""" return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
3bceb46cf311e418cac83370c673772f885587be
34,336
def colorify_by_name(image, cmap_name, flip_map=False, rescale_type='min_max', limits=None, num_colors=256): """ Return 2D image as 3D RGB stack colored with a given colormap. Parameters ---------- image: 2d array image to convert to RGB cmap_name: str Matplotlib colormap or 'pure_red', 'pure_green', 'pure_blue' flip_map: bool invert colormap rescale_type: str 'min_max': between extrema values of image 'dtype': full range of image dtype 'zero_max': between zero and image max 'limits': between limits given by parameter limits limits: list [min, max] limits to use for rescaling num_colors: int number of steps in color scale Returns ------- image_colored: array 3D RGB float array cmap: Matplotlib colormap object Generated colormap from name """ image = rescale_image(image, rescale_type=rescale_type, limits=limits) cmap = cmaps_def(cmap_name, num_colors=num_colors, flip_map=flip_map) image_colored = cmap(image) return image_colored, cmap
68a034150e327c3fbef2603f422d18e935dec590
34,337
import numpy def lazy_matrix_mul(m_a, m_b): """ multiply 2 matrix that is given Args: m_a: input first matrix m_b: input second matrix Returns: return m_a * m_b """ return numpy.matmul(m_a, m_b)
3e58214d944d1962260b747af53dc8c82cc79b40
34,338
def denormalize_tags(df: pd.DataFrame) -> pd.DataFrame: """ For a DataFrame with a column 'tags' that contains comma-space-separated tags, denormalize the 'tags' column. """ if df.empty: return add_missing_columns(df, required_columns=['tag']) df = df.copy() df['tags'] = df['tags'].str.split(', ') return df \ .explode('tags', ignore_index=True) \ .rename(columns={'tags': 'tag'})
ce61cd49041a6238fc91bb1256ee0357944dc71e
34,339