content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def orders(request): """显示用户的所有订单""" username = request.user.get_username() # 获取所有的uesername=用户名的记录,然后将记录按照time逆序排列 all_orders = Order.objects.filter(username=username) times = all_orders.values('time') # 获取不同的时间,因为对于不同的用户按照时间分类即可,相同的时间下的肯定是同一单 distinct_times = set() for distinct_time in times: distinct_times.add(distinct_time['time']) order_infos = [] distinct_times = [t for t in distinct_times] # print(distinct_times) for distinct_time in sorted(distinct_times, reverse=True): seats = all_orders.filter(time=distinct_time) order_info = {} session = Session.objects.get(session_id=seats.values('session_id', 'price')[0]['session_id']) house = session.house_id movie = session.movie_id cinema = house.cinema_id order_info['order_id'] = distinct_time order_info['cinema_name'] = cinema.name order_info['cinema_id'] = cinema.cinema_id order_info['movie_name'] = movie.name order_info['movie_id'] = movie.movie_id order_info['house_name'] = house.house_name order_info['start_time'] = session.start_time order_info['status'] = seats[0].status order_info['price'] = len(seats) * seats.values('session_id', 'price')[0]['price'] order_info['seats'] = [] for seat in seats.values(): order_info['seats'].append(str(seat['seat_row']) + '排' + str(seat['seat_column']) + '座') order_infos.append(order_info) context = {'orders': order_infos} return render(request, 'orders.html', context)
4aa980465fb63e6e28d1020567cb0f6b4b607143
33,982
def convert_filename(filename): """Fix a filename""" # Try and replace illegal characters filename = replace_characters(filename) # Remove remaining illegal characters filename = remove_characters(filename) return filename
6a55ed29842ef08f19ec64db24ebcbe62f3849d9
33,983
from typing import Optional from pathlib import Path def create( path_or_url: str, output_dir: Optional[Path] = None, ) -> Path: """ Generate a new project from a composition file, local template or remote template. Args: path_or_url: The path or url to the composition file or template output_dir: Where to generate the project Returns: The path to the generated project. """ output_dir = output_dir or Path(".") if is_composition_file(path_or_url): composition = read_composition(path_or_url, output_dir) else: tmpl = LayerConfig(template=path_or_url) composition = ProjectComposition(layers=[tmpl], destination=output_dir) process_composition(composition) return output_dir
37dcc2ebb5c918afaf851f02a5202399947e2c63
33,984
def get_camera_index(glTF, name): """ Return the camera index in the glTF array. """ if glTF.get('cameras') is None: return -1 index = 0 for camera in glTF['cameras']: if camera['name'] == name: return index index += 1 return -1
0ffee8f036f5223f419fc3e5f95184c15f1b75d4
33,985
def local_se(df, kernel, deg, width): """ This function is used to calculate the local standard errors, based on estimation results of a local polynomial regression. """ if deg != 1: print( "WARNING: function local_se is currently hard-coded for ", "polynomials of degree 1 and will deliver wrong results for ", "anything else!", ) x = df[df.columns[0]].array cap_x = pd.DataFrame(data={"constant": np.ones(len(x)), "x": x}) beta_hat_covariances = {} y_hat_se = {} for count, element in enumerate(x): # get weights from the local regression weights = kernel(np.abs(x - element) / width) # only consider values with a weight > 0 inds = np.where(np.abs(weights) > 1e-10)[0] # CAUTION: This area is hard-coded for a polynomial of degree 1 rel_data = df.iloc[inds] beta_cov = np.cov(m=rel_data[["beta_hat_0", "beta_hat_1"]], rowvar=0) beta_hat_covariances.update({str(element): beta_cov}) se = np.dot(cap_x.loc[count, :].array, beta_hat_covariances[str(element)]) se = np.dot(se, np.transpose(cap_x.loc[count, :].array)) y_hat_se.update({str(element): np.sqrt(se)}) return y_hat_se
7b8fbc2d8edb2f572d0a5b06766c0e57d26b2a6a
33,986
import pickle def data(get_api_data): """Get Weather data. For testing I used pickle to """ GET_API_DATA = get_api_data if GET_API_DATA: weather_data = WeatherData() with open('today_weather_data.tmp', 'wb+')as f: pickle.dump(weather_data, f) else: with open('today_weather_data.tmp', 'rb') as f: weather_data = pickle.load(f) return weather_data
0cf4e45a3129df323ed2089a6c27b8bb0a0e2831
33,987
def json_format(subtitle, data): """ Format json to string :param subtitle: description to text :type subtitle: string :param data: content to format :type data: dictionary """ msg = subtitle+':\n' for name in data: msg += name+': '+data[name]+'\n' return msg.strip()
bb3392d7ad57a482b4175838858d316ecc5f56e1
33,988
def _nSentencesInWordMap(wtm): """Return the number of valid word sequence in wtm""" result = [0] * len(wtm) + [1] for i_ in xrange(len(wtm)): i = len(wtm) - i_ - 1 for j in wtm[i].iterkeys(): result[i] += result[j] return result[0]
9a771693ec572ad99ee7007efbf9d18e393b2c6c
33,989
def hflip(img): # type: (Tensor) -> Tensor """Horizontally flip the given the Image Tensor. Args: img (Tensor): Image Tensor to be flipped in the form [C, H, W]. Returns: Tensor: Horizontally flipped image Tensor. """ if not _is_tensor_a_torch_image(img): raise TypeError('tensor is not a torch image.') return img.flip(-1)
e551cfe143bc823ff046bd57b524a262b3ecdb8b
33,991
import numpy def gfalternate_gotnogaps(data,label,mode="verbose"): """ Returns true if the data series has no gaps, false if there are gaps """ return_code = True if numpy.ma.count_masked(data)==0: if mode=="verbose": msg = " No gaps in "+label logger.info(msg) return_code = True else: return_code = False return return_code
bf31bf4da5896ebe37e76d26054d7b7cac8e4a4b
33,992
def expm_tS_v2(t, S): """ Compute expm(t*S) using AlgoPy eigendecomposition and an identity. t: truncated univariate Taylor polynomial S: symmetric numpy matrix """ # Compute the eigendecomposition using a Taylor-aware eigh. L, Q = eigh(t * S) return dot(Q * exp(L), Q.T)
3d5512e3b9fc00b765538c6f1bdb3ea0d460a896
33,993
def command(): """ Return the tested command. """ return module.Command()
bd79175d169372283fca9e4555ce762f80f60f18
33,994
def computeSWC(D, cl_cores, ncl, shortpath): """ :param D: 2D dataset of n*d, i.e. n the number of cores (initial clusters) with d dimension :param cl_cores: cluster label of each cores :param ncl: the number of clusters :param shortpath: the shortest path length matrix of core-based graph :return: swc: result the Silhouette width criterion (when using the Silhouette index) sl: the Silhouette value of each point (used for computing the LCCV index) """ # ------------------------------------------------------------------------- # Reference: R.P.Silhouettes: A graphical aid to the interpretation and # validation of cluster analysis[J].Journal of Computational & Applied # Mathematics, 1987, 20(20): 53-65. # ------------------------------------------------------------------------- n, d = D.shape ncl = int(ncl) #cdata = cell(1, ncl) cdata = -np.ones((ncl, n*d+1)) # keep data points in each cluster cindex = np.zeros((ncl, n)) numc = ncl for i in range(ncl): nump = 0 for j in range(n): if cl_cores[j] == (i+1): for k in range(d): cdata[i, nump*d+k] = D[j, k] cindex[i, nump] = j nump += 1 cdata[i, n*d] = nump numo = 0 # Do not compute the swc for outliers if np.min(cl_cores) <= 0: for i in range(n): if cl_cores[i] <= 0: numo += 1 swc = 0 s1 = np.zeros((n, 1)) for i in range(numc): aa = 0 bb = 0 ss = 0 np1 = int(cdata[i, n*d]) if np1 > 1: for j in range(np1): # compute aa suma = 0 for k in range(np1): if j != k: suma += shortpath[int(cindex[i, j]), int(cindex[i, k])] aa = suma / (np1 - 1) # compute bb dd = np.ones((numc, 1)) * float('inf') for k in range(numc): if k != i: np2 = int(cdata[k, n*d]) #print(np2) sumd = 0 for l in range(np2): sumd += shortpath[int(cindex[i, j]), int(cindex[k, l])] if np2 != 0: dd[k] = sumd / np2 bb = np.min(dd, axis = 0) #print('bb:', bb) # compute ss if (np.max([aa, bb]) != 0): if bb != float('inf'): ss = (bb - aa) / np.max([aa, bb]) else: ss = 0 else: ss = 0 #print('np1=%d,numc=%d' % (np1, numc)) #print('a(j)=%f,b(j)=%f,max(a,b)=%f,s(j)=%f' % (aa, bb, np.max([aa, bb]), ss)) s1[int(cindex[i, j])] = ss swc = swc + ss #print ('swc=%f' % swc) if (n - numo) != 0: swc = swc / (n - numo) else: swc = 0 return swc, s1
fca3dd6166867cd5d1f41c4dc0e85750f0339086
33,995
import warnings def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08): """Use high precision for cumsum and check that final value matches sum Parameters ---------- arr : array-like To be cumulatively summed as flat axis : int, optional Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. rtol : float Relative tolerance, see ``np.allclose`` atol : float Absolute tolerance, see ``np.allclose`` """ # sum is as unstable as cumsum for numpy < 1.9 if np_version < (1, 9): return np.cumsum(arr, axis=axis, dtype=np.float64) out = np.cumsum(arr, axis=axis, dtype=np.float64) expected = np.sum(arr, axis=axis, dtype=np.float64) if not np.all(np.isclose(out.take(-1, axis=axis), expected, rtol=rtol, atol=atol, equal_nan=True)): warnings.warn('cumsum was found to be unstable: ' 'its last element does not correspond to sum', RuntimeWarning) return out
0a6956461b1870c92a4a1b3556fb0889320fcac5
33,996
def read_data_min(server, port, user, pwd, instrument): """从mongo中读取分钟数据(含实时)""" #取数据 client = py_at.MongoDBClient.DBConn(server, port) client.connect(user, pwd) db = client.get_database("future_min") coll = client.get_collection("future_min", instrument) docs = coll.find() coll_real = client.get_collection("future_real", instrument) docs_real = coll_real.find() ddoc = [] for doc in docs: ddoc.append(doc) for doc in docs_real: ddoc.append(doc) return ddoc
7dfd30a63268318a8339c3c91fc4a477891b908e
33,997
from textwrap import dedent def _demo(seed=None, out_fc=False, SR=None, corner=[0, 0], angle=0): """Generate the grid using the specified or default parameters """ corner = corner # [300000.0, 5000000.0] dx, dy = [1, 1] cols, rows = [3, 3] if seed is None: # seed = rectangle(dx=1, dy=1, cols=3, rows=3) seed = hex_pointy(dx=10, dy=10, cols=3, rows=3) # seed = hex_flat(dx=10, dy=10, cols=3, rows=3) seed_t = 'rectangle' if SR is None: SR = 3857 # -- WGS84 Web Mercator (Auxiliary Sphere) pnts = repeat(seed=seed, corner=corner, cols=3, rows=3, angle=0) args = ["", SR, seed_t, corner, [dx, dy], [cols, rows], seed[0]] print(dedent(msg).format(*args)) return pnts
194582b64bc279ab51c54107811e052019bc862e
33,998
def measure_bb_tpdm(spatial_dim, variance_bound, program, quantum_resource, transform=jordan_wigner, label_map=None): """ Measure the beta-beta block of the 2-RDM :param spatial_dim: size of spatial basis function :param variance_bound: variance bound for measurement. Right now this is the bound on the variance if you summed up all the individual terms. 1.0E-6 is a good place to start. :param program: a pyquil Program :param quantum_resource: a quantum abstract machine connection object :param transform: fermion-to-qubit transform :param label_map: qubit label re-mapping if different physical qubits are desired :return: the beta-beta block of the 2-RDM """ # first get the pauli terms corresponding to the alpha-alpha block pauli_terms_in_bb = pauli_terms_for_tpdm_bb(spatial_dim, transform=jordan_wigner) if label_map is not None: pauli_terms_in_bb = pauli_term_relabel(sum(pauli_terms_in_bb), label_map) rev_label_map = dict(zip(label_map.values(), label_map.keys())) result_dictionary = _measure_list_of_pauli_terms(pauli_terms_in_bb, variance_bound, program, quantum_resource) if label_map is not None: result_dictionary = pauli_dict_relabel(result_dictionary, rev_label_map) d2bb = pauli_to_tpdm_bb(spatial_dim, result_dictionary, transform=transform) return d2bb
0b5ec56b6f0b6bb20d30e3d4bbe76b723a0dc631
33,999
def singlepass(fn): """ Will take the mean of the iterations if needed. Args: fn (Callable): Heuristic function. Returns: fn : Array -> Array """ @_wraps(fn) def wrapper(self, probabilities): if probabilities.ndim >= 3: # Expected shape : [n_sample, n_classes, ..., n_iterations] probabilities = probabilities.mean(-1) return fn(self, probabilities) return wrapper
81052f3daf498e119cd953144da6ae76ef5bdf7d
34,000
def remove_dihedral(mol, a, b, c, d): """ utils.remove_dihedral Remove a specific dihedral in RDkit Mol object Args: mol: RDkit Mol object a, b, c: Atom index removing a specific dihedral (int) Returns: boolean """ if not hasattr(mol, 'dihedrals'): return False for i, dihedral in enumerate(mol.dihedrals): if ((dihedral.a == a and dihedral.b == b and dihedral.c == c and dihedral.d == d) or (dihedral.d == a and dihedral.c == b and dihedral.b == c and dihedral.a == d)): del mol.dihedrals[i] break return True
7e26e995fec97c5c6d2304e11d06fec03b990942
34,001
import inspect def load_mo(elem): """ This loads the managed object into the current name space Args: elem (str): element Returns: MangedObject """ mo_class_id = elem.tag mo_class = load_class(mo_class_id) mo_class_params = inspect.getargspec(mo_class.__init__)[0][2:] mo_class_param_dict = {} for param in mo_class_params: mo_class_param_dict[param] = elem.attrib[ mo_class.PROPERTY_MAP[param]] mo_obj = mo_class(parent_mo_or_dn="", **mo_class_param_dict) return mo_obj
07738ce084cc0c6a51a6445eaa361c5c38daf312
34,002
import collections def partialdot(mpa1, mpa2, start_at, axes=(-1, 0)): """Partial dot product of two MPAs of inequal length. The shorter MPA will start on site ``start_at``. Local dot products will be carried out on all sites of the shorter MPA. Other sites will remain unmodified. mpa1 and mpa2 can also have equal length if ``start_at == 0``. In this case, we do the same as :func:`dot()`. :param mpa1, mpa2: Factors as MPArrays, length must be inequal. :param start_at: The shorter MPA will start on this site. :param axes: See ``axes`` argument to :func:`dot()`. :returns: MPA with length of the longer MPA. """ # adapt the axes from physical to true legs if isinstance(axes[0], collections.Sequence): axes = tuple(tuple(ax + 1 if ax >= 0 else ax - 1 for ax in axes2) for axes2 in axes) else: axes = tuple(ax + 1 if ax >= 0 else ax - 1 for ax in axes) # Make the MPAs equal length (in fact, the shorter one will be # infinite length, but that's fine because we use zip()). shorter = mpa1 if len(mpa1) < len(mpa2) else mpa2 shorter = it.chain(it.repeat(None, times=start_at), shorter.lt, it.repeat(None)) if len(mpa1) < len(mpa2): mpa1_lt = shorter mpa2_lt = mpa2.lt else: mpa1_lt = mpa1.lt mpa2_lt = shorter ltens_new = ( l if r is None else (r if l is None else _local_dot(l, r, axes)) for l, r in zip(mpa1_lt, mpa2_lt) ) return MPArray(ltens_new)
2051e1e9e5023ee5e9724e62d0a123937ece7fb3
34,003
import torch def thresh_ious(gt_dists, pred_dists, thresh): """ Computes the contact intersection over union for a given threshold """ gt_contacts = gt_dists <= thresh pred_contacts = pred_dists <= thresh inter = (gt_contacts * pred_contacts).sum(1).float() union = union = (gt_contacts | pred_contacts).sum(1).float() iou = torch.zeros_like(union) iou[union != 0] = inter[union != 0] / union[union != 0] return iou
9bd6244325acae0d3ebb5ffca46e0453a71000d1
34,004
def encode_sentences(sentences, tokenizer, language, mode): """对句子进行编码 @param sentences: 要编码的句子列表 @param tokenizer: 使用的字典 @param language: 语言 @param mode: 模式 @return: 编码好的句子列表,最大句子长度 """ if language == 'zh': return _encode_sentences_keras(sentences, tokenizer) elif language == 'en': if mode == 'BPE': return _encode_sentences_bpe(sentences, tokenizer) elif mode == 'WORD': return _encode_sentences_keras(sentences, tokenizer) else: raise ValueError("语言(%s)暂不支持模式(%s)" % (language, mode))
8bb0d2143b73c02f1fac600ce322012da0bbdb05
34,005
def calc_scores(line_executions=LINE_EXECUTIONS, prior=PRIOR): """Return 'fault' score for each line, given prior and observations.""" return { line: float( execution_counts.negative_cases + prior.negative_cases ) / ( execution_counts.positive_cases + prior.positive_cases + execution_counts.negative_cases + prior.negative_cases ) for line, execution_counts in line_executions.items() }
985fb4ccc193135e5aa8b5637fc8878c9314e74e
34,006
def symmetric_variable_summaries(var, metrics=None): """ Set summaries for a symmetric variable, e.g., the output of tanh. Args: var: tensorflow variable. metrics: set a list of metrics for evaluation. Support: mean, stddev, max, min, histogram. Default: mean, stddev. Returns: summaries: a list of summaries. """ summaries = [] if metrics is None: metrics = ["mean-stddev"] with tf.name_scope("symmatric_value_summary"): with tf.name_scope("positive_value_summary"): # first, get positive or zero values where_pos = tf.where(tf.greater_equal(var, tf.constant(0, dtype=tf.float32))) pos_elements = tf.gather_nd(var, where_pos) summaries.extend(variable_summaries(pos_elements, metrics=metrics)) with tf.name_scope("negative_value_summary"): # then, get negative values where_neg = tf.where(tf.less(var, tf.constant(0, dtype=tf.float32))) neg_elements = tf.gather_nd(var, where_neg) summaries.extend(variable_summaries(neg_elements, metrics=metrics)) return summaries
8ba02b426c73e939aa2797bdc32dc988b07191b0
34,007
def normalize_parameters(raw_parameters, minvals, maxvals): """takes in a list of parameters and does simple min/max normalization according to min/max values INPUTS raw_parameters: length n, containing parameters for a star minvals: length n, minimum parameter values maxvals: length n, max parameter values OUTPUTS normed_parameters: length n, normalized parameters """ normed_parameters = (raw_parameters - minvals) / (maxvals-minvals) return normed_parameters
53249bcecc8c3fd88beae7f377c6d5490693fba9
34,008
from typing import Any def read_users( db: Session = Depends(deps.get_db), skip: int = 0, limit: int = 100, current_user: models.User = Depends(deps.get_current_active_superuser) ) -> Any: """ Retrieve users. """ users = crud.user.get_multi(db, skip=skip, limit=limit) return users
0f4f6eed8fc181165b261cb2f325e2dd38d14cf8
34,009
from numpy import cos, sin, array def euler(a, b, c): """ Calculate a three dimensional rotation matrix from the euler angles. @param a: alpha, angle between the x-axis and the line of nodes @param b: beta, angle between the z axis of the different coordinate systems @param c: gamma, angle between the line of nodes and the X-axis """ ca, cb, cc = cos(a), cos(b), cos(c) sa, sb, sc = sin(a), sin(b), sin(c) return array([[ cc * cb * ca - sc * sa, cc * cb * sa + sc * ca, -cc * sb], [-sc * cb * ca - cc * sa, -sc * cb * sa + cc * ca, sc * sb], [ sb * ca, sb * sa, cb ]])
406786a62b798b8e7dbbf57bd33f7243b5671e06
34,010
from pathlib import Path def guardar_imagen_cv2(img_path, filtro, filtro_name="", output_dir=""): """ img_path: directorio de la imagen filtro: funcion para aplicar filtro file_path: directorio donde guardaremos las imagen """ try: imagen_preprocesada = aplicar_preproceso(img_path, filtro) except: print("Error, image path incorrecto") img_name = Path(img_path).name #cambia el sufijo output_filename = img_name.replace('.JPG','')+filtro_name+".JPG" output_dir = Path(output_dir) output_path = output_dir/output_filename cv2.imwrite(str(output_path), imagen_preprocesada) return str(output_path)
ede6ede0080df8b0ab1d99f348c014710f37c254
34,011
def create_begin_files(params): """Create initial files for HADDOCK3 run.""" run_dir = params['run_dir'] data_dir = run_dir / 'data' begin_dir = run_dir / 'begin' run_dir.mkdir() begin_dir.mkdir() data_dir.mkdir() copy_files_to_dir(params['molecules'], data_dir) copy_molecules_to_begin_folder(params['molecules'], begin_dir) return begin_dir, data_dir
8c80a2bc084cb7573948055d2e04c1fb54eb93da
34,012
import torch from typing import Optional def dump_sender_receiver_with_noise(agent_1: torch.nn.Module, agent_2: torch.nn.Module, dataset: 'torch.utils.data.DataLoader', noise_prob: float, max_len:int, gs:bool,variable_length: bool, device: Optional[torch.device] = None): """ A tool to dump the interaction between Sender and Receiver :param game: A Game instance :param dataset: Dataset of inputs to be used when analyzing the communication :param gs: whether Gumbel-Softmax relaxation was used during training :param variable_length: whether variable-length communication is used :param device: device (e.g. 'cuda') to be used :return: """ device = device if device is not None else common_opts.device sender_inputs, messages, receiver_inputs, receiver_outputs = [], [], [], [] labels = [] with torch.no_grad(): for batch in dataset: # by agreement, each batch is (sender_input, labels) plus optional (receiver_input) sender_input = move_to(batch[0], device) receiver_input = None if len(batch) == 2 else move_to(batch[2], device) message = agent_1.send(sender_input) # Under GS, the only output is a message; under Reinforce, two additional tensors are returned. # We don't need them. if not gs: message = message[0] for i in range(message.size(0)): for j in range(message.size(1)): if message[i,j]!=0: if np.random.rand()<noise_prob: message[i,j]=np.random.randint(1,max_len) output = agent_2.receive_2(message, receiver_input, None) if not gs: output = output[0] if batch[1] is not None: labels.extend(batch[1]) if isinstance(sender_input, list) or isinstance(sender_input, tuple): sender_inputs.extend(zip(*sender_input)) else: sender_inputs.extend(sender_input) if receiver_input is not None: receiver_inputs.extend(receiver_input) if gs: message = message.argmax(dim=-1) # actual symbols instead of one-hot encoded if not variable_length: messages.extend(message) receiver_outputs.extend(output) else: # A trickier part is to handle EOS in the messages. It also might happen that not every message has EOS. # We cut messages at EOS if it is present or return the entire message otherwise. Note, EOS id is always # set to 0. for i in range(message.size(0)): eos_positions = (message[i, :] == 0).nonzero() message_end = eos_positions[0].item() if eos_positions.size(0) > 0 else -1 assert message_end == -1 or message[i, message_end] == 0 if message_end < 0: messages.append(message[i, :]) else: messages.append(message[i, :message_end + 1]) if gs: receiver_outputs.append(output[i, message_end_1, ...]) else: receiver_outputs.append(output[i, ...]) return sender_inputs, messages, receiver_inputs, receiver_outputs
0fde105094d2fdf1b15247b80533bd6f2714d9dd
34,013
def split_list(xs, at): """Split a list into sublists by a specific item value E.g split_list(['a', 'b', '.', 'c', '.', 'd') = [['a', 'b'], ['c'], ['d'] Parameters ---------- x A list at The item value to split by Returns ------- List[List] A list of sublists split by `at` """ if at in xs: # Stores the intermediate sublists for output output = [] # Stores items in between split values buffer_ = [] for x in xs: if x == at: output.append(buffer_) buffer_ = [] else: buffer_.append(x) output.append(buffer_) return exclude_blank(output) return [xs]
5fd0d3f0c9417481918c36203fc84db8be33b104
34,014
def do(the_state_machine, pre_context_sm, BeginOfLinePreContextF, BeginOfStreamPreContextF): """Sets up a pre-condition to the given state machine. This process is entirely different from any concatenation or parallelization of state machines. Here, the state machine representing the pre- condition is **not** webbed into the original state machine! Instead, the following happens: -- the pre-condition state machine is inverted, because it is to be walked through backwards. -- the inverted state machine is marked with the state machine id of the_state_machine. -- the original state machine will refer to the inverse state machine of the pre-condition. -- the initial state origins and the origins of the acceptance states are marked as 'pre-conditioned' indicating the id of the inverted state machine of the pre-condition. """ #___________________________________________________________________________________________ # (*) do some consistency checking # -- state machines with no states are senseless here. assert not the_state_machine.is_Empty() assert pre_context_sm is None or not pre_context_sm.is_Empty() # -- trivial pre-conditions should be added last, for simplicity #___________________________________________________________________________________________ if pre_context_sm is None: # NOT: 'and ...' ! if BeginOfLinePreContextF: # Set acceptance condition: 'begin of line'. for state in the_state_machine.get_acceptance_state_list(): state.set_acceptance_condition_id(E_AcceptanceCondition.BEGIN_OF_LINE) if BeginOfStreamPreContextF: # Set acceptance condition: 'begin of stream'. for state in the_state_machine.get_acceptance_state_list(): state.set_acceptance_condition_id(E_AcceptanceCondition.BEGIN_OF_STREAM) return None if BeginOfLinePreContextF: new_pre_context_sm = DFA_Newline() sequentialize.do([new_pre_context_sm, pre_context_sm], MountToFirstStateMachineF=True) pre_context_sm = beautifier.do(new_pre_context_sm) # (*) Once an acceptance state is reached no further analysis is necessary. pre_context_sm.delete_loops_to_init_state() if Setup.fallback_mandatory_f \ and pre_context_sm.longest_path_to_first_acceptance() is None: error.log("Pre-context contains patterns of arbitrary length to first acceptance backwards.") # (*) let the state machine refer to it # [Is this necessary? Is it not enough that the acceptance origins point to it? <fschaef>] pre_context_sm_id = pre_context_sm.get_id() # (*) Associate acceptance with pre-context id. for state in the_state_machine.get_acceptance_state_list(): state.set_acceptance_condition_id(pre_context_sm_id) return pre_context_sm
bd6bdfa6826b74b036c2b7514e78a34b0b68404e
34,015
def Sexp(x,G,N): """ Stochastic exponentiation function Note: G should be such that G<<N Parameters ---------- x: Stochastic bit-stream G: Positive integer N: Integer specifying the number of states Returns ------- A stochastic bit-stream approximating exp(-2Gx) """ no_samples = x.size z = np.empty(no_samples,dtype=np.int8) # Initialise FSM Parameters S_min = 0 S_max = N-1 S_bound = N-G # Initialise the state S S = N/2 # Run the FSM for sample in range(no_samples): # State transition if(x[sample] == 0): S = S-1 else: S = S+1 # Saturate the counter if(S < S_min): S = S_min elif(S > S_max): S = S_max # Output logic if(S >= S_bound): z[sample] = 0 else: z[sample] = 1 return z
7815c2a2310593db651bad3e7922fc289d13597a
34,016
def truncate(s: str, length: int = DEFAULT_CURTAIL) -> str: """ Truncate a string and add an ellipsis (three dots) to the end if it was too long :param s: string to possibly truncate :param length: length to truncate the string to """ if len(s) > length: s = s[: length - 1] + '…' return s
90eb3cb1a26f525f8bc6076421a85d2f86af365c
34,017
def amp_kd_calc(amph_sites_ff, element): """ aem_calc calculates the partition coefficient for a specified trace element that is in equilibrium with a given amphibole composition according to Humphreys et al., 2019. supported elements = ['Rb','Sr','Pb','Zr','Nb','La','Ce','Nd','Sm', 'Eu','Gd','Dy','Ho','Yb','Lu','Y'] Parameters ---------- amph_sites_ff : pandas DataFrame Amphibole site allocations that incorporate ferric ferrous iron. This should be the output from the get_amp_sites_ferric_ferrous function element : string The element you want to calculate the partition coefficient for Raises ------ Exception If you do not choose a supported element from Humphreys et al., 2019 an error will be thrown prompting you to choose a supported element Returns ------- aem_kd : array-like partition coefficient between amphibole and its equilibrium melt aem_kd_se : scalar the one sigma uncertainty on your partition coefficient taken from table 2 in Humphreys et al., 2019 """ # Building table 2 from Humphreys et al 2019 elements = [ "Rb", "Sr", "Pb", "Zr", "Nb", "La", "Ce", "Nd", "Sm", "Eu", "Gd", "Dy", "Ho", "Yb", "Lu", "Y", ] constants = np.array( [ 9.1868, 3.41585, -4.2533, -25.6167, -22.27, -20.0493, -21.1078, -20.3082, -11.3625, -35.6604, -19.0583, -16.0687, -20.4148, -15.8659, -19.3462, -36.2514, ] ) si = np.array( [ -1.3898, -0.75281, 0, 2.6183, 2.3241, 2.0732, 2.4749, 2.5162, 1.6002, 4.1452, 2.4417, 2.3858, 2.3654, 2.281, 2.1142, 3.6078, ] ) al = np.array([0, 0, 2.715, 2.6867, 0, 0, 0, 0, 0, 2.6886, 0, 0, 0, 0, 0, 3.78]) ti = np.array( [ -3.6797, 0, 1.69, 4.838, 3.7633, 2.5498, 2.4717, 2.5863, 0, 6.4057, 1.9786, 1.8255, 2.484, 1.5905, 2.8478, 7.513, ] ) fe3 = np.array( [ -1.5769, 0, 0.7065, 2.6591, 2.9786, 1.5317, 1.5722, 1.9459, 1.2898, 3.8508, 1.8765, 1.9741, 3.2601, 2.1534, 2.7011, 4.8366, ] ) fe2 = np.array( [ -0.6938, 0.36529, 0, 0.6536, 1.44, 1.117, 0.952, 0.9566, 1.2376, 0.7255, 0.9943, 0.6922, 1.2922, 0.7867, 1.0402, 0.814, ] ) ca = np.array( [ 0, 0, 0, 2.5248, 1.8719, 2.2771, 1.5311, 1.2763, 0, 3.0679, 1.3577, 0, 3.1762, 0, 2.9625, 4.60, ] ) naa = np.array( [0, 0, -1.0433, 0, 0, -1.4576, 0, 0, 0, 0, 0, 0, -4.9224, 0, -3.2356, 0] ) se = np.array( [ 0.29, 0.19, 0.23, 0.49, 0.45, 0.34, 0.32, 0.36, 0.43, 0.37, 0.4, 0.33, 0.4, 0.43, 0.39, 0.32, ] ) columns = [ "element", "constant", "Si", "Al_vi", "Ti", "Fe3", "Fe2", "Ca", "Na_A", "se", ] aem_params = pd.DataFrame( dict( constant=constants, Si=si, Al_vi=al, Ti=ti, Fe3=fe3, Fe2=fe2, Ca=ca, Na_a=naa, SE=se, ), index=elements, ) if element in elements: aem_kd = np.exp( aem_params.loc[element].constant + (aem_params.loc[element].Si * amph_sites_ff["Si_T"]) + (aem_params.loc[element].Al_vi * amph_sites_ff["Al_D"]) + (aem_params.loc[element].Ti * amph_sites_ff["Ti_D"]) + (aem_params.loc[element].Fe3 * amph_sites_ff["Fe3_D"]) + ( aem_params.loc[element].Fe2 * (amph_sites_ff["Fe2_C"] + amph_sites_ff["Fe2_B"]) ) + (aem_params.loc[element].Ca * amph_sites_ff["Ca_B"]) + (aem_params.loc[element].Na_a * amph_sites_ff["Na_A"]) ) aem_kd_se = aem_params.loc[element].SE else: raise Exception( "The element you have selected is not supported by this function. Please choose another one" ) return aem_kd, aem_kd_se
8c1f4f4b82ba24801770fffc1b8a127183a63428
34,018
def _compute_errors_and_split(p, bezier, u): """Compute the maximum and rms error between a set of points and a bezier curve""" dists = np.linalg.norm(bezier.xy(u)-p,axis=1) i = np.argmax(dists) rms = np.sqrt(np.mean(dists**2)) if i==0: return 0.0, rms, len(p)//2 elif i==len(p)-1: return 0.0, rms, len(p)//2 else: return rms, dists[i], i
d97c06a0924e6a0d26a57d4fd0bd4e7322e74206
34,019
def rebin_flux(target_wavelength, source_wavelength, source_flux): """Rebin a flux onto a new wavelength grid.""" targetwl = target_wavelength originalwl = source_wavelength originaldata = source_flux[1:-1] # The following is copy-pasted from the original fluxcal.py originalbinlimits = ( originalwl[ :-1 ] + originalwl[ 1: ] ) / 2. okaytouse = np.isfinite( originaldata ) originalweight = np.where(okaytouse, 1., 0.) originaldata = np.where(okaytouse, originaldata, 0.) originalflux = originaldata * np.diff( originalbinlimits ) originalweight *= np.diff( originalbinlimits ) nowlsteps = len( targetwl ) rebinneddata = np.zeros( nowlsteps ) rebinnedweight = np.zeros( nowlsteps ) binlimits = np.array( [ np.nan ] * (nowlsteps+1) ) binlimits[ 0 ] = targetwl[ 0 ] binlimits[ 1:-1 ] = ( targetwl[ 1: ] + targetwl[ :-1 ] ) / 2. binlimits[ -1 ] = targetwl[ -1 ] binwidths = np.diff( binlimits ) origbinindex = np.interp( binlimits, originalbinlimits, np.arange( originalbinlimits.shape[0] ), left=np.nan, right=np.nan ) fraccounted = np.zeros( originaldata.shape[0] ) # use fraccounted to check what fraction of each orig pixel is counted, # and in this way check that flux is conserved. maximumindex = np.max( np.where( np.isfinite( origbinindex ) ) ) for i, origindex in enumerate( origbinindex ): if np.isfinite( origindex ) : # deal with the lowest orig bin, which straddles the new lower limit lowlimit = int( origindex ) lowfrac = 1. - ( origindex % 1 ) indices = np.array( [ lowlimit] ) weights = np.array( [ lowfrac ] ) # deal with the orig bins that fall entirely within the new bin if np.isfinite( origbinindex[i+1] ): intermediate = np.arange( int( origindex )+1, \ int(origbinindex[i+1]) ) else : # XXX This is wrong: maximumindex is in the wrong scale #intermediate = np.arange( int( origindex )+1, \ # maximumindex ) # This may also be wrong, but at least it doesn't crash intermediate = np.arange(0) indices = np.hstack( ( indices, intermediate ) ) weights = np.hstack( ( weights, np.ones( intermediate.shape ) ) ) # deal with the highest orig bin, which straddles the new upper limit if np.isfinite( origbinindex[i+1] ): upplimit = int( origbinindex[i+1] ) uppfrac = origbinindex[ i+1 ] % 1 indices = np.hstack( ( indices, np.array( [ upplimit ] ) ) ) weights = np.hstack( ( weights, np.array( [ uppfrac ] ) ) ) fraccounted[ indices ] += weights rebinneddata[ i ] = np.sum( weights * originalflux[indices] ) rebinnedweight[i ]= np.sum( weights * originalweight[indices] ) # now go back from total flux in each bin to flux per unit wavelength rebinneddata = rebinneddata / rebinnedweight return rebinneddata
361484666824c7b8f23997812822cadaf57bcf47
34,020
def rate_match(residue, bead, match): """ A helper function which rates how well ``match`` describes the isomorphism between ``residue`` and ``bead`` based on the number of matching atomnames. Parameters ---------- residue : networkx.Graph A graph. Required node attributes: :atomname: The name of an atom. bead : networkx.Graph A subgraph of ``residue`` where the isomorphism is described by ``match``. Required node attributes: :atomname: The name of an atom. Returns ------- int The number of entries in match where the atomname in ``residue`` matches the atomname in ``bead``. """ return sum(residue.nodes[rdx].get('atomname') == bead.nodes[bdx].get('atomname') for rdx, bdx in match.items())
474c2a4fb8be84935088dd1984445c4d0dccb980
34,021
def isNotEmptyString(input:str): """ this function check a string is not empty. :param input:str: given string """ if isNotNone(input): tmp = input.lstrip(' ') return isStr(input) and (len(tmp) > 0) else: return False
53c9fecea08947b500047962f609236ebc9bbb7f
34,022
def show_queue(event_id): """ Pokazuje listę osób chętnych do rezerwacji wydarzenia (kolejka). Działa tylko dla właściciela wydarzenia. :type event_id: int :param event_id: id wydarzenia """ try: with conn: with conn.cursor() as cur: cur.execute("""select * from pokaz_kolejke_wydarzenia(%s, %s)""", (session['uid'], event_id,)) queue = [{ 'reservation_id': entry[0], 'email': entry[1], } for entry in cur.fetchall()] cur.execute("""select tytul from wydarzenia where id=%s""", (event_id,)) evt = { 'event_id': event_id, 'title': cur.fetchone()[0] } except psycopg2.InternalError as ex: flash(ex.diag.message_primary, 'danger') return redirect(url_for('my_events')) return render_template('show_queue.html', queue=queue, event=evt)
d617a4d71a925d6f6f000fb481e7afbf9ee4ff66
34,023
def _load_contact_template(user_email, email_details): """ Loads the email contents and returns the template for contact us """ ##Email Template Init### email_template = EmailMessage( subject=email_details['subject'], from_email="Questr <[email protected]>", to=["Questr <[email protected]>"], headers={'Reply-To': "Questr <[email protected]>"} ) ###List Email Template### email_template.template_name = email_details['template_name'] ###List Email Tags to be used### email_template.global_merge_vars = email_details['global_merge_vars'] return email_template
4534c0ae8ad01c3abff20e8478589c0b7863118f
34,024
def create_index(files, include_metadata=False, multi_run=False): """creates the index from list of files, by crawling over each file""" ecpps = None ecpps = run_func_on_files(ElChemPathParser, files, multi_run=multi_run) ecds = None if include_metadata: ecds = run_func_on_files( ElChemData, files, multi_run=multi_run, metadata_only=include_metadata, ) index = pd.DataFrame() if not ecpps: return index, ecpps, ecds try: index = merge_and_make_index_from_collections(ecpps, ecds) except Exception as exc: logger.error(f"create index error, index will be empty : {exc}") index = add_extra_folder_columns_to_index(files, index) return index, ecpps, ecds
ccba3c031d2b763be19f4148162fc5cb39210625
34,025
def save_partnership_contact_form(request): """ Saves the requests coming from the Partnership Contact form on the home page """ if request.method == 'POST': form = PartnershipRequestForm(request.POST) if form.is_valid(): form.save() send_partnership_request_email(request.POST) messages.success(request, ("Thank you very much for your interest!" " We will be in touch shortly.")) else: print(form.errors) messages.error( request, ("Sorry, there was an error submitting your request. " "Please try again or send an email to " f"{settings.SUPPORT_EMAIL}.")) return redirect(reverse('home')) else: return redirect(reverse('home'))
f22958204b3edd587e4d6a3ea6c9f6dee12f1705
34,026
def check_and_format_value(v): """ Formats all Pythonic boolean value into XML ones """ booleans = {'True': 'true', 'False': 'false'} clean = strip(v) if clean in booleans: return booleans.get(clean) return clean
26beca017621efe425a99d5f7af0645953b83870
34,027
def name_exists(name, id=-1): """Check if category name exists in db. Arguments: name as String, optional id as Integer Public categories are not allowed to appear more than once. Private categories can be duplicates. """ try: c = db_session.query(Category).filter(Category.name==name,\ Category.public==True, Category.id!=id).one() except: c = None if c: return True return False
36d2d8597431b62425d1270c9b82c5940eb6cbf0
34,028
def perimeter_nd(img_np, largest_only=False): """Get perimeter of image subtracting eroded image from given image. Args: img_np (:obj:`np.ndarray`): Numpy array of arbitrary dimensions. largest_only (bool): True to retain only the largest connected component, typically the outer border; defaults to False. Returns: :obj:`np.ndarray`: The perimeter as a boolean array where True represents the border that would have been eroded. """ interior = morphology.binary_erosion(img_np) img_border = np.logical_xor(img_np, interior) if largest_only: # retain only the largest perimeter based on pixel count labeled = measure.label(img_border) labels, counts = np.unique(labeled[labeled != 0], return_counts=True) labels = labels[np.argsort(counts)] img_border[labeled != labels[-1]] = False #print("perimeter:\n{}".format(img_border)) return img_border
8957efb818c3d17485c88a0864c06f14b091c169
34,029
def get_storing_type(): """Return the storing type of the data file. One of the following integers: 0 --> ST_ALWAYS_FAST 1 --> ST_ALWAYS_SLOW 2 --> ST_FAST_ON_TRIGGER 3 --> ST_FAST_ON_TRIGGER_SLOW_OTH A STORING_TYPE dict is provided by this module. Wraps: int DWGetStoringType(); (not documented) """ return _get_storing_type()
aa10f947e55c0731e9fb6446a9c102198954b09a
34,030
from typing import Optional import requests def transactions(api_url : str, network_id : NetworkIdentifier, operator : Optional[Operator] = "and", max_block : Optional[int] = None, offset : Optional[int] = None, limit : Optional[int] = None, transaction_id : Optional[TransactionIdentifier] = None, account_id : Optional[AccountIdentifier] = None, coin_id : Optional[CoinIdentifier] = None, currency : Optional[Currency] = None, status : Optional[str] = None, type_ : Optional[str] = None, address : Optional[str] = None, success : Optional[bool] = None, sesion : Optional[requests.Session] = None) -> SearchTransactionsResponse: """ Search for transactions that match given conditions. Parameters ---------- api_url: str network_id: NetworkIdenfier operator: Operator, optional This is either "and" or "or", and determines how multiple conditions should be applied. Defaults to "and" max_block: int, optional The newest block to consider when searching. If none is provided, the current block is assumed. offset: int, optional Offset into the query result to start returning transactions. If any query parameters are changed, this offset will also change. limit: int, optional The maximum number of transactions to return in a call. transaction_id : TransactionIdentifier, optional account_id : AccountIdentifier, optional Any included metadata in this will be considered unique when searching coin_id: CoinIdentifier, optional currency: Currency, optional status: str, optional The network-specific operation type. type_: str, optional the network-specific operation type. address: str, optional The AccountIdentifier.address, this will get all transactions related to an account address regardless of the subaccount. success: bool, optional A synthetic condition populated by parsing network-specific operation statuses (using the mapping provided in /network/options). session: requests.Session, optional Returns ------- SearchTransactionsResponse transactions: list[BlockTransaction] total_count: int next_offset: int, optional Used when paginated results, if this is not populated there are no more results. """ req = SearchTransactionsRequest(network_identifier=network_id, operator=operator, max_block=max_block, offset=offset, limit=limit, transaction_identifier=transaction_id, account_identifier=account_id, coin_identifier=coin_id, currency=currency, status=status, type=type_, address=address, success=success) return search_for_transactions(api_url, req, session)
76b4a64f24dc54a7e6f1a37761b82ec2222e4fbb
34,031
def _normalize_3dinputs(x, y, z): """Allow for a variety of different input types, but convert them all to componentwise numpy arrays that the functions in this module assume.""" # Handle different forms in input arguments x = np.atleast_2d(x) # Assure a numpy array for componentwise or array versions componentwise = False if y is not None and z is not None: # Componentwise inputs, separate arguments for X,Y,Z componentwise = True y = np.atleast_2d(y) z = np.atleast_2d(z) elif x.ndim == 2 and x.shape[1] == 3: # Array of 3-element vectors y = x[:, 1] z = x[:, 2] x = x[:, 0] else: raise ValueError() # Must be right type if np.array(x) worked above return x, y, z, componentwise
f6162959cee8c4e5efa6fff5f9d81a63bacb396b
34,032
import phono3py._phono3py as phono3c def get_grid_point_from_address(address, D_diag): """Return GR grid-point indices of grid addresses. Parameters ---------- address : array_like Grid address. shape=(3, ) or (n, 3), dtype='int_' D_diag : array_like This corresponds to mesh numbers. More precisely, this gives diagonal elements of diagonal matrix of Smith normal form of grid generating matrix. See the detail in the docstring of BZGrid. shape=(3,), dtype='int_' Returns ------- int GR-grid point index. or ndarray GR-grid point indices. shape=(n, ), dtype='int_' """ adrs_array = np.array(address, dtype="int_", order="C") mesh_array = np.array(D_diag, dtype="int_") if adrs_array.ndim == 1: return phono3c.grid_index_from_address(adrs_array, mesh_array) gps = np.zeros(adrs_array.shape[0], dtype="int_") for i, adrs in enumerate(adrs_array): gps[i] = phono3c.grid_index_from_address(adrs, mesh_array) return gps
86a6bb7385dfeb6553e1784ca656c7fbfebd30e4
34,033
def _generate_interpreted_layer(diagnostic_layer): """Generate interpreted layer from diagnostic test band Parameters ---------- diagnostic_layer: numpy.ndarray Diagnostic test band Returns ------- interpreted_layer : numpy.ndarray Interpreted layer """ logger.info('step 2 - get interpreted DSWX band') shape = diagnostic_layer.shape interpreted_layer = np.zeros(shape, dtype = np.uint8) for i in range(shape[0]): for j in range(shape[1]): for key, value in interpreted_dswx_band_dict.items(): if diagnostic_layer[i, j] == key: interpreted_layer[i, j] = value break else: interpreted_layer[i, j] = 255 return interpreted_layer
9810ec9306d967993881d5b94701239dbd862727
34,034
def get_evaluations(filename): """Return a list of all evaluations within an ENDF file. Parameters ---------- filename : str Path to ENDF-6 formatted file Returns ------- list A list of :class:`openmc.data.endf.Evaluation` instances. """ evaluations = [] with open(str(filename), 'r') as fh: while True: pos = fh.tell() line = fh.readline() if line[66:70] == ' -1': break fh.seek(pos) evaluations.append(Evaluation(fh)) return evaluations
469153dd3385f8f9ca3008c410d7b039e7167868
34,037
def svm_ova(): """Multiclass (One-vs-All) Linear Support Vector Machine.""" return CClassifierMulticlassOVA(CClassifierSVM)
064338ae0824225ad9fcd1dafc842bd2fee5180a
34,038
import re def parse(filename): """ Dict of Data """ to_return = {} f = open(filename,'r') for line in f.readlines(): m = re.match(parse_regex, line) result = m.groups() if result[0] == '+': to_return[result[1]] = True else: to_return[result[1]] = False return to_return
dbf4f25583913e1c99d70f99084a0aad2b6f618e
34,039
def get_Theta_wtr_d(region, Theta_ex_prd_Ave_d): """日平均給水温度 (℃) (12) Args: region(int): 省エネルギー地域区分 Theta_ex_prd_Ave_d(ndarray): 期間平均外気温度 (℃) Returns: ndarray: 日平均給水温度 (℃) """ # 日平均給水温度を求める際の会期係数 a_wtr, b_wtr = get_table_7()[region - 1] # 日平均給水温度 (12) Theta_wtr_d = np.clip(a_wtr * Theta_ex_prd_Ave_d + b_wtr, 0.5, None) return Theta_wtr_d
d038da7a01f6acc7ac4204e8ef8c0ac99a74027a
34,040
def get_FAAM_flights_df(): """ Retrieve DataFrame of FAAM BAe146 flights """ # Flights to use... DataRoot = get_local_folder('DataRoot') folder = '/{}/FAAM/core_faam_NetCDFs/'.format(DataRoot) filename = 'FAAM_BAe146_Biomass_burning_and_ACISIS_flights_tabulated.csv' df = pd.read_csv(folder+filename) # Only consider the dates after Jan 2018 DateVar = 'Date' df[DateVar] = pd.to_datetime(df[DateVar]) return df
0a60f9cdc61479da29de9ee93102af1abc9354b2
34,041
def get_facebook_customisations(token, aiid): """load customisations for the page""" return fetch_api( '/ai/{aiid}/facebook/custom', token=token, aiid=aiid, timeout=config.API_FACEBOOK_TIMEOUT )
067e3f30143238053ba796fe3f0bac4fd4f7a751
34,042
def plot_profile_base( x, y, err, label_x, label_y, annotate, categorical, scale_x, scale_y ): """Make a scatter plot of eval metric `y` vs training config param `x`""" f, ax = plt.subplots() if scale_y is not None: ax.set_yscale(scale_y) if scale_x is not None: ax.set_xscale(scale_x) ax.scatter(x, y, color = 'C0', label = 'model') if err is not None: ax.vlines(x, y - err, y + err, color = 'C0') if (label_x is not None) and (label_y is not None): ax.set_title('%s vs %s' % (label_y, label_x)) ax.set_xlabel(label_x) ax.set_ylabel(label_y) if annotate: # pylint: disable=consider-using-enumerate for i in range(len(x)): ax.annotate( "%.1e" % y[i], [x[i], y[i]], horizontalalignment = 'center', verticalalignment = 'bottom', rotation = 45, fontsize = 'smaller' ) if categorical: x = [ "\n".join(wrap(l, 70)) for l in x ] ax.set_xticklabels(x) f.autofmt_xdate(rotation = 45) ax.legend() return f, ax
6c23989b4eaa380d5955279e1e1ba8b2eb3b85be
34,044
def train_one_step( train_batch_i, bvae_model, genmo_optimizer, infnet_optimizer, prior_optimizer, grad_variable_dict, grad_sq_variable_dict): """Train Discrete VAE for 1 step.""" metrics = {} input_batch = process_batch_input(train_batch_i) (genmo_grads, prior_grads, infnet_grads, genmo_loss) = estimate_gradients( input_batch, bvae_model, FLAGS.grad_type, stick_breaking=FLAGS.stick_breaking, tree_structure=FLAGS.tree_structure, importance_weight=FLAGS.importance_weight, logits_sorting_order=FLAGS.logits_order) genmo_vars = bvae_model.decoder_vars genmo_optimizer.apply_gradients(list(zip(genmo_grads, genmo_vars))) prior_vars = bvae_model.prior_vars prior_optimizer.apply_gradients(list(zip(prior_grads, prior_vars))) infnet_vars = bvae_model.encoder_vars infnet_optimizer.apply_gradients(list(zip(infnet_grads, infnet_vars))) batch_size_sq = tf.cast(FLAGS.batch_size * FLAGS.batch_size, tf.float32) encoder_grad_var = bvae_model.compute_grad_variance( grad_variable_dict[FLAGS.grad_type], grad_sq_variable_dict[FLAGS.grad_type], infnet_grads) / batch_size_sq variance_dict = {} if (FLAGS.grad_type == 'reinforce_loo') and FLAGS.estimate_grad_basket: for method in FLAGS.estimate_grad_basket: if method == FLAGS.grad_type: continue # Already computed if ('disarm' in method) and ('tree' not in method): main_method, logits_order = method.split('-') logits_order = None if logits_order == 'null' else logits_order (_, _, infnet_grads, _) = estimate_gradients( input_batch, bvae_model, main_method, stick_breaking=True, tree_structure=False, logits_sorting_order=logits_order) variance_dict[method] = bvae_model.compute_grad_variance( grad_variable_dict[method], grad_sq_variable_dict[method], infnet_grads) / batch_size_sq return (encoder_grad_var, variance_dict, genmo_loss, metrics)
b1a4dff6dd43f1569908718bef50eacf77fe84a8
34,045
def make_stepped_schedule(steps): """ Helper to generate a schedule function to perform step-wise changes of a given optimizer hyper-parameter. :param steps: List of tuples (start_epoch, value); start_epochs should be increasing, starting at 0. E.g. momentum_schedule = make_stepped_schedule([(0, 0.5), (5, 0.9)]) """ def get_value_for_epoch(epoch): return next(x[1][1] for x in reversed(list(enumerate(steps))) if x[1][0] <= epoch) # search backwards for first step whose epoch <= current epoch, return associated hyper-parameter value return get_value_for_epoch
33fcd823bba6bcbd5fbf9edfbad780d79a1875f5
34,046
def sepfirnd(input,filters,axes,output=None,mode='reflect',cval=0.0,origin=0): """Apply multiple 1d filters to input using scipy.ndimage.filters.convolve1d input : array_like filters : sequence of array_like Sequence of filters to apply along axes. If length 1, will apply the same filter to all axes. axes : sequence of int output : array, optional mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional cval : scalar, optional origin : int, optional """ if output is None: output = np.empty_like(input) tmp = output if np.isscalar(filters[0]): filters = [np.asarray(filters)] if np.isscalar(axes): axes = [axes] if len(axes) > 1: tmp = np.empty_like(output) if len(filters) == 1: filters = [filters[0]]*len(axes) if len(axes) & 1 == 1: #pre-swap so that last write goes to output output,tmp = tmp,output for filt,ax in zip(filters,axes): output,tmp = tmp,output #swap buffers convolve1d(input,filt,ax,output,mode,cval,origin) input = output return output
3b2cc1687343121c3b93805efdadb467c0dd9e34
34,047
import json def daily_treasury(request): """ Get daily treasury. Data is from https://fiscaldata.treasury.gov/datasets/daily-treasury-statement/operating-cash-balance """ pd.options.display.float_format = '{:.2f}'.format daily_treasury_stats = pd.read_sql_query("SELECT * FROM daily_treasury", conn) daily_treasury_stats['Moving Avg'] = daily_treasury_stats['close_today_bal'].rolling(window=7).mean() daily_treasury_stats.rename(columns={"record_date": "Date", "close_today_bal": "Close Balance", "open_today_bal": "Open Balance", "amount_change": "Amount Change", "percent_change": "Percent Change"}, inplace=True) with open(r"database/economic_date.json", "r+") as r: data = json.load(r) return render(request, 'economy/daily_treasury.html', {"daily_treasury_stats": daily_treasury_stats[::-1].to_html(index=False), "next_date": data})
6b5f14edf68858683727b3c8a640674c4499e4e3
34,048
def list_representations(): """list available server-side objects""" try: response = get_bus().list_representations() return JsonResponse({'type': 'list', 'list': response}) except Exception as exception: message, status = handle_exception(exception) return JsonResponse({'message': message}, status=status)
01241939634c3eff088c1d3c6b2caac8847d1f9f
34,049
def format_endpoint_argument_doc(argument): """Return documentation about the argument that an endpoint accepts.""" doc = argument.doc_dict() # Trim the strings a bit doc['description'] = clean_description(py_doc_trim(doc['description'])) details = doc.get('detailed_description', None) if details is not None: doc['detailed_description'] = clean_description(py_doc_trim(details)) return doc
7acb21e3abafb188e3850ee9c78803e55d33fc8d
34,050
import scipy def from_edgelist(filename, directed=False, num_vertices=None, **kwargs) -> Graph: """ Construct an ``sgtl.Graph`` object from an edgelist file. The edgelist file represents a graph by specifying each edge in the graph on a separate line in the file. Each line looks like:: id1 id2 <weight> where id1 and id2 are the vertex indices of the given edge, and an optional weight is given as a floating point number. If any edge has a specified weight, then you must specify the weight for every edge. That is, every line in the edgelist must contain the same number of elements (either 2 or 3). The file may also contain comment lines. By default, the elements on a given line are assumed to be separated by spaces, and comments should begin with a '#' character. These defaults can be changed by passing additional key-word arguments which will be passed to pandas.read_csv. :param filename: The edgelist filename. :param directed: Whether the graph is directerd. :param num_vertices: The number of vertices in the graph, if this is known in advance. Specifying this value will speed up the method. :param kwargs: Key-word arguments to pass to the `pandas.read_csv` method which will be used to read in the file. This can be used to set a delimiter other than the space character, or to change the comment character. :return: the constructed `sgtl.Graph` object :raises TypeError: If the edgelist file cannot be parsed due to incorrect types. :Example: An example edgelist file is as follows:: # This is a comment line 0 1 0.5 1 2 1 2 0 0.5 The above file gives a weighted triangle graph. """ # Set the default values of the parameters if 'sep' not in kwargs: kwargs['sep'] = r'\s+' if 'comment' not in kwargs: kwargs['comment'] = '#' if 'header' not in kwargs: kwargs['header'] = None # Read in the edgelist file, and create the adjacency matrix of the graph as we go if num_vertices is None: num_vertices = 1 adj_mat = scipy.sparse.lil_matrix((num_vertices, num_vertices)) maximum_node_index = num_vertices - 1 edgelist_data = pd.read_csv(filename, **kwargs) for edge_row in edgelist_data.iterrows(): # Get the vertex indices from the edgelist file vertex1 = int(edge_row[1][0]) vertex2 = int(edge_row[1][1]) # Check whether the weight of the edge is specified if len(edge_row[1]) > 2: weight = edge_row[1][2] else: weight = 1.0 if not isinstance(weight, float): raise TypeError("Edge weights must be given as floating point numbers.") # Update the size of the adjacency matrix if we have encountered a larger vertex index than previously. if vertex1 > maximum_node_index or vertex2 > maximum_node_index: old_maximum_node_index = maximum_node_index maximum_node_index = max(vertex1, vertex2) # Update the shape of the lil matrix adj_mat._shape = (maximum_node_index + 1, maximum_node_index + 1) # pylint: disable=protected-access # Add rows to the data elements of the lil matrix for i in range(old_maximum_node_index + 1, maximum_node_index + 1): adj_mat.rows = np.append(adj_mat.rows, 1) adj_mat.rows[i] = [] adj_mat.data = np.append(adj_mat.data, 1) adj_mat.data[i] = [] # Update the adjacency matrix with this edge. adj_mat[vertex1, vertex2] = weight if not directed: adj_mat[vertex2, vertex1] = weight # Construct the graph object and return it return Graph(adj_mat)
e425169eadb405458ffe3e72629409cb67e563db
34,051
def shn_shelter_rheader(r, tabs=[]): """ Resource Headers """ if r.representation == "html": rheader_tabs = shn_rheader_tabs(r, tabs) record = r.record rheader = DIV(TABLE( TR( TH(Tstr("Name") + ": "), record.name ), ), rheader_tabs) return rheader else: return None
d802f68d89e04ec420e366ef651df278025d9822
34,052
from operator import xor def usig1(bitarray: UBitArray32) -> UBitArray32: """ (uppercase sigma 1) Computes the XOR of three sets of bits which result from rotating the input set rightwards by 6, then 11, and then 25. Args: bitarray: (UBitArray32) The set of bits to operate on. Returns: (UBitArray32) The XOR of the three sets that result from rotating the input set.. """ a = bitarray.rotr(6) b = bitarray.rotr(11) c = bitarray.rotr(25) return xor(a,b,c)
62aa93fa77dde53aecfe5bfd335ec919eedbbdb2
34,054
def fullRadar(dicSettings, mcTable): """ Calculates the radar variables over the entire range Parameters ---------- dicSettings: a dictionary with all settings output from loadSettings() mcTable: McSnow data output from getMcSnowTable() Returns ------- specXR: xarray dataset with the spectra(range, vel) and KDP(range) """ specXR = xr.Dataset() #specXR_turb = xr.Dataset() counts = np.ones_like(dicSettings['heightRange'])*np.nan vol = dicSettings['gridBaseArea'] * dicSettings['heightRes'] for i, heightEdge0 in enumerate(dicSettings['heightRange']): heightEdge1 = heightEdge0 + dicSettings['heightRes'] print('Range: from {0} to {1}'.format(heightEdge0, heightEdge1)) mcTableTmp = mcTable[(mcTable['sHeight']>heightEdge0) & (mcTable['sHeight']<=heightEdge1)].copy() #mcTableTmp = mcTableTmp[(mcTableTmp['sPhi']<=4)] if (dicSettings['scatSet']['mode'] == 'full') or (dicSettings['scatSet']['mode'] == 'table') or (dicSettings['scatSet']['mode'] == 'wisdom') : mcTableTmp = mcTableTmp[(mcTableTmp['sPhi']>=0.01)] mcTableTmp = calcParticleZe(dicSettings['wl'], dicSettings['elv'], mcTableTmp, ndgs=dicSettings['ndgsVal'], scatSet=dicSettings['scatSet']) tmpSpecXR = getMultFrecSpec(dicSettings['wl'], mcTableTmp, dicSettings['velBins'], dicSettings['velCenterBin'], heightEdge1,dicSettings['convolute'],dicSettings['nave'],dicSettings['noise_pow'], dicSettings['eps_diss'], dicSettings['uwind'], dicSettings['time_int'], dicSettings['theta']/2./180.*np.pi, scatSet=dicSettings['scatSet'] ) #volume normalization tmpSpecXR = tmpSpecXR/vol specXR = xr.merge([specXR, tmpSpecXR]) if (dicSettings['scatSet']['mode'] == 'full') or (dicSettings['scatSet']['mode'] == 'table') or (dicSettings['scatSet']['mode'] == 'wisdom') : #calculating the integrated kdp tmpKdpXR = getIntKdp(dicSettings['wl'], mcTableTmp, heightEdge1) #volume normalization tmpKdpXR = tmpKdpXR/vol specXR = xr.merge([specXR, tmpKdpXR]) counts[i] = len(mcTableTmp.vel.values) return specXR
c7de880a159b80c60ec030a926f9d6278103c8cb
34,055
def connect_db(uri, default_db_name=None, factory=pymongo.MongoClient): """ Use pymongo to parse a uri (possibly including database name) into a connected database object. This serves as a convenience function for the common use case where one wishes to get the Database object and is less concerned about the intermediate MongoClient object that pymongo creates (though the connection is always available as db.client). >>> db = connect_db( ... 'mongodb://mongodb.localhost/mydb?readPreference=secondary') >>> db.name 'mydb' >>> db.client.read_preference Secondary(...) If no database is indicated in the uri, fall back to default. >>> db = connect_db('mongodb://mgo/', 'defaultdb') >>> db.name 'defaultdb' The default should only apply if no db was present in the URI. >>> db = connect_db('mongodb://mgo/mydb', 'defaultdb') >>> db.name 'mydb' """ uri_p = pymongo.uri_parser.parse_uri(uri) client = factory(uri) return client.get_database(uri_p['database'] or default_db_name)
2ccb233aec3f9df9da1e4a9b82c7c4e5dbbfd0d9
34,056
from pathlib import Path import re def parse_path(path: Path): """Obtain filename, task, framework and engine from saved path. """ if re.match(r'^.*?[!/]*/[A-Za-z]+-[A-Za-z]+/[A-Za-z_]+/\d+$', str(path.with_suffix(''))): filename = path.name architecture = path.parent.parent.parent.stem task = Task[path.parent.name] info = path.parent.parent.name.split('-') framework = Framework[info[0]] engine = Engine[info[1]] version = int(Path(filename).stem) return { 'architecture': architecture, 'task': task, 'framework': framework, 'engine': engine, 'version': version, 'filename': filename, 'base_dir': path.parent } else: raise ValueError('Incorrect model path pattern')
310d7bccb6f54147cb2214da45f339243be99620
34,058
import requests def check_newer_version(command: str): """ Query for the latest release of the chaostoolkit to compare it with the current's version. If the former is higher then issue a warning inviting the user to upgrade its environment. """ try: command = command.strip() r = requests.get(LATEST_RELEASE_URL, timeout=(2, 30), params={"current": __version__, "command": command}) if r.status_code == 200: payload = r.json() latest_version = payload["version"] if payload.get("up_to_date") is False: options = '--pre -U' if 'rc' in latest_version else '-U' logger.warning( "\nThere is a new version ({v}) of the chaostoolkit " "available.\n" "You may upgrade by typing:\n\n" "$ pip install {opt} chaostoolkit\n\n" "Please review changes at {u}\n".format( u=CHANGELOG_URL, v=latest_version, opt=options)) return latest_version except Exception: pass
0998818229f2cb0de5abb6bf9c9de0ba765fdbe9
34,059
def prettyprint(s, toUpper=False): """Given a string, replaces underscores with spaces and uppercases the first letter of each word ONLY if the string is composed of lowercased letters. If the param, toUpper is given then s.upper is returned. Examples: "data_quality" -> "Data Quality" "copy_number_123" -> "Copy Number 123" "My_own_title" -> "My own title" "Hla" -> "Hla" """ if toUpper: s = s.upper() s= s.replace("_", " ") else: s = s.title() s= s.replace("_", " ") return s
18a57e74a2e3df66db4ede337663f9d8993a986b
34,060
def doFilter(rule, dstPath): """ 过滤 """ global useStart global useEnd global useConatins global searchInChild # 文件名后缀(可以包含 点号) global fileNameSuffix temp = rule.get("searchInChild", False) if True == temp: searchInChild = True print "searchInChild is " + str(searchInChild) fileNameSuffix = rule.get("fileNameSuffix", "") matchPathList = doFilterInPath(dstPath) print "match %d files" % len(matchPathList) print "match list are " for a in matchPathList: print a return matchPathList
9de196537753ffabd288f1aa64d0fe6b63a4225e
34,061
import json def generate(schema_id: str) -> tuple: """Generates sample data from a schema :param str schema_id: Schema id :return: A http response :rtype: tuple """ search = [{'schema': schema_id}] if ObjectId.is_valid(schema_id): search.append({'_id': ObjectId(schema_id)}) schema = app.data.driver.db['schema'].find_one({"$or": search}) if not schema: return json.dumps({"_status": "ERR", "_error": ERROR_404}), 404, {'Content-Type': 'application/json'} return generate_and_format(schema)
1caaa15753d0e33cb62d0d3c0f7cdf68945bb938
34,062
def recombine_edges(output_edges): """ Recombine a list of edges based on their rules. Recombines identical Xe isotopes. Remove isotopes. :param output_edges: :return: """ mol = Chem.MolFromSmiles(".".join(output_edges)) # Dictionary of atom's to bond together and delete if they come in pairs iso_dict = {} for atom in mol.GetAtoms(): if atom.GetAtomicNum()==54: # Get the isotope iso = atom.GetIsotope() if iso in iso_dict: iso_dict[iso].append(get_info(atom)) else: iso_dict[iso] = [get_info(atom)] mw = Chem.RWMol(mol) # Add bonds first del_indices = [] for isotope in iso_dict: if len(iso_dict[isotope])>1: mw.AddBond(iso_dict[isotope][0][1], iso_dict[isotope][1][1], Chem.BondType.SINGLE) del_indices.append(iso_dict[isotope][0][0]) del_indices.append(iso_dict[isotope][1][0]) # Now delete atoms del_count = 0 for atom_index in sorted(del_indices): mw.RemoveAtom(atom_index-del_count) del_count+=1 Chem.SanitizeMol(mw) return Chem.MolToSmiles(mw,isomericSmiles=True)
b3ffbb9d3cf15c0f411fb83a8f1013a1988ae7ec
34,063
def to_num_groups(word_groups): """ This function returns the a list of 24 numbers from a list of 24 words representing the payload """ with open('wordlist.txt', 'rb') as (file): words = file.readlines() words = [word.decode('utf8').strip() for word in words] num_groups = [words.index(word) for word in word_groups] return num_groups
4286c584bb2f32d9c5ed0f3bcf2d0ee225b84ce4
34,065
import math def _rsqrt(step_number, tail_start, body_value): """Computes a tail using a scaled reciprocal square root of step number. Args: step_number: Absolute step number from the start of training. tail_start: Step number at which the tail of the curve starts. body_value: Value relative to which the tail should be computed. Returns: A learning rate value that falls as the reciprocal square root of the step number, scaled so that it joins smoothly with the body of a BodyAndTail instance. """ return body_value * (math.sqrt(tail_start) / math.sqrt(step_number))
99138c88ae8d0fc0d49a5ac55e389cd5a40d5f90
34,066
def set_formula_in_row(ws, num, row, mr_col=1): """ This "loops" through single cells in a column and applies mixing ratio formulas. The format of the formulas is quite convulted for legacy reasons. Existing procedures made adhering to this format easier, but the gist is below. Samples come in sets of 10, from a GC Run. They were kept in two columns in a spreadsheet, where the below is repeated in sets of 5 rows (per GC Run). One GC Run looks like: col1 | col2 ------------- samp1 | samp2 std1 | samp4 samp5 _______ # all beyond this line are quantified with standard 2 ______| samp6 samp7 | std2 samp9 | samp10 Samples 1-5 use the first standard (sample 3) to quantify themselves, and samples 6-10 use the second standard (sample 8) to quantify themselves. These rules are applied in the integration code itself, but the mixing ratios and relevant statistics need to be calculated within the spreadsheet so the person integrating has access to them as they integrate manually. The sheet is loaded by add_formulas_and_format_sheet(), then the two columns are passed row-by-row to this function to add the formulae before saving. :param ws: object, open worksheet with openpyxl as the engine :param num: int, absolute row number (excluding header :param row: object, the row object generated by iterating over ws :param mr_col: int, in [1,2] :return: ws, the modified worksheet is passed back """ assert mr_col in [1,2], "Invalid mixing ratio column. It must either 1 or 2" std_relnum = 1 if mr_col is 1 else 3 # if it's the first mixing ratio column, the standard will be in the second row (0-indexed: 1) # if it's the second mixing ratio columnm, the standard will be in the fourth row (0-indexed: 3) standard_div_line = 2 if mr_col is 1 else 1 # samples 1-5 (excluding the standardd) are quantified using the first standard (sample 3) # samples 6-10 (excluding the stnadrad) are quantified using the second standard (sample 8) # so, in column 1, every sample up to (0-indexed) 2 should be quantified with standard 1, and # everything after is quantified with standard 2. In column 2, that number changes to 1 relnum = num % 5 # num is 0-indexed, relnum is the position in this group of 5 rows (one run is 5r x 2c for 10 total runs) if relnum is std_relnum: return ws # skip the standard for this column for cell in row: if cell.value is None: # assume cells with some value have been modified and should not be changed rownum = cell.row # retrieve the real row number pa_cell = f'C{rownum}' if mr_col is 1 else f'D{rownum}' # the peak area for a mixing ratio cell will always be C for column 1 and D for column 2, always same row if relnum <= standard_div_line: # this is should be quantified by standard 1, in this column std_pa_cell = f'C{rownum - relnum + 1}' else: # it should be quantified by standard 2, in the next column std_pa_cell = f'D{rownum - relnum + 3}' cell.value = f'={pa_cell}/{std_pa_cell} * 2067.16' if relnum is 0 and mr_col is 1: # the first line of every 5-row batch needs additional statistics added # this does not need to be done twice, which is why it's done only for MR col 1 run_range = f'E{rownum}:F{rownum+4}' # all mixing cells in the run std_range = f'C{rownum+1}, D{rownum+3}' # the two standards run_median_cell = ws[f'G{rownum}'] run_rsd_cell = ws[f'H{rownum}'] std_med_cell = ws[f'I{rownum}'] std_rsd_cell = ws[f'J{rownum}'] run_rsd_cell.number_format = '0.00%' std_rsd_cell.number_format = '0.00%' run_median_cell.value = f'=MEDIAN({run_range})' # set formulas run_rsd_cell.value = f'=STDEV({run_range})/{run_median_cell.coordinate}' std_med_cell.value = f'=MEDIAN({std_range})' std_rsd_cell.value = f'=STDEV({std_range})/{std_med_cell.coordinate}' return ws
2d4d438670e0760ce0158d5930390824634cce52
34,067
from typing import Union import pathlib from typing import List from typing import Tuple import json def prepare_ablation_from_path( path: Union[str, pathlib.Path], directory: Union[str, pathlib.Path], save_artifacts: bool, ) -> List[Tuple[pathlib.Path, pathlib.Path]]: """Prepare a set of ablation study directories. :param path: Path to configuration file defining the ablation studies. :param directory: The directory in which the experimental artifacts (including the ablation configurations) will be saved. :param save_artifacts: Defines, whether the output directories for the trained models sampled during HPO should be created. :return: pairs of output directories and HPO config paths inside those directories """ directory = normalize_path(directory, *iter_unique_ids()) with open(path) as file: config = json.load(file) return prepare_ablation_from_config(config=config, directory=directory, save_artifacts=save_artifacts)
39e043ed3a9cb82a85610c4b6df0d2d718895fb1
34,068
def currentTime(*args, **kwargs): """ Modifications: - if no args are provided, the command returns the current time """ if not args and not kwargs: return cmds.currentTime(q=1) else: return cmds.currentTime(*args, **kwargs)
89b6d0c8abbea29b4a1f1f9f0f6458735313b400
34,070
def get_shapes(gdf: gpd.GeoDataFrame, colname: str) -> list: """ Extract and associate and format geometry and data in GeoDataFrame. """ assert "geometry" in gdf.columns, f"Expected `geometry` in {gdf.columns=}" assert colname in gdf.columns, f"Expected {colname!r} in {gdf.columns=}." return [(shape, value) for (shape, value) in zip(gdf.geometry, gdf[colname])]
bf65d6a2caeee7d82b2b84f2b07722445beefb58
34,071
def _decodeUserData(byteIter, userDataLen, dataCoding, udhPresent): """ Decodes PDU user data (UDHI (if present) and message text) """ result = {} if udhPresent: # User Data Header is present result['udh'] = [] udhLen = next(byteIter) ieLenRead = 0 # Parse and store UDH fields while ieLenRead < udhLen: ie = InformationElement.decode(byteIter) ieLenRead += len(ie) result['udh'].append(ie) del ieLenRead if dataCoding == 0x00: # GSM-7 # Since we are using 7-bit data, "fill bits" may have been added to make the UDH end on a septet boundary shift = ((udhLen + 1) * 8) % 7 # "fill bits" needed to make the UDH end on a septet boundary # Simulate another "shift" in the unpackSeptets algorithm in order to ignore the fill bits prevOctet = next(byteIter) shift += 1 if dataCoding == 0x00: # GSM-7 if udhPresent: userDataSeptets = unpackSeptets(byteIter, userDataLen, prevOctet, shift) else: userDataSeptets = unpackSeptets(byteIter, userDataLen) result['text'] = decodeGsm7(userDataSeptets) elif dataCoding == 0x02: # UCS2 result['text'] = decodeUcs2(byteIter, userDataLen) else: # 8-bit (data) userData = [] for b in byteIter: userData.append(unichr(b)) result['text'] = ''.join(userData) return result
91a259e2482ee654cc3fc1388138695ed975d778
34,072
from NexposeAPI import VulnData from skaldship.exploits import connect_exploits def import_all_vulndata(overwrite=False, nexpose_server={}): """ Uses the NexposeAPI and imports each and every vulnerability to Kvasir. Can take a looooong time. Args: overwrite: Whether or not to overwrite an existing t_vulndata record Returns: msg: A string message of status. """ db = current.globalenv['db'] vuln_class = VulnData() vuln_class.host = nexpose_server.get('host', 'localhost') vuln_class.port = nexpose_server.get('port', '3780') if vuln_class.login(user_id=nexpose_server.get('user'), password=nexpose_server.get('pw')): log(" [*] Populating list of Nexpose vulnerability ID summaries") try: vuln_class.populate_summary() except Exception, e: log(" [!] Error populating summaries: %s" % str(e), logging.ERROR) return False try: vulnxml = etree.parse(StringIO(vuln_class.vulnxml)) except Exception, e: log(" [!] Error parsing summary XML: %s" % str(e), logging.ERROR) return False vulns = vulnxml.findall('VulnerabilitySummary') log(" [*] %s vulnerabilities to parse" % len(vulns)) if vuln_class.vulnerabilities > 0: existing_vulnids = [] [existing_vulnids.extend([x['f_vulnid']]) for x in db(db.t_vulndata.f_source == "Nexpose").select(db.t_vulndata.f_vulnid).as_list()] log(" [*] Found %d vulnerabilities in the database already." % (len(existing_vulnids))) stats = {'added': 0, 'updated': 0, 'skipped': 0, 'errors': 0} for vuln in vulns: if vuln.attrib['id'] in existing_vulnids and not overwrite: # skip over existing entries if we're not overwriting stats['skipped'] += 1 continue try: vulndetails = vuln_class.detail(vuln.attrib['id']) except Exception, e: log(" [!] Error retrieving details for %s: %s" % (vuln.attrib['id'], str(e)), logging.ERROR) stats['errors'] += 1 if stats['errors'] == 50: log(" [!] Too many errors, aborting!", logging.ERROR) return False else: continue if vulndetails is not None: (vulnfields, references) = vuln_parse(vulndetails.find('Vulnerability'), fromapi=True) else: log(" [!] Unable to find %s in Nexpose" % vuln.attrib['id'], logging.WARN) continue # add the vulnerability to t_vulndata vulnid = db.t_vulndata.update_or_insert(**vulnfields) if not vulnid: vulnid = db(db.t_vulndata.f_vulnid == vulnfields['f_vulnid']).select().first().id stats['updated'] += 1 log(" [-] Updated %s" % vulnfields['f_vulnid']) else: stats['added'] += 1 log(" [-] Added %s" % vulnfields['f_vulnid']) db.commit() # add the references if vulnid is not None and references: for reference in references: # check to see if reference exists first query = (db.t_vuln_refs.f_source == reference[0]) & (db.t_vuln_refs.f_text == reference[1]) ref_id = db.t_vuln_refs.update_or_insert(query, f_source=reference[0], f_text=reference[1]) if not ref_id: ref_id = db(query).select().first().id # make many-to-many relationship with t_vuln_data db.t_vuln_references.update_or_insert(f_vuln_ref_id=ref_id, f_vulndata_id=vulnid) db.commit() connect_exploits() msg = "%s added, %s updated, %s skipped" % (stats['added'], stats['updated'], stats['skipped']) log(" [*] %s" % msg) else: msg = "No vulndata populated from Nexpose" log(" [!] Error: %s" % msg, logging.ERROR) else: msg = "Unable to communicate with Nexpose" log(" [!] Error: %s" % msg, logging.ERROR) return msg
d87bfc3e1a12de4e4c65bf0961be4b74787c5393
34,073
import json def add_category(category_name): """ REST-like endpoint to add a category :returns: Customized output from GIPHY :rtype: json """ user = ( models.database.session.query(models.users.User) .filter( models.users.User.token == flask.request.cookies["X-Auth-Token"] ) .one() ) existing_category = ( models.database.session.query(models.categories.Category) .filter(models.categories.Category.name == category_name) .filter(models.categories.Category.user == user) .all() ) if existing_category: # Already exists, move on return json.dumps({}) new_category = models.categories.Category(name=category_name, user=user) models.database.session.add(new_category) models.database.session.commit() return json.dumps(new_category.to_dict())
e5ff14ef56f628df982c524c27a7a7b61719be2c
34,074
from typing import Optional from datetime import datetime from typing import List from typing import Tuple import re async def send_embed( channel: Messageable, embed_text: str, title: str = "", url: Optional[str] = None, colour: Colour = Colour(settings.embed_color_normal), footer_text: Optional[str] = None, footer_icon: Optional[str] = None, timestamp: Optional[datetime] = datetime.now(), fields: Optional[List[Tuple[str, str, bool]]] = None, embed_fallback: bool = False, token_guard: bool = False, path_guard: bool = False ) -> Message: """ Sends an embeded message to a given context or channel. :param channel: Context or channel of message :param embed_text: Text content of embed :param title: Title of embed :param url: URL of embed :param colour: Colour of embed :param footer_text: Footer text of embed :param footer_icon: Footer icon URL of embed :param timestamp: Timestamp of embed :param fields: List of fields represented by a tuple of their title, text, and inline mode :param embed_fallback: Whether embed will be sent as a regular message if the bot doesn't have the send embeds permission :param token_guard: Censor Discord bot tokens :param path_guard: Censor full project directory :return: Discord Message object """ if token_guard: title = re.sub(TOKEN_REGEX, "[REDACTED TOKEN]", title) embed_text = re.sub(TOKEN_REGEX, "[REDACTED TOKEN]", embed_text) if path_guard: title = title.replace(PARENT_DIRECTORY, ".") embed_text = embed_text.replace(PARENT_DIRECTORY, ".") embed = Embed( title=title, url=url if url is not None else Embed.Empty, colour=colour, description=embed_text, timestamp=timestamp if timestamp is not None else Embed.Empty ) if footer_text is not None or footer_icon is not None: embed = embed.set_footer( text=footer_text if footer_text is not None else embed.Empty, icon_url=footer_icon if footer_icon is not None else embed.Empty ) try: if fields is not None: for name, text, inline in fields: embed = embed.add_field(name=name, value=text, inline=inline) except ValueError: logger.warning("Failed to add fields to embed: {}", str(fields)) try: # noinspection PyTypeChecker message = await channel.send(None, embed=embed) return message except Forbidden: logger.trace( "Failed to send embed to channel ID {}; " "falling back on plain message: {}", str(channel), embed_fallback ) if embed_fallback: field_text = "" if fields is not None and len(fields) > 0: field_text = "\n\n".join( f"**{title}**\n{text}" for title, text, inline in fields ) try: message = await send_message( channel, f"**{title}**\n\n{embed_text}\n\n" f"{field_text}\n\n{footer_text}" ) return message except Forbidden: logger.trace( "Failed to send message to channel ID {}", str(channel) )
f102bb7a5737519d5d6f9cbda48feb1a0337ffba
34,076
from ucscsdk.mometa.comm.CommSyslogMonitor import \ def syslog_local_monitor_disable(handle): """ This method disables logs on local monitor. Args: handle (UcscHandle) Returns: CommSyslogMonitor: Managed Object Raises: UcscOperationError: If CommSyslogMonitor is not present Example: mo = syslog_local_monitor_disable(handle) """ CommSyslogMonitorConsts dn = ucsc_base_dn + "/syslog/monitor" mo = handle.query_dn(dn) if not mo: raise UcscOperationError("syslog_local_monitor_disable", "syslog monitor does not exist.") mo.admin_state = CommSyslogMonitorConsts.ADMIN_STATE_DISABLED handle.set_mo(mo) handle.commit() return mo
40d48a4932c7e79221aba95ba5f0a4d8b5ba446c
34,077
def git_push_obj(verbose, remote, obj=None): """ Push given object to git :param obj: object wich will be pushed to git :type obj: any one implements the interface of pushing to git :rparam boolean: If success return True """ try: LOGGER.info("%s: pushing to remote - %s", verbose, remote.name) if not obj: remote.push() else: remote.push(obj) LOGGER.info("%s: successfully pushed", verbose) except GitCommandError as err: LOGGER.warning("%s: was not pushed because %s", verbose, err.stderr.split(':')[-1]) return None return True
4139e93ff714baf70e50ff43329b6d3618508ede
34,078
from datetime import datetime import random def partial_generator(api_list, seed = datetime.now().microsecond): """ Randomly denys access to certain API functions :param api_list: The list of functions in the api :param seed: An int, allows for seeding the tests with a certain seed to create predictable results :return: Returns an api where roughly 1/2 the functions are denied access """ random_gen = random.Random() random_gen.seed(seed) return {func: (lambda x: False) for func in api_list if random_gen.random() > 0.5}
c32f8e072d35a79028cd9dcbe1edb2b28edf867c
34,079
def get_key_from_event(*, event: dict) -> str: """Return S3 Object's Key from Lambda event Args: event (dict): Lambda event object """ record = event['Records'][0] obj_key = record['s3']['object'].get('key') if obj_key: return obj_key else: raise ObjectKeyError('KeyError: "key" not found')
274eef78eb646fd10d3f5970051de24a0f273e1e
34,080
def import_buffer_to_ast(buf, module_name): """ Import content from buf and return a Python AST.""" return hy_compile(import_buffer_to_hst(buf), module_name)
b9bf33808e6951f3c6e49223f77c8cd8b1db07b6
34,082
def svn_wc_delete(*args): """ svn_wc_delete(char const * path, svn_wc_adm_access_t * adm_access, svn_cancel_func_t cancel_func, svn_wc_notify_func_t notify_func, apr_pool_t pool) -> svn_error_t """ return _wc.svn_wc_delete(*args)
fb93c2989f65001a5e0ef012801a7c66582c815b
34,083
import functools import warnings def deprecated(func): """ A decorator used to mark functions that are deprecated with a warning. """ @functools.wraps(func) def wrapper(*args, **kwargs): # https://stackoverflow.com/questions/2536307/decorators-in-the-python-standard-lib-deprecated-specifically # may not want to turn filter on and off warnings.simplefilter('always', DeprecationWarning) # turn off filter primary_message = "Call to deprecated function {}.".format(func.__name__) warnings.warn(primary_message, category=DeprecationWarning, stacklevel=2) warnings.simplefilter('default', DeprecationWarning) # reset filter return func(*args, **kwargs) return wrapper
b79556e9ef0c7b8fb877788ab53b198807f782ee
34,084
def queryAnnotations( paths, # type: List[String] startTime=None, # type: Optional[Date] endTime=None, # type: Optional[Date] types=None, # type: Optional[List[String]] ): # type: (...) -> List[Annotation] """Queries user stored annotations from the Tag history system for a set of paths, for a given time range. Args: paths: A list of Tag paths to query. The paths are equivalent to what would be used ofr a Tag history query, and should specify the source provider as well. For example, "[HistoryProvider/Gateway:Provider]Path/To/Tag". startTime: The start of the time range. If not defined, defaults to 12 hours ago. Optional. endTime: The end of time range. If not defined, defaults to "now". Optional. types: A list of string "types" to filter on. Types are defined by the annotations and various subsystems, and may vary with different providers. Possible annotation types are listed on the system.Tag.storeAnnotations page. Optional. Returns: A list of Annotation objects that match the query criteria. """ print(paths, startTime, endTime, types) return [Annotation()]
e68b2a94ae54f7cfba854cf295dfbaf9e148e391
34,085
def has_other_useful_output(content_text): """Returns whether |content_text| has other useful output. Namely, console errors/warnings & alerts/confirms/prompts. """ prefixes = ('CONSOLE ERROR:', 'CONSOLE WARNING:', 'ALERT:', 'CONFIRM:', 'PROMPT:') def is_useful(line): return any(line.startswith(prefix) for prefix in prefixes) lines = content_text.strip().splitlines() return any(is_useful(line) for line in lines)
c1abfdaf681816314134ae33b5fd0fc48757dcc5
34,086
import re def scrape(pagelim, endpoint, term=''): """ Retrieves all pages of the specified URL format up to the page limit. Most of this code is spent on the loop structure to make sure we can automatically get all the pages needed without storing empty data. The latter half of this function is dedicated to making sure all the data we need is typecasted correctly. pagelim Maximum number of pages to fetch endpoint API endpoint type, e.g. 'timelines/channels', 'timelines/users' term optional term to add onto url, e.g. 'comedy', '934940633704046592' """ comp = pd.DataFrame() success = True page = 0 url = 'https://vine.co/api/{0}/{1}'.format(endpoint, term) vines = '' while success: if page: url = url.split('?')[0] + '?page=' + str(page) else: print('Attempting to scrape: ' + url) try: vines = rq.get(url).json() except Exception as e: print(e) if vines['success']: if len(vines['data']['records']) > 0: #the meat of the json object we're looking for, vine entries df = pd.DataFrame.from_dict(vines['data']['records']) print('Scrape successful! Downloaded {0} entries'.format(len(df.index))) #if this is the first page, start comp as a copy of the page if page == 0: comp = df.copy() #else add current page to the comp else: comp = pd.concat([df, comp], ignore_index=True) #a pagelim of -1 means grab all the pages available/no limit if page < pagelim or pagelim == -1: page += 1 else: print('Finished scraping at: ' + url) success = False else: print('Finished scraping at: ' + url) success = False else: print('API request failed, {0}/{1} not valid'.format(endpoint, term)) success = False if page: #expands the loops column's objects into count and velocity columns loops = comp['loops'].apply(lambda x: pd.Series(x)) unstacked = loops.unstack().unstack().T[['count', 'velocity']] #takes the columns we need subset = comp[['videoUrl', 'permalinkUrl', 'username', 'created']].astype(basestring).copy() #adds the new columns to the previous page(s) composite subset['count'] = unstacked['count'].astype(int) subset['velocity'] = unstacked['velocity'].astype(float) subset['description'] = comp['description'].astype(basestring).map(enc_str) #when I get the results for a tag search, it always seems to include #results that don't have the tag in the description, this filters those #results out of the data tag = re.search(r'(?<=tags/)(\w+)(?=\?*?)', url) if tag: tag_text = tag.group() print('checking for: ' + tag_text) #filters results based on the truth result of a regex subset = subset[subset.description.fillna(value=' ').str.contains(tag_text)] #extracts the vineid from the right side of the permalink get_id = lambda x: x.rsplit('/', 1)[-1] subset['id'] = [get_id(perma) for perma in subset['permalinkUrl']] sort = sort_clean(subset).dropna() return sort else: return pd.DataFrame()
16c0d026e7f320549d77b1a6655aa8db35f6521e
34,087
def TransformContainerAnalysisData(image_name, occurrence_filter=None): """Transforms the occurrence data from Container Analysis API.""" occurrences = FetchOccurrencesForResource(image_name, occurrence_filter) analysis_obj = container_analysis_data_util.ContainerAnalysisData(image_name) for occurrence in occurrences: analysis_obj.add_record(occurrence) return analysis_obj
99edfe655884a2932b4e84d6ce370df7dde7412e
34,088
import random def cluster_randomly_weigthed(document, prob_coref=0.03): """ Randomly creates a coreferring link between a mention, m2, and any preceding mention, m1. Probability of selecting a closer antecedent is higher, according to a geometric distribution Probability of selecting an antecedent is prob_coref, else selects NO_ANTECEDENT for that given mention. @prob_coref defaults to 0.03 which is the approximate percentage of positive coreferring links. """ links = np.ndarray(shape=(len(document.mentions),), dtype=int) links.fill(Link.NO_ANTECEDENT) for idx in range(1, len(document.mentions)): if random.random() < prob_coref: random_antecedent = idx - geom.rvs(0.3) links[idx] = random_antecedent if random_antecedent >= 0 else Link.NO_ANTECEDENT return coreference_links_to_entity_clusters(links)
d7223c9594ba5689e69f47048cf53f10b04bb85a
34,091
def getOffset(self,name): """ get the offset """ return [self.xoffset,self.yoffset]
b7b8d9c5da6bb38751e579583a8a5bd118cb1f67
34,092
def to_nbsphinx(s): """Use the sphinx naming style for anchors of headings""" s = s.replace(" ", "-").lower() return "".join(filter(lambda c : c not in "()", s))
87b266c84f9b32c1d7357c5ed23ba4058ba33673
34,093