content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def find_keyword(URL, title, keywords):
""" find keyword helper function of history_list """
for keyword in keywords:
# case insensitive
if len(keyword) > 0 and (URL is not None and keyword.lower() in URL.lower()) or (title is not None and keyword.lower() in title.lower()):
return True
return False
|
b956cc3744411a409a227cb80423dcf52ca9d248
| 33,756 |
def parsetypes(dtype):
"""
Parse the types from a structured numpy dtype object.
Return list of string representations of types from a structured numpy
dtype object, e.g. ['int', 'float', 'str'].
Used by :func:`tabular.io.saveSV` to write out type information in the
header.
**Parameters**
**dtype** : numpy dtype object
Structured numpy dtype object to parse.
**Returns**
**out** : list of strings
List of strings corresponding to numpy types::
[dtype[i].name.strip('1234567890').rstrip('ing') \
for i in range(len(dtype))]
"""
return [dtype[i].name.strip('1234567890').rstrip('ing')
for i in range(len(dtype))]
|
6f373135f751b243104cc7222326d995048d7c93
| 33,757 |
import random
def random_flip(image):
"""50% chance to flip the image for some variation"""
if random.random() < 0.5:
image = cv2.flip(image, 1) # 1 = vertical flip
return image
|
8e9898dd0a505f4db4a56e6cea8fa8631790e6c4
| 33,758 |
def sites_only(exclude_isoforms=False):
"""Return PhosphositePlus data as a flat list of proteins and sites.
Parameters
----------
exclude_isoforms : bool
Whether to exclude sites for protein isoforms. Default is False
(includes isoforms).
Returns
-------
list of tuples
Each tuple consists of (uniprot_id, residue, position).
"""
sites = []
(data_by_up, data_by_site_grp) = _get_phospho_site_dataset()
for up_id, respos_dict in data_by_up.items():
if exclude_isoforms and '-' in up_id:
continue
for respos in respos_dict.keys():
res = respos[0]
pos = respos[1:]
sites.append((up_id, res, pos))
return sites
|
b3c021e7e4332274c875b189b0f73f7ad3e43e0d
| 33,759 |
def transform_url(url, qparams=None, **kwargs):
""" Modify url
:param url: url to transform (can be relative)
:param qparams: additional query params to add to end of url
:param kwargs: pieces of URL to modify - e.g. netloc=localhost:8000
:return: Modified URL
.. versionadded:: 3.2.0
"""
if not url:
return url
link_parse = urlsplit(url)
if qparams:
current_query = dict(parse_qsl(link_parse.query))
current_query.update(qparams)
link_parse = link_parse._replace(query=urlencode(current_query))
return urlunsplit(link_parse._replace(**kwargs))
|
d19d5845e6ebe4d14579849ed937160dc71a0421
| 33,760 |
def coords_in_bbox(pose, bbox):
"""
Return coords normalized to interval's bbox as dict of np arrays. origin at box center, (.5, .5)
"""
x1, x2, y1, y2 = bbox
width = x2 - x1
height = y2 - y1
origin = np.array([x1, y1])
scale = np.array([width, height])
normalized_pose = {}
for joint in pose:
normalized_pose[joint] = np.array(pose[joint][:-1])
normalized_pose[joint] = (normalized_pose[joint] - origin) / scale - np.array([.5, .5])
return normalized_pose
|
96f98fe26bff8095311966fc640f887464c7cd4f
| 33,761 |
def display_instances(image, boxes, masks, ids, names, scores):
"""
take the image and results and apply the mask, box, and Label
"""
n_instances = boxes.shape[0]
colors = random_colors(n_instances)
if not n_instances:
print('NO INSTANCES TO DISPLAY')
else:
assert boxes.shape[0] == masks.shape[-1] == ids.shape[0]
for i, color in enumerate(colors):
if not np.any(boxes[i]):
continue
y1, x1, y2, x2 = boxes[i]
label = names[ids[i]]
score = scores[i] if scores is not None else None
caption = '{} {:.2f}'.format(label, score) if score else label
mask = masks[:, :, i]
image = apply_mask(image, mask, color)
image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
image = cv2.putText(
image, caption, (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.7, color, 2
)
return image
|
60bdc9b8500dc0004837a630c72c361204820328
| 33,762 |
def _find_xy(ll, T, M, maxiter, atol, rtol, low_path):
"""Computes all x, y for given number of revolutions."""
# For abs(ll) == 1 the derivative is not continuous
assert abs(ll) < 1
M_max = np.floor(T / pi)
T_00 = np.arccos(ll) + ll * np.sqrt(1 - ll ** 2) # T_xM
# Refine maximum number of revolutions if necessary
if T < T_00 + M_max * pi and M_max > 0:
_, T_min = _compute_T_min(ll, M_max, maxiter, atol, rtol)
if T < T_min:
M_max -= 1
# Check if a feasible solution exist for the given number of revolutions
# This departs from the original paper in that we do not compute all solutions
if M > M_max:
raise ValueError("No feasible solution, try lower M!")
# Initial guess
x_0 = _initial_guess(T, ll, M, low_path)
# Start Householder iterations from x_0 and find x, y
x, numiter, tpi = _householder(x_0, T, ll, M, atol, rtol, maxiter)
y = _compute_y(x, ll)
return x, y, numiter, tpi
|
09bfe02e08e7b9975f65a99cb1e706ba96ed71f9
| 33,764 |
def ligne_vivante(ligne, x_1, x_2):
""" Retourne un booléen indiquant si la ligne spécifiée contient au moins une cellule vivante """
for colonne in range(x_1, x_2 + 1):
if plateau[ligne][colonne] != CELLULE_MORTE:
return True
return False
|
db9be50c14458eb11ee853d15fe5997ea857d55a
| 33,765 |
def changeMatchingReciprocity(G, i, j):
"""
change statistic for categorical matching reciprocity
"""
return G.catattr[i] == G.catattr[j] and G.isArc(j, i)
|
30ece553661b71e8cb2674d88b0daa4905dd9039
| 33,766 |
def compare_letters(letter1, letter2, table=ambiguity_code_to_nt_set):
"""Compare two extended nucleotide letters and return True if they match"""
set1 = table[letter1]
set2 = table[letter2]
if set1 & set2 != set():
is_match = True
else:
is_match = False
return is_match
|
190d00cb52890e52f58e07192227f9af7173ee35
| 33,767 |
import numpy as np
def get_swarm_yspans(coll, round_result=False, decimals=12):
"""
Given a matplotlib Collection, will obtain the y spans
for the collection. Will return None if this fails.
Modified from `get_swarm_spans` in plot_tools.py.
"""
_, y = np.array(coll.get_offsets()).T
try:
if round_result:
return np.around(y.min(), decimals), np.around(y.max(),decimals)
else:
return y.min(), y.max()
except ValueError:
return None
|
2561f04243e63dfa87896e891ae337ab9be310a7
| 33,768 |
def secondes(heure):
"""Prend une heure au format `H:M:S` et renvoie le nombre de secondes
correspondantes (entier).
On suppose que l'heure est bien formattée. On aura toujours un nombre
d'heures valide, un nombre de minutes valide et un nombre de secondes valide.
"""
H, M, S = heure.split(":")
return (3600 * int(H)) + (60 * int(M)) + int(S)
|
33d380005479d66041e747130a4451c555baf497
| 33,769 |
def central_crop(image, crop_height, crop_width, channels=3):
"""Performs central crops of the given image list.
Args:
image: a 3-D image tensor
crop_height: the height of the image following the crop.
crop_width: the width of the image following the crop.
Returns:
3-D tensor with cropped image.
"""
shape = tf.shape(image)
height, width = shape[0], shape[1]
amount_to_be_cropped_h = height - crop_height
crop_top = amount_to_be_cropped_h // 2
amount_to_be_cropped_w = width - crop_width
crop_left = amount_to_be_cropped_w // 2
# return tf.image.crop_to_bounding_box(image, crop_top, crop_left, crop_height, crop_width)
size_assertion = tf.Assert(
tf.logical_and(
tf.greater_equal(height, crop_height),
tf.greater_equal(width, crop_width)),
['Crop size greater than the image size.']
)
with tf.control_dependencies([size_assertion]):
if channels == 1:
image = tf.squeeze(image)
crop_start = [crop_top, crop_left, ]
crop_shape = [crop_height, crop_width, ]
elif channels >= 3:
crop_start = [crop_top, crop_left, 0]
crop_shape = [crop_height, crop_width, -1]
image = tf.slice(image, crop_start, crop_shape)
return tf.reshape(image, [crop_height, crop_width, -1])
|
fc9ad33ad5fc9150a299328fb3c77bb662c25339
| 33,770 |
import enum
def mapper_or_checker(container):
"""Callable to map the function parameter values.
Parameters
----------
container : dict-like object
Raises
------
TypeError
If the unit argument cannot be interpreted.
Example
-------
>>> conv = mapper_or_checker({True: 42})
>>> conv(True)
42
"""
if isinstance(container, dict):
return mapper(container)
if isinstance(container, enum.EnumMeta):
return enum_mapper(container)
if isinstance(container, set):
return membership_checker(container)
raise TypeError('to_mapper argument must be a dict, '
'not {}'.format(container))
|
7c8b22fd3ef7fa52b7ebb94f7d5b5fda48a1a683
| 33,771 |
def cmd_konesyntees(bot, update, args):
"""Use superior estonian technology to express your feelings like you've never before!"""
chatid = update.message.chat_id
text = ''
for x in args:
text += f'{x} '
try:
tts = gTTS(text=text, lang='et')
tts.save('bot/konesyntees/konesyntees.mp3')
with open('bot/konesyntees/konesyntees.mp3', 'rb') as file:
bot.send_document(chatid, file)
except AttributeError:
return update.message.reply_text('The Konesyntees TTS API seems to be offline at the moment. Please try again later.')
|
368ebd43191c219f4f0d7b3b362bb94d117d238e
| 33,772 |
def tinynet_a(pretrained=False, **kwargs):
""" TinyNet """
r, c, d = TINYNET_CFG['a']
default_cfg = default_cfgs['tinynet_a']
assert default_cfg['input_size'] == (3, 224, 224)
channel, height, width = default_cfg['input_size']
height = int(r * height)
width = int(r * width)
default_cfg['input_size'] = (channel, height, width)
print("input_size:", default_cfg['input_size'])
print("channel mutiplier:%s, depth multiplier:%s, resolution multiplier:%s" % (c, d, r))
model = _gen_tinynet(
default_cfgs['tinynet_a'], channel_multiplier=c, depth_multiplier=d, pretrained=pretrained, **kwargs)
return model
|
08bb62c45f8ed5b3eab3ec3ad2aab2d0bcb917ea
| 33,774 |
import requests
def reserve_offer_request(offer_id: int, adult_count: int, children_count: int):
"""
Request order offer
"""
# call to API Gateway for getting offers
response = requests.post(
ORDER_RESERVE_REQUEST_ENDPOINT,
data={
"offer_id": offer_id,
"customer_email": session["email"],
"adult_count": adult_count,
"children_count": children_count,
},
)
if response.status_code != 200:
raise NotImplementedError
return response.json()
|
d3c2b1d62c7f64229dfbce3b0688f135b0c8ca1a
| 33,775 |
def evaluate_nccl(baseline: dict, results: dict, failures: int,
tolerance: int) -> int:
"""
Evaluate the NCCL test results against the baseline.
Determine if the NCCL test results meet the expected threshold and display
the outcome with appropriate units.
Parameters
----------
baselines : dict
A ``dictionary`` of the baseline to compare results against.
results : dict
A ``dictionary`` of the parsed results.
failures : int
An ``integer`` of the number of results that have not met the
threshold.
tolerance : int
An ``int`` of the percentage below the threshold to still mark as
passing.
Returns
-------
int
Returns an ``integer`` of the number of results that have not met the
threshold.
"""
if 'max_bus_bw' not in baseline.keys():
return failures
print(' NCCL Max Bus Bandwidth (GB/s)')
expected = baseline['max_bus_bw']
got = results['nccl']['max_bus_bw']
text = f' Expected: {expected}, Got: {got}'
result = metric_passes(expected, got, tolerance)
output, failures = result_text(result, failures)
text += f', Result: {output}'
print(text)
return failures
|
3fdf3d75def46f98f971a1740f397db0b786fd7c
| 33,776 |
def calculate_AUC(x_axis, y_axis):
"""
Calculates the Area Under Curve (AUC) for the supplied x/y values.
It is assumed that the x axis data is either monotonoically increasing or decreasing
Input:
x_axis: List/numpy array of values
y_axis: list/numpy array of values
Output:
AUC
"""
return auc(x_axis, y_axis)
|
fa474fd210ee9bb86738e9f93795dd580680c2db
| 33,777 |
def next_nibble(term, nibble, head, worm):
"""
Provide the next nibble.
continuously generate a random new nibble so long as the current nibble hits any location of the
worm. Otherwise, return a nibble of the same location and value as provided.
"""
loc, val = nibble.location, nibble.value
while hit_vany([head] + worm, nibble_locations(loc, val)):
loc = Location(x=randrange(1, term.width - 1),
y=randrange(1, term.height - 1))
val = nibble.value + 1
return Nibble(loc, val)
|
a8861672b0dcc22e5aad2736d87a50f31eb0b864
| 33,779 |
def line_pattern_matrix(wl, wlc, depth, weight, vels):
"""
Function to calculate the line pattern matrix M given in Eq (4) of paper
Donati et al. (1997), MNRAS 291, 658-682
:param wl: numpy array (1D), input wavelength data (size n = spectrum size)
:param wlc: numpy array (1D), central wavelengths (size = number of lines)
:param depth: numpy array (1D), line depths (size = number of lines)
:param weight: numpy array (1D), line polar weights (size = number of lines)
:param vels: numpy array (1D), , LSD profile velocity vector (size = m)
:return mm, mmp
mm: numpy array (2D) of size n x m, line pattern matrix for flux LSD.
mmp: numpy array (2D) of size n x m, line pattern matrix for polar LSD.
"""
# set number of points and velocity (km/s) limits in LSD profile
mnum, vinit, vfinal = len(vels), vels[0], vels[-1]
# set number of spectral points
num = len(wl)
# initialize line pattern matrix for flux LSD
mmf = np.zeros((num, mnum))
# initialize line pattern matrix for polar LSD
mmp = np.zeros((num, mnum))
# set first i=0 -> trick to improve speed
i0 = 0
# set values of line pattern matrix M
for lt in range(len(wlc)):
noi0 = True
for it in range(i0, num):
# Calculate line velocity: v = c Δλ / λ
velocity = speed_of_light * (wl[it] - wlc[lt]) / wlc[lt]
if vinit <= velocity <= vfinal:
# below is a trick to improve speed
if noi0:
# next spectral line starts with first i of previous line
# warning: list of CCF lines must be sorted by wavelength
i0 = it
noi0 = False
for jt in range(mnum - 1):
if vels[jt] <= velocity < vels[jt + 1]:
mmp[it][jt] += weight[lt]
mmf[it][jt] += depth[lt]
if mmf[it][jt] > 1.0:
mmf[it][jt] = 1.0
break
elif velocity > vfinal:
break
# return the line pattern matrix for flux and for polar
return mmf, mmp
|
fc5e50000ccbd7cad539e7ee2acd5767dd81c8be
| 33,780 |
def pandas_join_string_list(row, field, sep=";"):
""" This function checks if the value for field in the row is a list. If so,
it is replaced by a string in which each value is separated by the
given separator.
Args:
row (pd.Series or similar): the row to check
field (string): the name of the field
sep (string): the separator to use in joining the values
"""
raise_deprecation_warning("pandas_join_string_list", "misc.pandas_utils",
"0.3.0", "misc")
s = wrap_string_in_list(row[field])
return sep.join(s)
|
dd185fc0aad5a6247f8ea3280b18a3c910fbd723
| 33,781 |
def OpenClipboardCautious(nToTry=4, waiting_time=0.1):
"""sometimes, wait a little before you can open the clipboard...
"""
for i in range(nToTry):
try:
win32clipboard.OpenClipboard()
except:
time.sleep(waiting_time)
continue
else:
wait = (i+2)*waiting_time
print 'extra wait OpenClipboardCautious: %s'% wait
time.sleep(wait)
return True
|
ac67eb130b2564508eb5b77176736df06032dd9b
| 33,782 |
def data_change_url_to_name(subject_data: tuple, column_name: str) -> tuple:
""" Changes names instead of urls in cell data (later displayed on the buttons). """
return tuple(dh.change_url_to_name(list(subject_data), column_name))
|
43030eab85d087c6c09b7154342e60e90f97b28f
| 33,783 |
from datetime import datetime
import requests
def get_run_ids(release_id, request_url, auth_token):
"""
Get the test run IDs for the given release ID - each feature will have a unique run ID
:param release_id: the release ID from Azure DevOps
:param request_url: the URL for the Microsoft API
:param auth_token: the ID number of the release from Azure DevOps
:return: list of run IDs which were found
"""
max_last_updated_date = datetime.datetime.now()
min_last_updated_date = max_last_updated_date - datetime.timedelta(days=1)
response = requests.get(
request_url,
params={"minLastUpdatedDate": min_last_updated_date,
"maxLastUpdatedDate": max_last_updated_date,
"releaseIds": release_id,
"api-version": AZURE_API_VERSION_GET
},
auth=("", auth_token)
)
print(f"Get run IDs for release {release_id} - response {response.status_code}")
if not response.status_code == 200:
print_azure_error(f"Could not get run IDs for release {release_id}")
print_response_info(response)
return []
response_json = response.json()
run_ids = []
for item in response_json["value"]:
run_ids.append(item["id"])
return run_ids
|
ee8d99fbe0bdc1a937e889f5184bc854a21ab2a7
| 33,784 |
def operGet(fn):
""" this is Decoration method get opearte """
def _new(self, *args, **kws):
try:
obj = args[0]
#print obj.id
if hasattr(obj, "id") or hasattr(obj, "_id"):
key = operKey(obj, self.name)
args = args[1:]
kws["obj"] = obj
return fn(self, key, *args, **kws)
else:
raise StandardError("please object is new not have object.id")
except Exception, e:
print e
return wraps(fn)(_new)
|
8395496d99fc4e88599c77a30836c1d49944240d
| 33,785 |
def latent_iterative_pca(layer, batch, conv_method: str = 'median'):
"""Get NxN matrix of principal components sorted in descending order from `layer_history`
Args:
layer_history : list, layer outputs during training
Returns:
eig_vals : numpy.ndarray of absolute value of eigenvalues, sorted in descending order
P : numpy.ndarray, NxN square matrix of principal components calculated over training
"""
cov = _get_iterative_cov(layer, batch, conv_method=conv_method)
eig_vals = np.linalg.eigvalsh(cov)
# Sort the eigenvalues from high to low
eig_vals = sorted(eig_vals, reverse=True)
return eig_vals
|
320408f3eec33075e808b9c92de951b7bc30c6ae
| 33,786 |
import scipy
def filter_max(data,s=(1,1),m="wrap",c=0.0):
"""
Apply maximum filter to data (real and imaginary seperately)
Parameters:
* data Array of spectral data.
* s tuple defining shape or size taken for each step of the filter.
* m Defines how edges are determinded ('reflect','constant','nearest',
'mirror','wrap'). Filter mode parameter.
* c Constant Value for use in 'constant' mode
"""
data.real=scipy.ndimage.maximum_filter(data.real,size=s,mode=m,cval=c)
data.imag=scipy.ndimage.maximum_filter(data.imag,size=s,mode=m,cval=c)
return data
|
2e701d2751f394e5a1d25355a8c5b4533972d92d
| 33,787 |
def update_alarms(_):
"""
Entry point for the CloudWatch scheduled task to discover and cache services.
"""
return periodic_handlers.update_alarms()
|
9e5f9bf94ed051194e502524420a0e47ac7e75f2
| 33,788 |
def create_mapping(alphabet):
"""
Change list of chars to list of ints, taking sequencial natural numbers
:param alphabet: list of char
:return: dictionary with keys that are letters from alphabet and ints as values
"""
mapping = {}
for (letter, i) in zip(alphabet, range(len(alphabet))):
mapping[letter] = i
return mapping
|
20ef12101597206e08ca0ea399d97af0f5c8b760
| 33,790 |
async def async_setup_entry(hass, config_entry, async_add_devices):
"""Set up the Alexa alarm control panel platform by config_entry."""
return await async_setup_platform(
hass, config_entry.data, async_add_devices, discovery_info=None
)
|
0a80a5d9e2cd5ff8e39200def1d86f30cdc552aa
| 33,792 |
def admin_get_all_requests(current_user):
"""Gets all requests"""
requests = admin_get_all(current_user['id'])
return jsonify(requests),200
|
a3e7202e73894ab05a4575f98460d1b012c0243e
| 33,793 |
import json
def git_drv_info(url, version):
"""
Retrieve the necessary git info to create a nix expression using `fetchgit`.
"""
rev = []
if version != "master":
rev = ["--rev", version]
ret = run_cmd(
["nix-prefetch-git", "--no-deepClone", "--quiet", "--url", url,] + rev
)
return json.loads(ret.stdout)
|
d08d40da42fa24c3f50ac2069d8a4b73b4d09b37
| 33,794 |
import colorsys
import random
def draw_bbox(image, bboxes, classes):
"""
[[[original function from Yun-Yuan: bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates.]]]
bboxes: [cls_id, probability, x_min, y_min, x_max, y_max] format coordinates.]
"""
num_classes = len(classes)
image_h, image_w, _ = image.shape
hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)]
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))
random.seed(0)
random.shuffle(colors)
# random.seed(None)
# print('len(bboxes) = ', len(bboxes))
for i, bbox in enumerate(bboxes):
coor = np.array(bbox[2:], dtype=np.int32)
fontScale = 0.5
score = bbox[1]
class_ind = int(bbox[0])
# print('class_ind = ', class_ind)
bbox_color = colors[class_ind]
bbox_thick = int(0.6 * (image_h + image_w) / 600)
c1, c2 = (coor[0], coor[1]), (coor[2], coor[3])
cv2.rectangle(image, c1, c2, bbox_color, bbox_thick)
bbox_mess = '%s: %.2f' % (classes[class_ind], score)
t_size = cv2.getTextSize(bbox_mess, 0, fontScale, thickness=bbox_thick//2)[0]
cv2.rectangle(image, c1, (c1[0] + t_size[0], c1[1] - t_size[1] - 3), bbox_color, -1) # filled
cv2.putText(image, bbox_mess, (c1[0], c1[1]-2), cv2.FONT_HERSHEY_SIMPLEX,
fontScale, (0, 0, 0), bbox_thick//2, lineType=cv2.LINE_AA)
return image
|
8f479e8ed5ecef60195df5edc82c2b0e2c3e261c
| 33,795 |
def is_admin(user):
""" Test if a user has the admin group.
This function is meant to be used by the user_passes_test decorator to control access
to views. It uses the is_member function with a predefined list of groups.
Parameters
----------
user : django.contrib.auth.models.User
The user which we are trying to identify that belongs to Admin.
Returns
---------
bool
True if the user has Admin as a group
"""
return is_member(user, [ADMIN_GROUP])
|
044550ec2f3aaf8f748fb823b64ba1fb099f71fd
| 33,796 |
def Grid(gridtype, *args, **kwargs):
"""Return an instance of the GridBase child class based on type.
Parameters
----------
gridtype : string
Type of grid;
choices: ['cell-centered', 'x-face', 'y-face'].
var_names : list of strings
List of names for the variables to create.
nx : integer
Number of cells in the x-direction.
ny : integer
Number of cells in the y-direction.
xmin : float
Domain limit at the left side.
xmax : float
Domain limit at the right side.
ymin : float
Domain limit at the bottom side.
ymax : float
Domain limit at the top side.
user_bc_type : dictionary of (string, list) items
User-defined boundary types to overwrite default ones.
user_bc_val : dictionary of (string, list) items
User-defined boundary values to overwrite default ones.
Returns
-------
obj : instance of the GridBase child
The grid object.
"""
for cls in GridBase.__subclasses__():
if cls.check_gridtype(gridtype):
return cls(*args, **kwargs)
raise ValueError('Parameter "gridtype" should be either '
'"cell-centered", "x-face", or "y-face"')
|
29fc912d7cfece5a290950eb9925e99001c8a231
| 33,798 |
def read_tess_lightcurve(filename,
flux_column="pdcsap_flux",
quality_bitmask="default"):
"""Returns a `TessLightCurve`.
Parameters
----------
filename : str
Local path or remote url of a Kepler light curve FITS file.
flux_column : 'pdcsap_flux' or 'sap_flux'
Which column in the FITS file contains the preferred flux data?
quality_bitmask : str or int
Bitmask (integer) which identifies the quality flag bitmask that should
be used to mask out bad cadences. If a string is passed, it has the
following meaning:
* "none": no cadences will be ignored (`quality_bitmask=0`).
* "default": cadences with severe quality issues will be ignored
(`quality_bitmask=1130799`).
* "hard": more conservative choice of flags to ignore
(`quality_bitmask=1664431`). This is known to remove good data.
* "hardest": removes all data that has been flagged
(`quality_bitmask=2096639`). This mask is not recommended.
See the :class:`KeplerQualityFlags` class for details on the bitmasks.
"""
lc = _read_lightcurve_fits_file(filename,
flux_column=flux_column,
time_format='btjd')
# Filter out poor-quality data
# NOTE: Unfortunately Astropy Table masking does not yet work for columns
# that are Quantity objects, so for now we remove poor-quality data instead
# of masking. Details: https://github.com/astropy/astropy/issues/10119
quality_mask = TessQualityFlags.create_quality_mask(
quality_array=lc['quality'],
bitmask=quality_bitmask)
lc = lc[quality_mask]
lc.meta['targetid'] = lc.meta.get('ticid')
lc.meta['quality_bitmask'] = quality_bitmask
lc.meta['quality_mask'] = quality_mask
return TessLightCurve(data=lc)
|
85dec44f2bab3724e5201110d1ec48c283468843
| 33,799 |
async def fix_issue(number: int, *, reason: str=None) -> dict:
"""Synchronously labels the specified issue as fixed, or closed.
:param number: The issue number on GitHub to fix or consider, if a suggestion
:param reason: The reason the issue was not considered.
Note: this parameter only applies to suggestions
"""
return await loop.run_in_executor(
None,
partial(
fix_issue_sync, number,
reason = reason))
|
aef20cc669267eabc441ca7b5102f41d3767c482
| 33,800 |
from typing import List
from typing import Tuple
from typing import Set
import re
from typing import OrderedDict
def _parse_schema(s: str) -> Schema:
"""Instantiate schema dict from a string."""
tables: List[Tuple[str, Fields]] = []
seen: Set[str] = set()
current_table = ''
current_fields: List[Field] = []
lines = list(reversed(s.splitlines())) # to pop() in right order
while lines:
line = lines.pop().strip()
table_m = re.match(r'^(?P<table>\w.+):$', line)
field_m = re.match(r'\s*(?P<name>\S+)'
r'(\s+(?P<flags>[^#]+))?'
r'(\s*#\s*(?P<comment>.*)$)?',
line)
if table_m is not None:
table_name = table_m.group('table')
if table_name in seen:
raise TSDBSchemaError(f'table {table_name} redefined')
current_table = table_name
current_fields = []
tables.append((current_table, current_fields))
seen.add(table_name)
elif field_m is not None and current_table:
name = field_m.group('name')
flags = field_m.group('flags').split()
datatype = flags.pop(0)
comment = field_m.group('comment')
current_fields.append(
Field(name, datatype, flags, comment)
)
elif line != '':
raise TSDBSchemaError('invalid line in schema file: ' + line)
return OrderedDict(tables)
|
0f84b794d8ddf563083d603de578c5c646be97de
| 33,801 |
def mom2(data, axis=0):
"""
Intensity-weighted coordinate dispersion (function version). Pixel units.
"""
shp = list(data.shape)
n = shp.pop(axis)
x = np.zeros(shp)
x2 = np.zeros(shp)
w = np.zeros(shp)
# build up slice-by-slice, to avoid big temporary cubes
for loc in range(n):
slc = tuple(loc if j == axis else slice(None) for j in range(data.ndim))
val = data[slc]
val = np.maximum(val, 0)
x += val * loc
x2 += val * loc * loc
w += val
return np.sqrt(x2 / w - (x / w) ** 2)
|
6b47cf9e9486b6631462c9dca2f4079361b4c057
| 33,802 |
def get_rdf_bin_labels(bin_distances, cutoff):
"""
Common function for getting bin labels given the distances at which each
bin begins and the ending cutoff.
Args:
bin_distances (np.ndarray): The distances at which each bin begins.
cutoff (float): The final cutoff value.
Returns:
[str]: The feature labels for the *RDF
"""
bin_dists_complete = np.concatenate((bin_distances, np.asarray([cutoff])))
flabels = [""] * len(bin_distances)
for i, _ in enumerate(bin_distances):
lower = "{:.5f}".format(bin_dists_complete[i])
higher = "{:.5f}".format(bin_dists_complete[i + 1])
flabels[i] = f"[{lower} - {higher}]"
return flabels
|
81e8e3dc217e69c504eb1b916e0d09a499228d34
| 33,803 |
import math
def tangent_point(circle, circle_radius, point, angle_sign=1):
"""Circle tangent passing through point, angle sign + if clockwise else - """
circle2d, point2d = a2(circle), a2(point)
circle_distance = dist2d(circle2d, point2d) + 1e-9
relative_angle = math.acos(Range(circle_radius / circle_distance, 1))
point_angle = angle(point2d, circle2d)
tangent_angle = (point_angle - relative_angle * sign(angle_sign))
tangentx = math.cos(tangent_angle) * circle_radius + circle2d[0]
tangenty = math.sin(tangent_angle) * circle_radius + circle2d[1]
return a2([tangentx, tangenty])
|
e3cbf843e893e436df1e7ad492e2bfb8a63a0bf2
| 33,804 |
def range_projection(current_vertex, fov_up=3.0, fov_down=-25.0, proj_H=64, proj_W=900, max_range=50):
""" Project a pointcloud into a spherical projection, range image.
Args:
current_vertex: raw point clouds
Returns:
proj_range: projected range image with depth, each pixel contains the corresponding depth
proj_vertex: each pixel contains the corresponding point (x, y, z, 1)
proj_intensity: each pixel contains the corresponding intensity
proj_idx: each pixel contains the corresponding index of the point in the raw point cloud
"""
# laser parameters
fov_up = fov_up / 180.0 * np.pi # field of view up in radians
fov_down = fov_down / 180.0 * np.pi # field of view down in radians
fov = abs(fov_down) + abs(fov_up) # get field of view total in radians
# get depth of all points
depth = np.linalg.norm(current_vertex[:, :3], 2, axis=1)
current_vertex = current_vertex[(depth > 0) & (depth < max_range)] # get rid of [0, 0, 0] points
depth = depth[(depth > 0) & (depth < max_range)]
# get scan components
scan_x = current_vertex[:, 0]
scan_y = current_vertex[:, 1]
scan_z = current_vertex[:, 2]
intensity = current_vertex[:, 3]
# get angles of all points
yaw = -np.arctan2(scan_y, scan_x)
pitch = np.arcsin(scan_z / depth)
# get projections in image coords
proj_x = 0.5 * (yaw / np.pi + 1.0) # in [0.0, 1.0]
proj_y = 1.0 - (pitch + abs(fov_down)) / fov # in [0.0, 1.0]
# scale to image size using angular resolution
proj_x *= proj_W # in [0.0, W]
proj_y *= proj_H # in [0.0, H]
# round and clamp for use as index
proj_x = np.floor(proj_x)
proj_x = np.minimum(proj_W - 1, proj_x)
proj_x = np.maximum(0, proj_x).astype(np.int32) # in [0,W-1]
proj_y = np.floor(proj_y)
proj_y = np.minimum(proj_H - 1, proj_y)
proj_y = np.maximum(0, proj_y).astype(np.int32) # in [0,H-1]
# order in decreasing depth
order = np.argsort(depth)[::-1]
depth = depth[order]
intensity = intensity[order]
proj_y = proj_y[order]
proj_x = proj_x[order]
scan_x = scan_x[order]
scan_y = scan_y[order]
scan_z = scan_z[order]
indices = np.arange(depth.shape[0])
indices = indices[order]
proj_range = np.full((proj_H, proj_W), -1,
dtype=np.float32) # [H,W] range (-1 is no data)
proj_vertex = np.full((proj_H, proj_W, 4), -1,
dtype=np.float32) # [H,W] index (-1 is no data)
proj_idx = np.full((proj_H, proj_W), -1,
dtype=np.int32) # [H,W] index (-1 is no data)
proj_intensity = np.full((proj_H, proj_W), -1,
dtype=np.float32) # [H,W] index (-1 is no data)
proj_range[proj_y, proj_x] = depth
proj_vertex[proj_y, proj_x] = np.array([scan_x, scan_y, scan_z, np.ones(len(scan_x))]).T
proj_idx[proj_y, proj_x] = indices
proj_intensity[proj_y, proj_x] = intensity
return proj_range, proj_vertex, proj_intensity, proj_idx
|
aa7efa9ab365cb3e9aaf531c799a9e9615934aac
| 33,805 |
def _get_blobs(im, rois, mask=False):
"""Convert an image and RoIs within that image into network inputs."""
blobs = {'data' : None, 'rois' : None}
blobs['data'], im_scale_factors = _get_image_blob(im)
if not cfg.TEST.HAS_RPN or mask:
blobs['rois'] = _get_rois_blob(rois, im_scale_factors)
return blobs, im_scale_factors
|
3e7dea823fd3471c939d779ee57067e0e856e069
| 33,806 |
from typing import List
def urls() -> List[str]:
"""
Returns all URLs contained in the pasteboard as strings.
"""
urls = general_pasteboard().URLs
str_urls = []
if urls is not None:
for url in urls:
str_urls.append(str(url.absoluteString))
return str_urls
|
0ddf0e88ae588a5ee0ac7dbf40dc8e261296cfe7
| 33,807 |
def eager_no_dists(cls, *args):
"""
This interpretation is like eager, except it skips special distribution patterns.
This is necessary because we want to convert distribution expressions to
normal form in some tests, but do not want to trigger eager patterns that
rewrite some distributions (e.g. Normal to Gaussian) since these tests are
specifically intended to exercise funsor.distribution.Distribution.
"""
if issubclass(cls, funsor.distribution.Distribution) and not isinstance(
args[-1], funsor.Tensor
):
return reflect.interpret(cls, *args)
result = eager.dispatch(cls, *args)(*args)
if result is None:
result = normalize.dispatch(cls, *args)(*args)
if result is None:
result = lazy.dispatch(cls, *args)(*args)
if result is None:
result = reflect.interpret(cls, *args)
return result
|
6f3b4e279001c929348ba7c07bdc34c45d0b32ae
| 33,808 |
def euclid_dist(
arr1,
arr2,
unsigned=True):
"""
Calculate the element-wise correlation euclidean distance.
This is the distance D between the identity line and the point of
coordinates given by intensity:
\\[D = abs(A2 - A1) / sqrt(2)\\]
Args:
arr1 (ndarray): The first array
arr2 (ndarray): The second array
unsigned (bool): Use signed distance
Returns:
arr (ndarray): The resulting array
Examples:
>>> arr1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
>>> arr2 = np.array([-1.0, -2.0, -3.0, -4.0, -5.0, -6.0])
>>> euclid_dist(arr1, arr2)
array([1.41421356, 2.82842712, 4.24264069, 5.65685425, 7.07106781,
8.48528137])
>>> euclid_dist(arr1, arr2, False)
array([-1.41421356, -2.82842712, -4.24264069, -5.65685425, -7.07106781,
-8.48528137])
"""
arr = (arr2 - arr1) / 2.0 ** 0.5
if unsigned:
arr = np.abs(arr)
return arr
|
44f242ac21b97dea8d8e5c933e51cbbbaae80b7b
| 33,810 |
def compute_redshift_path_per_line(Wobs, wa, fl,er,sl=3.,R=20000,FWHM=10,wa0=1215.67,fl_th=0,zmin=None,zmax=None):
"""Compute the total redshift path for a given line with Wobs
(could be a np.array), in a given spectrum fl (with error er)."""
#define N, number of lines
try:
N = len(Wobs)
except:
N = 1
#redshift path to return
Dz = []
#compute Wmin for given spectrum, and dz
z, Wmin = compute_Wmin(wa,fl,er,sl=sl,R=R,FWHM=FWHM,wa0=wa0,fl_th=fl_th)
## Here, sort out zlims
if zmax is None:
zmax = 1000.
if zmin is None:
zmin = 0.
if N==1:
#Obtain zgood (1 or 0 depending if Wobs>Wmin)
zgood = (Wobs >= Wmin) & (z >= zmin) & ( z < zmax)
zgood = zgood*1
if np.sum(zgood)==0:
Dz = 0
#find edges where zgood=1
lower_edges, upper_edges = find_edges(zgood)
#Final redshift path is given by the difference between edges
Dz = np.sum(z[upper_edges]-z[lower_edges])
else:
for i in xrange(N):
#Obtain zgood (1 or 0 depending if Wobs>Wmin)
zgood = (Wobs[i] >= Wmin) & (z >= zmin) & ( z < zmax)
zgood = zgood*1
if np.sum(zgood)==0:
Dz += [0]
continue
#find edges where zgood=1
lower_edges, upper_edges = find_edges(zgood)
#Final redshift path is given by the difference between edges
Dz_aux = np.sum(z[upper_edges]-z[lower_edges])
Dz += [Dz_aux]
Dz = np.array(Dz)
return Dz
|
f15a24e0414bb03280d197abde14073b1466cab7
| 33,811 |
import sympy
def guard(clusters):
"""
Split Clusters containing conditional expressions into separate Clusters.
"""
processed = []
for c in clusters:
free = []
for e in c.exprs:
if e.conditionals:
# Expressions that need no guarding are kept in a separate Cluster
if free:
processed.append(Cluster(free, c.ispace, c.dspace))
free = []
# Create a guarded Cluster
guards = {}
for d in e.conditionals:
condition = guards.setdefault(d.parent, [])
if d.condition is None:
condition.append(CondEq(d.parent % d.factor, 0))
else:
condition.append(d.condition)
guards = {k: sympy.And(*v, evaluate=False) for k, v in guards.items()}
processed.append(Cluster(e, c.ispace, c.dspace, guards))
else:
free.append(e)
# Leftover
if free:
processed.append(Cluster(free, c.ispace, c.dspace))
return processed
|
9acb1aecb8423e670cb0b60747bac2b32d56dbe8
| 33,812 |
async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool:
"""Set up Hello World from a config entry."""
# Store an instance of the "connecting" class that does the work of speaking
# with your actual devices.
hass.data.setdefault(DOMAIN, {})[entry.entry_id] = hub.Hub(hass, entry.data["host"])
# This creates each HA object for each platform your device requires.
# It's done by calling the `async_setup_entry` function in each platform module.
hass.config_entries.async_setup_platforms(entry, PLATFORMS)
return True
|
9a3005c02a2d665ab5cab96a15fee8d3e353f5c3
| 33,813 |
def make_viewnames(pathnames, tfm_unique_only=False, order_func=default_viewname_order):
"""
Make all view names from the paths given as arguments.
Parameters
----------
pathnames : list[str]
tfm_unique_only : bool
Default: False. If True, returns only the views that give *different* imaging
results with TFM (AB-CD and DC-BA give the same imaging result).
order_func : func
Function for sorting the views.
Returns
-------
list[tuple[str]
"""
viewnames = []
for tx in pathnames:
for rx in pathnames:
viewnames.append((tx, rx))
if order_func is not None:
viewnames = list(sorted(viewnames, key=default_viewname_order))
if tfm_unique_only:
viewnames = filter_unique_views(viewnames)
return viewnames
|
26558877ffed5d06a66b459bce64385f116fa952
| 33,814 |
def installed_packages():
"""Returns a list of all installed packages
Returns:
:obj:`list` of :obj:`str`: List of all the currently installed packages
"""
_check_for_old_versions()
return [x["name"] for x, _ in _iter_packages()]
|
11aca5f8830d66961ac0af351eb5b4633a82808c
| 33,815 |
def get_hponeview_client(args):
"""Generate an instance of the HPE OneView client.
:returns: an instance of the HPE OneView client.
:raises: OneViewConnectionError if try a secure connection without a CA
certificate file path in Ironic OneView CLI configuration file.
"""
ssl_certificate = args.ov_cacert
insecure = True if args.ov_insecure.lower() == "true" else False
if not (insecure or ssl_certificate):
raise exceptions.OneViewConnectionError(
"Failed to start Ironic OneView CLI. Attempting to open secure "
"connection to OneView but CA certificate file is missing. Please "
"check your configuration file.")
if insecure:
print("Ironic OneView CLI is opening an insecure connection to "
"HPE OneView. We recommend you to configure secure connections "
"with a CA certificate file.")
if ssl_certificate:
print("Insecure connection to OneView, the CA certificate: %s "
"will be ignored." % ssl_certificate)
ssl_certificate = None
config = {
"ip": args.ov_auth_url,
"credentials": {
"userName": args.ov_username,
"password": args.ov_password
},
"ssl_certificate": ssl_certificate
}
try:
client = oneview_client.OneViewClient(config)
except oneview_exceptions.HPOneViewException as ex:
print("Ironic OneView CLI could not open a connection to HPE OneView. "
"Check credentials and/or CA certificate file. See details on "
"error below:\n")
raise ex
return client
|
6a667caab302815c17e84edd52cb08a375ed587b
| 33,816 |
def random_binary_tree(depth, p=.8):
""" Constructs a random binary tree with given maximal depth
and probability p of bifurcating.
Parameters:
depth: The maximum depth the tree can have (might not be reached
due to probabilistic nature of algorithm)
p: Probability that any node bifurcates.
Returns:
G: Random binary tree NetworkX DiGraph
"""
G = nx.DiGraph()
G.add_node(0)
G.graph['root'] = 0
_random_binary_tree(G, 0, depth, p)
return G
|
ec44c0fa4d47f1e50ddbdaf4a2aacca988e5d57f
| 33,817 |
def make_uid_setter(**kwargs):
"""
Erzeuge eine Funktion, die die UID einer bekannten Ressource setzt;
es wird nichts neu erzeugt
"""
if 'catalog' not in kwargs:
context = kwargs.pop('context')
catalog = getToolByName(context, 'portal_catalog')
else:
catalog = kwargs.pop('catalog')
logger = kwargs.pop('logger')
find_one = make_distinct_finder(catalog=catalog, logger=logger)
# Vorgabewerte:
optional = kwargs.pop('optional', False)
shortcircuit = kwargs.pop('shortcircuit', False)
if kwargs:
logger.error('make_uid_setter: unused arguments! (%(kwargs)r)', locals())
if 'portal' not in kwargs:
if 'context' in kwargs: # might have been popped above already
context = kwargs.pop('context')
site = getToolByName(context, 'portal_url')
else:
site = kwargs.pop('portal')
def visible_path(s):
"""
>>> visible_path('/gkz/meine-kurse')
'/meine-kurse'
"""
assert s.startswith('/')
liz = s.split('/')
del liz[1]
return '/'.join(liz)
def set_uid(uid_new, path, uid_old=None,
optional=optional,
shortcircuit=shortcircuit):
"""
uid_new -- die neue UID (jedenfalls benötigt)
path -- ein Pfad, oder eine Sequenz von Pfaden (benötigt)
uid_old -- optional; darf, wenn angegeben, nicht gleich uid_new sein
optional -- das übergebene Dings ist optional; wenn es fehlt, ist das
nicht schlimm (aber wenn es da ist, soll es die angegebene
UID bekommen)
shortcircuit -- Wenn mehrere Pfade angegeben wurden, nach dem ersten
Treffer aufhören zu suchen; ansonsten wird auch
geprüft, ob die anderen ebenfalls da sind, und dies
ggf. protokolliert
"""
if isinstance(path, six_string_types):
paths = [path]
elif path:
paths = tuple(path)
else:
paths = []
brain_new = find_one(uid=uid_new)
if uid_old:
if uid_old == uid_new:
raise ValueError('Different UIDs expected, got: %(uid_new)r'
% locals())
brain_old = find_one(uid=uid_old)
if brain_old and brain_new:
logger.fatal('set_uid: Both old (%(uid_old)r) and new '
'(%(uid_new)r) UIDs founc!', locals())
return False
o_old = brain_old.getObject()
logger.info('Setting UID of %(o_old)r to %(uid_new)r'
' (was: %(uid_old)r', locals())
o_old._setUID(uid_new)
return True
if brain_new:
path_new = visible_path(brain.getPath)
if paths:
if path_new in paths:
logger.info('Found UID %(uid_new)r in expected path'
' %(path_new)r', locals())
else:
logger.warn('Found UID %(uid_new)r in UNEXPECTED path'
' %(path_new)r (expected: %(paths)s)', locals())
else:
logger.info('Found UID %(uid_new)r in path'
' %(path_new)r (no expectations specified)',
locals())
return True
# keine Treffer über UIDs; jetzt nach Pfaden suchen:
done = False
for pa in paths:
logger.info('seeking %(pa)r ...', locals())
o = site.restrictedTraverse(pa)
if o:
if done:
logger.warn('ignoring %(o)r', locals())
else:
logger.info('setting UID of %(o)r to %(uid_new)r', locals())
o._setUID(uid_new)
done = True
if shortcircuit:
break
if done:
return True
elif optional:
logger.info('Nothing found (new uid: %(uid_new)r,'
' paths: %(paths)r',
locals())
return False
else:
logger.error('Nothing found! (new uid: %(uid_new)r,'
' paths: %(paths)r',
locals())
return False
return set_uid
|
2676ca013fcd376cf4df4a8d314cc52cd91210e8
| 33,818 |
from gi.repository import Gtk
def build_action_group(obj, name=None):
"""
Build actions and a Gtk.ActionGroup for each Action instance found in obj()
(that's why Action is a class ;) ). This function requires GTK+.
>>> class A:
... @action(name='bar')
... def bar(self): print('Say bar')
... @toggle_action(name='foo')
... def foo(self, active): print('Say foo', active)
... @radio_action(names=('baz', 'beer'), labels=('Baz', 'Beer'))
... def baz(self, value):
... print('Say', value, (value and "beer" or "baz"))
>>> group = build_action_group(A())
Say 0 baz
>>> len(group.list_actions())
4
>>> a = group.get_action('bar')
>>> a.activate()
Say bar
>>> group.get_action('foo').activate()
Say foo True
>>> group.get_action('beer').activate()
Say 1 beer
>>> group.get_action('baz').activate()
Say 0 baz
"""
group = Gtk.ActionGroup.new(name or str(obj))
objtype = type(obj)
for attrname in dir(obj):
try:
# Fetch the methods from the object's type instead of the object
# itself. This prevents some descriptors from executing.
# Otherwise stuff like dependency resolving may kick in
# too early.
method = getattr(objtype, attrname)
except:
continue
act = getattr(method, "__action__", None)
if isinstance(act, radio_action):
actgroup = None
if not act.labels:
act.labels = [None] * len(act.names)
if not act.tooltips:
act.tooltips = [None] * len(act.names)
if not act.stock_ids:
act.stock_ids = [None] * len(act.names)
if not act.accels:
act.accels = [None] * len(act.names)
assert len(act.names) == len(act.labels)
assert len(act.names) == len(act.tooltips)
assert len(act.names) == len(act.stock_ids)
assert len(act.names) == len(act.accels)
for i, n in enumerate(act.names):
gtkact = Gtk.RadioAction.new(
n, act.labels[i], act.tooltips[i], act.stock_ids[i], value=i
)
if not actgroup:
actgroup = gtkact
else:
gtkact.props.group = actgroup
group.add_action_with_accel(gtkact, act.accels[i])
actgroup.connect("changed", _radio_action_changed, obj, attrname)
actgroup.set_current_value(act.active)
elif isinstance(act, toggle_action):
gtkact = Gtk.ToggleAction.new(
act.name, act.label, act.tooltip, act.stock_id
)
gtkact.set_property("active", act.active)
gtkact.connect("activate", _toggle_action_activate, obj, attrname)
group.add_action_with_accel(gtkact, act.accel)
elif isinstance(act, action):
gtkact = Gtk.Action.new(act.name, act.label, act.tooltip, act.stock_id)
gtkact.connect("activate", _action_activate, obj, attrname)
group.add_action_with_accel(gtkact, act.accel)
elif act is not None:
raise TypeError(f"Invalid action type: {action}")
return group
|
26abe527d4e0d1e98080480e60d51e4a23be5d80
| 33,819 |
def afftdn(stream: Stream, *args, **kwargs) -> FilterableStream:
"""https://ffmpeg.org/ffmpeg-filters.html#afftdn"""
return filter(stream, afftdn.__name__, *args, **kwargs)
|
e4a878b29f47fec06b0c6c63ae305c17361f522c
| 33,820 |
def sh2vap(q, p):
"""Specific Humidity to Water vapor pressure
formula derived from ratio of humid air vs. total air
Parameters
----------
q specific humidity [kg/kg]
p total air pressure [Pa]
Returns
-------
water vapor pressure [Pa]
"""
c = eps() # Rd / Rv = 0.622
return (q * p) / (q + (1 - q) * c)
|
e205499ba1cf36a2521875f341029ae11ba55fc7
| 33,821 |
def triplets(a, b, c):
"""
Time: O(n)
Space: O(n lg n), for sorting
-
n = a_len + b_len + c_len
"""
a = list(sorted(set(a)))
b = list(sorted(set(b)))
c = list(sorted(set(c)))
ai = bi = ci = 0
a_len, c_len = len(a), len(c)
answer = 0
while bi < len(b):
while ai < a_len and a[ai] <= b[bi]:
ai += 1
while ci < c_len and b[bi] >= c[ci]:
ci += 1
answer += ai * ci
bi += 1
return answer
|
d15d340d0a4b870124bbfd8ca6f40358a27f7555
| 33,822 |
import collections
def flatten_dict(d, parent_key='', joinchar='.'):
""" Returns a flat dictionary from nested dictionaries
the flatten structure will be identified by longer keys coding the tree.
A value will be identified by the joined list of node names
e.g.:
{'a': {'b': 0,
'c': {'r': 10,
's': 20 } },
'd': 3 }
becomes
{'a.b':0,
'a.c.r':10,
'a.c.s':10,
'd':3 }
Parameters
----------
d: dict
nested dictionary
parent_key: str, optional (default=empty)
optional parent key used during the recursion
joinchar: str, optional (default='.')
joining character between levels
Returns
-------
fd: dict
flatten dictionary
"""
items = []
for k, v in d.items():
new_key = parent_key + joinchar + k if parent_key else k
if isinstance(v, collections.MutableMapping):
items.extend(flatten_dict(v, new_key, joinchar).items())
else:
items.append((new_key, v))
return dict(items)
|
5567d880287af3641dc96c7e79b81f93e9d3fbfd
| 33,823 |
import torch
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, 3))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
|
ecf99dd157044034abcc6bdf12d307a8f560bd9e
| 33,824 |
def get_results(tickers=None):
"""
Given a list of stock tickers, this print formatted results to the terminal.
"""
if tickers == ['']:
return
stocks = QuarterlyReport.get_stocks(tickers)
if verbose:
string_header = '{:<10}'.format('Ticker') + '{:<17}'.format('Earnings Date')
string_to_line = ''
if peg_ratio:
string_header += '{:<13}'.format('Peg Ratio')
if pe_ratio:
string_header += '{:<13}'.format('PE Ratio')
if rsi:
string_header += '{:<13}'.format('RSI')
if fifty_two:
string_header += '{:<20}'.format('52Wk H&L')
string_header += '{:<12}'.format('Price')
print(string_header)
for stock in stocks:
string_to_line = '{:<10}'.format(stock.ticker) + '{:<17}'.format(stock.earnings_date)
if peg_ratio:
string_to_line += '{:<13}'.format(str(stock.peg_ratio))
if pe_ratio:
string_to_line += '{:<13}'.format(str(stock.pe_ratio))
if rsi:
string_to_line += '{:<13}'.format(str(stock.rsi))
if fifty_two:
string_to_line += '{:<20}'.format(str(stock.fifty_two))
string_to_line += '{:<12}'.format(str(stock.price))
print(string_to_line)
return stocks
|
21d298df4c8fe34d055f6978cf96306fa31fcce1
| 33,825 |
def reverse_mapper_or_checker(container):
"""Callable to REVERSE map the function parameter values.
Parameters
----------
container : dict-like object
Raises
------
TypeError
If the unit argument cannot be interpreted.
Example
-------
>>> conv = reverse_mapper_or_checker({True: 42})
>>> conv(42)
True
"""
#: Shared cache of reversed dictionaries indexed by the id()
__reversed_cache = {}
if isinstance(container, dict):
return mapper({value: key for key, value in container.items()})
if isinstance(container, set):
return membership_checker(container)
raise TypeError('reverse_mapper argument must be a dict or set, '
'not {}'.format(container))
|
616de1fc536af944f6a1bce23b3bdc7c867aa5d8
| 33,826 |
def smallest_boundary_value(fun, discretization):
"""Determine the smallest value of a function on its boundary.
Parameters
----------
fun : callable
A tensorflow function that we want to evaluate.
discretization : instance of `GridWorld`
The discretization. If None, then the function is assumed to be
defined on a discretization already.
Returns
-------
min_value : float
The smallest value on the boundary.
"""
min_value = np.inf
feed_dict = get_feed_dict(tf.get_default_graph())
# Check boundaries for each axis
for i in range(discretization.ndim):
# Use boundary values only for the ith element
tmp = list(discretization.discrete_points)
tmp[i] = discretization.discrete_points[i][[0, -1]]
# Generate all points
columns = (x.ravel() for x in np.meshgrid(*tmp, indexing='ij'))
all_points = np.column_stack(columns)
# Update the minimum value
smallest = tf.reduce_min(fun(all_points))
min_value = min(min_value, smallest.eval(feed_dict=feed_dict))
return min_value
|
6a20935d86506cb4bd5d1405301edee02562615b
| 33,828 |
def read_ids(idtype, idfile):
"""Read ids from idfile of type idtype."""
print "Using %s file: %s" % (idtype, idfile)
ids = read_dot_name(idfile)
print "%d %s read in." % (len(ids), idtype)
return ids
|
815381ce374026c119a4789674de899439e7d76b
| 33,829 |
def get_pseudo_class_checker(psuedo_class):
"""
Takes a psuedo_class, like "first-child" or "last-child"
and returns a function that will check if the element satisfies
that psuedo class
"""
return {
'first-child': lambda el: is_first_content_node(getattr(el, 'previousSibling', None)),
'last-child': lambda el: is_last_content_node(getattr(el, 'nextSibling', None))
}.get(psuedo_class, lambda el: False)
|
ad52b55d37f58c2628db88d7f94dcca85ef7e730
| 33,830 |
def gammaincinv(y, s):
"""
Calculates the inverse of the regularized lower incomplete gamma function, i.e.::
\gamma(x; s) = 1/\Gamma(s)\int_0^x t^{s-1}e^{-t} \mathrm{d}t
NOTE:
Inspired by: https://github.com/minrk/scipy-1/blob/master/scipy/special/c_misc/gammaincinv.c
Parameters
----------
y : float or array_like, shape (n,)
Variable to be evaluated
s : float or array_like, shape (n,)
Gamma function parameter
Returns
-------
y : array_like, shape (n,)
Resulting value
"""
return gammainccinv(1. - y, s)
|
5b4aa9de4c8b81a1876aafc7f3e7d49384decee4
| 33,831 |
def divide_with_zero_divisor(dividend, divisor):
"""Returns 0 when divisor is zero.
Args:
dividend: Numpy array or scalar.
divisor: Numpy array or scalar.
Returns:
Scalar if both inputs are scalar, numpy array otherwise.
"""
# NOTE(leeley): The out argument should have the broadcasting shape of
# (dividend, divisor) instead of shape of dividend solely.
# Thus, in case dividend is scalar and divisor is numpy array, if there is an
# zero element in divisor array, the output will still have the shape of
# divisor array.
# out argument cannot be omitted. The default np.true_divide will output empty
# instead of zero at ~where.
broadcast = np.ones(np.broadcast(dividend, divisor).shape)
return np.true_divide(
dividend,
divisor,
out=np.zeros_like(broadcast),
where=divisor * broadcast != 0)
|
80d6acae02da5155ab9d2c0c9b97d12597f79806
| 33,833 |
def str_strip(x):
"""
Apply .strip() string method to a value.
"""
if isnull(x):
return x
else:
return str(x).strip()
|
1767625aaee859d506d936d3fb471f13647b9121
| 33,834 |
import mimetypes
def _guess_filetype(filename):
"""Return a (filetype, encoding) tuple for a file."""
mimetypes.init()
filetype = mimetypes.guess_type(filename)
if not filetype[0]:
textchars = bytearray([7, 8, 9, 10, 12, 13, 27]) + bytearray(
range(0x20, 0x100))
with open(filename) as fd:
if fd.read(1024).translate(None, textchars):
filetype = ('application/unknown', None)
else:
filetype = ('text/plain', None)
return filetype
|
356ed4180b00101a77c4424c5b75ad8a8a473559
| 33,835 |
import re
def inline_anchor_check(stripped_file):
"""Check if the in-line anchor directly follows the level 1 heading."""
if re.findall(Regex.INLINE_ANCHOR, stripped_file):
return True
|
f0817856f0bb4848470b6179ee59222cce3745d5
| 33,836 |
import numpy
def u_inverse(U, check=False, verbose=False):
"""invert a row reduced U
"""
m, n = U.shape
#items = []
leading = []
for row in range(m):
cols = numpy.where(U[row, :])[0]
if not len(cols):
break
col = cols[0]
leading.append(col)
U1 = zeros2(n, m)
#print shortstrx(U, U1)
# Work backwards
i = len(leading)-1 # <= m
while i>=0:
j = leading[i]
#print "i=", i, "j=", j
U1[j, i] = 1
#print shortstrx(U, U1)
k = i-1
while k>=0:
#print "dot2"
#print shortstr(U[k,:])
#print shortstr(U1[:,i])
if dot2(U[k, :], U1[:, i]):
j = leading[k]
#print "set", j, i
U1[j, i] = 1
#print shortstr(U1[:,i])
assert dot2(U[k, :], U1[:, i]) == 0
k -= 1
i -= 1
return U1
|
896bf3d79a790e4bae143c06dea2590f3348b800
| 33,837 |
def get_filters(component):
"""
Get the set of filters for the given datasource.
Filters added to a ``RegistryPoint`` will be applied to all datasources that
implement it. Filters added to a datasource implementation apply only to
that implementation.
For example, a filter added to ``Specs.ps_auxww`` will apply to
``DefaultSpecs.ps_auxww``, ``InsightsArchiveSpecs.ps_auxww``,
``SosSpecs.ps_auxww``, etc. But a filter added to ``DefaultSpecs.ps_auxww``
will only apply to ``DefaultSpecs.ps_auxww``. See the modules in
``insights.specs`` for those classes.
Args:
component (a datasource): The target datasource
Returns:
set: The set of filters defined for the datasource
"""
def inner(c, filters=None):
filters = filters or set()
if not ENABLED:
return filters
if not plugins.is_datasource(c):
return filters
if c in FILTERS:
filters |= FILTERS[c]
for d in dr.get_dependents(c):
filters |= inner(d, filters)
return filters
if component not in _CACHE:
_CACHE[component] = inner(component)
return _CACHE[component]
|
d6252d5ecc12ba7cc24f0f2d233d41014e34b637
| 33,839 |
import collections
def parse_traffic_congestion(traffic):
"""Return parsed traffic congestion by regions."""
regions_distances = collections.defaultdict(list)
regions_polygons = parse_regions_bounds()
for route in traffic:
trip_distance = route["trip_distance"]
point = Point((route["trip_latitude"], route["trip_longitude"]))
for name, poly in regions_polygons.items():
if poly.contains(point):
regions_distances[name].append(trip_distance)
def get_congestion_percentage(distances):
"""Return region congestion in percentage."""
distances = list(filter(lambda x: x != 0, distances))
try:
avg_distance = sum(distances) / len(distances)
return 100 / avg_distance / MIN_DISTANCE
except ZeroDivisionError:
return 0
timestamp = traffic[0]["timestamp"] if traffic else None
traffic_congestion = [{
"id": region,
"value": get_congestion_percentage(distances),
"timestamp": timestamp
} for region, distances in regions_distances.items()]
return traffic_congestion
|
298e8d8b7f77e9054ff5036184e8ac2bf219b139
| 33,840 |
from typing import Callable
import torch
def batch_mean_metric_torch(
base_metric: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
predictions: torch.Tensor,
ground_truth: torch.Tensor,
) -> torch.Tensor:
"""During training, we may wish to produce a single prediction
for each prediction request (i.e., just sample once from the
posterior predictive; similar to standard training of an MC
Dropout model). Then, we simply average over the batch dimension.
For a Torch model we would expect a Torch base metric
(e.g., `average_displacement_error_torch`), Torch tensor inputs,
and a torch.Tensor return type for backpropagation.
Args:
base_metric: Callable, function such as
`average_displacement_error_torch`
predictions: shape (B, T, 2) where B is the number of
prediction requests in the batch.
ground_truth: shape (T, 2), there is only one ground truth
trajectory for each prediction request.
"""
return torch.mean(
base_metric(predicted=predictions, ground_truth=ground_truth))
|
7ad19c3ccaa49ea572131ae19ce47af23ad8c821
| 33,842 |
def aggregate_tree(l_tree):
"""Walk a py-radix tree and aggregate it.
Arguments
l_tree -- radix.Radix() object
"""
def _aggregate_phase1(tree):
# phase1 removes any supplied prefixes which are superfluous because
# they are already included in another supplied prefix. For example,
# 2001:67c:208c:10::/64 would be removed if 2001:67c:208c::/48 was
# also supplied.
n_tree = radix.Radix()
for prefix in tree.prefixes():
if tree.search_worst(prefix).prefix == prefix:
n_tree.add(prefix)
return n_tree
def _aggregate_phase2(tree):
# phase2 identifies adjacent prefixes that can be combined under a
# single, shorter-length prefix. For example, 2001:67c:208c::/48 and
# 2001:67c:208d::/48 can be combined into the single prefix
# 2001:67c:208c::/47.
n_tree = radix.Radix()
for rnode in tree:
p = text(ip_network(text(rnode.prefix)).supernet())
r = tree.search_covered(p)
if len(r) == 2:
if r[0].prefixlen == r[1].prefixlen == rnode.prefixlen:
n_tree.add(p)
else:
n_tree.add(rnode.prefix)
else:
n_tree.add(rnode.prefix)
return n_tree
l_tree = _aggregate_phase1(l_tree)
if len(l_tree.prefixes()) == 1:
return l_tree
while True:
r_tree = _aggregate_phase2(l_tree)
if l_tree.prefixes() == r_tree.prefixes():
break
else:
l_tree = r_tree
del r_tree
return l_tree
|
20b73cb24d6989b3ec27706065da0a32eb1aef6c
| 33,843 |
def is_dag_acyclic(root_vertex):
"""Perform an acyclicity check for a given DAG.
Returns:
True -- If the DAG contains cycles.
False -- If the DAG does not contain cycles.
"""
visited = set()
for vertex in topological_traverse(root_vertex):
if vertex in visited:
# DAG has cycles
return False
else:
visited.add(vertex)
return True
|
f15104e4c515b9a7ad65e6505b717e4a5fa4624d
| 33,844 |
def nextPow2(length):
"""
Find next power of 2 <= length
"""
return int(2**np.ceil(np.log2(length)))
|
3cab0a91795035358ce0c759f7659089e09bd1e8
| 33,845 |
def convert_parameter_to_model_parameter(parameter, value, meta=None):
"""Convert a Cosmology Parameter to a Model Parameter.
Parameters
----------
parameter : `astropy.cosmology.parameter.Parameter`
value : Any
meta : dict or None, optional
Information from the Cosmology's metadata.
This function will use any of: 'getter', 'setter', 'fixed', 'tied',
'min', 'max', 'bounds', 'prior', 'posterior'.
Returns
-------
`astropy.modeling.Parameter`
"""
# Get from meta information relavant to Model
extra = {k: v for k, v in (meta or {}).items()
if k in ('getter', 'setter', 'fixed', 'tied', 'min', 'max',
'bounds', 'prior', 'posterior')}
return ModelParameter(description=parameter.__doc__,
default=value,
unit=getattr(value, "unit", None),
**extra)
|
90029124d46514d12b554491c2430ac81a351768
| 33,846 |
import torch
def check_decoder_output(decoder_output):
"""we expect output from a decoder is a tuple with the following constraint:
- the first element is a torch.Tensor
- the second element can be anything (reserved for future use)
"""
if not isinstance(decoder_output, tuple):
msg = "FariseqDecoder output must be a tuple" + _current_postion_info()
return False, msg
if len(decoder_output) != 2:
msg = "FairseqDecoder output must be 2-elem tuple" + _current_postion_info()
return False, msg
if not isinstance(decoder_output[0], torch.Tensor):
msg = (
"FariseqDecoder output[0] must be a torch.Tensor" + _current_postion_info()
)
return False, msg
return True, None
|
06728dc055c3487511ee5a0f645eccb89c412ba7
| 33,847 |
def _write_segmented_read(
model, read, segments, do_simple_splitting, delimiters, bam_out
):
"""Split and write out the segments of each read to the given bam output file.
NOTE: Assumes that all given data are in the forward direction.
:param model: The model to use for the array segment information.
:param read: A pysam.AlignedSegment object containing a read that has been segmented.
:param segments: A list of SegmentInfo objects representing the segments of the given reads.
:param do_simple_splitting: Flag to control how reads should be split.
If True, will use simple delimiters.
If False, will require reads to appear as expected in model.array_element_structure.
:param delimiters: A list of tuples containing the names of delimiter sequences to use to split the given read.
:param bam_out: An open pysam.AlignmentFile ready to write out data.
:return: the number of segments written.
"""
if do_simple_splitting:
segment_bounds_tuples = segment_read_with_simple_splitting(read, delimiters, segments)
for prev_delim_name, delim_name, start_coord, end_coord in segment_bounds_tuples:
# Write our segment here:
_write_split_array_element(
bam_out,
start_coord,
end_coord,
read,
segments,
delim_name,
prev_delim_name,
)
return len(segment_bounds_tuples)
else:
# Here we're doing bounded region splitting.
# This requires each read to conform to the expected read structure as defined in the model.
# The process is similar to what is done above for simple splitting.
delimiter_found, delimiter_segments = segment_read_with_bounded_region_algorithm(read, model, segments)
# Now we have our segments as described by our model.
# We assume they don't overlap and we write them out:
for i, seg_list in enumerate(delimiter_segments):
if delimiter_found[i]:
start_seg = seg_list[0]
end_seg = seg_list[-1]
start_coord = start_seg.start
end_coord = end_seg.end
start_delim_name = seg_list[0].name
end_delim_name = seg_list[-1].name
# Write our segment here:
_write_split_array_element(
bam_out,
start_coord,
end_coord,
read,
seg_list,
end_delim_name,
start_delim_name,
)
# Return the number of array elements.
# NOTE: this works because booleans are a subset of integers in python.
return sum(delimiter_found)
|
e92f3d258653c3cca8a379b4f6a3f2f72d4a54d9
| 33,848 |
def sphinx(**kwargs):
""" Run sphinx """
prog = _shell.frompath('sphinx-build')
if prog is None:
_term.red("sphinx-build not found")
return False
env = dict(_os.environ)
argv = [
prog, '-a',
'-d', _os.path.join(kwargs['build'], 'doctrees'),
'-b', 'html',
kwargs['source'],
kwargs['target'],
]
return not _shell.spawn(*argv, **{'env': env})
|
353479427fb434bd63af44dbfecd621973e694cf
| 33,849 |
def on_launch(launch_request, session):
""" Called when the user launches the skill without specifying what they
want
"""
print("on_launch requestId=" + launch_request['requestId'] +
", sessionId=" + session['sessionId'])
# Dispatch to your skill's launch
return get_welcome_response(launch_request, session)
|
64d3854459b2a5f454607bf4de12154b342f2ace
| 33,850 |
def generate_all_overhangs(overhang_length=4):
"""Generate list Overhang class instances for all overhangs of given length.
**Parameters**
**overhang_length**
> Length of overhangs (`int`).
"""
overhang_pairs = generate_overhang_pairs(overhang_length=overhang_length)
overhang_strings = [next(iter(overhang_pair)) for overhang_pair in overhang_pairs]
overhang_strings.sort()
overhangs = []
for overhang_string in overhang_strings:
overhang_class = Overhang(overhang_string)
overhangs += [overhang_class]
return overhangs
|
04268fd00fb5718d224e477180f6794b0144bfee
| 33,851 |
import csv
def csv_to_list(filename: str) -> list:
"""Receive an csv filename and returns rows of file with an list"""
with open(filename) as csv_file:
reader = csv.DictReader(csv_file)
csv_data = [line for line in reader]
return csv_data
|
d7344496271de6edcb3fc1df30bb78dd00980c30
| 33,852 |
import resource
def create_rlimits():
"""
Create a list of resource limits for our jailed processes.
"""
rlimits = []
# No subprocesses.
rlimits.append((resource.RLIMIT_NPROC, (0, 0)))
# CPU seconds, not wall clock time.
cpu = LIMITS["CPU"]
if cpu:
# Set the soft limit and the hard limit differently. When the process
# reaches the soft limit, a SIGXCPU will be sent, which should kill the
# process. If you set the soft and hard limits the same, then the hard
# limit is reached, and a SIGKILL is sent, which is less distinctive.
rlimits.append((resource.RLIMIT_CPU, (cpu, cpu+1)))
# Total process virtual memory.
vmem = LIMITS["VMEM"]
if vmem:
rlimits.append((resource.RLIMIT_AS, (vmem, vmem)))
# Size of written files. Can be zero (nothing can be written).
fsize = LIMITS["FSIZE"]
rlimits.append((resource.RLIMIT_FSIZE, (fsize, fsize)))
return rlimits
|
f3cf9589f9784295d620f2ff2c2b17d09a56c8df
| 33,853 |
def sqrt(x):
"""
Calculate the square root of argument x.
"""
#initial gues for square root
z = x/2.0
#Continuously improve the guess
#Adadapted from https://tour.golang.org/flowcontrol/8
while abs(x - (z*z)) > 0.0001:
z = z-(z*z - x) / (2*z)
return z
|
5598eb37bc56e3f514f75be0deae0b6a94c3831e
| 33,854 |
def create_french_dict_from(file_path):
"""Transform a text file containing (weight, word) tuples into python dictionnary."""
with open(file_path, 'r', encoding="ISO-8859-1") as file:
lines = file.readlines()
french_dict = {}
for line in lines:
couple = line.strip().replace('\n', '').split(' ')
word = remove_accent_from(couple[1].lower())
weight = int(couple[0])
if word in french_dict:
french_dict[word] += weight
else:
french_dict[word] = weight
for c in word:
if ord(c) < ord('a') or ord(c) > ord('z'):
del french_dict[word]
break
return french_dict
|
435be928dc8e3e03e55b4e0b485ee633b21c1b3c
| 33,855 |
def construct(data_dir, fname, Y=None, normalize=False, _type='sparse'):
"""Construct label class based on given parameters
Arguments
----------
data_dir: str
data directory
fname: str
load data from this file
Y: csr_matrix or None, optional, default=None
data is already provided
normalize: boolean, optional, default=False
Normalize the labels or not
Useful in case of non binary labels
_type: str, optional, default=sparse
-sparse or dense
"""
if fname is None and Y is None: # No labels are provided
return LabelsBase(data_dir, fname, Y)
else:
if _type == 'sparse':
return SparseLabels(data_dir, fname, Y, normalize)
elif _type == 'dense':
return DenseLabels(data_dir, fname, Y, normalize)
elif _type == 'Graph':
return GraphLabels(data_dir, fname, Y, normalize)
else:
raise NotImplementedError("Unknown label type")
|
397101b14b33d92921a14f43f7f4184e759a33a1
| 33,856 |
def test_NN_MUL_REDC1(op):
""" Generate tests for NN_MUL_REDC1 """
# Odd modulus
nn_mod = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) | 1
nn_r, nn_r_square, mpinv = compute_monty_coef(nn_mod, getwlenbitlen(nn_mod, wlen))
# random value for input numbers modulo our random mod
nn_in1 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
nn_in2 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
# Montgomery multiplication computes in1 * in2 * r^-1 (mod)
out = (nn_in1 * nn_in2 * modinv(nn_r, nn_mod)) % nn_mod
fmt = "%s nnnnu %s %s %s %s %d\n"
s = fmt % (op, format_int_string(out, wlen), format_int_string(nn_in1, wlen), format_int_string(nn_in2, wlen), format_int_string(nn_mod, wlen), mpinv)
return [ s ]
|
cc45a7970079d0f0579f1a9e97f773c9202e5674
| 33,857 |
import json
def GetAzureStorageConnectionString(storage_account_name, resource_group_args):
"""Get connection string."""
stdout, _ = vm_util.IssueRetryableCommand(
[AZURE_PATH, 'storage', 'account', 'show-connection-string',
'--name', storage_account_name] + resource_group_args + AZURE_SUFFIX)
response = json.loads(stdout)
return response['connectionString']
|
625fe1d0302a6ab4a29b1ec98a1cffccaabdeb93
| 33,858 |
def clean_data(answers, dupes, min_dupes, min_text, questions, show_output):
"""
:param answers:
:param dupes:
:param min_dupes:
:param min_text:
:param questions:
:param show_output:
:return:
"""
for dataframe in (questions, dupes, answers):
dataframe["Text"] = dataframe.Text0.apply(clean_text).str.lower()
questions = questions[questions.Text.str.len() > 0]
answers = answers[answers.Text.str.len() > 0]
dupes = dupes[dupes.Text.str.len() > 0]
if show_output:
print(questions.iloc[0, 1])
print(questions.iloc[0, 3])
# First, remove dupes that are questions, then remove duplicated questions and dupes.
dupes = dupes[~dupes.index.isin(questions.index)]
questions = questions[~questions.index.duplicated(keep="first")]
dupes = dupes[~dupes.index.duplicated(keep="first")]
# Keep only questions with answers and dupes, answers to questions, and dupes of questions.
questions = questions[
questions.AnswerId.isin(answers.index) & questions.AnswerId.isin(dupes.AnswerId)
]
answers = answers[answers.index.isin(questions.AnswerId)]
dupes = dupes[dupes.AnswerId.isin(questions.AnswerId)]
verify_data_integrity(answers, dupes, questions)
# Report on the data.
if show_output:
print("Text statistics:")
print(
pd.DataFrame(
[
questions.Text.str.len().describe().rename("questions"),
answers.Text.str.len().describe().rename("answers"),
dupes.Text.str.len().describe().rename("dupes"),
]
)
)
print("\nDuplication statistics:")
print(
pd.DataFrame(
[dupes.AnswerId.value_counts().describe().rename("duplications")]
)
)
print(
"\nLargest class: {:.2%}".format(
dupes.AnswerId.value_counts().max() / dupes.shape[0]
)
)
# Reset each dataframe's index.
questions.reset_index(inplace=True)
answers.reset_index(inplace=True)
dupes.reset_index(inplace=True)
# Apply the minimum text length to questions and dupes.
questions = questions[questions.Text.str.len() >= min_text]
dupes = dupes[dupes.Text.str.len() >= min_text]
# Keep only questions with dupes, and dupes of questions.
label_column = "AnswerId"
questions = questions[questions[label_column].isin(dupes[label_column])]
dupes = dupes[dupes[label_column].isin(questions[label_column])]
# Restrict the questions to those with a minimum number of dupes.
answerid_count = dupes.groupby(label_column)[label_column].count()
answerid_min = answerid_count.index[answerid_count >= min_dupes]
questions = questions[questions[label_column].isin(answerid_min)]
dupes = dupes[dupes[label_column].isin(answerid_min)]
# Verify data integrity.
assert questions[label_column].isin(dupes[label_column]).all()
assert dupes[label_column].isin(questions[label_column]).all()
# Report on the data.
if show_output:
print("Restrictions: min_text={}, min_dupes={}".format(min_text, min_dupes))
print("Restricted text statistics:")
print(
pd.DataFrame(
[
questions.Text.str.len().describe().rename("questions"),
dupes.Text.str.len().describe().rename("dupes"),
]
)
)
print("\nRestricted duplication statistics:")
print(
pd.DataFrame(
[dupes[label_column].value_counts().describe().rename("duplications")]
)
)
print(
"\nRestricted largest class: {:.2%}".format(
dupes[label_column].value_counts().max() / dupes.shape[0]
)
)
return dupes, label_column, questions
|
6d9d753bf2d8267fb517c21de2dc2a34357dfb90
| 33,859 |
def on_intent(intent_request, session):
""" Called when the user specifies an intent for this skill """
print("on_intent requestId=" + intent_request['requestId'] +
", sessionId=" + session['sessionId'])
intent_name = intent_request['intent']['name']
print(intent_request['intent']['name'])
# Dispatch to your skill's intent handlers
if intent_name == "HowManyAstronautsinISS":
return countAstronauts()
elif intent_name == "AMAZON.HelpIntent":
return get_welcome_response()
elif intent_name == "AMAZON.CancelIntent" or intent_name == "AMAZON.StopIntent":
return handle_session_end_request()
else:
raise ValueError("Invalid intent")
|
8d7a54b5a3f83a7dc3d9923e0631646b9fc27ab6
| 33,860 |
from typing import Type
import inspect
def ta_adaptor(indicator_mixin: Type[IndicatorMixin], function_name: str, **kwargs) -> callable:
"""Wraps strategies from ta to make them compatible with infertrade's interface."""
indicator_parameters = inspect.signature(indicator_mixin.__init__).parameters
allowed_keys = ["close", "open", "high", "low", "volume"]
column_strings = []
parameter_strings = {}
for ii_parameter_index in range(len(indicator_parameters)):
if list(indicator_parameters.items())[ii_parameter_index][0] in allowed_keys:
# This is an input column that needs to be mapped to a Pandas Series.
column_strings.append(list(indicator_parameters.items())[ii_parameter_index][0])
elif list(indicator_parameters.items())[ii_parameter_index][0] != "self":
# This is parameter that needs to mapped to a default value.
name_of_parameter = list(indicator_parameters.items())[ii_parameter_index][0]
default_value_of_parameter = list(indicator_parameters.items())[ii_parameter_index][1].default
if not isinstance(default_value_of_parameter, (float, int)):
# Where empty we set to 10.
default_value_of_parameter = DEFAULT_VALUE_FOR_MISSING_DEFAULTS
parameter_strings.update({name_of_parameter: default_value_of_parameter})
# We override with any supplied arguments.
parameter_strings.update(kwargs)
def func(df: pd.DataFrame) -> pd.DataFrame:
"""Inner function to create a Pandas -> Pandas interface."""
column_inputs = {column_name: df[column_name] for column_name in column_strings}
indicator = indicator_mixin(**column_inputs, **parameter_strings)
indicator_callable = getattr(indicator, function_name)
df[PandasEnum.SIGNAL.value] = indicator_callable()
return df
return func
|
abf0f7851f1a47263aca4bb2e032af48d0ab5b0a
| 33,861 |
def flops(program, only_conv=True, detail=False):
"""Get FLOPs of target graph.
Args:
program(Program): The program used to calculate FLOPS.
only_conv(bool): Just return number of mul-adds in convolution and FC layer if `only_conv` is true.
default: True.
detail(bool): Whether to return detail of each convolution layer.
Returns:
int|tuple: If `detail` is true, then return a tuple in format `(FLOPs, details)`, otherwise it will just return `FlOPs`. The details is a dict whose key is the parameter name of convlution layer and value is the FLOPs of each convolution layer.
"""
graph = GraphWrapper(program)
return _graph_flops(graph, only_conv=only_conv, detail=detail)
|
25cdfa159addfe2ef52be8aa6d3f1122df1332e0
| 33,863 |
import math
def eq11 (A):
"""Chemsep equation 11
:param A: Equation parameter A"""
return math.exp(A)
|
354b33a14f17de2862e5674edc421045c3dd21a9
| 33,864 |
def extractor_to_question(extractor: str):
"""
return questions for a extractor in a tuple
:param extractor:
:return:
"""
if extractor == 'action':
return ('who', 'what')
elif extractor == 'cause':
return ('why',)
elif extractor == 'environment':
return ('where', 'when')
elif extractor == 'method':
return ('how',)
else:
return ('no_mapping',)
|
9f32562b426b59c4e44efab32064045796ec27ed
| 33,865 |
def getpage(url):
"""
Downloads the html page
:rtype: tuple
:param url: the page address
:return: the header response and contents (bytes) of the page
"""
http = httplib2.Http('.cache', disable_ssl_certificate_validation=True)
headers = {
'User-agent': 'Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/37.0.2062.120 Safari/537.36'}
response, content = http.request(url, headers=headers)
return response, content
|
1bb8fa3bdc1a083826dc509723b4855d0ec41990
| 33,866 |
from typing import Union
import contextlib
def path_to_xpath(node_or_path: Union[str, ncs.maagic.Node]) -> str:
"""Get the XPath to a node (keypath or maagic Node)
The input can be either:
- string keypath (/devices/device{foo}/config/alu:port...),
- maagic Node instance.
The helper will start a new MAAPI read transaction if necessary.
:param node_or_path: string keypath or Node instance
:returns: a string XPath to the node
"""
with contextlib.ExitStack() as stack:
if isinstance(node_or_path, str):
# for a string input, we need a MAAPI session and read transaction
t_read = stack.enter_context(ncs.maapi.single_read_trans('python-path-to-xpath', 'system'))
t_read.pushd(node_or_path)
elif isinstance(node_or_path, ncs.maagic.Node):
# for a Node input, we first attempt to retrieve the backend transaction
try:
t_read = ncs.maagic.get_trans(node_or_path)
except ncs.maagic.BackendError:
try:
# if there is no backend transaction, try to get the backend MAAPI
# and start a new transaction
maapi = ncs.maagic.get_maapi(node_or_path)
t_read = stack.enter_context(maapi.start_read_trans())
except ncs.maagic.BackendError:
# if the node has no compatible backend, we're back to square one
# and need to set up MAAPI and read transaction
t_read = stack.enter_context(ncs.maapi.single_read_trans('python-path-to-xpath', 'system'))
t_read.pushd(node_or_path._path)
xpath = _ncs.xpath_pp_kpath(t_read.getcwd_kpath()) # pylint: disable=no-member
t_read.popd()
return xpath
|
5f91fccb3d32c780712e7487f06d05b55044073d
| 33,867 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.