content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import random import multiprocessing import concurrent import tqdm def solve_lineage_instance( _target_nodes, prior_probabilities=None, method="hybrid", threads=8, hybrid_cell_cutoff=200, hybrid_lca_cutoff=None, time_limit=1800, max_neighborhood_size=10000, seed=None, num_iter=-1, weighted_ilp=False, fuzzy=False, probabilistic=False, plot_diagnostics=True, maximum_alt_solutions=100, greedy_minimum_allele_rep=1.0, n_neighbors=10, missing_data_mode="lookahead", lookahead_depth=3, ): """ Aggregated lineage solving method, which given a set of target nodes, will find the maximum parsimony tree accounting the given target nodes :param target_nodes: A list of target nodes, where each node is in the form 'Ch1|Ch2|....|Chn' :param prior_probabilities: A nested dictionary containing prior probabilities for [character][state] mappings where characters are in the form of integers, and states are in the form of strings, and values are the probability of mutation from the '0' state. :param method: The method used for solving the problem ['ilp, 'hybrid', 'greedy'] - ilp: Attempts to solve the problem based on steiner tree on the potential graph (Recommended for instances with several hundred samples at most) - greedy: Runs a greedy algorithm to find the maximum parsimony tree based on choosing the most occurring split in a top down fasion (Algorithm scales to any number of samples) - hybrid: Runs the greedy algorithm until there are less than hybrid_subset_cutoff samples left in each leaf of the tree, and then returns a series of small instance ilp is then run on these smaller instances, and the resulting graph is created by merging the smaller instances with the greedy top-down tree :param threads: The number of threads to use in parallel for the hybrid algorithm :param hybrid_subset_cutoff: The maximum number of nodes allowed before the greedy algorithm terminates for a given leaf node :return: A reconstructed subgraph representing the nodes """ if method == "hybrid": assert ( hybrid_cell_cutoff is None or hybrid_lca_cutoff is None ), "You can only use one type of cutoff in Hybrid" target_nodes = [n.get_character_string() + "_" + n.name for n in _target_nodes] node_name_dict = dict( zip( [n.split("_")[0] for n in target_nodes], [n + "_target" for n in target_nodes], ) ) if seed is not None: np.random.seed(seed) random.seed(seed) # clip identifier for now, but make sure to add later target_nodes = [n.split("_")[0] for n in target_nodes] # target_nodes = list(set(target_nodes)) master_root = root_finder(target_nodes) if method == "ilp": subgraphs, r, pid, graph_sizes = find_good_gurobi_subgraph( master_root, target_nodes, node_name_dict, prior_probabilities, time_limit, 1, max_neighborhood_size, seed=seed, num_iter=num_iter, weighted=weighted_ilp, n_neighbors=n_neighbors, ) subgraph = subgraphs[0] rdict = {} target_seen = [] for n in subgraph: spl = n.split("_") nn = Node(n, spl[0].split("|"), is_target=False) if len(spl) == 2: if "target" in n and nn.char_string not in target_seen: nn.is_target = True if len(spl) > 2: if "target" in n and nn.char_string not in target_seen: nn.is_target = True nn.pid = spl[-1] if nn.is_target: target_seen.append(nn.char_string) rdict[n] = nn state_tree = nx.relabel_nodes(subgraph, rdict) return ( Cassiopeia_Tree( method="ilp", network=state_tree, name="Cassiopeia_state_tree" ), graph_sizes, ) if method == "hybrid": neighbors, distances = None, None if missing_data_mode == "knn": print("Computing neighbors for imputing missing values...") neighbors, distances = find_neighbors(target_nodes, n_neighbors=n_neighbors) network, target_sets = greedy_build( target_nodes, neighbors, distances, priors=prior_probabilities, cell_cutoff=hybrid_cell_cutoff, lca_cutoff=hybrid_lca_cutoff, fuzzy=fuzzy, probabilistic=probabilistic, minimum_allele_rep=greedy_minimum_allele_rep, missing_data_mode=missing_data_mode, lookahead_depth=lookahead_depth, ) print( "Using " + str(min(multiprocessing.cpu_count(), threads)) + " threads, " + str(multiprocessing.cpu_count()) + " available.", flush=True, ) executor = concurrent.futures.ProcessPoolExecutor( min(multiprocessing.cpu_count(), threads) ) print("Sending off Target Sets: " + str(len(target_sets)), flush=True) # just in case you've hit a target node during the greedy reconstruction, append name at this stage # so the composition step doesn't get confused when trying to join to the root. network = nx.relabel_nodes(network, node_name_dict) futures = [ executor.submit( find_good_gurobi_subgraph, root, targets, node_name_dict, prior_probabilities, time_limit, 1, max_neighborhood_size, seed, num_iter, weighted_ilp, n_neighbors, ) for root, targets in target_sets ] concurrent.futures.wait(futures) base_network = network.copy() base_rdict = {} for n in base_network: spl = n.split("_") nn = Node(n, spl[0].split("|"), is_target=False) if len(spl) > 1: nn.pid = spl[1] if spl[0] in node_name_dict: nn.is_target = True base_rdict[n] = nn base_network = nx.relabel_nodes(base_network, base_rdict) num_solutions = 1 # keep track of number of possible solutions potential_graph_sizes = [] all_res = [] alt_solutions = {} for future in futures: results, r, pid, graph_sizes = future.result() potential_graph_sizes.append(graph_sizes) subproblem_solutions = [] for res in results: new_names = {} for n in res: if res.in_degree(n) == 0 or n == r: new_names[n] = n else: new_names[n] = n + "_" + str(pid) res = nx.relabel_nodes(res, new_names) subproblem_solutions.append(res) num_solutions *= len(subproblem_solutions) all_res.append(subproblem_solutions) rt = [ n for n in subproblem_solutions[0] if subproblem_solutions[0].in_degree(n) == 0 ][0] alt_solutions[base_rdict[rt]] = subproblem_solutions network = nx.compose(network, subproblem_solutions[0]) rdict = {} target_seen = [] for n in network: spl = n.split("_") nn = Node(n, spl[0].split("|"), is_target=False) if len(spl) == 2: if "target" in n and nn.char_string not in target_seen: nn.is_target = True if len(spl) > 2: if "target" in n and nn.char_string not in target_seen: nn.is_target = True nn.pid = spl[-1] if nn.is_target: target_seen.append(nn.char_string) rdict[n] = nn state_tree = nx.relabel_nodes(network, rdict) # create alternative solutions pbar = tqdm( total=len(alt_solutions.keys()), desc="Enumerating alternative solutions" ) for r in alt_solutions.keys(): soln_list = [] # get original target char strings # sub_targets = [n.char_string for n in state_tree.successors(r) if n.is_target] for res in alt_solutions[r]: rdict = {} for n in res: spl = n.split("_") nn = Node(n, spl[0].split("|"), is_target=False) if len(spl) > 2: nn.pid = spl[-1] rdict[n] = nn res = nx.relabel_nodes(res, rdict) soln_list.append(res) alt_solutions[r] = soln_list pbar.update(1) # update progress bar # iterate through all possible solutions # alt_solutions = [] # if num_solutions > 1: # num_considered_solutions = 0 # sol_identifiers = [] # keep track of solutions already sampled # # we'll sample maximum_alt_solutions from the set of possible solutions # pbar = tqdm( # total=maximum_alt_solutions, desc="Enumerating alternative solutions" # ) # while num_considered_solutions < min(num_solutions, maximum_alt_solutions): # current_sol = [] # for res_list in all_res: # current_sol.append(np.random.choice(len(res_list))) # if tuple(current_sol) not in sol_identifiers: # new_network = base_network.copy() # for i in range(len(current_sol)): # res_list = all_res[i] # net = res_list[current_sol[i]] # new_network = nx.compose(new_network, net) # rdict = {} # target_seen = [] # for n in new_network: # spl = n.split("_") # nn = Node("state-node", spl[0].split("|"), is_target=False) # if len(spl) == 2: # if "target" in n and n not in target_seen: # nn.is_target = True # if len(spl) > 2: # if 'target' in n and n not in target_seen: # nn.is_target = True # nn.pid = spl[-1] # if nn.is_target: # target_seen.append(nn.char_string) # rdict[n] = nn # new_network = nx.relabel_nodes(new_network, rdict) # alt_solutions.append(new_network) # sol_identifiers.append(tuple(current_sol)) # num_considered_solutions += 1 # pbar.update(1) # update progress bar return ( Cassiopeia_Tree( method="hybrid", network=state_tree, name="Cassiopeia_state_tree", alternative_solutions=alt_solutions, base_network=base_network, ), potential_graph_sizes, ) if method == "greedy": neighbors, distances = None, None if missing_data_mode == "knn": print("Computing neighbors for imputing missing values...") neighbors, distances = find_neighbors(target_nodes, n_neighbors=n_neighbors) graph = greedy_build( target_nodes, neighbors, distances, priors=prior_probabilities, cell_cutoff=-1, lca_cutoff=None, fuzzy=fuzzy, probabilistic=probabilistic, minimum_allele_rep=greedy_minimum_allele_rep, missing_data_mode=missing_data_mode, lookahead_depth=lookahead_depth, )[0] rdict = {} for n in graph: spl = n.split("_") nn = Node(n, spl[0].split("|"), is_target=False) if len(spl) > 1: nn.pid = spl[1] if spl[0] in node_name_dict and len(spl) == 1: nn.is_target = True rdict[n] = nn state_tree = nx.relabel_nodes(graph, rdict) return ( Cassiopeia_Tree( method="greedy", network=state_tree, name="Cassiopeia_state_tree" ), None, ) else: raise Exception( "Please specify one of the following methods: ilp, hybrid, greedy" )
6babbb6c071a17f9a5bfe2fbe402d1cb72a6c330
33,523
def split_in_chunks( data, chunk_size, train_size=None, val_size=None, test_size=None, shuffle=True, seed=None, ): """Split data into train-test, where chunks of data are held together Assume `data` is a list of numpy arrays """ chunks = [] for rollout in data: for idx in range(0, len(rollout), chunk_size): chunk = rollout[idx : idx + chunk_size] chunks.append(chunk) return split(chunks, train_size, val_size, test_size, shuffle, seed)
fad3ebdc99731ad95ff0200e70e2e64d4a9acdc8
33,524
import re def check_id(id): """ Check whether a id is valid :param id: The id :return: The result """ return bool(re.match(r"^[a-f0-9]{24}$", id))
f336d34de12f4f5520d4c88a838ebdb396857d2b
33,526
def totaled_tbr_no_lgtm(cc, sql_time_specification): """Counts the number of commits with a TBR that have not been lgtm'ed in a given timeframe Args: cc(cursor) sql_time_specification(str): a sql command to limit the dates of the returned results Return: count(int): a count of all commits with a TBR and no lgtm results(list): a list of lists with all tbr'ed commits with no lgtm in the format [rietveld_url, git_timestamp, git_subject, git_hash] """ cc.execute("""SELECT git_commit.review_url, git_commit.timestamp, git_commit.subject, git_commit.hash FROM review INNER JOIN git_commit ON review.review_url = git_commit.review_url INNER JOIN commit_people ON commit_people.git_commit_hash = git_commit.hash LEFT JOIN ( SELECT review_url, COUNT(*) AS c FROM review_people WHERE type = 'lgtm' GROUP BY review_url) lgtm_count ON review.review_url = lgtm_count.review_url WHERE lgtm_count.c = 0 OR lgtm_count.c IS NULL AND commit_people.type = 'author' AND %s""" % sql_time_specification) result = cc.fetchall() count = len(result) formatted_data = [] for data in result: subject = data[2] formatted_data.append([data[0], data[1].strftime("%Y-%m-%d %H:%M:%S"), subject.replace('-', ' '), data[3]]) results = sorted(formatted_data, key=lambda x: x[1], reverse=True) return count, results
25666c4f741f6bdd2c8358468a54c6e261cc57e3
33,527
import unicodedata def normalize_text(text: str) -> str: """Normalize the text to remove accents and ensure all the characters are valid ascii symbols. Args: text : Input text Returns: Output text """ nfkd_form = unicodedata.normalize("NFKD", text) only_ascii = nfkd_form.encode("ASCII", "ignore") return only_ascii.decode()
fa1c5362caa9946e79152f9e14ccf2131754f258
33,528
def rotate_y(x, z, cosangle, sinangle): """3D rotaion around *y* (roll). *x* and *z* are values or arrays. Positive rotation is for positive *sinangle*. Returns *xNew, zNew*.""" return cosangle*x + sinangle*z, -sinangle*x + cosangle*z
0a1b28548f771b9ca8cec29ba4060be7b0919182
33,529
import base64 import html def json_file_upload(contents, file_names, dates): """ Reads a JSON file from disk and saves it in the default path The goal is to keep that file over there for the Draw JSON Function to read and draw it. Args: ontents, file_names, dates: inputs from the Dash UI """ global arm, dp global default_JSON_file_Path if contents is not None: msg = "{} is loaded".format(file_names) print (msg) try: _, content_string = contents.split(',') decoded = base64.b64decode(content_string) data =decoded.decode('utf-8') data = str(data) except: print ("Couldn\'t read the JSON file") dp.write_dic_to_json_file(data, default_JSON_file_Path) fig = quick_draw_graph(default_JSON_file_Path) return (html.Div([html.Pre(data)]), {'visibility': 'visible'}, fig) return "No file is loaded yet"
88d06880fb4e102260ef7df6f931ee541d8c98fc
33,530
import getpass def ask_credential(login=None, password=None): """ Ask for a login and a password when not specified. Parameters ---------- login: str, default None a login. password: str, defualt None a password. Returns ------- login: str, default None a login. password: str, defualt None a password. """ if login is None: login = raw_input("Login:") if password is None: password = getpass.getpass("Password for " + login + ":") return login, password
55ba7425cd2016212c897345c21b6d24ce3d8578
33,532
import numpy def zeros_like(a, dtype=None, bohrium=None): """ Return an array of zeros with the same shape and type as a given array. With default parameters, is equivalent to ``a.copy().fill(0)``. Parameters ---------- a : array_like The shape and data-type of `a` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. bohrium : boolean, optional Determines whether it is a Bohrium-enabled array or a regular NumPy array Returns ------- out : ndarray Array of zeros with the same shape and type as `a`. See Also -------- ones_like : Return an array of ones with shape and type of input. empty_like : Return an empty array with shape and type of input. zeros : Return a new array setting values to zero. ones : Return a new array setting values to one. empty : Return a new uninitialized array. Notes ----- The order of the data in memory is always row-major (C-style). Examples -------- >>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([[0, 1, 2], [3, 4, 5]]) >>> np.zeros_like(x) array([[0, 0, 0], [0, 0, 0]]) >>> y = np.arange(3, dtype=np.float) >>> y array([ 0., 1., 2.]) >>> np.zeros_like(y) array([ 0., 0., 0.]) """ if dtype is None: dtype = a.dtype if bohrium is None: bohrium = bhary.check(a) if bohrium and not dtype_support(dtype): _warn_dtype(dtype, 3) return numpy.zeros_like(a, dtype=dtype) b = empty_like(a, dtype=dtype, bohrium=bohrium) b[...] = b.dtype.type(0) return b
6d831ead77b55229121f85d005a426e86565353a
33,533
import random def rand(): """ Returns a random number. """ return random.random()
efad85c9f169d39358ed034a29f166df175d0ea7
33,534
def read_counters(): """read_counters() Get current counts and reset counters. :rtype: list(int) :raises PapiInvalidValueError: One or more of the arguments is invalid (this error should not happen with PyPAPI). :raises PapiSystemError: A system or C library call failed inside PAPI. """ values = ffi.new("long long[]", _counter_count) rcode = lib.PAPI_read_counters(values, _counter_count) return rcode, ffi.unpack(values, _counter_count)
d82c3b186aadc0b61e848a838549cf8393fa1010
33,535
def is_monotonic_decreasing(series_or_index): """ Return boolean scalar if values in the object are monotonic_decreasing. Returns ------- Scalar """ return check_monotonic(series_or_index, decreasing=True, strict=False)
3b5c2f989d53cc96fc6e9131cb2b3a78945befaa
33,536
def mprint(m,fmt): """ This function will print a VSIPL matrix or vector suitable for pasting into Octave or Matlab. usage: mprint(<vsip matrix/vector>, fmt) fmt is a string corresponding to a simple fmt statement. For instance '%6.5f' prints as 6 characters wide with 5 decimal digits. Note format converts this statement to '% 6.5f' or '%+6.5f' so keep the input simple. """ def _fmt1(c): if c != '%': return c else: return '% ' def _fmt2(c): if c != '%': return c else: return '%+' def _fmtfunc(fmt1,fmt2,y): x = vsip.cscalarToComplex(y) if type(x) == complex: return fmt1 % x.real + fmt2 % x.imag + "i" else: return fmt % x tm=['mview_d','mview_f','cmview_d','cmview_f','mview_i','mview_uc','mview_si','mview_bl'] tv=['vview_d','vview_f','cvview_d','cvview_f','vview_i','vview_uc','vview_si','vview_bl','vview_vi','vview_mi'] t=vsip.getType(m)[1] tfmt=[_fmt1(c) for c in fmt] fmt1 = "".join(tfmt) tfmt=[_fmt2(c) for c in fmt] fmt2 = "".join(tfmt) if t in tm: cl=vsip.getcollength(m) rl=vsip.getrowlength(m) for i in range(cl): M=[] for j in range(rl): M.append(_fmtfunc(fmt1,fmt2,vsip.get(m,(i,j)))) if i == 0: print("["+" ".join(M) + ";") elif i < cl-1: print(" "+" ".join(M) + ";") else: print(" "+" ".join(M) + "]") elif t in tv: l=vsip.getlength(m) V=[_fmtfunc(fmt1,fmt2,vsip.get(m,i)) for i in range(l)] print("[" + " ".join(V) + "]") else: print('Object not VSIP vector or matrix')
36b555720a8908f2552dbbec7f03c648e34f168a
33,537
import requests def fetch_reviews(app_id, page_num): """Fetch a single page of reviews for a given app_id. :param app_id: The ID of the app in the app store. :param page_num: The page of reviews to fetch. :return: A list of Review objects. """ # page=1 is the same as if the "page" param was left off. url = "https://itunes.apple.com/us/rss/customerreviews/page={page_num}/id={app_id}/sortBy=mostRecent/json".format( page_num=page_num, app_id=app_id, ) r = requests.get(url) feed_json = r.json()["feed"] return [Review(entry) for entry in feed_json["entry"] if Review.is_review(entry)]
99b71a41ae7bc96e40d6d1798dd676c6a889f80b
33,539
def graph_push_point(graph_id): """ Push points to graph """ request_data, error = parseHTTPRequest(request, ["value"]) if error: response = jsonify({ "error": error }) return response, 422 try: # data = {"value":10, "date": datetime.datetime.utcnow()} operation = { "$push": { "points": { "value": request_data["value"], } } } if "date" in request_data: operation["$push"]["points"].update({ "date": request_data["date"] }) deform_response = token_client.documents.update( collection=schemas.GRAPH_COLLECTION_ID, filter={ "_id": graph_id }, operation=operation ) response = jsonify({ "point": operation["$push"]["points"] }) return response, 201 except Exception as e: response = jsonify({ "error": str(e) }) return response, 422
cf6522e294887370a3f8ad76ff66e96fb9b79291
33,540
def or_operator(): """|: Bitwise "or" operator.""" class _Operand: def __or__(self, other): return " ~or~ ".join(('east coast', other)) return _Operand() | 'dirty south'
9ccfc124dd6c7aae8035b336788cc07cdff983d1
33,541
import tqdm def computeAlignmentScores(vocabulary, sub_mat, gap_open, gap_extend): """ Pre-computes the alignment scores between all the k-mer pairs Args: vocabulary (list [str]): The list of all possible k-mers sub_mat (dict[tuple[str,str],int]): Substitution matrix as represented in Bio.SubsMat.MatrixInfo.blosum objects gap_open (int): gap open loss (negative number to use Biopython) gap_extend (int): gap extend loss (negative number to use Biopython) Returns: 2D numpy array [int,int] : a matrix[len(vocabulary)xlen(vocabulary)] where the value of (i,j) cell presents the alignment score between ith and jth k-mer in the vocabulary """ alignment_scores = np.zeros((len(vocabulary),len(vocabulary))) for i in tqdm(range(len(vocabulary)), desc='Computing Alignment Score'): for j in range(i,len(vocabulary)): alignment_score = align.globalds(vocabulary[i], vocabulary[j], sub_mat, gap_open, gap_extend, score_only=True) alignment_scores[i][j] = alignment_score alignment_scores[j][i] = alignment_score return alignment_scores
0b7aeb6b592586b827e19969a418146800805687
33,542
import re def _get_version(basename): """Returns the _get_next_version of a file.""" match = re.search(r"\(\d*\)", basename) if match: v = int(match.group(0) .replace('(', '') .replace(')', '')) return v return 0
7340b74dca04ecb5520c03b046ec650c34527b4c
33,544
def list_tags(): """Show all the known tags.""" streets_with_tags = ( db.session.query(Street).filter(Street.tags != None).all() # noqa ) all_tags = set() for street in streets_with_tags: all_tags.update(set(street.tags)) all_tags = sorted(list((all_tags))) return render_template( "streets/tags_list.html", all_tags=all_tags, )
737e65e7088357407c71eb19b9b3a4ddc948e26a
33,545
def get_records(field_id): """Return TOP 10 records for selected field""" if not request.is_xhr: abort(403) if field_id == 0: field_id = session.get('current_field_id', 2) field = Field.query.get(field_id) records = field.records.limit(10) top_10 = [] for record in records: is_you = False current_player = session.get('player', '') if current_player == record.player.name: is_you = True top_10.append( { 'size': field.name, 'player': record.player.name, 'shot_count': record.shot_count, 'seconds': record.seconds, 'isYou': is_you, } ) if not top_10: top_10 = [{'size': field.name},] return jsonify(top_10)
c9fcf236ee765d2a09148367293ea882093ab001
33,546
def self_play_iterator_creator(hparams, num_workers, jobid): """create a self play iterator. There are iterators that will be created here. A supervised training iterator used for supervised learning. A full text iterator and structured iterator used for reinforcement learning self play. Full text iterators feeds data from text files while structured iterators are initialized directly from objects. The former one is used for traiing. The later one is used for self play dialogue generation to eliminate the need of serializing them into actual text files. """ vocab_table = vocab_utils.create_vocab_tables(hparams.vocab_file)[0] data_dataset = tf.data.TextLineDataset(hparams.train_data) kb_dataset = tf.data.TextLineDataset(hparams.train_kb) skip_count_placeholder = tf.placeholder(shape=(), dtype=tf.int64) # this is the actual iterator for supervised training train_iterator = iterator_utils.get_iterator( data_dataset, kb_dataset, vocab_table, batch_size=hparams.batch_size, t1=hparams.t1.encode(), t2=hparams.t2.encode(), eod=hparams.eod, len_action=hparams.len_action, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets, max_dialogue_len=hparams.max_dialogue_len, skip_count=skip_count_placeholder, num_shards=num_workers, shard_index=jobid) # this is the actual iterator for self_play_fulltext_iterator data_placeholder = tf.placeholder( shape=[None], dtype=tf.string, name="src_ph") kb_placeholder = tf.placeholder(shape=[None], dtype=tf.string, name="kb_ph") batch_size_placeholder = tf.placeholder( shape=[], dtype=tf.int64, name="bs_ph") dataset_data = tf.data.Dataset.from_tensor_slices(data_placeholder) kb_dataset = tf.data.Dataset.from_tensor_slices(kb_placeholder) self_play_fulltext_iterator = iterator_utils.get_infer_iterator( dataset_data, kb_dataset, vocab_table, batch_size=batch_size_placeholder, eod=hparams.eod, len_action=hparams.len_action, self_play=True) # this is the actual iterator for self_play_structured_iterator self_play_structured_iterator = tf.data.Iterator.from_structure( tf.data.get_output_types(self_play_fulltext_iterator), tf.data.get_output_shapes(self_play_fulltext_iterator)) iterators = [ train_iterator, self_play_fulltext_iterator, self_play_structured_iterator ] # this is the list of placeholders placeholders = [ data_placeholder, kb_placeholder, batch_size_placeholder, skip_count_placeholder ] return iterators, placeholders
618179a8694a2df0edbd1401a6caf18e607b2652
33,547
def utf8_product_page(): """ Single product page with utf8 content. """ with open('data/product_utf8.html') as f: return ''.join(f)
56a70e463cebdaef632ebd2997be4a523289da02
33,548
def detect_Nir2011(dat_orig, s_freq, time, opts): """Spindle detection based on Nir et al. 2011 Parameters ---------- dat_orig : ndarray (dtype='float') vector with the data for one channel s_freq : float sampling frequency time : ndarray (dtype='float') vector with the time points for each sample opts : instance of 'DetectSpindle' 'det_butter' : dict parameters for 'butter', 'smooth' : dict parameters for 'gaussian' 'det_thresh' : float detection threshold 'sel_thresh' : float selection threshold 'min_interval' : float minimum interval between consecutive events 'duration' : tuple of float min and max duration of spindles Returns ------- list of dict list of detected spindles dict 'det_value_lo' with detection value, 'det_value_hi' with nan, 'sel_value' with selection value float spindle density, per 30-s epoch Notes ----- This paper also selects channels carefully: 'First, the channels with spindle activity in NREM sleep were chosen for further analysis.' 'Third, those channels, in which an increase in spectral power within the detected events was restricted to the spindle-frequency range (10-16 Hz) rather than broadband.' References ---------- Nir, Y. et al. Neuron 70, 153-69 (2011). """ dat_det = transform_signal(dat_orig, s_freq, 'butter', opts.det_butter) dat_det = transform_signal(dat_det, s_freq, 'hilbert') dat_det = transform_signal(dat_det, s_freq, 'abs') dat_det = transform_signal(dat_det, s_freq, 'gaussian', opts.smooth) det_value = define_threshold(dat_det, s_freq, 'mean+std', opts.det_thresh_lo) sel_value = define_threshold(dat_det, s_freq, 'mean+std', opts.sel_thresh) events = detect_events(dat_det, 'above_thresh', det_value) if events is not None: events = _merge_close(dat_det, events, time, opts.min_interval) events = select_events(dat_det, events, 'above_thresh', sel_value) events = within_duration(events, time, opts.duration) power_peaks = peak_in_power(events, dat_orig, s_freq, opts.power_peaks) power_avgs = avg_power(events, dat_orig, s_freq, opts.frequency) sp_in_chan = make_spindles(events, power_peaks, power_avgs, dat_det, dat_orig, time, s_freq) else: # print('No spindle found') sp_in_chan = [] values = {'det_value_lo': det_value, 'det_value_hi': nan, 'sel_value': sel_value} density = len(sp_in_chan) * s_freq * 30 / len(dat_orig) return sp_in_chan, values, density
f4e4c1cd22944fd09121c0f43bb28a4dd3e7d629
33,549
def is_indel(variant): """Is variant an indel? An indel event is simply one where the size of at least one of the alleles is > 1. Args: variant: third_party.nucleus.protos.Variant. Returns: True if the alleles in variant indicate an insertion/deletion event occurs at this site. """ # redacted # redacted return (not is_ref(variant) and (len(variant.reference_bases) > 1 or any(len(alt) > 1 for alt in variant.alternate_bases)))
dc44642a011ac292c73a163b29bb1f3c4cb36624
33,550
import functools def project_access_required(f): """Decorator function to verify the users access to the project.""" @functools.wraps(f) def verify_project_access(current_user, project, *args, **kwargs): """Verifies that the user has been granted access to the project.""" if project["id"] is None: return flask.make_response("Project ID missing. Cannot proceed", 401) if not project["verified"]: return flask.make_response( f"Access to project {project['id']} not yet verified. " "Checkout token settings.", 401, ) return f(current_user, project, *args, **kwargs) return verify_project_access
4689e05ae330e360ca0e1ac221b571545608d5b4
33,551
def downloadRangesHelper(imageCount : int, downloadRange, downloadIndex): """Helper function for calculating download ranges and/or download index""" # expected output should be [x,y], where x = zero-based image index start, # and y = the amount of images in a post. # check if downloadRange and downloadIndex are set # then return an error message if downloadRange is not None and downloadIndex is not None: print("Range and index parameters cannot be combined at the same time.") return None # check if there is only one image in a post if imageCount == 1: return [0, 1] elif imageCount > 1 and (downloadRange is None and downloadIndex is None): return [0, imageCount] # checks when download range is set if downloadRange is not None: return _calculateRange(imageCount, downloadRange) elif downloadIndex is not None: return _calculateIndex(imageCount, downloadIndex)
2fa98a1111059d5c2f2126f19a8eccab9b23a596
33,552
import sqlite3 def removeProduct(product, connection=None): """ Remove a product tuple from the database. Args: products (str): The product to be removed from the database. connection (sqlite3.Connection, optional): A connection to the database. Returns: bool: True if successful, false otherwise. """ # Convert to a valid string by adding or removing characters. product = "'" + product + "'" # Open the master database if it is not supplied. flag = False if connection is None: connection = sqlite3.connect(MASTER) flag = True # Create a cursor from the connection. cursor = connection.cursor() # Execute the command to remove the row of the given product. cursor.execute("""DELETE FROM information WHERE product={p}""".\ format(p=product)) # Close the cursor. cursor.close() # Commit the change to the database and close the connection. if flag: connection.commit() connection.close() return True
131c013a4ee1569b91dd7f52b3c961877e4a9124
33,553
def health(): """Return information about the health of the queue in a format that can be turned into JSON. """ output = {'queue': {}, 'errors': {}} output['queue']['all-jobs'] = Job.objects.all().count() output['queue']['not-executed'] = Job.objects.filter(executed=None).count() output['queue']['executed'] = Job.objects.exclude(executed=None).count() output['errors']['number'] = Error.objects.all().count() return output
f65ac55808d52ece96b6168137e78f8ad42c7d7f
33,554
def build_confirmation_msg(message_template: str, variables_arr: [], record): """Returns the full confirmation email as a string Note: some email services also support sending HTML for future purposes. """ inserts = [] for variable in variables_arr: inserts.append(record['fields'][variable.strip()]) message = message_template.format(*inserts) # print(message) return message
6d84b19f2bcce3fab298fe7ece2a011b423f9e90
33,557
import re def _get_freq_label_by_month(date_value: str) -> str: """Gets frequency label for the date value which is aggregated by month. Args: date_value (str): The date value. Returns: str: The date value aggregated by month. """ if bool(re.match(r"^\d{4}M\d{1,2}$", date_value)): return date_value if not bool(re.match(r"^\d{4}-\d{1,2}(-\d{1,2})?$", date_value)): raise ValueError("Date needs to be in yyyy-mm-dd or yyyy-mm format when freq is M") ts = pd.Timestamp(date_value) return "{}M{}".format(ts.year, ts.month)
a789d993bf390fba42dc5451302f3fe89623cb3d
33,558
import torch def get_depth_metrics(pred, gt, mask=None): """ params: pred: [N,1,H,W]. torch.Tensor gt: [N,1,H,W]. torch.Tensor """ if mask is not None: num = torch.sum(mask) # the number of non-zeros pred = pred[mask] gt = gt[mask] else: num = pred.numel() num = num * 1.0 diff_i = gt - pred abs_diff = torch.sum(torch.abs(diff_i)) / num abs_rel = torch.sum(torch.abs(diff_i) / gt) / num sq_rel = torch.sum(diff_i ** 2 / gt) / num rmse = torch.sqrt(torch.sum(diff_i ** 2) / num) rmse_log = torch.sqrt(torch.sum((torch.log(gt) - torch.log(pred)) ** 2) / num) return abs_diff, abs_rel, sq_rel, rmse, rmse_log
2d4e617bbbf3823ee60dbf1480aed624fd7ba57b
33,559
def run_ica(raw, n_components, max_pca_components=100, n_pca_components=64, noise_cov=None, random_state=None, algorithm='parallel', fun='logcosh', fun_args=None, verbose=None, picks=None, start=None, stop=None, start_find=None, stop_find=None, ecg_ch=None, ecg_score_func='pearsonr', ecg_criterion=0.1, eog_ch=None, eog_score_func='pearsonr', eog_criterion=0.1, skew_criterion=-1, kurt_criterion=-1, var_criterion=0, add_nodes=None): """Run ICA decomposition on raw data and identify artifact sources This function implements an automated artifact removal work flow. Hints and caveats: - It is highly recommended to bandpass filter ECG and EOG data and pass them instead of the channel names as ecg_ch and eog_ch arguments. - Please check your results. Detection by kurtosis and variance can be powerful but misclassification of brain signals as noise cannot be precluded. If you are not sure set those to None. - Consider using shorter times for start_find and stop_find than for start and stop. It can save you much time. Example invocation (taking advantage of defaults): ica = run_ica(raw, n_components=.9, start_find=10000, stop_find=12000, ecg_ch='MEG 1531', eog_ch='EOG 061') Parameters ---------- raw : instance of Raw The raw data to decompose. n_components : int | float | None The number of components used for ICA decomposition. If int, it must be smaller then max_pca_components. If None, all PCA components will be used. If float between 0 and 1 components can will be selected by the cumulative percentage of explained variance. n_pca_components The number of PCA components used after ICA recomposition. The ensuing attribute allows to balance noise reduction against potential loss of features due to dimensionality reduction. If greater than self.n_components_, the next 'n_pca_components' minus 'n_components_' PCA components will be added before restoring the sensor space data. The attribute gets updated each time the according parameter for in .pick_sources_raw or .pick_sources_epochs is changed. max_pca_components : int | None The number of components used for PCA decomposition. If None, no dimension reduction will be applied and max_pca_components will equal the number of channels supplied on decomposing data. noise_cov : None | instance of mne.cov.Covariance Noise covariance used for whitening. If None, channels are just z-scored. random_state : None | int | instance of np.random.RandomState np.random.RandomState to initialize the FastICA estimation. As the estimation is non-deterministic it can be useful to fix the seed to have reproducible results. algorithm : {'parallel', 'deflation'} Apply parallel or deflational algorithm for FastICA fun : string or function, optional. Default: 'logcosh' The functional form of the G function used in the approximation to neg-entropy. Could be either 'logcosh', 'exp', or 'cube'. You can also provide your own function. It should return a tuple containing the value of the function, and of its derivative, in the point. fun_args: dictionary, optional Arguments to send to the functional form. If empty and if fun='logcosh', fun_args will take value {'alpha' : 1.0} verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). picks : array-like Channels to be included. This selection remains throughout the initialized ICA session. If None only good data channels are used. start : int | float | None First sample to include for decomposition. If float, data will be interpreted as time in seconds. If None, data will be used from the first sample. stop : int | float | None Last sample to not include for decomposition. If float, data will be interpreted as time in seconds. If None, data will be used to the last sample. start_find : int | float | None First sample to include for artifact search. If float, data will be interpreted as time in seconds. If None, data will be used from the first sample. stop_find : int | float | None Last sample to not include for artifact search. If float, data will be interpreted as time in seconds. If None, data will be used to the last sample. ecg_ch : str | ndarray | None The `target` argument passed to ica.find_sources_raw. Either the name of the ECG channel or the ECG time series. If None, this step will be skipped. ecg_score_func : str | callable The `score_func` argument passed to ica.find_sources_raw. Either the name of function supported by ICA or a custom function. ecg_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. eog_ch : list | str | ndarray | None The `target` argument or the list of target arguments subsequently passed to ica.find_sources_raw. Either the name of the vertical EOG channel or the corresponding EOG time series. If None, this step will be skipped. eog_score_func : str | callable The `score_func` argument passed to ica.find_sources_raw. Either the name of function supported by ICA or a custom function. eog_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. skew_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. kurt_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. var_criterion : float | int | list-like | slice The indices of the sorted skewness scores. If float, sources with scores smaller than the criterion will be dropped. Else, the scores sorted in descending order will be indexed accordingly. E.g. range(2) would return the two sources with the highest score. If None, this step will be skipped. add_nodes : list of ica_nodes Additional list if tuples carrying the following parameters: (name : str, target : str | array, score_func : callable, criterion : float | int | list-like | slice). This parameter is a generalization of the artifact specific parameters above and has the same structure. Example: add_nodes=('ECG phase lock', ECG 01', my_phase_lock_function, 0.5) Returns ------- ica : instance of ICA The ica object with detected artifact sources marked for exclusion """ ica = ICA(n_components=n_components, max_pca_components=max_pca_components, n_pca_components=n_pca_components, noise_cov=noise_cov, random_state=random_state, algorithm=algorithm, fun=fun, fun_args=fun_args, verbose=verbose) ica.decompose_raw(raw, start=start, stop=stop, picks=picks) logger.info('%s' % ica) logger.info(' Now searching for artifacts...') _detect_artifacts(ica=ica, raw=raw, start_find=start_find, stop_find=stop_find, ecg_ch=ecg_ch, ecg_score_func=ecg_score_func, ecg_criterion=ecg_criterion, eog_ch=eog_ch, eog_score_func=eog_score_func, eog_criterion=ecg_criterion, skew_criterion=skew_criterion, kurt_criterion=kurt_criterion, var_criterion=var_criterion, add_nodes=add_nodes) return ica
56b36d33211123839ed61f6cc19e7c7ee4c2e336
33,560
def remove_member(context, request): """Remove a member from the given group.""" # Currently, we only support removing the requesting user if request.matchdict.get("userid") == "me": userid = request.authenticated_userid else: raise HTTPBadRequest('Only the "me" user value is currently supported') group_members_service = request.find_service(name="group_members") group_members_service.member_leave(context.group, userid) return HTTPNoContent()
494ddb9e824911680c8c4f80dbc7d1c6aa6f12d2
33,561
def convert_length(length, original_unit="kilometers", final_unit="kilometers"): """ :param length: length to be converted :param original_unit: original unit of the length :param final_unit: return unit of the length :return: the converted length """ if not isinstance(length, (float, int)) or length < 0: raise InvalidInput(error_code_messages["InvalidLength"]) return radians_to_length(length_to_radians(length, original_unit), final_unit)
e76dcaa050eaa1a77621c7062ca2a187238d0ea3
33,562
def get_value_larger(threshold, value, step, direction, size_x, size_y): """Function for looping until correct coordinate is found""" matrix = [[0 for _ in range(size_x)] for _ in range(size_y)] current_x = size_x / 2 current_y = size_y / 2 while value <= threshold: for _ in range(0, 2): for _ in range(0, step): matrix[current_x][current_y] = value # Step if direction == 0: current_x += 1 elif direction == 1: current_y += 1 elif direction == 2: current_x -= 1 elif direction == 3: current_y -= 1 value = matrix[current_x + 1][current_y] \ + matrix[current_x + 1][current_y + 1] \ + matrix[current_x][current_y + 1] \ + matrix[current_x - 1][current_y + 1] \ + matrix[current_x - 1][current_y] \ + matrix[current_x - 1][current_y - 1] \ + matrix[current_x][current_y - 1] \ + matrix[current_x + 1][current_y - 1] if value > threshold: return value # Change direction direction = (direction + 1) % 4 # Increase steps step += 1
49db166798446e98ae23800eb1428ba3baf0a026
33,565
def get_daq_device_inventory(interface_type, number_of_devices=100): # type: (InterfaceType, int) -> list[DaqDeviceDescriptor] """ Gets a list of :class:`DaqDeviceDescriptor` objects that can be used as the :class:`DaqDevice` class parameter to create DaqDevice objects. Args: interface_type (InterfaceType): One or more of the :class:`InterfaceType` attributes (suitable for bit-wise operations) specifying which physical interfaces (such as USB) to search for MCC devices. number_of_devices (Optional[int]): Optional parameter indicating the maximum number of devices to return in the list; the default is 100. Returns: list[DaqDeviceDescriptor]: A list of :class:`DaqDeviceDescriptor` objects that describe each of the each of the MCC devices found on the specified interface. Raises: :class:`ULException` """ device_descriptors = _daq_device_descriptor_array(number_of_devices) number_of_devices = c_uint(number_of_devices) err = lib.ulGetDaqDeviceInventory(interface_type, device_descriptors, byref(number_of_devices)) if err != 0: raise ULException(err) devices_list = [device_descriptors[i] for i in range( number_of_devices.value)] return devices_list
abee7adb4fa57471e09a480a971e35e5081a9837
33,566
def statement_passive_verb(stmt_type): """Return the passive / state verb form of a statement type. Parameters ---------- stmt_type : str The lower case string form of a statement type, for instance, 'phosphorylation'. Returns ------- str The passive/state verb form of a statement type, for instance, 'phosphorylated'. """ override = { 'complex': 'bound', 'regulateamount': 'amount regulated', 'decreaseamount': 'decreased', 'increaseamount': 'increased', 'gap': 'GAP-regulated', 'gef': 'GEF-regulated', 'gtpactivation': 'GTP-activated', 'influence': 'influenced', 'event': 'happened', 'conversion': 'converted', 'modification': 'modified', 'addmodification': 'modified', 'removemodification': 'unmodified', 'regulateactivity': 'activity regulated', } return override.get(stmt_type) if stmt_type in override else \ stmt_type[:-3] + 'ed'
21a34fc7270d0c9f9d4c096930ed5bcb9f6af72b
33,567
from typing import Iterable def find_hpas(config: Config,) -> Iterable[client.models.v1_horizontal_pod_autoscaler.V1HorizontalPodAutoscaler]: """Find any HorizontalPodAutoscaler having klutch annotation.""" resp = client.AutoscalingV1Api().list_horizontal_pod_autoscaler_for_all_namespaces() return filter(lambda h: config.hpa_annotation_enabled in h.metadata.annotations, resp.items)
fcc34c83d7f50c25510eabfb6b60d6106fe97432
33,569
def bioacoustics_index (Sxx, fn, flim=(2000, 15000), R_compatible ='soundecology'): """ Compute the Bioacoustics Index from a spectrogram [1]_. Parameters ---------- Sxx : ndarray of floats matrix : Spectrogram fn : vector frequency vector flim : tupple (fmin, fmax), optional, default is (2000, 15000) Frequency band used to compute the bioacoustic index. R_compatible : string, default is "soundecology" if 'soundecology', the result is similar to the package SoundEcology in R Otherwise, the result is specific to maad Returns ------- BI : scalar Bioacoustics Index References ---------- .. [1] Boelman NT, Asner GP, Hart PJ, Martin RE. 2007. Multi-trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. Ecological Applications 17: 2137-2144. `DOI: 10.1890/07-0004.1 <https://doi.org/10.1890/07-0004.1>`_ Ported and modified from the soundecology R package - cran.ms.unimelb.edu.au/web/packages/soundecology/soundecology.pdf. Notes ----- Soundecology compatible version: - average of dB value - remove negative value in order to get positive values only - dividing by the frequency resolution df instead of multiplication Examples -------- >>> s, fs = maad.sound.load('../data/cold_forest_daylight.wav') >>> Sxx, tn, fn, ext = maad.sound.spectrogram (s, fs,mode='amplitude') >>> BI = maad.features.bioacoustics_index(Sxx,fn) >>> print('BI Soundecology : %2.2f ' %BI) BI Soundecology : 52.84 >>> BI = maad.features.bioacoustics_index(Sxx,fn,R_compatible=None) >>> print('BI MAAD: %2.2f ' %BI) BI MAAD : 17.05 """ # select the indices corresponding to the frequency bins range indf = index_bw(fn,flim) # frequency resolution. df = fn[1] - fn[0] # ======= As soundecology if R_compatible == 'soundecology' : # Mean Sxx normalized by the max meanSxx = mean(Sxx/max(Sxx), axis=1) # Convert into dB meanSxxdB = amplitude2dB(meanSxx) # "normalization" in order to get positive 'vectical' values meanSxxdB = meanSxxdB[indf,]-min(meanSxxdB[indf,]) # this is not the area under the curve... # what is the meaning of an area under the curve in dB... BI = sum(meanSxxdB)/df # ======= maad version else: # better to average the PSD for energy conservation PSDxx_norm = (Sxx**2/max(Sxx**2)) meanPSDxx_norm = mean(PSDxx_norm, axis=1) # Compute the area # take the sqrt in order to go back to Sxx BI = sqrt(sum(meanPSDxx_norm))* df return BI
fcc557d1bbbe5d3c9758cb500cb8a98cd83510ce
33,570
def ctm_to_dict(ctm_fn): """ Return a dictionary with a list of (start, dur, word) for each utterance. """ ctm_dict = {} with open(ctm_fn, "r") as f: for line in f: utt, _, start, dur, word = line.strip().split(" ") if not utt in ctm_dict: ctm_dict[utt] = [] start = float(start) dur = float(dur) ctm_dict[utt].append((start, dur, word)) return ctm_dict
7a0c58e544029fd118448b916c2c2966172c5d1b
33,572
def qft_core(qubits, coef=1): """ Generates a quil programm that performs quantum fourier transform on given qubits without swaping qubits at the end. :param qubits: A list of qubit indexes. :param coeff: A modifier for the angle used in rotations (-1 for inverse QFT, 1 for QFT) :return: A Quil program to compute the QFT of the given qubits without swapping. """ p = Program() # Iterate over qubits starting from the most significant for i, qubit in enumerate(qubits[::-1]): p.inst(H(qubit)) # Add controlled rotations R_i for i in 1 .. n-1 # using all qubits right to current p.inst(crotate(qubit, qubits[:-i-1], coef=coef, start_index=1)) return p
79944c93ff2d3d5393d9f94e546d79b69334f005
33,573
def get_formatted_timestamp(app_type): """Different services required different date formats - return the proper format here""" if app_type in {'duo', 'duo_admin', 'duo_auth'}: return 1505316432 elif app_type in {'onelogin', 'onelogin_events'}: return '2017-10-10T22:03:57Z' elif app_type in {'gsuite', 'gsuite_admin', 'gsuite_drive', 'gsuite_login', 'gsuite_token', 'salesforce'}: return '2017-06-17T15:39:18.460Z' elif app_type in {'box', 'box_admin_events'}: return '2017-10-27T12:31:22-07:00'
f5d4f2ac1d30383849b6149a46525e67439229df
33,574
import array def preprocess(x, copy=False, float=False, axis=None): """ Ensure that `x` is a properly formatted numpy array. Proper formatting means at least one dimension, and may include optional copying, reshaping and coersion into a floating point datatype. Parameters ---------- x : array-like The array to process. If not already a numpy array, it will be converted to one. copy : bool, optional If True, a copy is made regardless of whether `x` is already a numpy array or not. The default is False. float : bool, optional If True, and `x` is not an inexact array already (:py:attr:`numpy.float16`, :py:attr:`numpy.float32`, :py:attr:`numpy.float64`, :py:attr:`numpy.float96`, :py:attr:`numpy.float128`, etc), coerce to be of type :py:attr:`numpy.float_`. Defaults to False. axis : int, optional If specified, the specified axis is moved to the end of the shape. Default is to return `x` without reshaping. Return ------ x : ~numpy.ndarray Processed version of the input. """ if float: dtype = x.dtype if hasattr(x, 'dtype') and \ issubdtype(x.dtype, inexact) else float_ else: dtype=None x = array(x, copy=copy, subok=not copy, ndmin=1, dtype=dtype) if axis is not None and axis not in (-1, x.ndim - 1): # moveaxis always returns a new view, never the same object x = moveaxis(x, axis, -1) return x
b1632ca64fe315330d26f9beeef6fa9df8a40382
33,576
def detect_defaults_settings(output): """ try to deduce current machine values without any constraints at all """ output.writeln("\nIt seems to be the first time you run conan", Color.BRIGHT_YELLOW) output.writeln("Auto detecting your dev setup to initialize conan.conf", Color.BRIGHT_YELLOW) result = [] _detect_os_arch(result, output) _detect_compiler_version(result, output) result.append(("build_type", "Release")) output.writeln("Default conan.conf settings", Color.BRIGHT_YELLOW) output.writeln("\n".join(["\t%s=%s" % (k, v) for (k, v) in result]), Color.BRIGHT_YELLOW) output.writeln("*** You can change them in ~/.conan/conan.conf ***", Color.BRIGHT_MAGENTA) output.writeln("*** Or override with -s compiler='other' -s ...s***\n\n", Color.BRIGHT_MAGENTA) return result
86e15908c6219e3f0f5caefe8a0a858ce602e484
33,577
from .continent import COUNTRY_TO_CONTINENT def compute_continent_histogram(docs: DocumentSet, **kwargs) -> pd.DataFrame: """ Compute a histogram of number of documents by affiliation continent. """ def extract(doc): result = set() for author in doc.authors or []: for aff in author.affiliations or []: if country := extract_country(aff): country = country.strip().lower() if country.startswith('the '): country = country[4:] if continent := COUNTRY_TO_CONTINENT.get(country): result.add(continent) else: result.add('Other') return result return compute_histogram(docs, extract, **kwargs)
031617c337850eeada50046acdade4fb7ada4fef
33,579
from typing import OrderedDict def calc_prod(corpus_context, envs, strict = True, all_info = False, ordered_pair = None, stop_check = None, call_back = None): """ Main function for calculating predictability of distribution for two segments over specified environments in a corpus. Parameters ---------- corpus_context : CorpusContext Context manager for a corpus envs : list of EnvironmentFilter List of EnvironmentFilter objects that specify environments strict : bool If true, exceptions will be raised for non-exhausive environments and non-unique environments. If false, only warnings will be shown. Defaults to True. all_info : bool If true, all the intermediate numbers for calculating predictability of distribution will be returned. If false, only the final entropy will be returned. Defaults to False. stop_check : callable, optional Optional function to check whether to gracefully terminate early call_back : callable, optional Optional function to supply progress information during the function Returns ------- dict Keys are the environments specified and values are either a list of [entropy, frequency of environment, frequency of seg1, frequency of seg2] if all_info is True, or just entropy if all_info is False. """ seg_list = envs[0].middle for e in envs: if not all(s in seg_list for s in e.middle):#e.middle != seg_list: raise(PCTError("Middle segments of all environments must be the same.")) returned = check_envs(corpus_context, envs, stop_check, call_back) if stop_check is not None and stop_check(): return env_matches, miss_envs, overlap_envs = returned if miss_envs or overlap_envs: if strict: raise(ProdError(envs, miss_envs, overlap_envs)) H_dict = OrderedDict() #CALCULATE ENTROPY IN INDIVIDUAL ENVIRONMENTS FIRST total_matches = {x: 0 for x in seg_list} total_frequency = 0 if call_back is not None: call_back('Calculating predictability of distribution...') call_back(0,len(corpus_context)) cur = 0 for env in env_matches: if stop_check is not None and stop_check(): return if call_back is not None: cur += 1 call_back(cur) total_tokens = 0 matches = {} for seg in seg_list: matches[seg] = env_matches[env][seg] total_matches[seg] += matches[seg] total_tokens += matches[seg] total_frequency += total_tokens if not total_tokens: H = 0 else: seg_H = {} for seg in seg_list: seg_prob = matches[seg] / total_tokens seg_H[seg] = log2(seg_prob)*seg_prob if seg_prob > 0 else 0 H = sum(seg_H.values())*-1 if not H: H = H+0 #avoid the -0.0 problem H_dict[env] = [H, total_tokens] + [matches[x] for x in ordered_pair] #CALCULATE WEIGHTED ENTROPY LAST weighted_H = 0 for env in env_matches: weighted_H += H_dict[env][0] * (H_dict[env][1] / total_frequency) if total_frequency>0 else 0 try: avg_h = sum(total_matches.values())/total_frequency except ZeroDivisionError: avg_h = 0.0 H_dict['AVG'] = [weighted_H, avg_h] + [total_matches[x] for x in ordered_pair] if not all_info: for k,v in H_dict.items(): H_dict[k] = v[0] return H_dict
4c104b235bb6970573c2ea659c81038e266c40d3
33,580
import tqdm def read_run_dict(file_name): """Read a run file in the form of a dictionary where keys are query IDs. :param file_name: run file name :return: """ result = {} with FileWrapper(file_name) as f: for ln, line in enumerate(tqdm(f, desc='loading run (by line)', leave=False)): line = line.strip() if not line: continue fld = line.split() if len(fld) != 6: ln += 1 raise Exception( f'Invalid line {ln} in run file {file_name} expected 6 white-space separated fields by got: {line}') qid, _, docid, rank, score, _ = fld result.setdefault(qid, {})[docid] = float(score) return result
2aa7937e259481c86ddaf13d9f6af8e49efb087c
33,581
def parse_address(address): """Convert host:port or port to address to pass to connect.""" if ':' not in address: return ('', int(address)) host, port = address.rsplit(':', 1) return (host, int(port))
06eb172974c4e75d33ae205f952e8533c88acfeb
33,582
def secure_host_url(request, secure_url=None): """Overrides ``host_url`` to make sure the protocol is secure.""" # Test jig. if secure_url is None: secure_url = secure_request_url return secure_url(request, 'host_url')
d4a0b43a52170d7ac07d2cc8141e789a0005c2fa
33,584
def get_resource_mutator(cpu=None, memory=None, gpu=None, gpu_vendor='nvidia'): """The mutator for getting the resource setting for pod spec. The useful example: https://github.com/kubeflow/fairing/blob/master/examples/train_job_api/main.ipynb :param cpu: Limits and requests for CPU resources (Default value = None) :param memory: Limits and requests for memory (Default value = None) :param gpu: Limits for GPU (Default value = None) :param gpu_vendor: Default value is 'nvidia', also can be set to 'amd'. :returns: object: The mutator function for setting cpu and memory in pod spec. """ def _resource_mutator(kube_manager, pod_spec, namespace): #pylint:disable=unused-argument if cpu is None and memory is None and gpu is None: return if pod_spec.containers and len(pod_spec.containers) >= 1: # All cloud providers specify their instace memory in GB # so it is peferable for user to specify memory in GB # and we convert it to Gi that K8s needs limits = {} if cpu: limits['cpu'] = cpu if memory: memory_gib = "{}Gi".format(round(memory/1.073741824, 2)) limits['memory'] = memory_gib if gpu: limits[gpu_vendor + '.com/gpu'] = gpu if pod_spec.containers[0].resources: if pod_spec.containers[0].resources.limits: pod_spec.containers[0].resources.limits = {} for k, v in limits.items(): pod_spec.containers[0].resources.limits[k] = v else: pod_spec.containers[0].resources = V1ResourceRequirements(limits=limits) return _resource_mutator
02cc5069470d6b255c2c8cb1e8eb27f282b66911
33,586
def gram_matrix(features): """ Calculates the gram matrix of the feature representation matrix :param features: The feature matrix that is used to calculate the gram matrix :return: The gram matrix """ return K.dot(features, K.transpose(features))
ebc8a354de903b764e7cc5a214c9d6bbcbe5a1f8
33,587
def lp_dominate(w, U): """ Computes the belief in which w improves U the most. With LP in White & Clark :param w: np.ndarray :param U: list of np.ndarray :return: b if d >= 0 else None """ # print("LP dominate") if len(U) == 0: return w S = len(w) d = cvx.Variable() b = cvx.Variable(S) objective = cvx.Maximize(d) # print("U", U) constraints = [b.T*(w-u) >= d for u in U] + [np.sum(b) == 1] prob = cvx.Problem(objective, constraints) result = prob.solve() # print("d =", d.value) if d.value >= 0: return np.ravel(b.value) else: return None
26ff577b8ad7d97b2062d37299ca59c84897c404
33,588
from typing import Union import torch def get_random_subset_dataloader(dataset: Dataset, subset_size: Union[float, int], **dataloader_kwargs) -> DataLoader: """ Returns a random subset dataloader sampling data from given dataset, without replacement. Args: - dataset: PyTorch dataset from which random subset dataloader is sampling data. - subset_size: Returned dataloader subsets size. If it is a float, then `subset_size` is intepreted as the subset size fraction of dataset size and should be between 0. and 1.; Otherwise, if it is an interger, `subset_size` is directly interpreted as absolute subset size should be between 0 and `len(dataset)`. - dataloader_kwargs: Additional dataloader constructor kwargs, like batch_size, num_workers, pin_memory, ... (dataset, shuffle and sampler arguments are already specified by default) """ if isinstance(subset_size, float): assert subset_size > 0. and subset_size <= 1., 'ERROR: `subset_size` should be between 0. and 1. if it is a float.' subset_size = max(1, min(len(dataset), int(subset_size * len(dataset) + 1))) train_indices = torch.from_numpy(np.random.choice(len(dataset), size=(subset_size,), replace=False)) return DataLoader(dataset, sampler=SubsetRandomSampler(train_indices), shuffle=True, **dataloader_kwargs)
a6dc4e70d6676a6e348339c90ffa99dc76772e9a
33,589
import numpy def _combine_pfs(pfa, pfb, coeff, operator): """ Obtain the pf information of the multiplication of pfa and pfb """ tempsa, logqa, dq_dta, d2q_dt2a = pfa _, logqb, dq_dtb, d2q_dt2b = pfb if operator == 'multiply': logq = [a+b+numpy.log(coeff) for a, b in zip(logqa, logqb)] dq_dt = [a+b+numpy.log(coeff) for a, b in zip(dq_dta, dq_dtb)] d2q_dt2 = [a+b+numpy.log(coeff) for a, b in zip(d2q_dt2a, d2q_dt2b)] elif operator == 'divide': logq = [a-b-numpy.log(coeff) for a, b in zip(logqa, logqb)] dq_dt = [a-b-numpy.log(coeff) for a, b in zip(dq_dta, dq_dtb)] d2q_dt2 = [a-b-numpy.log(coeff) for a, b in zip(d2q_dt2a, d2q_dt2b)] return tempsa, logq, dq_dt, d2q_dt2
f89ee97ab5e5de348f42e71d9ad5fa86ba15f922
33,590
def epa_nei_nonpoint_parse(*, df_list, source, year, config, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :param config: dictionary, items in FBA method yaml :return: df, parsed and partially formatted to flowbyactivity specifications """ df = epa_nei_global_parse(df_list=df_list, source=source, year=year, config=config) # Add DQ scores df['DataReliability'] = 3 df['DataCollection'] = 5 # data collection scores are updated in fbs as # a function of facility coverage from point source data return df
0a411cd7ce130adafcc8b3615a2c41998454e585
33,591
from typing import Union from typing import List from typing import Dict import ray def create_auto_config( dataset: Union[str, pd.DataFrame, dd.core.DataFrame, DatasetInfo], target: Union[str, List[str]], time_limit_s: Union[int, float], tune_for_memory: bool, user_config: Dict = None, ) -> dict: """Returns an auto-generated Ludwig config with the intent of training the best model on given given dataset / target in the given time limit. # Inputs :param dataset: (str, pd.DataFrame, dd.core.DataFrame, DatasetInfo) data source to train over. :param target: (str, List[str]) name of target feature :param time_limit_s: (int, float) total time allocated to auto_train. acts as the stopping parameter :param tune_for_memroy: (bool) refine hyperopt search space for available host / GPU memory # Return :return: (dict) selected model configuration """ default_configs = _create_default_config(dataset, target, time_limit_s) model_config = _model_select(dataset, default_configs, user_config) if tune_for_memory: if ray.is_initialized(): model_config, _ = ray.get(ray.remote(num_cpus=1)(memory_tune_config).remote(model_config, dataset)) else: model_config, _ = memory_tune_config(model_config, dataset) return model_config
1bd76497b71ed7163af9bddf87e7ee346ed9ff4d
33,592
import numpy def create_orbit_from_particles(particles, angular_velocity=0.|units.yr**-1): """ Use mass, position and velocity to determine orbital parameters. Then setup Roche_Orbit """ roche = Roche_Orbit() roche.mass_1, roche.mass_2 = particles.mass position_vector = particles.position[1] - particles.position[0] velocity_vector = particles.velocity[1] - particles.velocity[0] mu = constants.G * particles.mass.sum() separation = position_vector.length() speed_squared = velocity_vector.length_squared() roche.semimajor_axis = mu * separation / (2 * mu - separation * speed_squared) e_vector = speed_squared * position_vector / mu - position_vector.dot(velocity_vector) * velocity_vector / mu - position_vector / separation roche.eccentricity = numpy.sqrt((e_vector * e_vector).sum()) roche.true_anomaly = numpy.arccos(position_vector.dot(e_vector) / (roche.eccentricity * separation)) if position_vector.dot(velocity_vector) < quantities.zero: # arccos is ambiguous roche.true_anomaly = 2. * numpy.pi - roche.true_anomaly period = (4. * numpy.pi**2 * roche.semimajor_axis**3 / mu).sqrt() peri_orbital_angular_velocity = 2. * numpy.pi / period * (1. + roche.eccentricity)**2/ (1-roche.eccentricity**2)**(3./2.) roche.angular_velocity_ratio = angular_velocity / peri_orbital_angular_velocity return roche
e9314b582e4031a4ca5816f7d0980430c325dc53
33,594
def bitter_rivals(voting_dict): """ Input: a dictionary mapping senator names to lists representing their voting records Output: a tuple containing the two senators who most strongly disagree with one another. Example: >>> voting_dict = {'Klein': [-1,0,1], 'Fox-Epstein': [-1,-1,-1], 'Ravella': [0,0,1]} >>> bitter_rivals(voting_dict) ('Fox-Epstein', 'Ravella') """ leastSimMap = {} rivalA = '' rivalB = '' rivalDist = 10000.0 for key, val in voting_dict.items(): l = least_similar(key, voting_dict) leastSimMap[key] = l for key, val in leastSimMap.items(): cmpVal = policy_compare(key, val, voting_dict) if cmpVal < rivalDist: rivalDist = cmpVal rivalA = key rivalB = val return (rivalA, rivalB)
154e067add7a8d5b58d1474530e690bdfb40a7ea
33,595
from operator import and_ def last_contacts(ts_start): """Get the last time each timeseries datapoint was updated. Args: config: Configuration object ts_start: Timestamp to start from Returns: data: List of dicts of last contact information """ # Initialize key variables data = [] last_contact = defaultdict(lambda: defaultdict(dict)) # Get start and stop times ts_stop = general.normalized_timestamp() if ts_start > ts_stop: ts_start = ts_stop else: ts_start = general.normalized_timestamp(ts_start) # Establish a database session database = db.Database() session = database.session() result = session.query( Data.value, Data.idx_datapoint, Data.timestamp).filter( and_(Data.timestamp >= ts_start, Data.timestamp <= ts_stop) ) # Add to the list of device idx values for instance in result: idx_datapoint = instance.idx_datapoint timestamp = instance.timestamp value = float(instance.value) # Update dictionary if idx_datapoint in last_contact: if timestamp > last_contact[idx_datapoint]['timestamp']: last_contact[idx_datapoint]['timestamp'] = timestamp last_contact[idx_datapoint]['value'] = value else: continue else: last_contact[idx_datapoint]['timestamp'] = timestamp last_contact[idx_datapoint]['value'] = value # Return the session to the pool after processing database.close() # Convert dict to list of dicts for idx_datapoint in last_contact: data_dict = {} data_dict['idx_datapoint'] = idx_datapoint data_dict['timestamp'] = last_contact[idx_datapoint]['timestamp'] data_dict['value'] = last_contact[idx_datapoint]['value'] data.append(data_dict) # Return return data
6e46d10f0ad7ab1523cd21255cf659d791f551c4
33,596
import torch def train_one_epoch_loss_acc(net, train_iter, loss, updater): """训练模型一个迭代周期(定义见第3章) Defined in :numref:`sec_softmax_scratch` 返回 train loss 和 train acc """ # 将模型设置为训练模式 if isinstance(net, torch.nn.Module): net.train() # 训练损失总和、训练准确度总和、样本数 metric = Accumulator(3) for X, y in train_iter: # 计算梯度并更新参数 y_hat = net(X) l = loss(y_hat, y) if isinstance(updater, torch.optim.Optimizer): # 使用PyTorch内置的优化器和损失函数 updater.zero_grad() l.mean().backward() updater.step() else: # 使用定制的优化器和损失函数 l.sum().backward() updater(X.shape[0]) metric.add(float(l.sum()), accuracy(y_hat, y), y.numel()) # 返回训练损失和训练精度 return metric[0] / metric[2], metric[1] / metric[2]
314fe27c20d690a3a09a02571a0e545aea73f845
33,598
def get_numeric_cache(hostname): """Get all the numeric cache entries we have for an hostname """ return [{ 'collection': str(n.template.collection), 'template': str(n.template), 'value': n.value, 'last_modified': n.last_modified, } for n in NumericCache.objects.filter(hostname=hostname)]
6adb7f3a17e6856ba9319e7cd10567e9cf820378
33,599
from typing import Sequence from typing import Optional import math def partition_dataset( data: Sequence, ratios: Optional[Sequence[float]] = None, num_partitions: Optional[int] = None, shuffle: bool = False, seed: int = 0, drop_last: bool = False, even_divisible: bool = False, ): """ Split the dataset into N partitions. It can support shuffle based on specified random seed. Will return a set of datasets, every dataset contains 1 partition of original dataset. And it can split the dataset based on specified ratios or evenly split into `num_partitions`. Refer to: https://pytorch.org/docs/stable/distributed.html#module-torch.distributed.launch. Note: It also can be used to partition dataset for ranks in distributed training. For example, partition dataset before training and use `CacheDataset`, every rank trains with its own data. It can avoid duplicated caching content in each rank, but will not do global shuffle before every epoch: .. code-block:: python data_partition = partition_dataset( data=train_files, num_partitions=dist.get_world_size(), shuffle=True, even_divisible=True, )[dist.get_rank()] train_ds = SmartCacheDataset( data=data_partition, transform=train_transforms, replace_rate=0.2, cache_num=15, ) Args: data: input dataset to split, expect a list of data. ratios: a list of ratio number to split the dataset, like [8, 1, 1]. num_partitions: expected number of the partitions to evenly split, only works when `ratios` not specified. shuffle: whether to shuffle the original dataset before splitting. seed: random seed to shuffle the dataset, only works when `shuffle` is True. drop_last: only works when `even_divisible` is False and no ratios specified. if True, will drop the tail of the data to make it evenly divisible across partitions. if False, will add extra indices to make the data evenly divisible across partitions. even_divisible: if True, guarantee every partition has same length. Examples:: >>> data = [1, 2, 3, 4, 5] >>> partition_dataset(data, ratios=[0.6, 0.2, 0.2], shuffle=False) [[1, 2, 3], [4], [5]] >>> partition_dataset(data, num_partitions=2, shuffle=False) [[1, 3, 5], [2, 4]] >>> partition_dataset(data, num_partitions=2, shuffle=False, even_divisible=True, drop_last=True) [[1, 3], [2, 4]] >>> partition_dataset(data, num_partitions=2, shuffle=False, even_divisible=True, drop_last=False) [[1, 3, 5], [2, 4, 1]] >>> partition_dataset(data, num_partitions=2, shuffle=False, even_divisible=False, drop_last=False) [[1, 3, 5], [2, 4]] """ data_len = len(data) datasets = [] indices = list(range(data_len)) if shuffle: # deterministically shuffle based on fixed seed for every process rs = np.random.RandomState(seed) rs.shuffle(indices) if ratios: next_idx = 0 rsum = sum(ratios) for r in ratios: start_idx = next_idx next_idx = min(start_idx + int(r / rsum * data_len + 0.5), data_len) datasets.append([data[i] for i in indices[start_idx:next_idx]]) return datasets if not num_partitions: raise ValueError("must specify number of partitions or ratios.") # evenly split the data without ratios if not even_divisible and drop_last: raise RuntimeError("drop_last only works when even_divisible is True.") if data_len < num_partitions: raise RuntimeError(f"there is no enough data to be split into {num_partitions} partitions.") if drop_last and data_len % num_partitions != 0: # split to nearest available length that is evenly divisible num_samples = math.ceil((data_len - num_partitions) / num_partitions) else: num_samples = math.ceil(data_len / num_partitions) # use original data length if not even divisible total_size = num_samples * num_partitions if even_divisible else data_len if not drop_last and total_size - data_len > 0: # add extra samples to make it evenly divisible indices += indices[: (total_size - data_len)] else: # remove tail of data to make it evenly divisible indices = indices[:total_size] for i in range(num_partitions): _indices = indices[i:total_size:num_partitions] datasets.append([data[j] for j in _indices]) return datasets
a8a306e72d256d511d0a8f9493dd46dcbf6c1d7e
33,600
def canopy_PAR_absorbed(states: States, setpoints: Setpoints, weather: Weather): """The PAR absorbed by the canopy Equation 8.26 :return: The PAR absorbed by the canopy [W m^-2] """ return canopy_PAR_absorbed_from_greenhouse_cover(states, setpoints, weather) + canopy_PAR_absorbed_from_greenhouse_floor(states, setpoints, weather)
0ea8103d1087be3d283e4834ec7ec8b436357e28
33,601
def tiff_to_array(tiff): """ Open a TIFF file as an array, normalizing the dimensions. :param tiff: Filename :return: """ array = ( tiff.asarray(out='memmap') if tiff.pages[0].is_memmappable else tiff.asarray() ) if array.ndim < 3: array = array[np.newaxis, ...] return array
157591e2f9980602fc9bca3f713fb512c696821b
33,602
def version(): """donghuangzhong version""" return "0.0.1"
ad5d9834dddad46c2f4add31f46ea470bf370304
33,604
def list_dot(a, b): """ Returns the Euclidean inner product of two itterable data-structures. """ try: if len(a) == len(b): temp = 0 for i in range(len(a)): temp += a[i]*b[i] return(temp) else: raise ValueError("The length of a and b must be the same!") except Exception : PE.PrintException()
80dcdb22ed76a9cfe9750deb55971548efe4380e
33,605
import struct def pack_bytes(payload): """Optimally pack a byte string according to msgpack format""" pl = len(payload) if pl < (2**8): prefix = struct.pack('BB', 0xC4, pl) elif pl < (2**16): prefix = struct.pack('>BH', 0xC5, pl) else: prefix = struct.pack('>BI', 0xC6, pl) return prefix + payload
eaea52c44a766d74d0aa10e1da20e70f49b624f6
33,606
import torch def disparity_consistency_src_to_tgt(meshgrid_homo, K_src_inv, disparity_src, G_tgt_src, K_tgt, disparity_tgt): """ :param xyz_src_B3N: Bx3xN :param G_tgt_src: Bx4x4 :param K_tgt: Bx3x3 :param disparity_tgt: Bx1xHxW :return: """ B, _, H, W = disparity_src.size() depth_src = torch.reciprocal(disparity_src) xyz_src_B3N = get_xyz_from_depth(meshgrid_homo, depth_src, K_src_inv).view(B, 3, H*W) xyz_tgt_B3N = transform_G_xyz(G_tgt_src, xyz_src_B3N, is_return_homo=False) K_xyz_tgt_B3N = torch.matmul(K_tgt, xyz_tgt_B3N) pxpy_tgt_B2N = K_xyz_tgt_B3N[:, 0:2, :] / K_xyz_tgt_B3N[:, 2:, :] # Bx2xN pxpy_tgt_mask = torch.logical_and( torch.logical_and(pxpy_tgt_B2N[:, 0:1, :] >= 0, pxpy_tgt_B2N[:, 0:1, :] <= W - 1), torch.logical_and(pxpy_tgt_B2N[:, 1:2, :] >= 0, pxpy_tgt_B2N[:, 1:2, :] <= H - 1) ) # B1N disparity_src = torch.reciprocal(xyz_tgt_B3N[:, 2:, :]) # Bx1xN disparity_tgt = gather_pixel_by_pxpy(disparity_tgt, pxpy_tgt_B2N) # Bx1xN depth_diff = torch.abs(disparity_src - disparity_tgt) return torch.mean(depth_diff[pxpy_tgt_mask])
c407085bf10b0f7c67152d7d92f55a4984520766
33,607
import re def split (properties): """ Given a property-set of the form v1/v2/...vN-1/<fN>vN/<fN+1>vN+1/...<fM>vM Returns v1 v2 ... vN-1 <fN>vN <fN+1>vN+1 ... <fM>vM Note that vN...vM may contain slashes. This is resilient to the substitution of backslashes for slashes, since Jam, unbidden, sometimes swaps slash direction on NT. """ assert isinstance(properties, basestring) def split_one (properties): pieces = re.split (__re_slash_or_backslash, properties) result = [] for x in pieces: if not get_grist (x) and len (result) > 0 and get_grist (result [-1]): result = result [0:-1] + [ result [-1] + '/' + x ] else: result.append (x) return result if isinstance (properties, str): return split_one (properties) result = [] for p in properties: result += split_one (p) return result
8b15697f6ae15b2fb634144987893ca04eabcccc
33,608
def abort_behavior(token): """ Abort behavior identified with the token """ return True, stop_nodenetrunner(behavior_token_map[token])
faee270933a225ab376fef9b3ede589960e9c594
33,609
def limit_to_value_max(value_max, value): """ :param 1.(int) value_max -- value that should not be exceed 2.(int) value -- actual value :return 1. return a value in the given range bound with value_max """ if value > value_max: return value_max elif value < -value_max: return -value_max else: return value
a568bc1febe9a0cb6115efb4c95c0e1705787bfe
33,610
def reference_col( tablename, nullable=False, pk_name="id", foreign_key_kwargs=None, column_kwargs=None ): """Column that adds primary key foreign key reference. Usage: :: category_id = reference_col('category') category = relationship('Category', backref='categories') """ foreign_key_kwargs = foreign_key_kwargs or {} column_kwargs = column_kwargs or {} return Column( db.ForeignKey(f"{tablename}.{pk_name}", **foreign_key_kwargs), nullable=nullable, **column_kwargs, )
17da349907c2764b4d4a205a9a5a4e4ff9d02484
33,611
import numpy as np def extract_municipality_hashtags(df): """ This function takes a twitter dataframe as an input then the output is the dataframe with 2 new columns namely a hashtag column and a municipality column. Example ------ if the tweet contains the @mention '@CityPowerJhb' then the coresponding output in the municipality column should be Johannesburg. The function also extracts hashtags and saves them under the hastags column as a list in the dataframe. """ mun_dict = { '@CityofCTAlerts' : 'Cape Town', '@CityPowerJhb' : 'Johannesburg', '@eThekwiniM' : 'eThekwini' , '@EMMInfo' : 'Ekurhuleni', '@centlecutility' : 'Mangaung', '@NMBmunicipality' : 'Nelson Mandela Bay', '@CityTshwane' : 'Tshwane' } g = df['Tweets'].str.findall(r'@.*?(?=\s|$)') # finds all @mentions df['municipality'] = g.apply(lambda x: [mun_dict[g] for g in mun_dict.keys() if g in x]) # produces the values for the keys found in the tweets df["municipality"]= df['municipality'].apply(lambda x: ''.join(x) if len(x) > 0 else np.nan) # removes the list format to string format df['hashtags'] = df['Tweets'].str.findall(r'#.*?(?=\s|$)') # finds all the hashtags and stores them in the newly created hashtags column df["hashtags"]= df['hashtags'].apply(lambda x: ','.join(x).lower().split(',') if len(x) > 0 else np.nan) # makes all the hashtags lowercase return df
1c58e3154f57ad82a8129c5ed765a622b12b8d08
33,612
import math def vertices_homography(vertices, H): """Apply projective transformation (homography) on a sequence of points. Parameters: vertices: List of (x, y) tuples. A list for projective transformation. H: A homography matrix. Return: vertices_homo: List of (x, y) tuples. The list after projective transformation. """ vertices_homo = [] for vertex in vertices: pt_homo = point_homography(vertex, H) pt_homo = tuple([math.floor(i) for i in pt_homo]) vertices_homo.append(pt_homo) return vertices_homo
ad0b1cd397d0b01a0f333d872b4f8a8d2e5f0736
33,613
def SRCNNv2(input_shape, depth_multiplier=1, multi_output=False): """ conv 9-64 puis 7-64 puis 5-32 puis 7-1 -> 1.006 120 epoch conv 9-128 puis 7-64 puis 5-32 puis 7-16 puis 9-1 -> 1.007 130 epoch @ multi_output : set to True """ inputs = Input(input_shape, name="inputs") conv1 = Convolution2D(filters=64, kernel_size=9, padding="same", name="conv1", activation="relu")(inputs) conv2 = Convolution2D(filters=64, kernel_size=7, padding="same", name="conv2", activation="relu")(conv1) #conv3 = Convolution2D(filters=64, kernel_size=3, padding="same", name="conv3", activation="relu")(conv2) mapping = Convolution2D(filters=32, kernel_size=5, padding="same", name="mapping", activation="relu")(conv2) #mapping2 = Convolution2D(filters=16, kernel_size=7, padding="same", name="mapping2", activation="relu")(mapping) if multi_output: out = Convolution2D(filters=2, kernel_size=5, padding="same", name="output", activation="sigmoid")(mapping) else: out = Convolution2D(filters=1, kernel_size=5, padding="same", name="output", activation="sigmoid")(mapping) return Model(inputs, out)
752d4e7da9f62a532db326c9eb68d91369a44dd9
33,614
import json def parse_labels(string, bb_label_mapping, static_label): """Returns array of rectangles geometry and their labels Arguments: string {str} -- JSON string bb_label_mapping {dict} -- Mapping from color to label static_label {list} -- List of labels valid for the whole image Returns: ndarray -- array containing rectangle information """ try: data = json.loads(string) except: return None scale = 1 img_width = 1 img_height = 1 props = [] for obj in data["objects"]: if obj["type"] == "image": # print('img') # print(obj['scaleX'],obj['scaleY'],obj['width'],obj['height']) # scale = obj['scaleX'] img_width = obj["width"] img_height = obj["height"] for obj in data["objects"]: if obj["type"] == "rect": # scale_factor = obj['scaleX'] / scale try: label = bb_label_mapping[obj["stroke"]] label = reverse_static_label_mapping[label] except: raise RuntimeError(f'Could not find bb_label_mapping for {obj["stroke"]}') item = [obj["right"], obj["bottom"], obj["left"], obj["top"]] item = np.array(item) # convert ltwh to corner points (ltrb) # item[0] = item[0] + item[2] # item[1] = item[1] + item[3] # item = scale_factor * item # item[0], item[2] = item[0] / img_width, item[2] / img_width # item[1], item[3] = item[1] / img_height, item[3] / img_height item = item.tolist() item += [label] props.append(item) if static_label is not None: for item in static_label: props.append([None, None, None, None, item]) # return (np.array(props)) return props
3a671abaac1faa326d0faa7e618249b5f17cd705
33,615
def spike_profile(*args, **kwargs): """ Computes the spike-distance profile :math:`S(t)` of the given spike trains. Returns the profile as a PieceWiseConstLin object. The SPIKE-values are defined positive :math:`S(t)>=0`. Valid call structures:: spike_profile(st1, st2) # returns the bi-variate profile spike_profile(st1, st2, st3) # multi-variate profile of 3 spike trains spike_trains = [st1, st2, st3, st4] # list of spike trains spike_profile(spike_trains) # profile of the list of spike trains spike_profile(spike_trains, indices=[0, 1]) # use only the spike trains # given by the indices The multivariate spike-distance profile is defined as the average of all pairs of spike-trains: .. math:: <S(t)> = \\frac{2}{N(N-1)} \\sum_{<i,j>} S^{i, j}`, where the sum goes over all pairs <i,j> :returns: The spike-distance profile :math:`S(t)` :rtype: :class:`.PieceWiseConstLin` """ if len(args) == 1: return spike_profile_multi(args[0], **kwargs) elif len(args) == 2: return spike_profile_bi(args[0], args[1]) else: return spike_profile_multi(args)
ffaff8b0e1e3f81dcbbf8cb0762224dc3850b2b3
33,616
import re import pandas def wig_to_dataframe(infile, step, format): """Read a wig file into a Pandas dataframe infile(str): Path to file Returns: Dataframe """ fs = open(infile, 'r') coverage_data = [] pos = 0 chr = "" for line in fs.readlines(): try: f = float(line) coverage_data.append([chr, f, pos]) pos += 5000 except ValueError: reresult = re.search("chrom=(\w*)", line) # find chromosome name in line if reresult: last_pos = [chr, 0, 249255001] # writen in every set to give same scale when plotting coverage_data.append(last_pos) chr = reresult.group(1) # start working on next chromosome pos =0 fs.close() df = pandas.DataFrame(coverage_data, columns= format) return df
07873b340b450ef3d0eb3d7715afb9b204a8277e
33,617
from corehq.apps.users.models import CommCareUser def get_all_commcare_users_by_domain(domain): """Returns all CommCareUsers by domain regardless of their active status""" def get_ids(): for flag in ['active', 'inactive']: key = [flag, domain, CommCareUser.__name__] for user in CommCareUser.get_db().view( 'users/by_domain', startkey=key, endkey=key + [{}], reduce=False, include_docs=False ): yield user['id'] return imap(CommCareUser.wrap, iter_docs(CommCareUser.get_db(), get_ids()))
2b9209ac899b73eb534ba98cd5930bb0dc4749c2
33,618
def print_cycles_info(data): """ Print various information about cycles. """ n_cycles = len(data.cycles) output('number of cycles:', n_cycles) if not n_cycles: return data slengths = sorted(set(data.cycles_lengths)) lhist, lbins = np.histogram(data.cycles_lengths, bins=slengths + [slengths[-1] + 1]) output('histogram of cycle lengths (length: count [duration interval]):') for ib, lbin in enumerate(lbins[:-1]): ii = np.where(data.cycles_lengths == lbin)[0] cdt = data.cycles_dt[ii] output(' % 5d: % 5d [%10.5e, %10.5e]' % (lbin, lhist[ib], cdt.min(), cdt.max())) i0 = data.cycles_lengths.min() i1 = np.where(data.cycles_lengths == i0)[0] output('shortest cycle length: %d (in %d cycle(s))' % (i0, len(i1))) cdt = data.cycles_dt[i1] output(' duration in [%10.5e, %10.5e]' % (cdt.min(), cdt.max())) i0 = data.cycles_lengths.max() i1 = np.where(data.cycles_lengths == i0)[0] output('longest cycle length: %d (in %d cycle(s))' % (i0, len(i1))) cdt = data.cycles_dt[i1] output(' duration in [%10.5e, %10.5e]' % (cdt.min(), cdt.max())) output('data min., mean, max. in the longest cycle(s):') for ii in i1: strain = data.strain[data.cycles[ii]] stress = data.stress[data.cycles[ii]] output(' cycle:', ii) output(' strain: %10.5e, %10.5e, %10.5e' % (strain.min(), strain.mean(), strain.max())) output(' stress: %10.5e, %10.5e, %10.5e' % (stress.min(), stress.mean(), stress.max())) return data
d22d827d966ff467de232818edd7854c20e12bb9
33,619
def get_block_size(sigma = 1.5): """ Devuelve el tamaño de los vecinos (block_size) que se va a utilizar para obtener los puntos Harris. El valor se fija al valor correspondiente al uso de máscaras gaussianas de sigma 1.5. El tamaño de la máscara Gaussiana es 6*1.5+1. """ return int(6*sigma+1)
52f4aa88580252ab9c0f7a1840ac3097166c3930
33,620
from typing import Callable from typing import Union from typing import Tuple import typing def approxZeroNewton(f: Callable[[float], float], df: Callable[[float], float], ddf: Callable[[float], float], a: Union[int, float], b: Union[int, float], epsilon: float, iteration: int) -> Tuple[float, int]: """ Approximates the solution to f(x) = 0 in range [a, b] using Newton's method :param f: callable function of variable x :param df: callable derivate of f (f') :param ddf: callable second-order derivate of f (f'') :param a: left range bound :param b: right range bound :param epsilon: the desired precision (stop condition) :param iteration: maximum iterations count limit (to prevent an infinite loop) :raises ValueError: when input types are wrong or either df or dff has same different on both range bounds :return: a tuple containing (in order): an approximate solution x, iterations made count """ if not isType(a, [int, float]) or not isType(b, [int, float]) or not isType(f, Callable) or not isType(df, typing.Callable) \ or not isType(ddf, Callable) or not isType(epsilon, float) or not isType(iteration, int) or epsilon < 0 or iteration < 0 or b < a or np.sign(f(a)) * np.sign(f(b)) >= 0: raise ValueError("Wrong input types") if np.sign(df(a)) * np.sign(df(b)) <= 0: raise ValueError( "Df has to be of different signs at the edges of range [a, b]") if np.sign(ddf(a)) * np.sign(ddf(b)) <= 0: raise ValueError( "Ddf has to be of different signs at the edges of range [a, b]") x0 = a for x0 in [a, b]: if(f(x0) * ddf(x0) > 0): # initial condition found break i = 0 while np.abs(f(x0)) > epsilon and i < iteration: x0 = x0 - f(x0) / df(x0) i += 1 return x0, i
f15e37f581f2f040af8b2c7edcec11ebce75c93f
33,622
def chain_data(symbol, info=None): """Gets chain data for stock. INSTANT. Includes possible expiration dates for options.""" assert type(symbol) == str return robin_stocks.options.get_chains(symbol, info)
04cdb028420fbabdd1a4951762a5a6fea24a821a
33,623
def convert_Cf2manningn(Cf, h): """ Convert the friction coefficient Cf to the Manning's n """ n = h**(1 / 6) * np.sqrt(Cf / g) return n
6552425ed1deea8ea93b226e1cbd19df40d3e5af
33,624
def lstmemory_unit(input, name=None, size=None, param_attr=None, act=None, gate_act=None, state_act=None, mixed_bias_attr=None, lstm_bias_attr=None, mixed_layer_attr=None, lstm_layer_attr=None, get_output_layer_attr=None): """ Define calculations that a LSTM unit performs in a single time step. This function itself is not a recurrent layer, so that it can not be directly applied to sequence input. This function is always used in recurrent_group (see layers.py for more details) to implement attention mechanism. Please refer to **Generating Sequences With Recurrent Neural Networks** for more details about LSTM. The link goes as follows: .. _Link: https://arxiv.org/abs/1308.0850 .. math:: i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i) f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f) c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c) o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o) h_t & = o_t tanh(c_t) The example usage is: .. code-block:: python lstm_step = lstmemory_unit(input=[layer1], size=256, act=TanhActivation(), gate_act=SigmoidActivation(), state_act=TanhActivation()) :param input: input layer name. :type input: LayerOutput :param name: lstmemory unit name. :type name: basestring :param size: lstmemory unit size. :type size: int :param param_attr: Parameter config, None if use default. :type param_attr: ParameterAttribute :param act: lstm final activiation type :type act: BaseActivation :param gate_act: lstm gate activiation type :type gate_act: BaseActivation :param state_act: lstm state activiation type. :type state_act: BaseActivation :param mixed_bias_attr: bias parameter attribute of mixed layer. False means no bias, None means default bias. :type mixed_bias_attr: ParameterAttribute|False :param lstm_bias_attr: bias parameter attribute of lstm layer. False means no bias, None means default bias. :type lstm_bias_attr: ParameterAttribute|False :param mixed_layer_attr: mixed layer's extra attribute. :type mixed_layer_attr: ExtraLayerAttribute :param lstm_layer_attr: lstm layer's extra attribute. :type lstm_layer_attr: ExtraLayerAttribute :param get_output_layer_attr: get output layer's extra attribute. :type get_output_layer_attr: ExtraLayerAttribute :return: lstmemory unit name. :rtype: LayerOutput """ if size is None: assert input.size % 4 == 0 size = input.size / 4 out_mem = memory(name=name, size=size) state_mem = memory(name="%s_state" % name, size=size) with mixed_layer( name="%s_input_recurrent" % name, size=size * 4, bias_attr=mixed_bias_attr, layer_attr=mixed_layer_attr, act=IdentityActivation()) as m: m += identity_projection(input=input) m += full_matrix_projection(input=out_mem, param_attr=param_attr) lstm_out = lstm_step_layer( name=name, input=m, state=state_mem, size=size, bias_attr=lstm_bias_attr, act=act, gate_act=gate_act, state_act=state_act, layer_attr=lstm_layer_attr) get_output_layer( name='%s_state' % name, input=lstm_out, arg_name='state', layer_attr=get_output_layer_attr) return lstm_out
5e4ec7203b58d44b7b07c865ea7683994869dd90
33,625
def _GetPrivateIpv6GoogleAccess(dataproc, private_ipv6_google_access_type): """Get PrivateIpv6GoogleAccess enum value. Converts private_ipv6_google_access_type argument value to PrivateIpv6GoogleAccess API enum value. Args: dataproc: Dataproc API definition private_ipv6_google_access_type: argument value Returns: PrivateIpv6GoogleAccess API enum value """ if private_ipv6_google_access_type == 'inherit-subnetwork': return dataproc.messages.GceClusterConfig.PrivateIpv6GoogleAccessValueValuesEnum( 'INHERIT_FROM_SUBNETWORK') if private_ipv6_google_access_type == 'outbound': return dataproc.messages.GceClusterConfig.PrivateIpv6GoogleAccessValueValuesEnum( 'OUTBOUND') if private_ipv6_google_access_type == 'bidirectional': return dataproc.messages.GceClusterConfig.PrivateIpv6GoogleAccessValueValuesEnum( 'BIDIRECTIONAL') if private_ipv6_google_access_type is None: return None raise exceptions.ArgumentError( 'Unsupported --private-ipv6-google-access-type flag value: ' + private_ipv6_google_access_type)
56c830257ce996716a6dea7d205dca00e06ab6a9
33,626
def retry_(f, ex, times=3, interval=1, on_error=lambda e, x: None, *args, **kwargs): """ Call a function and try again if it throws a specified exception. :param funciton f: The function to retry :param ex: The class of the exception to catch, or an iterable of classes :type ex: class or iterable :param int times: The maximum number of times to retry :param float interval: How long to sleep in between attempts in seconds :param function on_error: A function to be called when ``f`` throws an exception. If ``on_error()`` takes no parameters, it will be called without arguments. If ``on_error(exception)`` takes one parameter, it will be called with the exception that was raised. If ``on_error(exception, retry_count)`` takes two parameters, it will be called with the exception that was raised and the number of previous attempts (starting at 0). A typical use of ``on_error`` would be to log the exception. Any other arguments are forwarded to ``f``. :return: The final return value of the function ``f``. :raises TimeoutError: The function did not succeed within the specified timeout. """ return exec_(f, ex, lambda _: True, times, float("inf"), interval, on_error, *args, **kwargs)
e28d39dfee43c9c651b174f87acdd077920f3ed9
33,627
from sklearn.decomposition import PCA from sklearn import linear_model def pca_analysis(model, data): """Run PCA analysis on model to visualize hidden layer activity. To get the values of the intermediate layer, a new model needs to be created. This model takes the normal input from the RNN, and returns the output of the rnn layer. The values of the hidden layer can then be found using the 'predict()' method. """ # Unpack train data dict X = data['X'] Y = data['Y'] # --- Get hidden layer activations and run PCA --- # Create new model and predict input inputs = model.input outputs = [model.layers[0].output, model.layers[1].output] act_model = tf.keras.Model(inputs=inputs, outputs=outputs) activations = act_model.predict(X) # Format activations into dimensions x observations # Input dimensions: (obs x time x units) n_inputs = X.shape[2] n_obs = X.shape[0] n_ts = X.shape[1] n_rnn = activations[0].shape[2] A = np.transpose(activations[0], (2, 0, 1)) # Now (units x obs x time) Y = np.transpose(activations[1], (2, 0, 1)) A = A.reshape((n_rnn, -1), order='C') # Now (units x (obs*time)) Y = Y.reshape((n_inputs, -1), order='C') # Run PCA (note that this is actually PPCA) n_pcs = 20 pca = PCA(n_components=n_pcs) pca.fit(A.T) # --- Figure 1: Variance explained --- # Setup figure fh, ax_h = pt.create_subplot(n_row=1, n_col=1) # Plot fraction of variance explained idx = 0 dims = np.arange(pca.n_components_) + 1 ax_h[idx].plot(dims, pca.explained_variance_ratio_, color='k', marker='.') ax_h[idx].set_xlabel('PCA dim.') ax_h[idx].set_ylabel('Fraction of variance explained') ax_h[idx].set_title('Fraction of variance explained') fig_name = 'FracVarExplained' fh.savefig('./results/BCISimulation_PCAResults_{}.pdf'.format(fig_name)) # --- Figure 2: 2D projections of the PCA representation --- # Setup figure. Define dimensions to plot plot_dim = [[0, 1], [0, 2], [1, 2], [2, 3]] n_row = 2 n_col = len(plot_dim) fh, ax_h = pt.create_subplot(n_row=n_row, n_col=n_col) # Find indices of specific trials to plot. Here we want to focus on a # pair of diametrically-opposed targets (0 and 180 degrees) start_pos = X[:, 0, :] start_ang = np.rad2deg(np.arctan2(start_pos[:, 1], start_pos[:, 0])) mask = start_ang < 0 start_ang[mask] = start_ang[mask] + 360 targ_ang = [0, 180] targ_idx = [np.argmin(np.abs(start_ang - ang)) for ang in targ_ang] # Iterate over trials Z = np.zeros((n_obs, n_ts, n_pcs)) n_samp = np.zeros((n_obs), dtype=int) for i in range(n_obs): # Get data from current trial and find PCA representation A_trial = activations[0][i, :, :] Z_trial = pca.transform(A_trial) Z[i, :, :] = Z_trial # Limit to valid portion of the trajectory Z_trial = Z_trial[data['onset'][i]:data['offset'][i]] n_samp[i] = Z_trial.shape[0] # Iterate over dimensions and plot for ax, d in zip(ax_h[0:n_col], plot_dim): plot_trajectory(Z_trial[:, d].T, X[i, 0, :], ax) # If trial is to be highlighted, plot in a separate set of axes if i in targ_idx: for ax, d in zip(ax_h[n_col:], plot_dim): plot_trajectory(Z_trial[:, d].T, X[i, 0, :], ax) # Set axis labels for ax, d in zip(ax_h, plot_dim * 2): ax.set_xlabel('PC {}'.format(d[0] + 1)) ax.set_ylabel('PC {}'.format(d[1] + 1)) ax.set_title('Dim {} vs Dim {}'.format(d[0] + 1, d[1] + 1)) # Save figure fig_name = '2DProj' fh.savefig('./results/BCISimulation_PCAResults_{}.pdf'.format(fig_name)) # --- Figure 3: Linear mapping of PCA representation --- # Get data to fit linear model n_samp_all = np.sum(n_samp) Z_mat = np.zeros((n_samp_all, n_pcs)) Y_mat = np.zeros((n_samp_all, n_inputs)) ctr = 0 for i in range(n_obs): onset_idx = np.arange(data['onset'][i], data['offset'][i]) ctr_idx = np.arange(ctr, (ctr + len(onset_idx))) Z_mat[ctr_idx, :] = Z[i, onset_idx, :] Y_mat[ctr_idx, :] = data['Y'][i, onset_idx, :] ctr = ctr_idx[-1] + 1 # Fit linear model -- do this independently for the X and Y dimensions reg_mdl = linear_model.LinearRegression(fit_intercept=False) reg_mdl.fit(Z_mat, Y_mat) r2 = reg_mdl.score(Z_mat, Y_mat) print('Linear fit: r2 = {}'.format(r2)) W = reg_mdl.coef_ # Plot predicted trajectories fh, ax_h = pt.create_subplot(n_row=1, n_col=1) for i in range(n_obs): # Predict cursor position from hidden unit activity Z_temp = Z[i, data['onset'][i]:data['offset'][i], :] y_pred = Z_temp @ W.T y_pred = reg_mdl.predict(Z_temp) plot_trajectory(y_pred.T, data['X'][i, 0, :], ax_h[0]) # Format plot axes ax_h[0].set_title('Linear model - predicted trajectories') ax_h[0].set_xlabel('X position') ax_h[0].set_ylabel('Y position') # Save figure fig_name = 'LinearMapping' fh.savefig('./results/BCISimulation_PCAResults_{}.pdf'.format(fig_name)) return None
00ec016e4c47cd15b2570457b835990ae9aef2e2
33,628
def get_plugin_history(name): """ Get history of results for single plugin :param name: name of the plugin :type name: string """ plugin = smokerd.pluginmgr.get_plugin(name) results = [] for res in plugin.result: res = standardized_api_list(res) results.append({'result': res}) return results
64225c04d13ee228c0a375c78ff805c0dcd56bb4
33,629
def _parse_instance_info(node): """Gets the instance and driver specific Node deployment info. This method validates whether the 'instance_info' and 'driver_info' property of the supplied node contains the required information for this driver to deploy images to the node. :param node: a single Node. :returns: A dict with the instance_info and driver_info values. :raises: MissingParameterValue, image_source is missing in node's instance_info. Also raises same exception if kernel/ramdisk is missing in instance_info for non-glance images. """ info = {} info['image_source'] = node.instance_info.get('image_source') is_whole_disk_image = node.driver_internal_info.get('is_whole_disk_image') if not is_whole_disk_image: if not service_utils.is_glance_image(info['image_source']): info['kernel'] = node.instance_info.get('kernel') info['ramdisk'] = node.instance_info.get('ramdisk') error_msg = _("Cannot validate PXE bootloader. Some parameters were " "missing in node's instance_info.") deploy_utils.check_for_missing_params(info, error_msg) return info
65e687704ad5fa70f8fc23eaf73f3c48eec9e17c
33,630
def str2polynomial(string): """ Get a string, return a polynomial """ try: parts = advanced_split(string, '+', '-', contain=True) terms = [str2term(each) for each in parts] return Polynomial(*terms) except: raise Exception('Example input: -5x_1^2*y_1^3+6x_2^2*y_2^4-x_3^1*y_3^1')
a52641bcbbc67159f5b73bbbc91ba84ea38cb223
33,632
def transpose_2d(array): """Transpose an array represented as an iterable of iterables.""" return list(map(list, zip_equal(*array)))
48249de78d7d7c591f6d9fc8d79e184d3f291b49
33,633
def get_test_examples(args): """See base class.""" src = file2list(args.src_data) trg = file2list(args.trg_data) return _create_examples(src, trg, "test")
b1353a7b2bb87379c71c025f7abeb6142c55cf30
33,634
def precrec_unvoted(preds, gts, radius, pred_rphi=False, gt_rphi=False): """ The "unvoted" precision/recall, meaning that multiple predictions for the same ground-truth are NOT penalized. - `preds` an iterable (scans) of iterables (per scan) containing predicted x/y or r/phi pairs. - `gts` an iterable (scans) of iterables (per scan) containing ground-truth x/y or r/phi pairs. - `radius` the cutoff-radius for "correct", in meters. - `pred_rphi` whether `preds` is r/phi (True) or x/y (False). - `gt_rphi` whether `gts` is r/phi (True) or x/y (False). Returns a pair of numbers: (precision, recall) """ # Tested against other code. npred, npred_hit, ngt, ngt_hit = 0.0, 0.0, 0.0, 0.0 for ps, gts in zip(preds, gts): # Distance between each ground-truth and predictions assoc = np.zeros((len(gts), len(ps))) for ip, p in enumerate(ps): for igt, gt in enumerate(gts): px, py = rphi_to_xy(*p) if pred_rphi else p gx, gy = rphi_to_xy(*gt) if gt_rphi else gt assoc[igt, ip] = np.hypot(px-gx, py-gy) # Now cutting it off at `radius`, we can get all we need. assoc = assoc < radius npred += len(ps) npred_hit += np.count_nonzero(np.sum(assoc, axis=0)) ngt += len(gts) ngt_hit += np.count_nonzero(np.sum(assoc, axis=1)) return ( npred_hit/npred if npred > 0 else np.nan, ngt_hit/ngt if ngt > 0 else np.nan )
eff8aef552999db2377c9d053c548a705f07bf3a
33,636
def get_weapon_objects(json_load): """creates weapon objects by iterating over the json load and making an object of each dictionary, then returns a list of all the objects """ weapon_object_list = [] for weapon_dict in json_load: # weapon_dict is a dictionary which has data for one weapon weapon = Weapon(**weapon_dict) weapon_object_list.append(weapon) return weapon_object_list
e3b7309b4267ce4f237db3e7d6e17c69b187a1fc
33,637
def _t_P(P): """Define the boundary between Region 2 and 3, T=f(P) >>> "%.2f" % _t_P(16.52916425) '623.15' """ n=[0, 0.34805185628969e3, -0.11671859879975e1, 0.10192970039326e-2,0.57254459862746e3, 0.1391883977870e2] return n[4]+((P-n[5])/n[3])**0.5
196f4fae80d9425b0f3a06213c21f77d3049e401
33,638
import inspect def add_as_function(cls): """ Decorator for classes. Automatically adds functional interface for `call` method of class. For example, `ConvBlock` class is transformed into `conv_block` function, while `Conv1DTranspose` class is transformed into `conv1d_transpose` function. """ name = cls.__name__ func_name = ''.join('_' + c.lower() if (c.isupper() and (i != len(name)-1) and name[i+1].islower()) else c.lower() for i, c in enumerate(name)).strip('_') def func(inputs, *args, **kwargs): # We also want to use `training` or `is_training` indicators as arguments for call call_args = [inputs] training = kwargs.get('training') or kwargs.get('is_training') if (training is not None) and (len(inspect.getfullargspec(cls.__call__)[0]) > 2): call_args.append(training) return cls(*args, **kwargs)(*call_args) func.__doc__ = cls.__doc__ module = inspect.getmodule(inspect.stack()[1][0]) setattr(module, func_name, func) return cls
38f2e604e03e5a356450569bbfe7d0764bd784cb
33,639
def remove_from_cart(request): """ Remove product from cart """ product_id = int(request.POST['product_id']) # Checking if user session has cart or session may already flushed # Cart an empty cart for user if 'cart_id' in request.session: cart_id = int(request.session['cart_id']) cart = Cart.get_cart(cart_id) cart.remove_item(product_id) else: cart = Cart() if request.is_ajax(): default_currency = get_default_currency(request) return render(request, 'sales/cart_basket.html', {'cart': cart, 'default_currency': default_currency}) return HttpResponseRedirect(reverse('sales_checkout_cart'))
7a5fe35bce0d8ad7adb00c6b8a5677099c728c14
33,640
def preresnet164bn_svhn(classes=10, **kwargs): """ PreResNet-164(BN) model for SVHN from 'Identity Mappings in Deep Residual Networks,' https://arxiv.org/abs/1603.05027. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.chainer/models' Location for keeping the model parameters. """ return get_preresnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="preresnet164bn_svhn", **kwargs)
ebad863e846fd865772e93daf1225dd71654fc6a
33,641
from typing import List def value_map_distribution(value_map: dict, bounds: List[float] = None): """Percent of values that fall in ranges. Args: value_map: dict, value map bound: list of float, boundaries to count values within Returns: dist: dict, distribution values """ if not bounds: bounds = list(np.linspace(0, 1, 11)) bounds[-1] += 0.01 values = collect_values(value_map) total = len(values) dist = {} for low, up in zip(bounds[:-1], bounds[1:]): count = len([v for v in values if ((v >= low) and (v < up))]) dist[(low, up)] = count/total return dist
09988024007327ee26f27f43d9dc647e78a78915
33,643