content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import re def isrest(peak): """Determine whether the first 512 bytes are written in reST.""" try: a, b = re.match('^(.+?)\n((?:-|=|#)+)', peak).groups() except (ValueError, AttributeError): return False return len(b) >= len(a)
2ba2f65611118e8de19542f10a8a9668cd1b03a3
34,095
def load_raw(stream): """ Load a schism YAML """ # First round to get environmental variables loader = RawLoader(stream) try: data = loader.get_single_data() finally: loader.dispose() stream.seek(0) # Second round with substitution env = {} for key in substitute_keywords: if key in data: env.update(data[key]) substitute_env(env) loader = SubstituteRawLoader(stream, env) try: data = loader.get_single_data() return data finally: loader.dispose()
ab150dfac1d557b96f5e8e1b4ad6e186d786a6a9
34,096
def compare_time_stats(grouped, ref_grouped): """Given two nested dictionaries generated by get_dict_from_json, after running calculate_time_stats on both, compare the performance of the given run to a reference run. A string will be returned with instances where there is a significant performance difference """ regression_table_data = list() improvement_table_data = list() full_comparison_str = str() for workload_scale_key, workload in grouped.items(): for query_name, file_formats in workload.items(): for file_format, results in file_formats.items(): ref_results = ref_grouped[workload_scale_key][query_name][file_format] change_significant, is_regression = check_perf_change_significance( results, ref_results) if change_significant: full_comparison_str += build_perf_change_str( results, ref_results, is_regression) + '\n' full_comparison_str += build_exec_summary_str(results, ref_results) + '\n' change_row = build_perf_change_row(results, ref_results, is_regression) if is_regression: regression_table_data.append(change_row) else: improvement_table_data.append(change_row) try: save_runtime_diffs(results, ref_results, change_significant, is_regression) except Exception as e: print 'Could not generate an html diff: %s' % e return full_comparison_str, regression_table_data, improvement_table_data
cb6512533ca64c1f59af4a02a4f53f3996e95b0c
34,097
from typing import Tuple from typing import Type from typing import Dict from typing import Any def task_name_to_model_class(name: str) -> Tuple[Type[GraphTaskModel], Dict[str, Any]]: """ Map task name to a model class and default hyperparameters for that class. """ task_info = TASK_NAME_TO_DATASET_AND_MODEL_INFO.get(name.lower()) if task_info is None: raise ValueError("Unknown task type '%s'" % name) return task_info.model_class, task_info.model_default_hypers
ba7e391de5510c06fbb72abb2d0891931dce1ffd
34,098
def compute_pairwise_similarities(string_series_1: pd.Series, string_series_2: pd.Series, **kwargs) -> pd.Series: """ Computes the similarity scores between two Series of strings row-wise. :param string_series_1: pandas.Series. The input Series of strings to be grouped :param string_series_2: pandas.Series. The input Series of the IDs of the strings to be grouped :param kwargs: All other keyword arguments are passed to StringGrouperConfig :return: pandas.Series of similarity scores, the same length as string_series_1 and string_series_2 """ return StringGrouper(string_series_1, string_series_2, **kwargs).dot()
79a12c261f4b687689ab4747fcb04500a6b7258d
34,099
def blur(img): """ :param img: the original image :return: img, the blurred image This function make image blurred """ old_image = img blurred = SimpleImage.blank(old_image.width, old_image.height) for y in range(old_image.height): for x in range(old_image.width): count = 0 sum_r = 0 sum_g = 0 sum_b = 0 for i in range(-1, 2, 1): # 1step, i= -1,0,1 for j in range(-1, 2, 1): # 1step, j = -1,0,1 pixel_x = x + j # neighbor pixel pixel_y = y + j # neighbor pixel if 0 <= pixel_x < old_image.width: if 0 <= pixel_y < old_image.height: pixel = old_image.get_pixel(pixel_x, pixel_y) count += 1 sum_r += pixel.red sum_g += pixel.green sum_b += pixel.blue new_pixel = blurred.get_pixel(x, y) new_pixel.red = sum_r / count new_pixel.green = sum_g / count new_pixel.blue = sum_b / count return blurred
6ddd8dd896b419d0d776aa36f249af93e5049a73
34,100
def _validator(record_type, ref): """ Create a DataValidator instance. """ if record_type == mds.STATUS_CHANGES: return mds.DataValidator.status_changes(ref=ref) elif record_type == mds.TRIPS: return mds.DataValidator.trips(ref=ref) else: raise ValueError(f"Invalid record_type: {record_type}")
5e5eb3288304ba9a3fa7635d698370e041a731bd
34,102
def create_gif(pictures: list, watermark: str, user_id: int, private=0) -> BytesIO: """ Creates gif with watermark from list of PIL images and adds it to database. Returns BytesIO object :param pictures: list of PIL.Image objects :param watermark: watermark text, takes from user name :param user_id: user id :param private: defsult False, points out if the gif available for download by other users :return: BytesIO """ resized_pictures = resize_picture(pictures) gif = save_gif(resized_pictures) watermarked_gif = add_watermark(gif, watermark) minio_storage_manager.add_gif_to_storage( "gifs", file=watermarked_gif, user_id=user_id, private=private ) watermarked_gif.seek(0) return watermarked_gif
ff5fd0aeaf9e0b02ee99e7f75624d2a1340c0272
34,103
def ret_comb_index(bi_tot, get_indices=False, isotope=None): """ :param bi_tot: :return: """ bi_1 = int(str(bi_tot)[-2:]) bi_2 = int(str(bi_tot)[0:-2]) if get_indices: return (bi_1, bi_2 - 1, isotope) else: return (bi_1, bi_2 - 1)
5647b273d4807aa876f6cd3bd28d287f60cf6296
34,106
def run_list(arg): """ Convert a :class:`~list` to a `RUN` instruction. :param arg: List that represents instruction arguments. :return: Fully-qualified `RUN` instruction. """ indent = len(run_list.instruction_name) + 1 return formatting.list_with_conditional_command_line_breaks(arg, indent=indent)
a2652abed5df8ec5bcdc0df678a57b6d2425fe49
34,107
def count_loops(G): """ Count the loop edges in a graph. Parameters ---------- G : NetworkX graph """ loops = get_loops(G) return len(loops)
58fdcf8aac09fa7a52d59f9fbbcba170313408ab
34,108
async def post_projectversion_toggle_ci(request): """ Toggles the ci enabled flag on a projectversion. --- description: Toggles the ci enabled flag on a projectversion. tags: - ProjectVersions consumes: - application/x-www-form-urlencoded parameters: - name: projectversion_id in: path required: true type: integer produces: - text/json responses: "200": description: successful "500": description: internal server error """ db = request.cirrina.db_session projectversion_id = request.match_info["projectversion_id"] try: projectversion_id = int(projectversion_id) except (ValueError, TypeError): return ErrorResponse(400, "Incorrect value for projectversion_id") projectversion = db.query(ProjectVersion).filter(ProjectVersion.id == projectversion_id).first() if not projectversion: return ErrorResponse(400, "Projectversion#{projectversion_id} not found".format( projectversion_id=projectversion_id)) projectversion.ci_builds_enabled = not projectversion.ci_builds_enabled db.commit() result = "enabled" if projectversion.ci_builds_enabled else "disabled" logger.info("continuous integration builds %s on ProjectVersion '%s/%s'", result, projectversion.project.name, projectversion.name) return OKResponse("Ci builds are now {}.".format(result))
f9c50607e90f0f910503b6557bd324ad3adba43e
34,109
def edit_item(category, item): """App route function to edit an item.""" # Verify user login. If not, redirect to login page. login_status = None if 'email' in login_session: login_status = True else: flash('Please log in.') return redirect(url_for('home')) # Query database with SQLAlchemy to display categories on page categories = session.query(Categories).all() if request.method == 'POST': # Query database with SQLAlchemy and store queries as objects category = (session.query(Categories) .filter_by(name=category.replace('-', ' ')) .one()) item = (session.query(Items) .filter_by(name=item.replace('-', ' ')) .one()) # Get form fields submitted by user, or retain item info name = request.form['name'] if request.form['name'] else item.name url = request.form['url'] if request.form['url'] else item.url if request.form['photo_url']: photo_url = request.form['photo_url'] else: photo_url = item.photo_url if request.form['description']: description = request.form['description'] else: description = item.description category = request.form['item_category'] # Retrieve the database ID of the item's category category_id = (session.query(Categories) .filter_by(name=category.replace('-', ' ')) .one()) # Get user's database ID user_db_id = (session.query(Users) .filter_by(email=login_session['email']) .one()).id # Get database ID of creator creator_db_id = item.creator_db_id print("Current user's database primary key id is {}." .format(user_db_id)) print("Item creator's database primary key id is {}." .format(creator_db_id)) print('Item to edit is "{}".'.format(item.name)) # Only allow creator to edit. If not, redirect to login. if user_db_id != creator_db_id: flash('Only the creator can edit. Please log in as creator.') return redirect(url_for('home')) # Store edits in an object edited_item = Items(name=name, url=url, photo_url=photo_url, description=description, category_id=category_id.id, creator_db_id=user_db_id) # Overwrite item object with new info from edited_item object item.name = edited_item.name item.url = edited_item.url item.photo_url = edited_item.photo_url item.description = edited_item.description item.category_id = edited_item.category_id session.add(item) session.commit() print('Item "{}" edited.'.format(edited_item.name)) # Return to homepage return redirect(url_for('home')) else: # Query database with SQLAlchemy to display categories on page categories = session.query(Categories).all() # Render webpage return render_template('edit_item.html', categories=categories, item=item, login_status=login_status)
e8300e083da286544d58c5e4aaa59cdc126414ac
34,110
def sanity_check_gcon(): """Sanity check gcon.""" cmd = gcon_py + " --help" errmsg = gcon_py + " is not installed." execute(cmd=cmd, errmsg=errmsg) return gcon_py
11585da8701edc482ab2d0588f1d983d32b5e1c4
34,111
import requests import json def get_Cust_Bookings_Hours(request, *args, **kwargs): """Request Chart Points per Themes""" bookings_H_tmp = requests.get('http://127.0.0.1:5000/customer/bookings/hours').text bookings_Hours_list = json.loads(bookings_H_tmp) bookings_Hours = [ ['Heures', 'Nombre de réservations', {"role": "annotation"}] ] for elem in bookings_Hours_list: hours = elem['_id']['hours'] + ":00" nb = elem['total'] bookings_Hours_tmp = [hours, nb, nb] bookings_Hours.append(bookings_Hours_tmp) return JsonResponse(bookings_Hours, safe=False)
9463cb31da46f751014a14d6daeb28df3d0c8cfe
34,113
def judo_turnier(): """Show participants for judo turnier.""" participants = Participant.query.filter_by(user_id=current_user.id, event=EVENT_JUDO_TURNIER).all() form = ParticipantDeleteForm(request.form) return render_template('events/judo-turnier.html', form=form, participants=participants)
78614761f183d1280eeb80e08e17500fed62d25a
34,116
def preprocess_mapper(features, params, lookup_table): """Model-specific preprocessing of features from the dataset.""" features["question_inputs"] = text_utils.build_text_inputs( text=features["question"], length=params["question_length"], lookup_table=lookup_table) features["context_inputs"] = text_utils.build_text_inputs( text=features["context"], length=params["context_length"], lookup_table=lookup_table) # Remove extra inputs. features = {f: features[f] for f in features if f in KEYS} return features
5454cf1149982ddc3314fb9793123b16e70e1381
34,118
import logging def get_user_playlists(): """Return all of the user's playlists""" logging.info("fetching user playlists") url = "https://api.spotify.com/v1/me/playlists" return get_all_pages(url)
17d96f81ccf78cc0d9210968deb6a9550f82f34c
34,119
def set_circuit_ic_mrucc(n_qubits, v_n, a_n, c_n, DS, theta_list, ndim1, a2a): """ """ circuit = QuantumCircuit(n_qubits) if DS: circuit = icmr_ucc_singles(circuit,v_n, a_n, c_n, theta_list, 0) circuit = icmr_ucc_doubles(circuit,v_n, a_n, c_n, theta_list, ndim1, a2a) else: circuit = icmr_ucc_doubles(circuit,v_n, a_n, c_n, theta_list, ndim1, a2a) circuit = icmr_ucc_singles(circuit,v_n, a_n, c_n, theta_list, 0) return circuit
7a3fc8474f07b926b49980b467cbb8c19a24d8b8
34,120
def dct2spatial(image): """ Rearrange DCT image from [H//8, W//8, 64] to [H,W] """ assert image.shape[2] == 64 block_view = (image.shape[0], image.shape[1], 8, 8) image_shape = (image.shape[0] * 8, image.shape[1] * 8) block_permute = 0, 2, 1, 3 result = image.reshape(block_view).transpose(*block_permute).reshape(image_shape) return result
a1052b2f851a59eabb28c672f01547b5c4797bbc
34,121
def theta2rotx(theta: np.ndarray) -> np.ndarray: """ Rx = [[1, 0, 0], [0, c(t), -s(t)], [0, s(t), c(t)]] :param theta: angle(s) in degrees, positive is counterclockwise :return: rotation_matrices """ theta = np.deg2rad(np.asarray(theta).reshape(-1)) rotation_matrices = np.zeros((theta.shape[0], 3, 3), dtype=np.float) cos_theta = np.cos(theta) sin_theta = np.sin(theta) rotation_matrices[:, 0, 0] = 1 rotation_matrices[:, (1, 2), (1, 2)] = cos_theta[:, np.newaxis] rotation_matrices[:, 1, 2] = -sin_theta rotation_matrices[:, 2, 1] = sin_theta return rotation_matrices
48aaa4a84b49495f2106fba7dc70749865001811
34,122
from datetime import datetime def json_serializer(obj): """JSON serializer for objects not serializable by default json code""" if isinstance(obj, datetime): # Serialize datetime as the ISO formatted string serial = obj.isoformat() return serial raise TypeError("Type not serializable")
dfc2ebf9f254cd9f3723144b4d97839159a428f7
34,124
def leaves_f(prog, typ): """Doc.""" return list(filter(lambda it: type(it), leaves(prog)))
4119e92c2bd5c910b5a9b5badca69fd09dedc429
34,126
def imshow_xy(axes, coord, data, xy_limits=None, xy_pad=0.02, add_lines=False, step_kw=None, line_kw=None, **kwargs): """ Show data as an image in ax, with slices at x and y in the subplots axy and axx. img = ax.imshow(data) step_x = axx.step(data[coord[1], :]) step_y = axy.step(data[:, coord[0]]) args: axes # (ax, axx, axy) coord # position (x, y) data # 2D numpy.ndarray xy_limits=None # None or "auto" / (min, max) / "data" / "match" / "clim" xy_pad=0.02 # padding of the xy vertical range # (active for xy_limits="data" or "clim") add_lines=False # mark coords with lines line_kw=None # dict() of kwargs for ax.axhline() step_kw=None # dict() of kwargs for axx.step() kwargs: passed to matplotlib.pyplot.imshow() returns: img, step_x, step_y """ ax, axx, axy = axes x, y = coord # xy slices if isinstance(data, np.ndarray): assert data.ndim == 2 ny, nx = np.shape(data) if "extent" in kwargs: xmin, xmax, ymin, ymax = kwargs["extent"] dx = (xmax - xmin) / nx xmin += dx / 2.0 xmax -= dx / 2.0 dy = (ymax - ymin) / ny ymin += dy / 2.0 ymax -= dy / 2.0 xi = int(np.round((x - xmin) / dx)) yi = int(np.round((y - ymin) / dy)) else: xmin, xmax, ymin, ymax = 0, nx - 1, 0, ny - 1 dx = dy = 1 xi, yi = int(np.round(x)), int(np.round(y)) xvals = np.linspace(xmin, xmax, nx) xdata = data[yi, :] yvals = np.linspace(ymin, ymax, ny) ydata = data[:, xi] else: raise TypeError("data must be a 2D numpy array") # xy step plots if step_kw is None: step_kw = {} step_x = step_plot(axx, xvals, xdata, orientation="horizontal", **step_kw) step_y = step_plot(axy, yvals, ydata, orientation="vertical", **step_kw) # plot image img = ax.imshow(data, **kwargs) # lines if add_lines: if line_kw is None: line_kw = {} ax.axvline(coord[0], **line_kw) ax.axhline(coord[1], **line_kw) # autorange axx, axy = autorange_xy(img, axx, axy, data, xy_limits, xy_pad) return img, step_x, step_y
e8727c5a7c3dd114e6beda1c171156f636e08b28
34,127
import re def create_endpoint(project_id: str, region: str, endpoint_name: str) -> str: """ Create an endpoint on Vertex AI :param project_id: :param region: :param endpoint_name: :return: """ try: endpoint = aiplatform.Endpoint.create(display_name=endpoint_name, project=project_id, location=region) return endpoint.resource_name except PermissionDenied as error: try: permission = re.search("Permission '(.*)' denied", error.args[0]).group(1) raise EdgeException( f"Endpoint '{endpoint_name}' could not be created in project '{project_id}' " f"because you have insufficient permission. Make sure you have '{permission}' permission." ) from error except AttributeError as attribute_error: raise error from attribute_error
383fb8961050e31270f5f4c9b68008864ce34ae9
34,128
import logging def get_warning_logger() -> logging.Logger: """ Set up a logger to capture warnings and log them """ logging.captureWarnings(True) warning_logger = logging.getLogger('py.warnings') if warning_logger.handlers: warning_logger.handlers = [] return warning_logger
5cdf76ff66963851715b3302c02681340d2f6a72
34,129
def check_type_match(actual_val, expected_val) -> bool: """Check actual_val matches type of expected_val The exception here is that expected_val can be float, and in that case actual_val can be either int or float Args: actual_val (Any): Actual type expected_val (Any): Expected type Returns: bool: Whether the type matches """ if type(actual_val) == type(expected_val): return True # Make an exception here since int can be represented as float # But not vice versa (for example, index) if type(expected_val) == float and type(actual_val) == int: return True return False
90f74b1978deb0c55b65a4faa2569f54fe6bceee
34,130
from typing import Callable from typing import Tuple def _single_step_smart_generalized_leapfrog( grad_log_posterior: Callable, metric: Callable, grad_metric: Callable, grad_log_posterior_and_metric_and_grad_metric: Callable, zo: Tuple[np.ndarray], step_size: float, thresh: float, max_iters: int, cache: dict ) -> Tuple: """Implements the 'smart' generalized leapfrog integrator which avoids recomputing redundant quantities at each iteration. Args: log_posterior: Function to compute the log-posterior. grad_log_posterior: Function to compute the gradient of the log-posterior. metric: Function to compute the Fisher information metric. grad_metric: Function to compute the gradient of the Fisher information metric. grad_log_posterior_and_metric_and_grad_metric: A function that returns all of the gradient of the log-posterior, the Riemannian metric, and the derivatives of the metric. zo: Tuple containing the position and momentum variables in the original phase space. step_size: Integration step_size. thresh: Convergence tolerance for fixed point iterations. max_iters: Maximum number of fixed point iterations. Returns: qn: The terminal position variable. pn: The terminal momentum variable. num_iters: The number of fixed point iterations to find the fixed points defining the generalized leapfrog algorithm. success: Boolean flag indicating successful integration. """ # Precompute the half step-size and the number of dimensions of the # position variable. half_step = 0.5 * step_size num_dims = len(zo[0]) # Create partial functions to eliminate dependencies on the terminal # condition. termcond = partial(cond, thresh=thresh, max_iters=max_iters) # Precompute necessary quantities. qo, po = zo delta = np.ones_like(po) * np.inf Id = np.eye(num_dims) if 'aux' in cache: glp, iG, dG = cache['aux'] else: glp, G, dG = grad_log_posterior_and_metric_and_grad_metric(qo) iG = solve_psd(G, Id) nglp = -glp dG = dG.swapaxes(0, -1) dld = 0.5*np.trace(np.asarray(np.hsplit([email protected](dG), num_dims)), axis1=1, axis2=2) fixed = (po, nglp, iG, dG, dld) # The first step of the integrator is to find a fixed point of the momentum # variable. val = (po, delta, 0) momstep = partial(momentum_step, half_step=half_step, fixed=fixed) pm, delta_mom, num_iters_mom = while_loop(termcond, momstep, val) success_mom = np.all(delta_mom < thresh) # The second step of the integrator is to find a fixed point of the # position variable. The first momentum gradient could be conceivably # cached and saved. val = (qo, delta, 0) iGp = iG@pm fixed = (qo, pm, iGp) posstep = partial(position_step, half_step=half_step, metric=metric, fixed=fixed) qn, delta_pos, num_iters_pos = while_loop(termcond, posstep, val) success_pos = np.all(delta_pos < thresh) success = np.logical_and(success_mom, success_pos) # Increment the number of iterations by one since the final momentum update # requires computing the gradient of the potential function again. num_iters = num_iters_pos + num_iters_mom + 1 # Last step is to do an explicit half-step of the momentum variable. glp, G, dG = grad_log_posterior_and_metric_and_grad_metric(qn) iG = solve_psd(G, Id) cache['aux'] = (glp, iG, dG) dG = dG.swapaxes(0, -1) o = iG@pm a = -glp b = 0.5*np.trace(np.asarray(np.hsplit([email protected](dG), num_dims)), axis1=1, axis2=2) c = -0.5*o@dG@o gph = a + b + c pn = pm - half_step * gph return (qn, pn), cache, num_iters, success
f091280bcda175ec0b1b399825a484e5d725c82a
34,131
def real_sph_harm(l, zero_m_only=True, spherical_coordinates=True): """ Computes formula strings of the the real part of the spherical harmonics up to order l (excluded). Variables are either cartesian coordinates x,y,z on the unit sphere or spherical coordinates phi and theta. """ if not zero_m_only: S_m = [0] C_m = [1] for i in range(1, l): x = sym.symbols('x') y = sym.symbols('y') S_m += [x * S_m[i - 1] + y * C_m[i - 1]] C_m += [x * C_m[i - 1] - y * S_m[i - 1]] P_l_m = associated_legendre_polynomials(l, zero_m_only) if spherical_coordinates: theta = sym.symbols('theta') z = sym.symbols('z') for i in range(len(P_l_m)): for j in range(len(P_l_m[i])): if type(P_l_m[i][j]) != int: P_l_m[i][j] = P_l_m[i][j].subs(z, sym.cos(theta)) if not zero_m_only: phi = sym.symbols('phi') for i in range(len(S_m)): S_m[i] = S_m[i].subs(x, sym.sin( theta) * sym.cos(phi)).subs(y, sym.sin(theta) * sym.sin(phi)) for i in range(len(C_m)): C_m[i] = C_m[i].subs(x, sym.sin( theta) * sym.cos(phi)).subs(y, sym.sin(theta) * sym.sin(phi)) Y_func_l_m = [['0'] * (2 * j + 1) for j in range(l)] for i in range(l): Y_func_l_m[i][0] = sym.simplify(sph_harm_prefactor(i, 0) * P_l_m[i][0]) if not zero_m_only: for i in range(1, l): for j in range(1, i + 1): Y_func_l_m[i][j] = sym.simplify( 2 ** 0.5 * sph_harm_prefactor(i, j) * C_m[j] * P_l_m[i][j]) for i in range(1, l): for j in range(1, i + 1): Y_func_l_m[i][-j] = sym.simplify( 2 ** 0.5 * sph_harm_prefactor(i, -j) * S_m[j] * P_l_m[i][j]) return Y_func_l_m
cff7053e02600934f8b00a4d74fffeb6223fc1d3
34,132
def drsky(x, ecc, omega, inc): """Function whose roots we wish to find to obtain time of secondary (and primary) eclipse(s) When one takes the derivative of equation (5) in Winn (2010; https://arxiv.org/abs/1001.2010v5), and equates that to zero (to find the minimum/maximum of said function), one gets to an equation of the form g(x) = 0. This function (drsky) is g(x), where x is the true anomaly. Parameters ---------- x : float True anomaly ecc : float Eccentricity of the orbit omega : float Argument of periastron passage (in radians) inc : float Inclination of the orbit (in radians) Returns ------- drsky : float Function evaluated at x, ecc, omega, inc """ sq_sini = np.sin(inc) ** 2 sin_o_p_f = np.sin(x + omega) cos_o_p_f = np.cos(x + omega) f1 = sin_o_p_f * cos_o_p_f * sq_sini * (1. + ecc * np.cos(x)) f2 = ecc * np.sin(x) * (1. - sin_o_p_f ** 2 * sq_sini) return f1 - f2
03238e267760e081f4f69367e7e37f46877072cf
34,133
from typing import List import types from typing import Iterator from typing import Tuple from typing import Dict from typing import Any def ComputeQueryBasedMetrics( # pylint: disable=invalid-name extracts: beam.pvalue.PCollection, prediction_key: str, query_id: str, combine_fns: List[beam.CombineFn], ) -> beam.pvalue.PCollection: """Computes metrics and plots using the EvalSavedModel. Args: extracts: PCollection of Extracts. The extracts MUST contain a FeaturesPredictionsLabels extract keyed by tfma.FEATURE_PREDICTIONS_LABELS_KEY and a list of SliceKeyType extracts keyed by tfma.SLICE_KEY_TYPES_KEY. Typically these will be added by calling the default_extractors function. prediction_key: Key in predictions dictionary to use as the prediction (for sorting examples within the query). Use the empty string if the Estimator returns a predictions Tensor (not a dictionary). query_id: Key of query ID column in the features dictionary. combine_fns: List of query based metrics combine functions. Returns: PCollection of (slice key, query-based metrics). """ missing_query_id_counter = beam.metrics.Metrics.counter( constants.METRICS_NAMESPACE, 'missing_query_id') def key_by_query_id(extract: types.Extracts, query_id: str) -> Iterator[Tuple[str, types.Extracts]]: """Extract the query ID from the extract and key by that.""" features = extract[constants.FEATURES_PREDICTIONS_LABELS_KEY].features if query_id not in features: missing_query_id_counter.inc() return feature_value = features[query_id][encoding.NODE_SUFFIX] if isinstance(feature_value, tf.compat.v1.SparseTensorValue): feature_value = feature_value.values if feature_value.size != 1: raise ValueError('Query ID feature "%s" should have exactly 1 value, but ' 'found %d instead. Values were: %s' % (query_id, feature_value.size(), feature_value)) yield ('{}'.format(np.asscalar(feature_value)), extract) def merge_dictionaries( dictionaries: Tuple[Dict[str, Any], ...]) -> Dict[str, Any]: """Merge dictionaries in a tuple into a single dictionary.""" result = dict() for d in dictionaries: intersection = set(d.keys()) & set(result.keys()) if intersection: raise ValueError('Overlapping keys found when merging dictionaries. ' 'Intersection was: %s. Keys up to this point: %s ' 'keys from next dictionary: %s' % (intersection, result.keys(), d.keys())) result.update(d) return result # pylint: disable=no-value-for-parameter return (extracts | 'KeyByQueryId' >> beam.FlatMap(key_by_query_id, query_id) | 'CreateQueryExamples' >> beam.CombinePerKey( CreateQueryExamples(prediction_key=prediction_key)) | 'DropQueryId' >> beam.Map(lambda kv: kv[1]._replace(query_id=kv[0])) | 'CombineGlobally' >> beam.CombineGlobally( beam.combiners.SingleInputTupleCombineFn(*combine_fns)) | 'MergeDictionaries' >> beam.Map(merge_dictionaries) | 'AddOverallSliceKey' >> beam.Map(lambda v: ((), v))) # pylint: enable=no-value-for-parameter
ee3907109a8ff0c67f02e5d9b2296c3955bd501f
34,134
def get_brier_scores(at_time_intervals, censored_indicator=1.0): """Construct Brier score metrics for survival probability predictions.""" metrics = [] for t in at_time_intervals: metric = partial( brier_score, t=t, censored_indicator=censored_indicator) metric.__name__ = 'bs_at_%d' % t metrics.append(metric) return metrics
58a23d2c7706761a68bfd375b20400dc075a4c96
34,135
def create_id_maps(session): """ Create a large universal map of maps that carries common items like "Allegiance" or "Government" onto the id expected to be inserted into the db. Returns: A adict of dicts that ultimately points to integer ids in the db. """ maps = { 'Allegiance': {x.eddn: x.id for x in session.query(cogdb.eddb.Allegiance)}, 'ConflictState': {x.eddn: x.id for x in session.query(cogdb.eddb.ConflictState)}, 'Economy': {x.eddn: x.id for x in session.query(cogdb.eddb.Economy)}, 'FactionState': {x.eddn: x.id for x in session.query(cogdb.eddb.FactionState)}, 'Government': {x.eddn: x.id for x in session.query(cogdb.eddb.Government)}, 'Happiness': {x.eddn: x.id for x in session.query(cogdb.eddb.FactionHappiness)}, 'Powers': {x.eddn: x.id for x in session.query(cogdb.eddb.Power)}, 'PowerplayState': {x.eddn: x.id for x in session.query(cogdb.eddb.PowerState)}, 'Security': {x.eddn: x.id for x in session.query(cogdb.eddb.Security)}, 'StationType': {x.eddn: x.id for x in session.query(cogdb.eddb.StationType)}, } maps['PowerplayState']['HomeSystem'] = maps['PowerplayState']['Controlled'] return maps
ae5f30fc4338c61b26087b3d6d5f30d87e7b97cd
34,136
def _box_without_row_and_column_of(row, col, width, height): """Return some coordinates in the square of (col, row) as a list. The coordinates in the same row and column are removed. This is an internal function and should not be used outside of the coordinates module. """ grid_x = col - (col % width) grid_y = row - (row % height) return [(grid_y + i, grid_x + j) for i, j in product( range(height), range(width)) if grid_y + i != row and grid_x + j != col]
e7dc91611788fb5e22a70d30edcda5708f751085
34,137
def fieldtype(field): """Get the type of a django form field (thus helps you know what class to apply to it)""" return field.field.widget.__class__.__name__
e2d68cbdd72219de1a23095100c054a46c6c191b
34,138
def fitToIntervals(areas: list, num_of_bins: int): """ fitting the area of each contour to the suitable interval. :param areas: a list of contour areas. :param num_of_bins: the number of intervals. :return: a list containing each suitable interval for a given area. """ intervals = findIntervals(areas=areas, num_of_bins=num_of_bins) interval_ranges = [] for area in areas: interval_ranges.append( str([interval for interval in intervals if area in interval][0])) return interval_ranges
aa731e7ed298c55649242923a774e07da308b757
34,140
def get_team_repo(remote_url): """ Takes remote URL (e.g., `[email protected]:mozilla/fireplace.git`) and returns team/repo pair (e.g., `mozilla/fireplace`). """ if ':' not in remote_url: return remote_url return remote_url.split(':')[1].replace('.git', '')
5e0120881557e9d95b697ab194fd7a8e8a84c68d
34,144
def ajax_request(func): """ If view returned serializable dict, returns JSONResponse with this dict as content. example: @ajax_request def my_view(request): news = News.objects.all() news_titles = [entry.title for entry in news] return {'news_titles': news_titles} Taken from django-annoying """ @wraps(func) def wrapper(request, *args, **kwargs): response = func(request, *args, **kwargs) if isinstance(response, (dict, list, tuple)): return JsonResponse(response) else: return response return wrapper
a672e3164af2c282fa301d351434ce863e7b2204
34,145
def load_collection_from_file(resource, filename, content_type=None): """ Creates a new collection for the registered resource and calls `load_into_collection_from_file` with it. """ coll = create_staging_collection(resource) load_into_collection_from_file(coll, filename, content_type=content_type) return coll
c85eb82ee3633c69bef5ceb8b2954ea0fd700798
34,146
import requests import time def get_fxa_token(*, code=None, refresh_token=None, config=None): """Given an FxA access code or refresh token, return dict from FxA /token endpoint (https://git.io/JJZww). Should at least contain `access_token` and `id_token` keys. """ assert config, 'config dict must be provided to get_fxa_token' assert ( code or refresh_token ), 'either code or refresh_token must be provided to get_fxa_token' log_identifier = f'code:{code}' if code else f'refresh:{refresh_token[:8]}' log.info(f'Getting token [{log_identifier}]') with statsd.timer('accounts.fxa.identify.token'): if code: grant_data = {'grant_type': 'authorization_code', 'code': code} else: grant_data = {'grant_type': 'refresh_token', 'refresh_token': refresh_token} response = requests.post( settings.FXA_OAUTH_HOST + '/token', data={ **grant_data, 'client_id': config['client_id'], 'client_secret': config['client_secret'], }, ) if response.status_code == 200: data = response.json() if data.get('access_token'): log.info(f'Got token for [{log_identifier}]') data['access_token_expiry'] = time.time() + data.get('expires_in', 43200) return data else: log.info(f'No token returned for [{log_identifier}]') raise IdentificationError(f'No access token returned for {log_identifier}') else: log.info( 'Token returned non-200 status {status} {body} [{code_or_token}]'.format( code_or_token=log_identifier, status=response.status_code, body=response.content, ) ) raise IdentificationError(f'Could not get access token for {log_identifier}')
d0e0b70fd4b6adc7f944b68eb0788b82eed6344d
34,148
def merge_connected_components(conn_components, ingoing, outgoing): """ Merge the unconnected connected components Parameters ------------- conn_components Connected components ingoing Ingoing dictionary outgoing Outgoing dictionary Returns ------------- conn_components Merged connected components """ i = 0 while i < len(conn_components): conn1 = conn_components[i] j = i + 1 while j < len(conn_components): conn2 = conn_components[j] if check_if_comp_is_completely_unconnected(conn1, conn2, ingoing, outgoing): conn_components[i] = set(conn_components[i]).union(set(conn_components[j])) del conn_components[j] continue j = j + 1 i = i + 1 return conn_components
15dda42103aab964a9a67ca763e17ba63d552457
34,149
def create_doc_index(ui_mat_rdd, export=False): """ Indexes the docs and saves the index in a dictionary. The indexes are then saved to disk. The indexing allows us to use internal integer IDs for the users and documents instead of real IDs. The internal IDs are used to index the different model matrices efficiently. Args: ui_mat_rdd: The UI matrix in an RDD. Returns: doc_index: A dictionary with the indexes. """ doc_index = ui_mat_rdd.map(lambda (usrId,docId,value): docId) \ .distinct() \ .zipWithIndex() \ .collect() doc_index = dict(zip([doc[0] for doc in doc_index],[doc[1] for doc in doc_index])) if export: with open('/local/agidiotis/ui_data/doc_index.json', 'w') as fp: json.dump(doc_index, fp) return doc_index
97874b0effaa93b35760330abaa1fc23628389d6
34,151
def read_markers_from_file(filepath, ext=None): """ Read a cell marker file from accepted file formats. Currently supported: csv, tsv. See doc for formatting. """ # Get extension if ext is None: ext = filepath.split('.')[-1] dict_format = {"csv":read_markers_csv, "tsv":read_markers_tsv, "gmt":read_markers_gmt} # Read with correct function marker_df = dict_format[ext](filepath) # To dict return marker_df
5c2a34bf3d568d1b0f9e81c23d23eba315059ee3
34,152
def get_user_id_from_email(email): """ Pulls the user from the MDB (or dies trying). Returns its email. """ u = utils.mdb.users.find_one({'login': email.lower().strip()}) if u is None: raise AttributeError("Could not find user data for %s" % email) return u['_id']
c81d9d62bc3ecd9d37afef3f38b5735b5bb0215b
34,153
def _object_exists(key): """Verify if a given key (path) exists, using the S3 API.""" try: app.s3.head_object(Bucket=app.config.get("AWS_S3_BUCKET_NAME"), Key=key) except ClientError as e: if e.response["Error"]["Code"] == "404": return False raise e else: return True
65ca7932412f988518f40a6830d512049e40fe31
34,154
def dpgmm_predict(data:pd.DataFrame, code=None, indices:pd.DataFrame=None,) -> np.ndarray: """ (假设)我们对这条行情的走势一无所知,使用机器学习可以快速的识别出走势,划分出波浪。 DPGMM聚类 将整条行情大致分块,这个随着时间变化会有轻微抖动。 所以不适合做精确买卖点控制。但是作为趋势判断已经足够了。 """ sub_offest = 0 nextsub_first = sub_first = 0 nextsub_last = sub_last = 1199 ret_cluster_group = np.zeros(len(data.close.values)) while (sub_first == 0) or (sub_first < len(data.close.values)): # 数量大于1200bar的话无监督聚类效果会变差,应该控制在1000~1500bar之间 if (len(data.close.values) > 1200): highp = np.nan_to_num(data.high.values[sub_first:sub_last], nan=0) lowp = np.nan_to_num(data.low.values[sub_first:sub_last], nan=0) openp = np.nan_to_num(data.open.values[sub_first:sub_last], nan=0) closep = np.nan_to_num(data.close.values[sub_first:sub_last], nan=0) if (sub_last + 1200 < len(data.close.values)): nextsub_first = sub_first + 1199 nextsub_last = sub_last + 1200 else: nextsub_first = len(data.close.values) - 1200 nextsub_first = 0 if (nextsub_first < 0) else nextsub_first nextsub_last = len(data.close.values) + 1 else: highp = data.high.values lowp = data.low.values openp = data.open.values closep = data.close.values sub_last = nextsub_first = len(data.close.values) nextsub_last = len(data.close.values) + 1 if (ST.VERBOSE in data.columns): print('slice:', {sub_first, sub_last}, 'total:{} netx_idx:{} unq:{}'.format(len(data.close.values), sub_offest, len(np.unique(ret_cluster_group)))) # DPGMM 聚类 X, idx = features_formatter_k_means(closep) #[i, closep[i], minP, maxP, low, high] 通过close价格扩展维度,用以标签训练 dpgmm = mixture.BayesianGaussianMixture(n_components=min(len(closep) - 1, max(int(len(closep) / 10), 16)), max_iter=1000, covariance_type='spherical', weight_concentration_prior_type='dirichlet_process') # 训练模型不含最后一个点 try: dpgmm.fit(X[:-1]) except: print(u' {} 分析样本历史数据太少({})'.format(code, len(closep) - 1)) try: y_t = dpgmm.predict(X) except: print(u'{} "{}" 前复权价格额能存在np.nan值,请等待收盘数据接收保存完毕。'.format(QA_util_timestamp_to_str(), data.index.get_level_values(level=1)[0]), len(X), len(X[:-1]), X[-1:], data[-1:]) ret_cluster_group[sub_first:sub_last] = y_t + int(sub_offest) sub_offest = int(np.max(ret_cluster_group) + 1) if (sub_last >= len(data.close.values)): break else: sub_first = min(nextsub_first, nextsub_last) sub_last = max(nextsub_first, nextsub_last) # DPGMM 聚类分析完毕 return ret_cluster_group
b12365f50a498d2ece6be65a0a284aad9c235274
34,155
from typing import List def list_ep(server: Server, path: str, r_type: OT = OT.DOMAIN, scope: EPScope = None) -> List[str]: """ List elements under an object fitting a type. :param Server server: server object :param str path: path to object :param OT r_type: type of ep to return (default is domain) :param EPScope scope: restrict scope to children or parts :return: list of sub elements """ ls = server.get_ep(path, r_type=r_type, output=[OP.NAME], scope=scope, fmt=FMT.PLAIN).rstrip(';').split('; ') if len(ls[0]) == 0: return list() return ls
ccf90a435b72e4e822ef2c580304c889bc4f4136
34,156
import re def check_if_partial(comments): """ Checks if comments contain info about Dat being a part of a series of dats (i.e. two part entropy scans where first part is wide and second part is narrow with more repeats) Args: comments (string): Sweeplogs comments (where info on part#of# should be found) Returns: bool: True or False """ assert type(comments) == str comments = comments.split(',') comments = [com.strip() for com in comments] part_comment = [com for com in comments if re.match('part*', com)] if part_comment: return True else: return False
6f565bae6fe1cf5da4a11e0d511a25daa07aadd1
34,157
def cardChunk(key, chunk): """ Parse Card Chunk Method """ for line in chunk: values = [] sline = line.strip().split() for idx in range(1, len(sline)): values.append(sline[idx]) return {'card': sline[0], 'values': values}
84b8a12f701078f2ebcf19a5c1902b1e370b16e6
34,159
def update_outline(outline, filename=None, message=None): """ Updates the the outline from active instances in the workspace """ if not message: message = "Automated update via presalytics.lib.tools.workflows.update_outline()" update_components(filename=filename) for p in range(0, len(outline.pages)): page = outline.pages[p] page_key = "page.{}.{}".format(page.kind, page.name) page_inst = presalytics.COMPONENTS.get_instance(page_key) if page_inst: outline.pages[p] = page_inst.serialize() for w in range(0, len(page.widgets)): widget = outline.pages[p].widgets[w] widget_key = "widget.{}.{}".format(widget.kind, widget.name) widget_inst = presalytics.COMPONENTS.get_instance(widget_key) if widget_inst: outline.pages[p].widgets[w] = widget_inst.serialize() for t in range(0, len(outline.themes)): theme = outline.themes[t] theme_key = "theme.{}.{}".format(theme.kind, theme.name) theme_inst = presalytics.COMPONENTS.get_instance(theme_key) if theme_inst: outline.themes[t] = theme_inst.serialize() outline.info.revision_notes = message return outline
3582d47b641c4e554f2b2f0e38110fd98343476c
34,160
def slave_hub_factory(config, comm_class, comm_config): """Factory of management bus slave hub instances Args: config (dict): management bus master config comm_class (string): communication backend. Unused, ZMQRedis is always used comm_config (dict): config of the communication backend. Returns: Instance of minemeld.mgmtbus.MgmtbusSlaveHub class """ _ = comm_class # noqa return MgmtbusSlaveHub( config, 'ZMQRedis', comm_config )
b421c065158aa3e7fd07fc28ccdd72ffc24045ec
34,161
def rgb565_to_rgb(arr, out=None): """ Convert a numpy :class:`~numpy.ndarray` in RGB565 format (unsigned 16-bit values with 5 bits for red and blue, and 6 bits for green laid out RRRRRGGGGGGBBBBB) to RGB format (structured floating-point type with 3 values each between 0 and 1). """ check_rgb565(arr) if out is None: out = np.empty(arr.shape, color_dtype) else: check_rgb(out) if out.shape != arr.shape: raise ValueError("output array has wrong shape") out['r'] = ((arr & 0xF800) / 0xF800).astype(np.float32) out['g'] = ((arr & 0x07E0) / 0x07E0).astype(np.float32) out['b'] = ((arr & 0x001F) / 0x001F).astype(np.float32) return out
5c660169cdfd47a0d513a833356c82557ff636bb
34,162
def run_highstate_tests(saltenv="base"): """ Lookup top files for minion, pass results to wrapped run_state_tests for copy and run """ top_states = __salt__["state.show_top"]().get(saltenv) state_string = ",".join(top_states) ret = run_state_tests(state_string, saltenv) return ret
3e12d102a44e8233eb539c1636f19eebb23da266
34,163
def varianceOfLaplacian(img): """ Compute the Laplacian of the image and then return the focus measure, which is simply the variance of the Laplacian. Source: A.Rosebrock, https://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/ """ return cv2.Laplacian(img, cv2.CV_64F).var()
8a80c40f24c1a282ae7a46c521e4cb3a975451ee
34,164
def show(tournament, participant_id, **params): """Retrieve a single participant record for a tournament.""" return api.fetch_and_parse( "GET", "tournaments/%s/participants/%s" % (tournament, participant_id), **params )
bf1e43ab2b071343405a09659580d5d8311d0dff
34,166
def logsubexp(A, B): """ Numerically stable log(exp(A) - exp(B)) """ # Just adding an epsilon here does not work: the optimizer moves it out result = A + tt.log(1 - tt.clip(tt.exp(B - A), epsilon, 1-epsilon)) return result
0bd07fec6cfe3247e7dffd0af1794306f34601f1
34,167
import collections def sort_dict(d: dict, by: str = 'key', allow_duplicates: bool = True) -> collections.OrderedDict: """ Sort a dictionary by key or value. The function relies on https://docs.python.org/3/library/collections.html#collections.OrderedDict . The dulicated are determined based on https://stackoverflow.com/questions/9835762/find-and-list-duplicates-in-a-list . Parameters ---------- d : dict Input dictionary by : ['key','value'], optional By what to sort the input dictionary allow_duplicates : bool, optional Flag to indicate if the duplicates are allowed. Returns ------- collections.OrderedDict Sorted dictionary. >>> sort_dict({2: 3, 1: 2, 3: 1}) OrderedDict([(1, 2), (2, 3), (3, 1)]) >>> sort_dict({2: 3, 1: 2, 3: 1}, by='value') OrderedDict([(3, 1), (1, 2), (2, 3)]) >>> sort_dict({'2': 3, '1': 2}, by='value') OrderedDict([('1', 2), ('2', 3)]) >>> sort_dict({2: 1, 1: 2, 3: 1}, by='value', allow_duplicates=False) Traceback (most recent call last): ... ValueError: There are duplicates in the values: {1} >>> sort_dict({1:1,2:3},by=True) Traceback (most recent call last): ... ValueError: by can be 'key' or 'value'. """ if by == 'key': i = 0 elif by == 'value': values = list(d.values()) if len(values) != len(set(values)) and not allow_duplicates: duplicates = find_duplicates(values) raise ValueError("There are duplicates in the values: {}".format(duplicates)) i = 1 else: raise ValueError("by can be 'key' or 'value'.") return collections.OrderedDict(sorted(d.items(), key=lambda t: t[i]))
59ea66e44b9a41161e38e243f49e5a20df20093f
34,168
def read_file_info(filename): """ Read an info file. Parameters ---------- filename : string The name of file with cross-sectional area and length information. Returns ------- info : dict The values of cross-sectional area and length of the specimens, """ fd = open(filename, 'r') info = {} for line in fd: if line and (not line.isspace()) and (line[0] != '#'): key, val = line.split() info[key] = float(val) fd.close() return info
c3f8c106126b45845c1202b34b19cad2ce2ae036
34,169
def search_to_new_ids(index, query, k): """ this function maps the result ids to the ones ordered by the ivf clusters to be used along with a re-ordered metadata """ distances, indices = index.search(query, k) opq2 = faiss.downcast_VectorTransform(index.chain.at(0)) xq = opq2.apply(query) _, l = faiss.extract_index_ivf(index).quantizer.search(xq, faiss.extract_index_ivf(index).nprobe) il = faiss.extract_index_ivf(index).invlists list_sizes = [il.list_size(i) for i in range(il.nlist)] starting_offset = [] c = 0 for i in list_sizes: starting_offset.append(c) c += i old_id_to_new_id = dict() for i in l[0]: i = int(i) ids = il.get_ids(i) list_size = il.list_size(int(i)) items = faiss.rev_swig_ptr(ids, list_size) for nit, it in enumerate(items): old_id_to_new_id[it] = starting_offset[i] + nit il.release_ids(ids=ids, list_no=i) ids = np.array([old_id_to_new_id[i] if i != -1 else -1 for i in indices[0]]) return distances, ids
62fc04b67bfa3aaf6ceed5a5f8bd65e1e7783cc9
34,170
import itertools def build_simplex_lattice(factor_count, model_order = ModelOrder.quadratic): """Builds a Simplex Lattice mixture design. This design can be used for 2 to 30 components. A simplex-lattice mixture design of degree m consists of m+1 points of equally spaced values between 0 and 1 for each component. If m = 2 then possible fractions are 0, 1/2, 1. For m = 3 the possible values are 0, 1/3, 2/3, 1. The points include the pure components and enough points between them to estimate an equation of degree m. This design differs from a simplex-centroid design by having enough points to estimate a full cubic model. :param factor_count: The number of mixture components to build for. :type factor_count: int :param model_order: The order to build for. ModelOrder.linear will choose vertices only (pure blends). ModelOrder.quadratice will add binary blends, and ModelOrder.cubic will add blends of three components. :type model_order: dexpy.model.ModelOrder """ run_count = factor_count # pure blends if model_order == ModelOrder.quadratic: run_count += count_nk(factor_count, 2) # 1/2 1/2 blends elif model_order == ModelOrder.cubic: # 2/3 1/3 blends (and vice versa) run_count += count_nk(factor_count, 2) * 2 if factor_count > 2: run_count += count_nk(factor_count, 3) # 1/3 1/3 1/3 blends factor_names = design.get_factor_names(factor_count) factor_data = pd.DataFrame(0, columns=factor_names, index=np.arange(0, run_count)) row = 0 # always do pure blends for combo in itertools.combinations(factor_names, 1): factor_data.loc[row, combo] = 1.0 row += 1 if model_order == ModelOrder.quadratic: # 1/2 1/2 binary blends for combo in itertools.combinations(factor_names, 2): factor_data.loc[row, combo] = 0.5 row += 1 elif model_order == ModelOrder.cubic: # 2/3 1/3 blends for combo in itertools.combinations(factor_names, 2): factor_data.loc[row, combo] = [2/3, 1/3] row += 1 factor_data.loc[row, combo] = [1/3, 2/3] row += 1 # 1/3 1/3 1/3 triple blend if factor_count > 2: for combo in itertools.combinations(factor_names, 3): factor_data.loc[row, combo] = 1/3 row += 1 return factor_data
9a6861a211b6829b971cf76ab8f1bbcb2bb668ae
34,171
def position_specializations(position_block): """ :param bs4.Tag position_block: position block :return: list """ position_block = position_block.find("div", {"class": "bloko-gap bloko-gap_bottom"}) profarea_name = position_block.find("span", {"data-qa": "resume-block-specialization-category"}) profarea_name = profarea_name.getText() profarea_specializations = position_block.find("ul") profarea_specializations = profarea_specializations.findAll("li", {"class": "resume-block__specialization", "data-qa": "resume-block-position-specialization"}) profarea_specializations = [item.getText() for item in profarea_specializations] profarea_specializations = [{"name": specialization_name, "profarea_name": profarea_name} for specialization_name in profarea_specializations] return profarea_specializations
c37a43b2c139780d0bcb0db2cb758165d155a526
34,172
def GetElement(layers, locations): """ Return the node(s) at the location(s) in the given layer(s). This function works for fixed grid layers only. * If layers contains a single GID and locations is a single 2-element array giving a grid location, return a list of GIDs of layer elements at the given location. * If layers is a list with a single GID and locations is a list of coordinates, the function returns a list of lists with GIDs of the nodes at all locations. * If layers is a list of GIDs and locations single 2-element array giving a grid location, the function returns a list of lists with the GIDs of the nodes in all layers at the given location. * If layers and locations are lists, it returns a nested list of GIDs, one list for each layer and each location. Parameters ---------- layers : tuple/list of int(s) List of layer GIDs locations : [tuple/list of floats | tuple/list of tuples/lists of floats] 2-element list with coordinates of a single grid location, or list of 2-element lists of coordinates for 2-dimensional layers, i.e., on the format [column, row] Returns ------- out : tuple of int(s) List of GIDs See also -------- GetLayer : Return the layer to which nodes belong. FindNearestElement: Return the node(s) closest to the location(s) in the given layer(s). GetPosition : Return the spatial locations of nodes. Notes ----- - **Example** :: import nest.topology as tp # create a layer l = tp.CreateLayer({'rows' : 5, 'columns' : 4, 'elements' : 'iaf_psc_alpha'}) # get GID of element in last row and column tp.GetElement(l, [3, 4]) """ if not nest.is_sequence_of_gids(layers): raise TypeError("layers must be a sequence of GIDs") if not len(layers) > 0: raise nest.NESTError("layers cannot be empty") if not (nest.is_iterable(locations) and len(locations) > 0): raise nest.NESTError( "locations must be coordinate array or list of coordinate arrays") # ensure that all layers are grid-based, otherwise one ends up with an # incomprehensible error message try: topology_func('{ [ /topology [ /rows /columns ] ] get ; } forall', layers) except: raise nest.NESTError( "layers must contain only grid-based topology layers") # SLI GetElement returns either single GID or list def make_tuple(x): if not nest.is_iterable(x): return (x, ) else: return x if nest.is_iterable(locations[0]): # layers and locations are now lists nodes = topology_func( '/locs Set { /lyr Set locs { lyr exch GetElement } Map } Map', layers, locations) node_list = tuple( tuple(make_tuple(nodes_at_loc) for nodes_at_loc in nodes_in_lyr) for nodes_in_lyr in nodes) else: # layers is list, locations is a single location nodes = topology_func('/loc Set { loc GetElement } Map', layers, locations) node_list = tuple(make_tuple(nodes_in_lyr) for nodes_in_lyr in nodes) # If only a single layer is given, un-nest list if len(layers) == 1: node_list = node_list[0] return node_list
6fecffa20aa9d4722153c50572c9ded26035c1f3
34,173
def create_sampling_strategy(param_variation_model, sampling_strategy_configuration): """ A factory method that creates a memosampler.strategies.SamplingStrategy object from a memosampler.sampler.ParameterVariationModel and a memomodel.SamplingStrategy configuration object. :param param_variation_model: a ParameterVariationModel object, that contains variabilites for all constant and varying parameters :param sampling_strategy_configuration: a memomodel.SamplingStrategy configuration object. :return: A memosampler.strategies.SamplingStrategy object, ready to be used within a sampler. the concrete class of the object depends on type information in the configuration. """ # build a map of all known SamplingStrategy subclasses strategies_by_name = RecursiveSubClassFinder.find_subclasses( memosampler.SamplingStrategy ) # choose a class by name strategy_name = sampling_strategy_configuration.name strategy_class = strategies_by_name[strategy_name] # convert the argument list to a dictionary kwargs = {arg.key: arg.value for arg in sampling_strategy_configuration.arguments} # create the new SamplingStrategy object with keyword arguments instance = strategy_class(param_variation_model, **kwargs) return instance
f93451eb1b3739ac2985bd4a2b8bb84ed0b6f9f5
34,174
def json_to_hps(dct): """Translate the params dict to HyperparameterSpace object. :param dict dct: params dict. :return: HyperparameterSpace. :rtype: HyperparameterSpace or None """ if "hyperparameters" in dct: hps = HyperparameterSpace() for hp_dict in dct["hyperparameters"]: hp_name = hp_dict.get("key") hp_slice = hp_dict.get('slice') hp_type = PARAM_TYPE_MAP[hp_dict.get("type").upper()] hp_range = hp_dict.get("range") hp = HyperParameter(param_name=hp_name, param_slice=hp_slice, param_type=hp_type, param_range=hp_range) hps.add_hyperparameter(hp) if "condition" in dct: for cond_dict in dct["condition"]: cond_child = hps.get_hyperparameter( cond_dict.get("child")) cond_parent = hps.get_hyperparameter( cond_dict.get("parent")) cond_type = CONDITION_TYPE_MAP[cond_dict.get("type").upper()] cond_range = cond_dict.get("range") cond = Condition(cond_child, cond_parent, cond_type, cond_range) hps.add_condition(cond) if "forbidden" in dct: for forbidden_dict in dct["forbidden"]: forbidden_list = [] for forb_name, forb_value in forbidden_dict.items(): forbidden_list.append(ForbiddenEqualsClause( param_name=hps.get_hyperparameter(forb_name), value=forb_value)) hps.add_forbidden_clause( ForbiddenAndConjunction(forbidden_list)) return hps return None
0f80da7d4fb5d3d548cc23edf7761976db727654
34,175
def phone_number(update: Update, context: CallbackContext): """Добавляет номер телефона в контекст пользователя и предлагает ввести ИНН""" logger.info(f"User with chat_id {update.effective_user.id} sent phone number [{update.message.text}]") context.user_data[State.PHONE_NUMBER] = update.message.text update.message.reply_text(messages.inn, parse_mode=ParseMode.HTML) context.user_data["state"] = State.INN return State.INN
b41cebc8b47e9e3ef729ddd7ebea560f143be071
34,176
from typing import Optional from typing import Union def downsample_adata(adata: AnnData, mode: str = 'total', n_cells: Optional[int] = None, by: Optional[str] = None, balance_cell_type: bool = False, random_state: int = 0, return_index: bool = True) -> Union[AnnData, np.ndarray]: """ Downsample cells to a given number (either in total or per cell type). Parameters ---------- adata An :class:`~anndata.AnnData` object representing the input data. mode The way downsampling is performed. Default to downsampling the input cells to a total of `n_cells`. Set to `each` if you want to downsample cells within each cell type to `n_cells`. (Default: `total`) n_cells The total number of cells (`mode = 'total'`) or the number of cells from each cell type (`mode = 'each'`) to sample. For the latter, all cells from a given cell type will be selected if its cell number is fewer than `n_cells`. by Key (column name) of the input AnnData representing the cell types. balance_cell_type Whether to balance the cell type frequencies when `mode = 'total'`. Setting to `True` will sample rare cell types with a higher probability, ensuring close-to-even cell type compositions. This argument is ignored if `mode = 'each'`. (Default: `False`) random_state Random seed for reproducibility. return_index Only return the downsampled cell indices. Setting to `False` if you want to get a downsampled version of the input AnnData. (Default: `True`) Returns ---------- Depending on `return_index`, returns the downsampled cell indices or a subset of the input AnnData. """ np.random.seed(random_state) if n_cells is None: raise ValueError(f"🛑 Please provide `n_cells`") if mode == 'total': if n_cells >= adata.n_obs: raise ValueError(f"🛑 `n_cells` ({n_cells}) should be fewer than the total number of cells ({adata.n_obs})") if balance_cell_type: if by is None: raise ValueError(f"🛑 Please specify the cell type column if you want to balance the cell type frequencies") labels = adata.obs[by] celltype_freq = np.unique(labels, return_counts = True) len_celltype = len(celltype_freq[0]) mapping = pd.Series(1 / (celltype_freq[1]*len_celltype), index = celltype_freq[0]) p = mapping[labels].values sampled_cell_index = np.random.choice(adata.n_obs, n_cells, replace = False, p = p) else: sampled_cell_index = np.random.choice(adata.n_obs, n_cells, replace = False) elif mode == 'each': if by is None: raise ValueError(f"🛑 Please specify the cell type column for downsampling") celltypes = np.unique(adata.obs[by]) sampled_cell_index = np.concatenate([np.random.choice(np.where(adata.obs[by] == celltype)[0], min([n_cells, np.sum(adata.obs[by] == celltype)]), replace = False) for celltype in celltypes]) else: raise ValueError(f"🛑 Unrecognized `mode` value, should be one of `total` or `each`") if return_index: return sampled_cell_index else: return adata[sampled_cell_index].copy()
d1de9ac6c347750ed4ebfb1b8f870b8bc613f20d
34,178
def parse_blob(value, offset=0, **kwargs): """Return a blob from offset in value.""" size = calcsize('>i') length = unpack_from('>i', value, offset)[0] data = unpack_from('>%iQ' % length, value, offset + size) return data, padded(length, 8)
855b55394d8fbe5a3e05e98997185d87051b56a2
34,179
from datetime import datetime def _get_now(utc: bool = False) -> datetime.datetime: # pragma: nocover """Workaround over datetime C module to be able to mock & patch in tests. """ if utc: return datetime.datetime.utcnow() return datetime.datetime.now()
7b71266bf46d464bb8515d5552752f2b7739262e
34,180
def dilation(image, selem, out=None, shift_x=False, shift_y=False): """Return greyscale morphological dilation of an image. Morphological dilation sets a pixel at (i,j) to the maximum over all pixels in the neighborhood centered at (i,j). Dilation enlarges bright regions and shrinks dark regions. Parameters ---------- image : ndarray Image array. selem : ndarray The neighborhood expressed as a 2-D array of 1's and 0's. out : ndarray The array to store the result of the morphology. If None, is passed, a new array will be allocated. shift_x, shift_y : bool shift structuring element about center point. This only affects eccentric structuring elements (i.e. selem with even numbered sides). Returns ------- dilated : uint8 array The result of the morphological dilation. Examples -------- >>> # Dilation enlarges bright regions >>> import numpy as np >>> from skimage.morphology import square >>> bright_pixel = np.array([[0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0], ... [0, 0, 1, 0, 0], ... [0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0]], dtype=np.uint8) >>> dilation(bright_pixel, square(3)) array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ if image is out: raise NotImplementedError("In-place dilation not supported!") image = img_as_ubyte(image) selem = img_as_ubyte(selem) return cmorph._dilate(image, selem, out=out, shift_x=shift_x, shift_y=shift_y)
2485ddf865f4476dc0c46f89bc789948d9c47153
34,181
def nice_layer_name(weight_key): """Takes a tuple like ('weights', 2) and returns a nice string like "2nd layer weights" for use in plots and legends.""" return "Layer {num} {name}".format(num=weight_key[1] + 1, name=weight_key[0])
c88dd554c2a3cf35e6d6e96131833738c19766ac
34,183
def categories(request, structure_slug, structure): """ Retrieves structure categories list :type structure_slug: String :type structure: OrganizationalStructure (from @is_manager) :param structure_slug: structure slug :param structure: structure object (from @is_manager) :return: render """ title = _('Gestione categorie') template = 'manager/categories.html' # sub_title = _("gestione ufficio livello manager") categories = TicketCategory.objects.filter(organizational_structure=structure) d = {'categories': categories, 'structure': structure, # 'sub_title': sub_title, 'title': title,} return render(request, template, d)
c322b754de2ed36e98088a1d494f807589d1fbc2
34,184
def do_quantize_training_on_graphdef(input_graph, num_bits): """A general quantization scheme is being developed in `tf.contrib.quantize`. Consider using that instead, though since it is in the tf.contrib namespace, it is not subject to backward compatibility guarantees. Args: input_graph: A `GraphDef`. num_bits: The number of bits for quantize training. Returns: The graph with quantize training done. """ graph = graph_pb2.GraphDef() result_graph_string = DoQuantizeTrainingOnGraphDefHelper( input_graph.SerializeToString(), num_bits) graph.ParseFromString(result_graph_string) return graph
868a2c67d7c69270039af69e82110951a987480c
34,186
from typing import List from typing import Tuple def get_session_triplets( sessions: List[int], match_types: List[int] ) -> Tuple[List[int], List[int], List[int]]: """Generate all possible triplets for each session. :param sessions: A list of integers denoting session label :param match_types: A list of integers denoting match type - 0 for anchor, 1 for postive match and -1 for negative match) :return: three list of integers, holding the anchor index, positive index and negative index of each triplet, respectively """ anchor_ind, pos_ind, neg_ind = [], [], [] labels_index = [ (sess, match_type, index) for index, (sess, match_type) in enumerate(zip(sessions, match_types)) ] sorted_labels_with_index = sorted(labels_index, key=lambda x: x[0]) for _, group in groupby(sorted_labels_with_index, lambda x: x[0]): anchor_pos_session_indices = [] neg_session_indices = [] for _, session_label, session_index in group: if session_label >= 0: anchor_pos_session_indices.append(session_index) else: neg_session_indices.append(session_index) for anchor, pos in permutations(anchor_pos_session_indices, 2): anchor_ind += [anchor] * len(neg_session_indices) pos_ind += [pos] * len(neg_session_indices) neg_ind += neg_session_indices return anchor_ind, pos_ind, neg_ind
39992557bc788f4b8bb5248cd66f56bf4276d99c
34,187
def _rotation_matrix_hme_to_hee(hmeframe): """ Return the rotation matrix from HME to HEE at the same observation time """ # Get the Sun-Earth vector sun_earth = HCRS(_sun_earth_icrf(hmeframe.obstime), obstime=hmeframe.obstime) sun_earth_hme = sun_earth.transform_to(hmeframe).cartesian # Rotate the Sun-Earth vector about the Z axis so that it lies in the XZ plane rot_matrix = _rotation_matrix_reprs_to_xz_about_z(sun_earth_hme) # Tilt the rotated Sun-Earth vector so that it is aligned with the X axis tilt_matrix = _rotation_matrix_reprs_to_reprs(sun_earth_hme.transform(rot_matrix), CartesianRepresentation(1, 0, 0)) return matrix_product(tilt_matrix, rot_matrix)
157378316058b4898b9ecccb8acf673c4170c03b
34,188
def get_image(microscopy_collection, series): """Return microscopy image.""" image = microscopy_collection.image(s=series) image = image[:, :, 0] return image
d95b213c8db49e89d2bcaa3f7b69c0f4d546ac1c
34,189
def process_aa_snvs(aa_snv_dict, name, defs): """ Parameters ---------- aa_snv_dict: dict name: str defs: pandas.DataFrame - genes or proteins dataframe from genes_and_proteins.py """ aa_snv = ( pd.DataFrame.from_dict(aa_snv_dict, orient="index", columns=["id"]) .reset_index() .rename(columns={"index": "snp_str"}) ) aa_snv = aa_snv.join( aa_snv["snp_str"] .str.split("|", expand=True) .rename(columns={0: name, 1: "pos", 2: "ref", 3: "alt"}) ).set_index("id") aa_snv.loc[:, "pos"] = aa_snv["pos"].astype(int) aa_snv["color"] = get_snv_colors(aa_snv.index.values) aa_snv["snv_name"] = aa_snv["snp_str"].apply(format_aa_snv) def get_nt_pos(snv): segment_ind = [ i for i, segment in enumerate(defs.at[snv[name], "aa_ranges"]) if snv["pos"] >= segment[0] and snv["pos"] <= segment[1] ][0] return defs.at[snv[name], "segments"][segment_ind][0] + ( (snv["pos"] - defs.at[snv[name], "aa_ranges"][segment_ind][0]) * 3 ) aa_snv["nt_pos"] = aa_snv.apply(get_nt_pos, axis=1) return aa_snv
f9dbf499bc7baf311e2c1063167e40570f40d218
34,191
def use_file(filename): """ Return a decorator which will parse a kicad file before running the test. """ def decorator(test_method): """ Add params to decorator function. """ @wraps(test_method) def wrapper(self): """ Parse file then run test. """ self.design = get_design(filename) test_method(self) return wrapper return decorator
c381fa417ae3226f7a4a5bac3fa907821dd76876
34,192
def create_autoscaler(gce, mig, params): """ Create a new Autoscaler for a MIG. :param gce: An initialized GCE driver object. :type gce: :class: `GCENodeDriver` :param mig: An initialized GCEInstanceGroupManager. :type mig: :class: `GCEInstanceGroupManager` :param params: Dictionary of autoscaling parameters. :type params: ``dict`` :return: Tuple with changed stats. :rtype: tuple in the format of (bool, list) """ changed = False as_policy = _gen_gce_as_policy(params['policy']) autoscaler = gce.ex_create_autoscaler(name=params['name'], zone=mig.zone, instance_group=mig, policy=as_policy) if autoscaler: changed = True return changed
1be818388aa48b70f4252937a4db44671d03581e
34,193
from typing import List def chromium_all(*, min_major_version: int = 90, min_minor_version: int = 40) -> List[str]: """get chrome versions""" resp = Request.get(CHROME_REP_URL) versions = RE_CHROMIUM.findall(resp) versions = [v for v in versions if len(v.split(".")) > 2 and (int(v.split(".")[-1]) >= min_minor_version and int(v.split(".")[0]) >= min_major_version)] return versions
900e4b24417e3c778218614c65787931631d2fbd
34,194
def setup(hass, config): """Setup platfrom""" async def async_auto_scale(call): """Call auto scale service handler.""" await async_handle_auto_scale_service(hass, call) hass.services.register( DOMAIN, SERVICE_AUTO_SCALE, async_auto_scale, schema=AUTO_SCALE_SERVICE_SCHEMA, ) return True
61cc3d2b0461bb78a745a53dee1dc5bfb1a4a75f
34,195
from re import X from datetime import datetime def train_linear_clf(n_fits): """Called by the `/train` HTTP GET method in `logic.py` module. Parameters ---------- n_fits : int Number of partial fits applied to the linear estimator. Returns ------- dict measured_accuracy : float Accuracy of the linear classifier after application of the specified number of partial fits. start_time : datetime.datetime Time when the function starts the process of partial fiting. training_time : float Training time in seconds. """ clf = get_estimator_from_file(join_paths(PATH, CONFIG["model_persistence_file"])) \ or SGDClassifier(**CONFIG["estimator"]).fit(X, y) start_time = datetime.datetime.now() [clf.partial_fit(X, y) for _ in range(n_fits)] end_time = datetime.datetime.now().timestamp() persist(clf, join_paths(PATH, CONFIG["updated_model_persistence_file"])) return { "measured_accuracy": clf.score(X_test, y_test), "start_time": start_time, "training_time": end_time - start_time.timestamp() }
8430edf945d03e6c68ca1fe5944ed6957d4e3857
34,197
def list_joysticks(): """return list of all joystick names""" joysticks = get_all_joysticks() return [joy.get_name() for joy in joysticks]
a04e584fe5d35b21cde1b44274bb725ea95260bc
34,198
def kurtosis(inlist): """ Returns the kurtosis of a distribution, as defined in Numerical Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.) Usage: lkurtosis(inlist) """ return moment(inlist, 4) / pow(moment(inlist, 2), 2.0)
e5df631d9d5d81ca9e2df8d7b7723eb723c696db
34,199
def compute_iou(box, boxes): """Calculates IoU of the given box with the array of the given boxes. box: a polygon boxes: a vector of polygons Note: the areas are passed in rather than calculated here for efficiency. Calculate once in the caller to avoid duplicate work. """ # Calculate intersection areas iou = [box.intersection(b).area / box.union(b).area for b in boxes] return np.array(iou, dtype=np.float32)
169cb66f025c7a3f6161a406bd6b0636a35816d3
34,200
def far(scores, labels, frr_op): """ Calculates FAR from FRR operating point. Parameters ---------- scores: np array It holds the score information for all samples (genuine and impostor). It is expected that impostor (negative) scores are, at least by design, greater than genuine (positive) scores. labels: np array It holds the labels (int). It is assumed that impostor_labels != 0 and genuine labels == 0 frr_op: float Closest FRR value to look for. Returns ------- """ if not isinstance(scores, np.ndarray) or not isinstance(scores, np.ndarray): raise TypeError( "Scores [{}] and labels [{}] must be numpy arrays.".format( type(scores), type(labels) ) ) scores = scores.ravel() labels = labels.ravel() inlabels = np.zeros_like(labels) inlabels[labels != 0] = 1 assert len(scores) == len(inlabels) inv_scores = -1.0 * scores fars, tprs, ths = metrics.roc_curve(inlabels, inv_scores, pos_label=0) ths = -1.0 * ths ths = np.clip(ths, scores.min(), scores.max()) far, th = _far_from_frr_value(fars, tprs, ths, frr_op) return far, th
9873f854887982e6aa393eb4fa0b915f31dbd15f
34,201
def iso_to_plotly_time_string(iso_string): """Remove timezone info and replace 'T' delimeter with ' ' (ws).""" # make sure we don't send timezone info to plotly if (iso_string.split("-")[:3] == "00:00") or (iso_string.split("+")[0] == "00:00"): raise Exception( "Plotly won't accept timestrings with timezone info.\n" "All timestrings are assumed to be in UTC." ) iso_string = iso_string.replace("-00:00", "").replace("+00:00", "") if iso_string.endswith("T00:00:00"): return iso_string.replace("T00:00:00", "") else: return iso_string.replace("T", " ")
2a8f8dede7a50d07e283897bf6028fbfdcaa90d6
34,202
def mk_vis_txt_pair_datalist(anno_path, data_ratio=1.0, vis_id_key="coco_id", txt_key="caption"): """ Args: anno_path: str, path to .jsonl file, each line is a dict data_ratio: float, (0, 1], when < 1, use part of the data. vis_id_key: str, image/video file id access key in the input dict. txt_key: str, txt access key in the input dict. Returns: """ raw_datalist = load_datalist_with_ratio(anno_path, data_ratio) datalist = [] for raw_d in raw_datalist: d = dict( txt=raw_d[txt_key], vis_id=raw_d[vis_id_key] ) datalist.append(d) grouped = defaultdict(list) # examples grouped by image/video id for d in datalist: grouped[d["vis_id"]].append(d) return grouped
3c36ff18f447e0ce5977d39c0bdc14bda94e3a64
34,203
def index_greater(array, prec=1e-8): """ Purpose: Function for finding first item in an array that has a value greater than the first element in that array If no element is found, returns None Precision: 1e-8 Return: int or None """ item=array[0] for idx, val in np.ndenumerate(array): # slow ! : could be cythonized if val > (item + prec): return idx[0]
43f9401dc37426b1514ff1eb9dda79c39e347a7a
34,204
import torch def get_ssl_sampler(labels, valid_num_per_class, annotated_num_per_class, num_classes): """ :param labels: torch.array(int tensor) :param valid_num_per_class: the number of validation for each class :param annotated_num_per_class: the number of annotation we use for each classes :param num_classes: the total number of classes :return: sampler_l,sampler_u """ sampler_valid = [] sampler_train_l = [] sampler_train_u = [] for i in range(num_classes): loc = torch.nonzero(labels == i) loc = loc.view(-1) # do random perm to make sure uniform sample loc = loc[torch.randperm(loc.size(0))] sampler_valid.extend(loc[:valid_num_per_class].tolist()) sampler_train_l.extend(loc[valid_num_per_class:valid_num_per_class + annotated_num_per_class].tolist()) # sampler_train_u.extend(loc[num_valid + annotated_num_per_class:].tolist()) # here the unsampled part also include the train_l part sampler_train_u.extend(loc[valid_num_per_class:].tolist()) sampler_valid = SubsetRandomSampler(sampler_valid) sampler_train_l = SubsetRandomSampler(sampler_train_l) sampler_train_u = SubsetRandomSampler(sampler_train_u) return sampler_valid, sampler_train_l, sampler_train_u
05d7aa1700c096bc7a8250251cc73969c46ddabf
34,205
import copy def load_parse_dict(): """Dicts for parsing Arc line lists from NIST Rejected lines are in the rejected_lines.yaml file """ dict_parse = dict(min_intensity=0., min_Aki=0., min_wave=0.) arcline_parse = {} # ArI arcline_parse['ArI'] = copy.deepcopy(dict_parse) arcline_parse['ArI']['min_intensity'] = 1000. # NOT PICKING UP REDDEST LINES # HgI arcline_parse['HgI'] = copy.deepcopy(dict_parse) arcline_parse['HgI']['min_intensity'] = 800. # HeI arcline_parse['HeI'] = copy.deepcopy(dict_parse) arcline_parse['HeI']['min_intensity'] = 20. # NeI arcline_parse['NeI'] = copy.deepcopy(dict_parse) arcline_parse['NeI']['min_intensity'] = 999. #arcline_parse['NeI']['min_Aki'] = 1. # NOT GOOD FOR DEIMOS, DESI #arcline_parse['NeI']['min_wave'] = 5700. arcline_parse['NeI']['min_wave'] = 5850. # NOT GOOD FOR DEIMOS? # ZnI arcline_parse['ZnI'] = copy.deepcopy(dict_parse) arcline_parse['ZnI']['min_intensity'] = 50. # KrI arcline_parse['KrI'] = copy.deepcopy(dict_parse) arcline_parse['KrI']['min_intensity'] = 50. return arcline_parse
b02ae8446b9cc198ac1908dbbbe2bec78088178b
34,206
def is_test(method) -> bool: """ Checks if the given method is a test method. :param method: The method to check. :return: True if the method is a test method, False if not. """ return getattr(method, _constants.IS_TEST_ATTRIBUTE, False)
23b5dc04b29b029ca5c44dc57df59f63087d61a6
34,207
def data_transform(array, array2=np.asarray((None)),type='z_score_norm', means=None, stds=None): """ Transforms data in the given array according to the type array :an nd numpy array. array2 :an nd numpy array(optional-for multidimensional datasets) type :'z_score_norm' = implements z score normalisation using mean and standard deviation on each column (datasets of each variable) of the given array. 'min_max_norm' = implements min max scaling on each column (datasets of each variable) of the given array. 'back_transform_z_score_norm' = returns the original data without z_score transformations. 'back_transform_min_max_norm' = returns the original data without min_max transformations. means :mean values(or min values) of each variable datasets - used for reverse transformation of data stds :standard deviation values(or max values) of each variable datasets - used for reverse transformation of data """ if array.ndim == 1: array = np.reshape(array,(len(array),1)) if array2.all() != None: if array2.ndim == 1: array2 = np.reshape(array2,(len(array2),1)) assert(np.shape(array)[1]) == np.shape(array2)[1] if type== "z_score_norm": means =[] stds = [] for i in range(np.shape(array)[1]): mean = np.mean(array[:,i]) std = np.std(array[:,i]) means.append(mean) stds.append(std) if mean == 0 and std == 0: continue for j in range(np.shape(array)[0]): array[j,i]= (array[j,i] - mean)/std if array2.all() != None: for j in range(np.shape(array2)[0]): array2[j,i]= (array2[j,i] - mean)/std elif type == "min_max_norm": for i in range(np.shape(array)[1]): min_ = min(array[:,i]) max_ = max(array[:,i]) #print(min_, max_) if min_ == 0 and max_ == 0: continue for j in range(np.shape(array)[0]): array[j,i]= (array[j,i] - min_)/(max_ - min_) if array2.all() != None: for j in range(np.shape(array2)[0]): array2[j,i]= (array2[j,i] - min_)/(max_ - min_) elif type == "back_transform_z_score_norm": assert(means) != None assert(stds) != None for i in range(np.shape(array)[1]): mean = means[i] std = stds[i] if mean == 0 and std == 0: continue for j in range(np.shape(array)[0]): array[j,i] = array[j,i] *std + mean if array2.all() != None: for j in range(np.shape(array2)[0]): array2[j,i] = array2[j,i] *std + mean else: raise ValueError("undefined method") if array2.all() != None: return array, array2, means, stds else: return array, means, stds
f851bce2f0a88717873544506361bd6ef7c73813
34,208
import re def load_items(reader): """Load items from HDF5 file: * reader: :py:class:`guidata.hdf5io.HDF5Reader` object""" with reader.group("plot_items"): names = reader.read_sequence() items = [] for name in names: klass_name = re.match( r"([A-Z]+[A-Za-z0-9\_]*)\_([0-9]*)", name.decode() ).groups()[0] klass = item_class_from_name(klass_name) item = klass() with reader.group(name): item.deserialize(reader) items.append(item) return items
ba473b9aa8c5af2beba8e22c68646a3204179c3d
34,209
def zmatrix(file_prefix): """ generate zmatrix JSONObject :param file_prefix: path to file :type file_prefix: str :param json_prefix: top level keys ex: ('energy', ['gaussian', 'b3lyp', 'cc-pvdz', 'RR']) :type json_prefix: tuple :return: instance of JSONObject class :rtype: JSONObject """ name = autofile.data_types.name.zmatrix(file_prefix) return model.JSONObject(name=name)
9f22e8f4480fe21b853101a4cfb58c641207a0c1
34,210
def sequence_nd( seq, maxlen=None, padding: str = 'post', pad_val=0.0, dim: int = 1, return_len=False, ): """ padding sequence of nd to become (n+1)d array. Parameters ---------- seq: list of nd array maxlen: int, optional (default=None) If None, will calculate max length in the function. padding: str, optional (default='post') If `pre`, will add 0 on the starting side, else add 0 on the end side. pad_val, float, optional (default=0.0) padding value. dim: int, optional (default=1) Returns -------- result: np.array """ if padding not in ['post', 'pre']: raise ValueError('padding only supported [`post`, `pre`]') if not maxlen: maxlen = max([np.shape(s)[dim] for s in seq]) padded_seqs, length = [], [] for s in seq: npad = [[0, 0] for _ in range(len(s.shape))] if padding == 'pre': padding = 0 if padding == 'post': padding = 1 npad[dim][padding] = maxlen - s.shape[dim] padded_seqs.append( np.pad( s, pad_width=npad, mode='constant', constant_values=pad_val, ) ) length.append(s.shape[dim]) if return_len: return np.array(padded_seqs), length return np.array(padded_seqs)
83ec761d679b2c91592e000e1ee832341645a8e9
34,211
def random_dists(filename): """ Given a Excel filename with a row for each variable and columns for the minimum and maximum, create a dictionary of Uniform distributions for each variable. Parameters ---------- filename : string Number of parameter settings to generate Returns ------- dictionary (keys = variables, values = Uniform distributions) Random distributions for each variable """ df = pd.read_excel(filename,index_col=0) return {var[0]: (var[1]["minimum"], var[1]["maximum"], var[1]["step"]) \ for var in df.iterrows()}
d49229064979deb671fcade3518d260450718130
34,212
import re def is_changed(event, old_event): """ Compares two events and discerns if it has changes that should trigger a push :param event: :param old_event: :return: bool """ # Simple changes if any( event.get(field) != old_event.get(field) for field in ["severity", "certainty"] ): return True # Notify about big hail sizes if "Hagel" not in event["parameters"]: if event["event"].replace(" und HAGEL", "") != old_event["event"].replace( " und HAGEL", "" ): return True else: hail_re = r"^.*?(\d+).*?cm" hail_size_now = int(re.match(hail_re, event["parameters"]["Hagel"]).group(1)) hail_size_before = int( re.match(hail_re, old_event["parameters"].get("Hagel", "0 cm")).group(1) ) if hail_size_now >= 3 > hail_size_before: return True elif event["event"].replace(" und HAGEL", "") != old_event["event"].replace( " und HAGEL", "" ): return True # Changes in time if ( abs(event["onset"] - event["sent"]) > timedelta(minutes=2) and event["sent"] - event["onset"] < timedelta(minutes=2) and old_event["onset"] != event["onset"] ): return True elif old_event["expires"] != event["expires"]: return True # New regions if ( len( set(r[0] for r in event["regions"]) - set(r[0] for r in old_event["regions"]) ) > 0 ): return True # New districts districts_now = { district["name"] for district in event["districts"] if state_for_cell_id(district["warn_cell_id"]) in config.STATES_FILTER } districts_before = { district["name"] for district in old_event["districts"] if state_for_cell_id(district["warn_cell_id"]) in config.STATES_FILTER } added = districts_now - districts_before if len(districts_before) <= 3 and added: return True return False
a0c403caf71fb5547a4b4c7a52d3fcdcef4c4b34
34,213
def view(self, view_id): """Get a particular view belonging to a case group by providing view id Arguments: id(int): view id Returns: List of :class:`rips.generated.generated_classes.EclipseView` """ views = self.views() for view_object in views: if view_object.id == view_id: return view_object return None
0dadbe53c326d2d324e11222b2a751a09750bc82
34,214
from typing import Tuple def enu2geodetic( e: ndarray, n: ndarray, u: ndarray, lat0: ndarray, lon0: ndarray, h0: ndarray, ell: Ellipsoid = None, deg: bool = True, ) -> Tuple[ndarray, ndarray, ndarray]: """ East, North, Up to target to geodetic coordinates Parameters ---------- e : float East ENU coordinate (meters) n : float North ENU coordinate (meters) u : float Up ENU coordinate (meters) lat0 : float Observer geodetic latitude lon0 : float Observer geodetic longitude h0 : float observer altitude above geodetic ellipsoid (meters) ell : Ellipsoid, optional reference ellipsoid deg : bool, optional degrees input/output (False: radians in/out) Results ------- lat : float geodetic latitude lon : float geodetic longitude alt : float altitude above ellipsoid (meters) """ x, y, z = enu2ecef(e, n, u, lat0, lon0, h0, ell, deg=deg) return ecef2geodetic(x, y, z, ell, deg=deg)
d552b072a428042435703f453a0f90bb9a1fded5
34,215
def Standard_GUID_HashCode(*args): """ * H method used by collections. :param aguid: :type aguid: Standard_GUID & :param Upper: :type Upper: int :rtype: int """ return _Standard.Standard_GUID_HashCode(*args)
951ed1db9f0bc7c33345969e0b234bf31aaf463b
34,216