Statement:
stringlengths 7
24.3k
|
---|
lemma no_\<tau>move2_\<tau>s_to_no_\<tau>move1:
"\<lbrakk> s1 \<approx> s2; \<And>s2'. \<not> s2 -\<tau>2\<rightarrow> s2' \<rbrakk> \<Longrightarrow> \<exists>s1'. s1 -\<tau>1\<rightarrow>* s1' \<and> (\<forall>s1''. \<not> s1' -\<tau>1\<rightarrow> s1'') \<and> s1' \<approx> s2" |
lemma prod_result_cases:
obtains (val) s v where "r = (s, Rval v)"
| (err) s err where "r = (s, Rerr err)" |
lemma Inputs_imp_knows_Spy_secureM_srb:
"\<lbrakk> Inputs Spy C X \<in> set evs; evs \<in> srb \<rbrakk> \<Longrightarrow> X \<in> knows Spy evs" |
lemma subset_UnderS_AboveS: "B \<le> Field r \<Longrightarrow> B \<le> UnderS r (AboveS r B)" |
lemma kSup_distl: "f \<circ>\<^sub>K (\<Squnion>G) = (\<Squnion>g \<in> G. f \<circ>\<^sub>K g)" |
lemma select_index_3_subsets [simp]:
shows "{j::nat. select_index 3 0 j} = {4,5,6,7} \<and>
{j::nat. j < 8 \<and> \<not> select_index 3 0 j} = {0,1,2,3} \<and>
{j::nat. select_index 3 1 j} = {2,3,6,7} \<and>
{j::nat. j < 8 \<and> \<not> select_index 3 1 j} = {0,1,4,5}" |
lemma aux10[rule_format]: "a \<in> set (net_list p) \<longrightarrow> a \<in> set (net_list_aux p)" |
lemma fermat_little_theorem:
assumes "prime (P :: nat)"
shows "[x^P = x] (mod P)" |
lemma act_emp_var: "\<alpha> x \<bottom> = \<bottom>" |
lemma set1_FGco_bound:
fixes x :: "(_, 'co1, 'co2, 'co3, 'co4, 'co5, 'co6,
'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGco"
shows "card_of (set1_FGco x) <o (bd_FGco :: ('co1, 'co2, 'co3, 'co4, 'co5, 'co6,
'contra1, 'contra2, 'contra3, 'contra4, 'f1, 'f2) FGcobd rel)" |
lemma memberid_fdecl_simp1: "memberid (fdecl f) = fid (fst f)" |
lemma disjoint_from_second_factor:
"P x y \<and> \<not> O x (y \<otimes> z) \<Longrightarrow> \<not> O x z" |
lemma length_corresp:"(\<exists>\<^sub>A tree_is. tree_array \<mapsto>\<^sub>a tree_is) = true \<Longrightarrow> return (length tree_is ) = Array_Time.len tree_array" |
lemma outstanding_refs_non_volatile_Read\<^sub>s\<^sub>b_all_acquired_dropWhile:
assumes consis: "reads_consistent pending_write \<O> m sb"
assumes nvo: "non_volatile_owned_or_read_only pending_write \<S> \<O> sb"
assumes out: "a \<in> outstanding_refs is_non_volatile_Read\<^sub>s\<^sub>b (dropWhile (Not \<circ> is_volatile_Write\<^sub>s\<^sub>b) sb)"
shows "a \<in> \<O> \<or> a \<in> all_acquired sb \<or>
a \<in> read_only_reads \<O> sb" |
lemma is_path_split'[simp]:
"is_path v (p1@(u,w,u')#p2) v'
\<longleftrightarrow> is_path v p1 u \<and> (u,w,u')\<in>E \<and> is_path u' p2 v'" |
lemma acyclic_code[code] :
"acyclic M = (\<not>(\<exists> p \<in> (acyclic_paths_up_to_length M (initial M) (size M - 1)) .
\<exists> t \<in> transitions M . t_source t = target (initial M) p \<and>
t_target t \<in> set (visited_states (initial M) p)))" |
lemma mono_curry_left[simp]: "mono (curry \<circ> h) \<longleftrightarrow> mono h" |
lemma conforms_upd_local:
"[|(x,(h, l))::\<preceq>(G, lT); G,h\<turnstile>v::\<preceq>T; lT va = Some T|]
==> (x,(h, l(va\<mapsto>v)))::\<preceq>(G, lT)" |
lemma supportE_single2: "supportE (\<lambda>l . P) = {}" |
lemma skip_hoare_impl_r [hoare_safe]: "`p \<Rightarrow> q` \<Longrightarrow> \<lbrace>p\<rbrace>II\<lbrace>q\<rbrace>\<^sub>u" |
lemma K4_imp_K2:
"\<lbrakk> Says Tgs A \<lbrace>Crypt authK \<lbrace>Key servK, Agent B, Number Ts\<rbrace>, servTicket\<rbrace>
\<in> set evs; evs \<in> kerbV\<rbrakk>
\<Longrightarrow> \<exists>Ta. Says Kas A
\<lbrace>Crypt (shrK A) \<lbrace>Key authK, Agent Tgs, Number Ta\<rbrace>,
Crypt (shrK Tgs) \<lbrace>Agent A, Agent Tgs, Key authK, Number Ta\<rbrace> \<rbrace>
\<in> set evs" |
lemma restrict_relation_empty [simp]: "restrict_relation {} R = (\<lambda>_ _. False)" |
lemma wcode_lemma:
"args \<noteq> [] \<Longrightarrow>
\<exists> stp ln rn. steps0 (Suc 0, [], <m # args>) (wcode_tm) stp =
(0, [Bk], <[m ,bl_bin (<args>)]> @ Bk\<up>(rn))" |
lemma record_call_below_arg: "record_call x \<cdot> f \<sqsubseteq> f" |
lemma mult_eq': "(\<otimes>\<^bsub>G\<^esub>) = (\<lambda>x y. (x * y) mod n)" |
lemma (in Module) has_free_generator_nonzeroring:" \<lbrakk>free_generator R M H;
\<exists>p \<in> linear_span R M (carrier R) H. p \<noteq> \<zero> \<rbrakk> \<Longrightarrow> \<not> zeroring R" |
lemma at_neg_neg:"\<Turnstile> (\<^bold>@c \<phi>) \<^bold>\<leftrightarrow> \<^bold>\<not>(\<^bold>@c \<^bold>\<not> \<phi>)" |
lemma (in wf_digraph) subgraph_awalk_imp_awalk:
assumes walk: "pre_digraph.awalk H u p v"
assumes sub: "subgraph H G"
shows "awalk u p v" |
lemma f_image_eq_set_sublist_list: "
list_all (\<lambda>i. i < length xs) ys \<Longrightarrow> xs `\<^sup>f (set ys) = set (sublist_list xs ys)" |
lemma telescope_summable':
fixes c :: "'a::real_normed_vector"
assumes "f \<longlonglongrightarrow> c"
shows "summable (\<lambda>n. f n - f (Suc n))" |
lemma split0_stupid[simp]: "\<exists>x y. (x, y) = split0 p" |
lemma \<phi>_\<psi>:
assumes "t' \<in> S'.Univ"
shows "\<phi> (\<psi> t') = t'" |
lemma map_le_fun_upd2: "\<lbrakk> f \<subseteq>\<^sub>m g; x \<notin> dom f \<rbrakk> \<Longrightarrow> f \<subseteq>\<^sub>m g(x := y)" |
lemma PX5d_range:
shows "Field (PX5d d) \<subseteq> {x. X5d x = d}" |
lemma Block_\<tau>red1r_Some:
"\<lbrakk> \<tau>red1gr uf P t h (e, xs[V := v]) (e', xs'); V < length xs \<rbrakk>
\<Longrightarrow> \<tau>red1gr uf P t h ({V:Ty=\<lfloor>v\<rfloor>; e}, xs) ({V:Ty=None; e'}, xs')" |
lemma local_sum_MAXSUM':
\<open>local_sum arr = MAXSUM\<close>
if \<open>k < length arr\<close>
\<open>MAXSUM \<le> local_sum (take k arr) + arr ! k\<close>
\<open>local_sum (take k arr) \<le> MAXSUM\<close>
\<open>arr ! k \<le> MAXSUM\<close> |
lemma d_dist_Sum:
"ascending_chain f \<Longrightarrow> d(Sum f) = Sum (\<lambda>n . d(f n))" |
lemma iFROM_inext_nth : "[n\<dots>] \<rightarrow> a = n + a" |
lemma prv_subst_scnj:
assumes "F \<subseteq> fmla" "finite F" "t \<in> trm" "x \<in> var"
shows "prv (eqv (subst (scnj F) t x) (scnj ((\<lambda>\<phi>. subst \<phi> t x) ` F)))" |
lemma scalingD[dest]:
"\<lbrakk> scaling t; sound P; 0 \<le> c \<rbrakk> \<Longrightarrow> c * t P x = t (\<lambda>x. c * P x) x" |
lemma filter_min_aux_relE:
assumes "transp rel" and "x \<in> set xs" and "x \<notin> set (filter_min_aux xs ys)"
obtains y where "y \<in> set (filter_min_aux xs ys)" and "rel y x" |
lemma encode_kind_Cn:
assumes "encode_kind (encode f) = 3"
shows "\<exists>n f' gs. f = Cn n f' gs" |
lemma iTILL_add_neg1: "k \<le> n \<Longrightarrow> [\<dots>n] \<oplus>- k = [\<dots>n-k]" |
lemma mset_subset_eq_multiset_union_diff_commute:
fixes A B C D :: "'a multiset"
shows "B \<subseteq># A \<Longrightarrow> A - B + C = A + C - B" |
lemma set_encode_vimage_Suc: "set_encode (Suc -` A) = set_encode A div 2" |
lemma "\<forall>x::'a+'b. P x" |
lemma (in is_tiny_ntsmcf) tiny_ntsmcf_in_Vset: "\<NN> \<in>\<^sub>\<circ> Vset \<alpha>" |
lemma push_refine:
assumes A: "(s,(p,D,pE))\<in>GS_rel" "(v,v')\<in>Id"
assumes B: "v\<notin>\<Union>(set p)" "v\<notin>D"
shows "(push_impl v s, push v' (p,D,pE))\<in>GS_rel" |
lemma l12_18:
assumes "Cong A B C D" and
"Cong B C D A" and
"\<not> Col A B C" and
"B \<noteq> D" and
"Col A P C" and
"Col B P D"
shows "A B Par C D \<and> B C Par D A \<and> B D TS A C \<and> A C TS B D" |
theorem rev_is_rev [hoare_triple]:
"xs \<noteq> [] \<Longrightarrow>
<p \<mapsto>\<^sub>a xs>
rev p 0 (length xs - 1)
<\<lambda>_. p \<mapsto>\<^sub>a List.rev xs>" |
lemma SLC_commute:
"\<lbrakk> s\<^sub>3 = s\<^sub>3'; revision_step r' s\<^sub>2 s\<^sub>3; revision_step r s\<^sub>2' s\<^sub>3' \<rbrakk> \<Longrightarrow>
s\<^sub>3 \<approx> s\<^sub>3' \<and> (revision_step r' s\<^sub>2 s\<^sub>3 \<or> s\<^sub>2 = s\<^sub>3) \<and> (revision_step r s\<^sub>2' s\<^sub>3' \<or> s\<^sub>2' = s\<^sub>3')" |
lemma lemma_iod:
assumes "S \<subseteq> T" "S \<noteq> {}" and Tsub: "T \<subseteq> topspace(Euclidean_space n)"
and S: "\<And>a b u. \<lbrakk>a \<in> S; b \<in> T; 0 < u; u < 1\<rbrakk> \<Longrightarrow> (\<lambda>i. (1 - u) * a i + u * b i) \<in> S"
shows "path_connectedin (Euclidean_space n) T" |
lemma two_div_sqrt_two [simp]:
shows "2 * complex_of_real (sqrt (1/2)) = complex_of_real (sqrt 2)" |
lemma iter_induct_isolate: "c\<^sup>\<star>;d \<sqinter> c\<^sup>\<infinity> = lfp (\<lambda> x. d \<sqinter> c;x)" |
lemma dualA_iff [simp]: "pset (dual cl) = pset cl" |
lemma compute_idx_range[simp,intro]:
assumes "tup \<in> gamma_set"
assumes "ys \<in> func_set"
shows "compute_idx_set tup ys \<in> UNIV" |
lemma meta_all2_eq_conv: "(\<And>a b. a = c \<Longrightarrow> PROP P a b) \<equiv> (\<And>b. PROP P c b)" |
lemma rbb_rfd_dual: "\<partial> \<circ> bb\<^sub>\<R> R = fd\<^sub>\<R> (R\<inverse>) \<circ> \<partial>" |
lemma Restr_tracl_comp_simps:
"\<R> \<subseteq> X \<times> X \<Longrightarrow> \<L> \<subseteq> X \<times> X \<Longrightarrow> \<L>\<^sup>+ O \<R> \<subseteq> X \<times> X"
"\<R> \<subseteq> X \<times> X \<Longrightarrow> \<L> \<subseteq> X \<times> X \<Longrightarrow> \<L> O \<R>\<^sup>+ \<subseteq> X \<times> X"
"\<R> \<subseteq> X \<times> X \<Longrightarrow> \<L> \<subseteq> X \<times> X \<Longrightarrow> \<L>\<^sup>+ O \<R> O \<L>\<^sup>+ \<subseteq> X \<times> X" |
lemma inv_P'PAQQ':
assumes A: "A \<in> carrier_mat n n"
and P: "P \<in> carrier_mat n n"
and inv_P: "inverts_mat P' P"
and inv_Q: "inverts_mat Q Q'"
and Q: "Q \<in> carrier_mat n n"
and P': "P' \<in> carrier_mat n n"
and Q': "Q' \<in> carrier_mat n n"
shows "(P'*(P*A*Q)*Q') = A" |
lemma flatten_set_group_hom:
assumes group:"group G"
assumes inj:"inj_on rep (carrier G)"
shows "rep \<in> hom G (flatten G rep)" |
lemma SComplex_SReal_dense:
"\<lbrakk>x \<in> SComplex; y \<in> SComplex; hcmod x < hcmod y
\<rbrakk> \<Longrightarrow> \<exists>r \<in> Reals. hcmod x< r \<and> r < hcmod y" |
lemma (in mpt) mpt_factor_is_qmpt_factor:
assumes "mpt_factor proj M2 T2"
shows "qmpt_factor proj M2 T2" |
lemma Graph_T2: "Graph T2" |
lemma waiting_code [code]:
"waiting None = False"
"\<And>w. waiting \<lfloor>PostWS w\<rfloor> = False"
"\<And>w. waiting \<lfloor>InWS w\<rfloor> = True" |
lemma Ia''m_calc: "$(Ia'')^{m}_n = (\<Sum>j<n. (j+1)/m * (\<Sum>k=j*m..<(j+1)*m. $v.^(k/m)))"
if "m \<noteq> 0" for n m :: nat |
lemma divide_closed:
assumes "x \<in> carrier Zp"
assumes "y \<in> carrier Zp"
assumes "y \<noteq> \<zero>"
shows "divide x y \<in> carrier Zp" |
lemma BI_BC_rel: "(\<B>\<^sub>I \<phi>) = \<B>\<^sub>C(\<phi>\<^sup>d)" |
lemma
assumes "q' \<notin> \<int>"
shows holomorphic_perzeta': "perzeta q' holomorphic_on A"
and perzeta_altdef2: "Re s > 0 \<Longrightarrow> perzeta q' s = eval_fds (fds_perzeta q') s" |
lemma Cons_Suc_inj2: "inj2 (\<lambda>x ys. Suc x # ys)" |
lemma echelon_form_echelon_form_of:
fixes A::"'a::{bezout_domain}^'cols::{mod_type}^'rows::{mod_type}"
assumes ib: "is_bezout_ext bezout"
shows "echelon_form (echelon_form_of A bezout)" |
lemma to_metric_completion_dense':
"closure (range to_metric_completion) = UNIV" |
lemma wp_fun_mono [simp]: "mono wp" |
lemma tree\<^sub>i_leaves: "leaves_up\<^sub>i u = leaves (tree\<^sub>i u)" |
lemma T_size_tree_Node:
"T_size_tree \<langle>l, x, r\<rangle> = T_size_tree l + T_size_tree r + 1" |
lemma con_imp_coinitial_members_are_con:
assumes "con \<T> \<U>" and "t \<in> \<T>" and "u \<in> \<U>" and "R.sources t = R.sources u"
shows "t \<frown> u" |
lemma alist_and_negation_type_to_match_expr_f_matches:
"matches \<gamma> (alist_and (NegPos_map C spts)) a p \<longleftrightarrow>
(\<forall>m\<in>set spts. matches \<gamma> (negation_type_to_match_expr_f C m) a p)" |
lemma ctxt_of_gctxt_apply [simp]:
"gterm_of_term (ctxt_of_gctxt C)\<langle>term_of_gterm t\<rangle> = C\<langle>t\<rangle>\<^sub>G" |
lemma H_while_inv: "d p \<le> d i \<Longrightarrow> d i \<cdot> ad r \<le> d q \<Longrightarrow> H (d i \<cdot> d r) x i \<Longrightarrow> H p (while r inv i do x od) q" |
lemma divisor_count_upper_bound_aux:
fixes n :: nat
shows "divisor_count n \<le> 2 * card {d. d dvd n \<and> d \<le> sqrt n}" |
lemma epath_mono: "E \<subseteq> E' \<Longrightarrow> epath E u p v \<Longrightarrow> epath E' u p v" |
lemma lemZEG:
shows "z - e = g - e + (z - g)" |
lemma seq_assoc [simp]: "\<turnstile> P c1;(c2;c3) Q \<longleftrightarrow> \<turnstile> P (c1;c2);c3 Q" |
lemma conv_invol: "x \<rhd> 1 \<rhd> 1 = x" |
lemma Bernstein_coeffs_sum: assumes "c \<noteq> d" and hP: "degree P \<le> p"
shows "P = (\<Sum>j = 0..p. smult (nth_default 0 (Bernstein_coeffs p c d P) j)
(Bernstein_Poly j p c d))" |
lemma adjacent: "w\<in>W \<Longrightarrow> s\<in>S \<Longrightarrow> smap {w+s} \<sim> smap {w}" |
lemma bin_snd_mismatch_all: assumes "xs \<in> lists {u\<^sub>0,u\<^sub>1}"
shows "\<alpha> \<cdot> [c\<^sub>1] \<le>p u\<^sub>1 \<cdot> concat xs \<cdot> \<alpha>" |
lemma assoc_simps [simp]:
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h"
shows "arr (assoc\<^sub>S\<^sub>B f g h)" and "dom (assoc\<^sub>S\<^sub>B f g h) = (f \<star> g) \<star> h"
and "cod (assoc\<^sub>S\<^sub>B f g h) = f \<star> g \<star> h"
and "src (assoc\<^sub>S\<^sub>B f g h) = src h" and "trg (assoc\<^sub>S\<^sub>B f g h) = trg f" |
lemma Times_mset_Int_distrib1: "(A \<inter># B) \<times># C = A \<times># C \<inter># B \<times># C" |
lemma functor_G:
shows "functor V\<^sub>D V\<^sub>C G" |
lemma list_to_fun_Nil [simp]: "list_to_fun [] cs = 0" |
lemma cond_hiding_empty_entails[simp]: "t hiding Map.empty under C entails R" |
lemma structCongWeakCong:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
assumes "P \<equiv>\<^sub>s Q"
shows "P \<doteq>\<^sub>c Q" |
lemma pth_eq_iff_index_eq: "pointermap_sane m \<Longrightarrow> pointermap_p_valid p1 m \<Longrightarrow> pointermap_p_valid p2 m \<Longrightarrow> (pm_pth m p1 = pm_pth m p2) \<longleftrightarrow> (p1 = p2)" |
lemma (in Congruence_Rule) Ang_to_Tri :
assumes
"Def (Ang (An A B C))"
shows "Def (Tri (Tr A B C))" |
lemma beukers_key_inequality:
fixes a :: int and b :: nat
assumes "b > 0" and ab: "Re (zeta 3) = a / b"
shows "2 * b * Re (zeta 3) * Lcm {1..n} ^ 3 / 27 ^ n \<ge> 1" |
lemma Src_cod [simp]:
assumes "arr \<mu>"
shows "Src (cod \<mu>) = Src \<mu>" |
lemma oexp_1 [simp]: "Ord \<alpha> \<Longrightarrow> 1\<up>\<alpha> = 1" |
lemma filter_mset_eq_conv:
"filter_mset P M = N \<longleftrightarrow> N \<subseteq># M \<and> (\<forall>b\<in>#N. P b) \<and> (\<forall>a\<in>#M - N. \<not> P a)" (is "?P \<longleftrightarrow> ?Q") |
lemma zip_truncate_right : "zip xs ys = zip xs (take (length xs) ys)" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.