Statement:
stringlengths
7
24.3k
lemma raise_trap_result : "snd (raise_trap t s) = False"
lemma lift_CFGExit_wf: assumes wf:"CFGExit_wf sourcenode targetnode kind valid_edge Entry get_proc get_return_edges procs Main Exit Def Use ParamDefs ParamUses" and pd:"Postdomination sourcenode targetnode kind valid_edge Entry get_proc get_return_edges procs Main Exit" shows "CFGExit_wf src trg knd (lift_valid_edge valid_edge sourcenode targetnode kind Entry Exit) NewEntry (lift_get_proc get_proc Main) (lift_get_return_edges get_return_edges valid_edge sourcenode targetnode kind) procs Main NewExit (lift_Def Def Entry Exit H L) (lift_Use Use Entry Exit H L) (lift_ParamDefs ParamDefs) (lift_ParamUses ParamUses)"
lemma top_higher [simp, intro]: "x \<in> carrier L \<Longrightarrow> x \<sqsubseteq> \<top>"
lemma eval_hom_is_SA_hom: assumes "a \<in> carrier (Q\<^sub>p\<^bsup>n\<^esup>)" shows "ring_hom_ring (SA n) Q\<^sub>p (eval_hom a)"
lemma list_middle_eq: "length xs = length ys \<Longrightarrow> hd xs = hd ys \<Longrightarrow> last xs = last ys \<Longrightarrow> butlast (tl xs) = butlast (tl ys) \<Longrightarrow> xs = ys"
lemma isNSCont_isCont: "isNSCont f a \<Longrightarrow> isCont f a"
lemma const_replace_closedD: assumes "const_replace_closed c U" "p \<in> poss_of_term (constT c) s" "(s, t) \<in> U" shows "(s[p \<leftarrow> u], t) \<in> U \<or> (\<exists> q. q \<in> poss_of_term (constT c) t \<and> (s[p \<leftarrow> u], t[q \<leftarrow> u]) \<in> U)"
lemma hoare3a_sound_GC: "\<turnstile>\<^sub>3\<^sub>a {P} c { Q} \<Longrightarrow> \<Turnstile>\<^sub>3\<^sub>' {P} c { Q ** sep_true}"
lemma (in Torder) inc_segment_segment:"\<lbrakk>b \<in> carrier D; a \<in> segment D b\<rbrakk> \<Longrightarrow> segment (Iod D (segment D b)) a = segment D a"
lemma prefixes_tl_only_01: assumes "prefixes t j \<down>= b" shows "\<forall>x>0. e_nth b x = 0 \<or> e_nth b x = 1"
lemma \<pi>_mono [intro]: "x \<le> y \<Longrightarrow> \<pi> x \<le> \<pi> y" and \<theta>_mono [intro]: "x \<le> y \<Longrightarrow> \<theta> x \<le> \<theta> y" and primes_M_mono [intro]: "x \<le> y \<Longrightarrow> \<MM> x \<le> \<MM> y"
lemma subcls1_induct_aux: "\<lbrakk> is_class P C; wf_prog wf_md P; Q Object; \<And>C D fs ms. \<lbrakk> C \<noteq> Object; is_class P C; class P C = Some (D,fs,ms) \<and> wf_cdecl wf_md P (C,D,fs,ms) \<and> P \<turnstile> C \<prec>\<^sup>1 D \<and> is_class P D \<and> Q D\<rbrakk> \<Longrightarrow> Q C \<rbrakk> \<Longrightarrow> Q C" (*<*) (is "?A \<Longrightarrow> ?B \<Longrightarrow> ?C \<Longrightarrow> PROP ?P \<Longrightarrow> _")
lemma nextss_Cons: "nextss g (x#xs) = set (nexts g x) \<union> nextss g xs"
lemma FORK\<^sub>n\<^sub>o\<^sub>r\<^sub>m_rec: "FORK\<^sub>n\<^sub>o\<^sub>r\<^sub>m i = (\<lambda> s. \<box> e \<in> (Tr\<^sub>f i s) \<rightarrow> FORK\<^sub>n\<^sub>o\<^sub>r\<^sub>m i (Up\<^sub>f i s e))"
lemma conjugation_is_size_invariant: assumes fin:"finite (carrier G)" assumes P:"P \<in> subgroups_of_size p" assumes g:"g \<in> carrier G" shows "conjugation_action p g P \<in> subgroups_of_size p"
lemma irrefl_less_nmultiset: fixes X :: "'a nmultiset" shows "X < X \<Longrightarrow> False"
lemma (in Semilat) plus_list_ub1 [rule_format]: "\<lbrakk> set xs \<subseteq> A; set ys \<subseteq> A; size xs = size ys \<rbrakk> \<Longrightarrow> xs [\<sqsubseteq>\<^bsub>r\<^esub>] xs [\<squnion>\<^bsub>f\<^esub>] ys"
lemma bitAND_single_digit: fixes x c :: nat assumes "2 ^ c \<le> x" assumes "x < 2 ^ Suc c" shows "nth_bit x c = 1"
lemma skl1_obs_iagreement_Resp [iff]: "oreach skl1 \<subseteq> l1_iagreement_Resp"
lemma compP2_compP1_convs: "is_type (compP2 (compP1 P)) = is_type P" "is_class (compP2 (compP1 P)) = is_class P" "sc.addr_loc_type (compP2 (compP1 P)) = sc.addr_loc_type P" "sc.conf (compP2 (compP1 P)) = sc.conf P"
lemma bst_wrt_le_if_bst: "bst t \<Longrightarrow> bst_wrt (\<le>) t"
lemma jpTraces_step_length_inv: "{ t \<in> jpTraces jp . tLength t = Suc n } = { t \<leadsto> s |eact aact t s. t \<in> { t \<in> jpTraces jp . tLength t = n } \<and> eact \<in> set (envAction (tLast t)) \<and> (\<forall>a. aact a \<in> set (actJP jp t a)) \<and> s = envTrans eact aact (tLast t) }"
lemma cong_r: "H \<in> normalfilters \<Longrightarrow> cong H = cong_r H"
lemma "\<FF> \<F> \<Longrightarrow> \<forall>a b. (a \<^bold>\<and> \<^bold>\<not>a) \<^bold>\<rightarrow> b \<^bold>\<approx> \<^bold>\<top>"
lemma inv_free_Abelian_group [simp]: "Poly_Mapping.keys x \<subseteq> S \<Longrightarrow> inv\<^bsub>free_Abelian_group S\<^esub> x = -x"
lemma non_contractible_space_nsphere: "\<not> (contractible_space(nsphere n))"
lemma restrict_map_inv[simp]: "f |` (- dom f) = Map.empty"
lemma nat2Nat_Nat2nat[simp]: "Elem n Nat \<Longrightarrow> nat2Nat (Nat2nat n) = n"
lemma less_4_cases: "(x::word64) < 4 \<Longrightarrow> x=0 \<or> x=1 \<or> x=2 \<or> x=3"
lemma reflects_right_adjoint: assumes "C.ide g" and "D.is_right_adjoint (F g)" shows "C.is_right_adjoint g"
lemma minus_closed'[simp]: "\<forall>x\<in>U\<^sub>M. \<forall>y\<in>U\<^sub>M. x -\<^sub>M y \<in> U\<^sub>M"
lemma sum_of_2_squares_nat_mult [intro]: assumes "sum_of_2_squares_nat x" "sum_of_2_squares_nat y" shows "sum_of_2_squares_nat (x * y)"
lemma "\<nu>\<^sup>\<natural> (x \<cdot> y) = \<nu>\<^sup>\<natural> x \<cdot> \<nu>\<^sup>\<natural> y"
lemma PosPropertiesNecExist: "\<lfloor>\<^bold>\<forall>Y. \<P> Y \<^bold>\<rightarrow> \<^bold>\<box>\<^bold>\<exists>\<^sup>E Y\<rfloor>"
lemma (in is_ntcf) inv_ntcf_NTMap_vdomain[cat_cs_simps]: "\<D>\<^sub>\<circ> (inv_ntcf \<NN>\<lparr>NTMap\<rparr>) = \<AA>\<lparr>Obj\<rparr>"
lemma dm_downset_var: "dm {x} = \<down>(x::'a::preorder)"
lemma face_ofD: "\<lbrakk>T face_of S; x \<in> open_segment a b; a \<in> S; b \<in> S; x \<in> T\<rbrakk> \<Longrightarrow> a \<in> T \<and> b \<in> T"
lemma sym_joinable: "sym (joinable R)"
lemma count_list_upt [simp]: "count_list [a..<b] x = (if a \<le> x \<and> x < b then 1 else 0)"
lemma rational_approximation: assumes "e > 0" obtains r::real where "r \<in> \<rat>" "\<bar>r - x\<bar> < e"
lemma finite_dimensional_vector_space_with_overloaded[ud_with]: "finite_dimensional_vector_space = finite_dimensional_vector_space_with (+) 0 (-) uminus"
lemma bin_cat_inj: "(concat_bit n b a) = concat_bit n d c \<longleftrightarrow> a = c \<and> take_bit n b = take_bit n d"
lemma lookup_tabulate2: "Mapping.lookup (Mapping.tabulate xs f) x = Some y \<Longrightarrow> y = f x"
lemma (in Semilat) plus_list_lub [rule_format]: shows "\<forall>xs ys zs. set xs <= A \<longrightarrow> set ys <= A \<longrightarrow> set zs <= A \<longrightarrow> size xs = n & size ys = n \<longrightarrow> xs <=[r] zs & ys <=[r] zs \<longrightarrow> xs +[f] ys <=[r] zs"
lemma sum_list_length_card_dom_map_of_concat: assumes "ht_hash l" assumes "ht_distinct l" shows "sum_list (map length l) = card (dom (map_of (concat l)))"
lemma weak_All_transfer2 [transfer_rule]: "right_total R \<Longrightarrow> ((R ===> (=)) ===> (\<longrightarrow>)) All All"
lemma union_add_left_zmset[simp]: "add_zmset a A + B = add_zmset a (A + B)"
lemma apply_cltn2_line_injective: assumes "apply_cltn2_line l C = apply_cltn2_line m C" shows "l = m"
lemma orbit_nonempty: "orbit f s \<noteq> {}"
lemma Ide_implies_Can: shows "Ide t \<Longrightarrow> Can t"
lemma nsetTr1:"\<lbrakk>j \<in> nset a b; j \<noteq> a\<rbrakk> \<Longrightarrow> j \<in> nset (Suc a) b"
lemma norm_cblinfun_bound: "0 \<le> b \<Longrightarrow> (\<And>x. norm (cblinfun_apply f x) \<le> b * norm x) \<Longrightarrow> norm f \<le> b"
lemma IC_rate2: "rho_bound2 (\<lambda> p t. IC p i t)"
lemma pop_refine: assumes A: "(s,(p,D,pE))\<in>GS_rel" assumes B: "p \<noteq> []" "pE \<inter> last p \<times> UNIV = {}" shows "pop_impl s \<le> \<Down>GS_rel (RETURN (pop (p,D,pE)))"
lemma vec_of_basis_enum_to_inverse: fixes \<psi> :: "'a::one_dim" shows "vec_of_basis_enum (inverse \<psi>) = vec_of_list [inverse (vec_index (vec_of_basis_enum \<psi>) 0)]"
lemma dghm_cn_cov_comp_ObjMap_vdomain[dg_cn_cs_simps]: assumes "\<GG> : \<BB> \<^sub>D\<^sub>G\<mapsto>\<mapsto>\<^bsub>\<alpha>\<^esub> \<CC>" and "\<FF> : \<AA> \<mapsto>\<mapsto>\<^sub>D\<^sub>G\<^bsub>\<alpha>\<^esub> \<BB>" shows "\<D>\<^sub>\<circ> ((\<GG> \<^sub>D\<^sub>G\<^sub>H\<^sub>M\<circ> \<FF>)\<lparr>ObjMap\<rparr>) = \<AA>\<lparr>Obj\<rparr>"
lemma LV_FROMNTIMES_3: shows "LV (From r (Suc n)) [] = (\<lambda>(v,vs). Stars (v#vs)) ` (LV r [] \<times> (Stars -` (LV (From r n) [])))"
lemma min_shortest_path: assumes "u \<in> V" "v \<in> V" "u \<noteq> v" shows "shortest_path u v > 0"
lemma ahm_lookup_impl: assumes bhc: "is_bounded_hashcode Id (=) bhc" shows "(ahm_lookup (=) bhc, op_map_lookup) \<in> Id \<rightarrow> ahm_map_rel' bhc \<rightarrow> Id"
lemma le_iff_le_nth_eucl: "x \<le> y \<longleftrightarrow> (\<forall>i<DIM('a). (x $\<^sub>e i) \<le> (y $\<^sub>e i))" for x::"'a::executable_euclidean_space"
lemma A23_DAcc_level1: "DAcc level1 sA23 = {sA32}"
lemma zero_vector_7: "zero_vector x \<longleftrightarrow> (\<forall>y . x * top = x * y)"
lemma union_single_eq_diff_zmset: "add_zmset x M = N \<Longrightarrow> M = N - {#x#}\<^sub>z"
lemma this_loc: "mtx_pointwise_cmpop_gen_impl N M f g assn A get_impl fi gi"
lemma max_list_set: "max_list xs = (if set xs = {} then 0 else (THE x. x \<in> set xs \<and> (\<forall> y \<in> set xs. y \<le> x)))"
lemma length_unique_prefix: "al1 \<le> al \<Longrightarrow> al2 \<le> al \<Longrightarrow> length al1 = length al2 \<Longrightarrow> al1 = al2"
lemma imp_OO_imp [simp]: "(\<longrightarrow>) OO (\<longrightarrow>) = (\<longrightarrow>)"
lemma obsf_resource_of_oracle [simp]: "obsf_resource (resource_of_oracle oracle s) = resource_of_oracle (obsf_oracle oracle) (OK s)"
lemma diff_add_zmset: fixes M N Q :: "'a zmultiset" shows "M - (N + Q) = M - N - Q"
lemma maddux_142: "x\<^sup>\<smile> ; z \<cdot> y = 0 \<longleftrightarrow> z ; y\<^sup>\<smile> \<cdot> x = 0"
lemma CI1: "Cl_1 \<phi> \<Longrightarrow> Int_1 \<phi>\<^sup>d"
lemma is_pseudonatural_equivalence: shows "pseudonatural_equivalence V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D (H o F) HoF.cmp (H o G) HoG.cmp map\<^sub>0 map\<^sub>1"
lemma size_sub_fm [simp]: \<open>size (sub_fm s p) = size p\<close>
lemma R3_idem2: "R3 (R3 x) = R3 x"
lemma binsert_eqvt [eqvt]: "p \<bullet> (binsert x B) = binsert (p \<bullet> x) (p \<bullet> B)"
lemma (in ring_hom_cring) hom_zero [simp]: "h \<zero> = \<zero>\<^bsub>S\<^esub>"
lemma "wordinterval_intersection (RangeUnion (RangeUnion (WordInterval (1::32 word) 3) (WordInterval 8 10)) (WordInterval 1 3)) (WordInterval 1 3) = WordInterval 1 3"
lemma take_Suc: "take (Suc n) xs = (if xs = [] then [] else hd xs # take n (tl xs))"
lemma gen_isSng[autoref_rules_raw]: assumes PRIO_TAG_GEN_ALGO assumes "GEN_OP sizea op_map_size_abort (Id \<rightarrow> (\<langle>Rk,Rv\<rangle>Rm) \<rightarrow> Id)" shows "(gen_isSng sizea,op_map_isSng) \<in> \<langle>Rk,Rv\<rangle>Rm \<rightarrow> Id"
lemma cont_applyI [cont_intro]: assumes cont: "cont luba orda lubb ordb g" shows "cont (fun_lub luba) (fun_ord orda) lubb ordb (\<lambda>f. g (f x))"
lemma rbl_succ2_simps: "rbl_succ2 b [] = []" "rbl_succ2 b (x # xs) = (b \<noteq> x) # rbl_succ2 (x \<and> b) xs"
lemma subset_inext_closed: "\<lbrakk> n \<in> B; A \<subseteq> B \<rbrakk> \<Longrightarrow> inext n A \<in> B"
lemma "\<exists>f::(('a \<times> 's) set[('a \<times> 's) set] \<Rightarrow> 'a \<Rightarrow> 's set['s set]). bij f"
lemma cons_set_cons_eq: "a#l \<in> b\<cdot>S = (a=b & l\<in>S)"
lemma reduce_basis_cost: "result (reduce_basis_cost fs_init) = LLL_Impl.reduce_basis \<alpha> fs_init" (is ?g1) "cost (reduce_basis_cost fs_init) \<le> initial_gso_cost + body_cost * num_loops" (is ?g2)
lemma in_results_gpv_sub_gvps: "\<lbrakk> x \<in> results_gpv \<I> gpv'; gpv' \<in> sub_gpvs \<I> gpv \<rbrakk> \<Longrightarrow> x \<in> results_gpv \<I> gpv"
lemma drop_yields_results_implies_nbound: shows "drop n x \<noteq> [] \<longrightarrow> n < length x"
lemma dom_comp_subset: "g ` dom (f \<circ> g) \<subseteq> dom f"
lemma iIN_pred_insert_conv: " 0 < n \<Longrightarrow> insert (n - Suc 0) [n\<dots>,d] = [n - Suc 0\<dots>,Suc d]"
lemma rbt_map_entry_inv2: "inv2 (rbt_map_entry k f t) = inv2 t" "bheight (rbt_map_entry k f t) = bheight t"
lemma empty_gta_lang: "gta_lang Q (TA {||} {||}) = {}"
lemma set_of_idx_code[code]: fixes t :: "('a :: ccompare, 'b set) mapping_rbt" shows "set_of_idx (RBT_Mapping t) = (case ID CCOMPARE('a) of None \<Rightarrow> Code.abort (STR ''set_of_idx RBT_Mapping: ccompare = None'') (\<lambda>_. set_of_idx (RBT_Mapping t)) | Some _ \<Rightarrow> \<Union>(snd ` set (RBT_Mapping2.entries t)))"
lemma part_UNpart: assumes cl: "properL cl" and P: "\<And> n. n < length cl \<Longrightarrow> part {..< brn (cl!n)} (P n)" shows "part {..< brnL cl (length cl)} (UNpart cl P)" (is "part ?J ?Q")
lemma sinits_bottom_iff[simp]: "(sinits\<cdot>xs = \<bottom>) \<longleftrightarrow> (xs = \<bottom>)"
lemma [simp]: "y \<le> x \<squnion> (y \<squnion> z)"
lemma face_cycles_dv: "H.face_cycle_sets = face_cycle_sets"
lemma "(not ((A \<longrightarrow>* (not (A ** B))) and (((not A) \<longrightarrow>* (not B)) and B))) (h::'a::heap_sep_algebra)"
lemma irrelevant_set_bit[simp]: fixes p m n :: nat assumes "n \<le> m" shows "(p + 2 ^ m) mod 2 ^ n = p mod 2 ^ n"
lemma sqrt_int_floor_code[code]: "sqrt_int_floor x = (if x \<ge> 0 then sqrt_int_floor_pos x else - sqrt_int_ceiling_pos (- x))"
lemma is_interval_path_connected_1: fixes s :: "real set" shows "is_interval s \<longleftrightarrow> path_connected s"