Statement:
stringlengths 7
24.3k
|
---|
lemma prime_field_finite_field_ops_integer: "prime_field_gen (finite_field_ops_integer (integer_of_int p)) mod_ring_rel_integer p" |
lemma measurable_restrict[measurable (raw)]:
assumes X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> measurable N (M i)"
shows "(\<lambda>x. \<lambda>i\<in>I. X i x) \<in> measurable N (Pi\<^sub>M I M)" |
lemma string_unop_type_det:
"string_unop_type op \<tau> \<sigma>\<^sub>1 \<Longrightarrow>
string_unop_type op \<tau> \<sigma>\<^sub>2 \<Longrightarrow> \<sigma>\<^sub>1 = \<sigma>\<^sub>2" |
lemma wf_darcs_normalize1: "wf_darcs t1 \<Longrightarrow> wf_darcs (normalize1 t1)" |
lemma same_values_fo_int:
assumes "value_is_compatible_with_structure f"
shows "fo_interpretation (same_values f)" |
lemma nn_integral_nat_function:
fixes f :: "'a \<Rightarrow> nat"
assumes "f \<in> measurable M (count_space UNIV)"
shows "(\<integral>\<^sup>+x. of_nat (f x) \<partial>M) = (\<Sum>t. emeasure M {x\<in>space M. t < f x})" |
lemma neg_meas_setD1 :
assumes "neg_meas_set E"
shows "E \<in> sets M" |
lemma is_expansion_lift:
assumes "basis_wf (b # basis)" "is_expansion C basis"
shows "is_expansion (lift_ms C) (b # basis)" |
lemma bounded_disc_\<P>\<^sub>1': "bounded ((\<lambda>x. ((\<P>\<^sub>1 x ^^ m) v) s) ` X)" |
lemma rolling_rule_ltr: "fix\<cdot>(g oo f) \<sqsubseteq> g\<cdot>(fix\<cdot>(f oo g))" |
lemma
fixes xs :: "'a list" and ys :: "'b list"
shows "foo (x # xs) ys = (case ys of [] \<Rightarrow> 0 | _ # _ \<Rightarrow> foo ([] :: 'a list) ([] :: 'b list))" |
lemma de_morgan_orthogonal_complement_inter:
fixes A B::"'a::chilbert_space set"
assumes a1: \<open>closed_csubspace A\<close> and a2: \<open>closed_csubspace B\<close>
shows \<open>orthogonal_complement (A \<inter> B) = orthogonal_complement A +\<^sub>M orthogonal_complement B\<close> |
lemma disj[simp]: "Ifm vs bs (disj p q) = Ifm vs bs (Or p q)" |
lemma fst_initmissing_netgmap_default_toy_init_netlift:
"fst (initmissing (netgmap sr s)) = default toy_init (netlift sr s)" |
lemma non_speculative_readI [intro?]:
"(\<And>ttas s' t x ta x' m' i ad al v v'.
\<lbrakk> s -\<triangleright>ttas\<rightarrow>* s'; non_speculative P vs (llist_of (concat (map (\<lambda>(t, ta). \<lbrace>ta\<rbrace>\<^bsub>o\<^esub>) ttas)));
thr s' t = \<lfloor>(x, no_wait_locks)\<rfloor>; t \<turnstile> (x, shr s') -ta\<rightarrow> (x', m'); actions_ok s' t ta;
i < length \<lbrace>ta\<rbrace>\<^bsub>o\<^esub>; non_speculative P (w_values P vs (concat (map (\<lambda>(t, ta). \<lbrace>ta\<rbrace>\<^bsub>o\<^esub>) ttas))) (llist_of (take i \<lbrace>ta\<rbrace>\<^bsub>o\<^esub>));
\<lbrace>ta\<rbrace>\<^bsub>o\<^esub> ! i = NormalAction (ReadMem ad al v);
v' \<in> w_values P vs (concat (map (\<lambda>(t, ta). \<lbrace>ta\<rbrace>\<^bsub>o\<^esub>) ttas) @ take i \<lbrace>ta\<rbrace>\<^bsub>o\<^esub>) (ad, al) \<rbrakk>
\<Longrightarrow> \<exists>ta' x'' m''. t \<turnstile> (x, shr s') -ta'\<rightarrow> (x'', m'') \<and> actions_ok s' t ta' \<and>
i < length \<lbrace>ta'\<rbrace>\<^bsub>o\<^esub> \<and> take i \<lbrace>ta'\<rbrace>\<^bsub>o\<^esub> = take i \<lbrace>ta\<rbrace>\<^bsub>o\<^esub> \<and> \<lbrace>ta'\<rbrace>\<^bsub>o\<^esub> ! i = NormalAction (ReadMem ad al v') \<and>
length \<lbrace>ta'\<rbrace>\<^bsub>o\<^esub> \<le> max n (length \<lbrace>ta\<rbrace>\<^bsub>o\<^esub>))
\<Longrightarrow> non_speculative_read n s vs" |
theorem wls_subst_vsubst_trans:
assumes "wls s X" and "wls (asSort ys) Y" and "fresh ys y1 X"
shows "((X #[y1 // y]_ys) #[Y / y1]_ys) = (X #[Y / y]_ys)" |
lemma lad_on_substitutes_on_irc_on:
assumes "f_range_on A f"
assumes "substitutes_on A f"
assumes "lad_on A f"
shows "irc_on A f" |
lemma r_contains_prim: "prim_recfn 1 (r_contains xs)" |
lemma skl1_step4_refines_a0i_commit_skip_r:
"{R0sk1iar \<inter> UNIV\<times>skl1_inv6}
a0i_commit A B \<langle>Ni, NonceF (Rb$nr), Exp gnx (NonceF (Rb$ny))\<rangle> \<union> Id,
skl1_step4 Rb A B Ni gnx
{>R0sk1iar}" |
lemma triv_spref: "s \<noteq> \<epsilon> \<Longrightarrow> r <p r \<cdot> s" |
lemma (in encoding_wrt_barbs) enc_weakly_reflects_barbs_iff_source_target_rel:
shows "enc_weakly_reflects_barbs
= (\<exists>Rel. (\<forall>S. (SourceTerm S, TargetTerm (\<lbrakk>S\<rbrakk>)) \<in> Rel)
\<and> rel_weakly_reflects_barbs Rel (STCalWB SWB TWB))" |
lemma mpoly_map_vars_mult [simp]: "mpoly_map_vars f (p * q) = mpoly_map_vars f p * mpoly_map_vars f q" |
lemma ennreal_real_conv_ennreal_of_enat: "ennreal (real n) = ennreal_of_enat n" |
lemma size_subF: "!!theta. size (subF theta A) = size (A::formula)" |
lemma steps_r_alt:
"A,\<R> \<turnstile> \<langle>l', R'\<rangle> \<leadsto>* \<langle>l'', R''\<rangle> \<Longrightarrow> A,\<R> \<turnstile> \<langle>l, R\<rangle> \<leadsto> \<langle>l', R'\<rangle> \<Longrightarrow> A,\<R> \<turnstile> \<langle>l, R\<rangle> \<leadsto>* \<langle>l'', R''\<rangle>" |
lemma Ana_abs_aux1:
fixes \<delta>::"(('fun,'atom,'sets,'lbl) prot_fun, nat, ('fun,'atom,'sets,'lbl) prot_var) gsubst"
and \<alpha>::"nat \<Rightarrow> 'sets set"
assumes "Ana\<^sub>f f = (K,T)"
shows "(K \<cdot>\<^sub>l\<^sub>i\<^sub>s\<^sub>t \<delta>) \<cdot>\<^sub>\<alpha>\<^sub>l\<^sub>i\<^sub>s\<^sub>t \<alpha> = K \<cdot>\<^sub>l\<^sub>i\<^sub>s\<^sub>t (\<lambda>n. \<delta> n \<cdot>\<^sub>\<alpha> \<alpha>)" |
lemma vfield_iff: "a \<in>\<^sub>\<circ> \<F>\<^sub>\<circ> r \<longleftrightarrow> (\<exists>b. \<langle>a, b\<rangle> \<in>\<^sub>\<circ> r \<or> \<langle>b, a\<rangle> \<in>\<^sub>\<circ> r)" |
lemma has_fresh_z2:
fixes t::"'b::fs"
shows "\<exists>z c. atom z \<sharp> t \<and> \<tau> = \<lbrace> z : b_of \<tau> | c \<rbrace>" |
lemma add_block_wf: "incidence_system (\<V> \<union> b) (add_block b)" |
lemma subset_dgrad_set_zero: "F \<subseteq> dgrad_set (\<lambda>_. 0) m" |
lemma map_eq_appendE:
assumes "map f ls = fl@fl'"
obtains l l' where "ls=l@l'" and "map f l=fl" and "map f l' = fl'" |
lemma Inv_in_Hom [simp]:
assumes "Can t"
shows "Inv t \<in> Hom (Cod t) (Dom t)" |
lemma p_ge_0: "0 < int p" |
lemma setdist_pos_le [simp]: "0 \<le> setdist s t" |
lemma "P (x::('a, 'b) T3)" |
lemma concat_index_split_sound_fst_arg:
"i < length (concat xs) \<Longrightarrow> fst (concat_index_split (0, i) xs) < length xs" |
lemma sumset_iterated_empty: "r>0 \<Longrightarrow> sumset_iterated {} r = {}" |
lemma mult_cancel:
assumes "trans s" and "irrefl s"
shows "(X + Z, Y + Z) \<in> mult s \<longleftrightarrow> (X, Y) \<in> mult s" (is "?L \<longleftrightarrow> ?R") |
lemma list_match_lel_lel:
assumes "c1 @ qs # c2 = c1' @ qs' # c2'"
obtains
(left) c21' where "c1 = c1' @ qs' # c21'" "c2' = c21' @ qs # c2"
| (center) "c1' = c1" "qs' = qs" "c2' = c2"
| (right) c21 where "c1' = c1 @ qs # c21" "c2 = c21 @ qs' # c2'" |
lemma keys_monom_multE:
assumes "v \<in> keys (monom_mult c t p)"
obtains u where "u \<in> keys p" and "v = t \<oplus> u" |
lemma G'_steps_V_all:
"list_all V xs" if "G'.steps xs" "V (hd xs)" |
lemma scale_shift_ms_aux_conv_mslmap:
"scale_shift_ms_aux x = mslmap (map_prod ((*) (fst x)) ((+) (snd x)))" |
lemma BIT_no_paid: "\<forall>((free,paid),_) \<in> (BIT_step s q). paid=[]" |
lemma sumCases[consumes 1, case_names cSum1 cSum2]:
fixes P :: ccs
and Q :: ccs
and \<alpha> :: act
and R :: ccs
assumes "P \<oplus> Q \<longmapsto>\<alpha> \<prec> R"
and "\<And>P'. P \<longmapsto>\<alpha> \<prec> P' \<Longrightarrow> Prop P'"
and "\<And>Q'. Q \<longmapsto>\<alpha> \<prec> Q' \<Longrightarrow> Prop Q'"
shows "Prop R" |
lemma Integer\<^sub>n\<^sub>u\<^sub>l\<^sub>l_defined : "\<delta> Integer\<^sub>n\<^sub>u\<^sub>l\<^sub>l = true" |
lemma distinct_scaled_inl: "distinct (map ((*\<^sub>R) 2) (ccw.selsort 0 (inl (snd X))))" |
lemma Nneg_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (~\<^sub>N x)" |
lemma nfv_And[simp]: "nfv (And \<phi> \<psi>) = max (nfv \<phi>) (nfv \<psi>)" |
lemma has_notempty_1:
assumes Sne: "S \<noteq> {}"
shows "has 1 S" |
lemma (in Ring) LSM_sub_M:"\<lbrakk>R module M; T \<subseteq> carrier M\<rbrakk> \<Longrightarrow>
(LSM\<^bsub>R\<^esub> M T) \<subseteq> carrier M" |
lemma equal_div_mod:assumes "((j::nat) div a) = (i div a)"
and "(j mod a) = (i mod a)"
shows "j = i" |
lemma ordLeq_cmax:
assumes r: "Card_order r" and s: "Card_order s"
shows "r \<le>o cmax r s \<and> s \<le>o cmax r s" |
lemma cmap_insort_empty_cong:
assumes "xs = ys" and "\<And>x. x \<in>\<in> xs \<Longrightarrow> ff x = gg x" and x: "ff x = []"
shows "cmap ff (insort_key f x xs) = cmap gg ys" |
theorem (in xvalid_program_progress) concurrent_direct_execution_simulates_store_buffer_execution_empty:
assumes exec_sb: "(ts\<^sub>s\<^sub>b,m\<^sub>s\<^sub>b,x) \<Rightarrow>\<^sub>s\<^sub>b\<^sup>* (ts\<^sub>s\<^sub>b',m\<^sub>s\<^sub>b',x')"
assumes init: "initial\<^sub>s\<^sub>b ts\<^sub>s\<^sub>b \<S>\<^sub>s\<^sub>b"
assumes valid: "valid ts\<^sub>s\<^sub>b" (* FIXME: move into initial ?*)
assumes empty:
"\<forall>i p is xs sb \<D> \<O> \<R>. i < length ts\<^sub>s\<^sub>b' \<longrightarrow> ts\<^sub>s\<^sub>b'!i=(p,is,xs,sb,\<D>,\<O>,\<R>)\<longrightarrow> sb=[]"
assumes sim: "(ts\<^sub>s\<^sub>b,m\<^sub>s\<^sub>b,\<S>\<^sub>s\<^sub>b) \<sim> (ts,m,\<S>)"
assumes safe: "safe_reach_direct safe_free_flowing (ts,m,\<S>)"
shows "\<exists>ts' \<S>'.
(ts,m,\<S>) \<Rightarrow>\<^sub>d\<^sup>* (ts',m\<^sub>s\<^sub>b',\<S>') \<and> ts\<^sub>s\<^sub>b' \<sim>\<^sub>d ts'" |
lemma OclReject_invalid[simp,code_unfold]:"invalid->reject\<^sub>S\<^sub>e\<^sub>t(a | P a) = invalid" |
lemma ngbai_gi_refine[autoref_rules]:
fixes S :: "('statei \<times> 'state) set"
assumes "SIDE_GEN_ALGO (is_bounded_hashcode S seq bhc)"
assumes "SIDE_GEN_ALGO (is_valid_def_hm_size TYPE('statei) hms)"
assumes "GEN_OP seq HOL.eq (S \<rightarrow> S \<rightarrow> bool_rel)"
shows "(NGBA_Algorithms.ngbai_gi seq bhc hms, ngba_g) \<in>
\<langle>L, S\<rangle> ngbai_ngba_rel \<rightarrow> \<langle>unit_rel, S\<rangle> g_impl_rel_ext" |
lemma code_GS_rec_am_arr_opt[code]: "opt_policy_gs'' (vec_to_bfun v) = vec_to_fun ((snd (foldl (\<lambda>(v, d) s.
let (am, m) = least_max_arg_max_enum (\<lambda>a. r (s, a) + l * (\<Sum>s' \<in> UNIV. pmf (K (s,a)) s' * v $ s')) (A s) in
(vec_upd v s m, vec_upd d s am))
(v, (\<chi> s. (least_enum (\<lambda>a. a \<in> A s)))) (sorted_list_of_set UNIV))))" |
lemma fmdrop_set_single[simp]: "fmdrop_set {a} m = fmdrop a m" |
lemma nat_of_natural_of_nat_inverse [simp]:
"nat_of_natural (natural_of_nat n) = n" |
lemma GR': \<open>\<turnstile> \<^bold>\<not> p\<langle>\<^bold>#n/0\<rangle> \<^bold>\<longrightarrow> q \<Longrightarrow> max_var p < n \<Longrightarrow> max_var q < n \<Longrightarrow> \<turnstile> \<^bold>\<not> \<^bold>\<forall>p \<^bold>\<longrightarrow> q\<close> |
lemma rebalance_middle_tree_height:
assumes "height t = height sub"
and "case rs of (rsub,rsep) # list \<Rightarrow> height rsub = height t | [] \<Rightarrow> True"
shows "height (rebalance_middle_tree k ls sub sep rs t) = height (Node (ls@(sub,sep)#rs) t)" |
lemma tick_count_strict_sub:
assumes \<open>dilating f sub r\<close>
shows \<open>tick_count_strict sub c n = tick_count_strict r c (f n)\<close> |
lemma ord_spmfI:
"\<lbrakk> \<And>x y. (x, y) \<in> set_spmf pq \<Longrightarrow> ord x y; map_spmf fst pq = p; map_spmf snd pq = q \<rbrakk>
\<Longrightarrow> p \<sqsubseteq> q" |
lemma one_over_fun_closed:
assumes "f \<in> carrier (SA n)"
shows "one_over_fun n f \<in> carrier (SA n)" |
lemma pnet_maintains_dom:
assumes "(s, a, s') \<in> trans (pnet np p)"
shows "net_ips s = net_ips s'" |
lemma baEN2[elim]:
fixes c::'id
and t::"nat \<Rightarrow> cnf"
and t'::"nat \<Rightarrow> 'cmp"
and n::nat
assumes nAct: "\<nexists>i. \<parallel>c\<parallel>\<^bsub>t i\<^esub>"
and al: "eval c t t' n (ba \<phi>)"
shows "\<phi> (t' n)" |
lemma mset_le_subtract_right: "(A::'a multiset)+B \<subseteq># X \<Longrightarrow> A \<subseteq># X-B \<and> B\<subseteq>#X" |
lemma poly_ring_add_mono:
assumes "n \<le> m"
assumes "A \<in> carrier (R[\<X>\<^bsub>n\<^esub>])"
assumes "B \<in> carrier (R[\<X>\<^bsub>n\<^esub>])"
shows "A \<oplus>\<^bsub>R[\<X>\<^bsub>n\<^esub>]\<^esub> B = A \<oplus>\<^bsub>coord_ring R m\<^esub> B" |
lemma "x > y \<Longrightarrow> x - y \<noteq> (0::int)" |
lemma bind_left_fail_SE[simp] : "(x \<leftarrow> fail\<^sub>S\<^sub>E; P x) = fail\<^sub>S\<^sub>E" |
lemma Lim_within_id: "(id \<longlongrightarrow> a) (at a within s)" |
lemma A81_DAcc_level1: "DAcc level1 sA81 = {sA91, sA92}" |
lemma used_appIR: "X \<in> used evs \<Longrightarrow> X \<in> used (evs @ evs')" |
lemma int_prime_not_sqr :
assumes "is_prime p"
shows "int p \<noteq> n\<^sup>2" |
lemma spair_sigs_alt_spp: "spair_sigs p q = spair_sigs_spp (spp_of p) (spp_of q)" |
lemma word_mod_def [code]:
"a mod b = word_of_int (uint a mod uint b)" |
lemma sup_co_test:
"co_test x \<Longrightarrow> co_test y \<Longrightarrow> co_test (x \<squnion> y)" |
lemma stutter_equiv_sym [sym]: "\<sigma> \<approx> \<tau> \<Longrightarrow> \<tau> \<approx> \<sigma>" |
lemma phull_closed_lin_red:
assumes "phull B \<subseteq> phull A" and "p \<in> phull A" and "lin_red B p q"
shows "q \<in> phull A" |
lemma heap_upds_ok_invariant:
"invariant step heap_upds_ok_conf" |
lemma [simp]: "A \<sqsubseteq> A" |
lemma homeomorphic_frontiers:
fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
assumes "S homeomorphic T" "closed S" "closed T"
"interior S = {} \<longleftrightarrow> interior T = {}"
shows "(frontier S) homeomorphic (frontier T)" |
lemma preamble_maximal_io_paths :
assumes "is_preamble P M q"
and "observable M"
and "path P (initial P) p"
and "target (initial P) p = q"
shows "\<nexists>io' . io' \<noteq> [] \<and> p_io p @ io' \<in> L P" |
lemma genempty_substs: "genempty Q \<Longrightarrow> length xs = length ys \<Longrightarrow> genempty (Q[xs \<^bold>\<rightarrow>\<^sup>* ys])" |
lemma up_dist_sup:
"\<up>(x \<squnion> y) = \<up>x \<inter> \<up>y" |
lemma init_prefixE [elim]: "prefix f n = prefix g n \<Longrightarrow> f \<triangleright> n = g \<triangleright> n" |
lemma dtree_leaf_child_empty:
"leaf r \<Longrightarrow> {(x,e). (if e \<in> out_arcs T r then x = to_dtree_aux (head T e) else False)} = {}" |
lemma proc_ord2_set:
"P \<sqsubseteq> Q \<Longrightarrow> {(s, X). s \<notin> D P \<and> (s, X) \<in> F P} = {(s, X). s \<notin> D P \<and> (s, X) \<in> F Q}" |
lemma map_nth_drop: "i < length xs \<Longrightarrow> map f (nth_drop i xs) = nth_drop i (map f xs)" |
lemma is_processT6_S1: "\<lbrakk> tick \<notin> X;(s @ [tick], {}) \<in> F P \<rbrakk> \<Longrightarrow> (s::'a event list, X) \<in> F P" |
lemma Sup_trans_least:
"\<lbrakk> \<forall>t\<in>S. le_utrans t u; \<And>P. unitary P \<Longrightarrow> unitary (u P) \<rbrakk> \<Longrightarrow> le_utrans (Sup_trans S) u" |
lemma lagrange_interpolation_poly: assumes dist: "distinct (map fst xs_ys)"
and p: "p = lagrange_interpolation_poly xs_ys"
shows "\<And> x y. (x,y) \<in> set xs_ys \<Longrightarrow> poly p x = y" |
lemma BIT_b2: assumes A: "x \<noteq> y"
"init \<in> {[x,y],[y,x]}"
"v \<in> lang (seq [Atom x, Times (Atom y) (Atom x), Star (Times (Atom y) (Atom x)), Atom y, Atom y])"
shows "T\<^sub>p_on_rand' BIT (type0 init x y) v = 0.75 * (length v - 1) - 0.5" (is ?T)
and "config'_rand BIT (type0 init x y) v = (type0 init y x)" (is ?C) |
lemma liftLM_comm:
"liftL_trm (liftM_trm t n) m = liftM_trm (liftL_trm t m) n"
"liftL_cmd (liftM_cmd c n) m = liftM_cmd (liftL_cmd c m) n" |
lemma observable_path_unique :
assumes "observable M"
and "path M q p"
and "path M q p'"
and "p_io p = p_io p'"
shows "p = p'" |
lemma in_nv2T: "x \<in> nv2T T \<longleftrightarrow> T = Var x" |
lemma empty_object_not_conflicting_objects [elim!]:
"(sep_heap y) obj_id = None \<Longrightarrow> not_conflicting_objects x y obj_id" |
lemma Union_included_in_supp:
fixes S::"('a::fs set)"
assumes fin: "finite S"
shows "(\<Union>x\<in>S. supp x) \<subseteq> supp S" |
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" |
lemma cf_comp_is_tiny_functor[cat_small_cs_intros]:
assumes "\<GG> : \<BB> \<mapsto>\<mapsto>\<^sub>C\<^sub>.\<^sub>t\<^sub>i\<^sub>n\<^sub>y\<^bsub>\<alpha>\<^esub> \<CC>" and "\<FF> : \<AA> \<mapsto>\<mapsto>\<^sub>C\<^sub>.\<^sub>t\<^sub>i\<^sub>n\<^sub>y\<^bsub>\<alpha>\<^esub> \<BB>"
shows "\<GG> \<circ>\<^sub>C\<^sub>F \<FF> : \<AA> \<mapsto>\<mapsto>\<^sub>C\<^sub>.\<^sub>t\<^sub>i\<^sub>n\<^sub>y\<^bsub>\<alpha>\<^esub> \<CC>" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.