Statement:
stringlengths
7
24.3k
lemma periodic_imp_uniform_discrete: assumes "periodic_set S \<delta>" shows "uniform_discrete S"
theorem proportionality_equiv: "equiv local.non_zero_vectors local.proportionality"
lemma outstanding_not_volatile_Read\<^sub>s\<^sub>b_refs_conv: "outstanding_refs (Not \<circ> is_volatile_Read\<^sub>s\<^sub>b) sb = outstanding_refs is_Write\<^sub>s\<^sub>b sb \<union> outstanding_refs is_non_volatile_Read\<^sub>s\<^sub>b sb"
lemma vec_index_vCons_Suc [simp]: fixes v :: "'a vec" shows "vCons a v $ Suc n = v $ n"
lemma Spy_not_see_encrypted_key: "[| Says Server B \<lbrace>NA, Crypt (shrK A) \<lbrace>NA, Key K\<rbrace>, Crypt (shrK B) \<lbrace>NB, Key K\<rbrace>\<rbrace> \<in> set evs; Notes Spy \<lbrace>NA, NB, Key K\<rbrace> \<notin> set evs; A \<notin> bad; B \<notin> bad; evs \<in> otway |] ==> Key K \<notin> analz (knows Spy evs)"
theorem "\<lbrakk>iface_packet_check ifl pii \<noteq> None; mlf (case next_hop (routing_table_semantics rt (p_dst pii)) of None \<Rightarrow> p_dst pii | Some a \<Rightarrow> a) \<noteq> None\<rbrakk> \<Longrightarrow> \<exists>x. map_option (\<lambda>p. p\<lparr>p_l2dst := x\<rparr>) (simple_linux_router_nol12 rt fw pii) = simple_linux_router rt fw mlf ifl pii"
lemma subst_cv_id [simp]: "subst_cv A a (V_var a) = A"
lemma l9_10: assumes "\<not> Col A P Q" shows "\<exists> C. P Q TS A C"
lemma p0_sets[measurable_cong]: "x \<in> space Ms \<Longrightarrow> sets (p 0 (\<lambda>_. undefined,x)) = sets Ma"
lemma "{(1::nat, 2), (2, 3), (3, 4), (4, 5)}\<^sup>* `` {1} = {1, 2, 3, 4, 5}" "{(1::nat, 2), (2, 3), (3, 4), (4, 5)}\<^sup>+ `` {1} = {2, 3, 4, 5}"
lemma s_ns_mul_ext_trans: assumes "trans s" "trans ns" "compatible_l ns s" "compatible_r ns s" "refl ns" and "(A, B) \<in> s_mul_ext ns s" and "(B, C) \<in> ns_mul_ext ns s" shows "(A, C) \<in> s_mul_ext ns s"
lemma equivD1: "x \<le> y" if "x \<approx> y"
lemma distinct_eq_append: "distinct_eq eq (xs @ ys) = (distinct_eq eq xs \<and> distinct_eq eq ys \<and> (\<forall> x \<in> set xs. \<forall> y \<in> set ys. \<not> (eq y x)))"
lemma \<psi>\<^sub>1_is_state: assumes "n \<ge> 1" shows "state (n+1) (\<psi>\<^sub>1 n)"
lemma embed_ge_0[simp,intro]: "0 \<le> \<guillemotleft>G\<guillemotright> s"
lemma poly_scalar_mult_iter: assumes "\<one> \<noteq>\<zero>" assumes "P \<in> Pring_set R I" assumes "k \<in> carrier R" assumes "n \<in> carrier R" shows "poly_scalar_mult R k (poly_scalar_mult R n P) = poly_scalar_mult R (k \<otimes> n) P"
lemma borel_measurable_count_space[measurable (raw)]: "f \<in> borel_measurable (count_space S)"
lemma dverts_reachable1_if_dom_children_aux_root: assumes "\<forall>v\<in>dverts (Node r xs). \<exists>x\<in>set r0 \<union> X \<union> path_lverts (Node r xs) (hd v). x \<rightarrow>\<^bsub>T\<^esub> hd v" and "\<forall>y\<in>X. \<exists>x\<in>set r0. x \<rightarrow>\<^sup>+\<^bsub>T\<^esub> y" and "forward r" shows "\<forall>y\<in>set r. \<exists>x\<in>set r0. x \<rightarrow>\<^sup>+\<^bsub>T\<^esub> y"
lemma ltakeWhile_K_False [simp]: "ltakeWhile (\<lambda>_. False) xs = LNil"
lemma finite_intersection_of_idempot [simp]: "finite intersection_of finite intersection_of P = finite intersection_of P"
lemma one_side_symmetry: assumes "P Q OS A B" shows "P Q OS B A"
lemma swapEnvIm_preserves_wls: assumes "wlsEnv rho" shows "wlsEnv (swapEnvIm xs x y rho)"
lemma Arg2pi_Ln: assumes "0 < Arg2pi z" shows "Arg2pi z = Im(Ln(-z)) + pi"
lemma less_le_trans: assumes "x <\<^sub>a y" and "y \<le>\<^sub>a z" shows "x <\<^sub>a z"
lemma af_imp_almost_full_on: assumes "af A P" shows "almost_full_on P A"
lemma prog_sifum_secure_cont_def2: "prog_sifum_secure_cont cmds \<equiv> (\<forall> mem\<^sub>1 mem\<^sub>2. INIT mem\<^sub>1 \<and> INIT mem\<^sub>2 \<and> mem\<^sub>1 =\<^sup>l mem\<^sub>2 \<longrightarrow> (\<forall> sched cms\<^sub>1' mem\<^sub>1'. (cmds, mem\<^sub>1) \<rightarrow>\<^bsub>sched\<^esub> (cms\<^sub>1', mem\<^sub>1') \<longrightarrow> (\<exists> cms\<^sub>2' mem\<^sub>2'. (cmds, mem\<^sub>2) \<rightarrow>\<^bsub>sched\<^esub> (cms\<^sub>2', mem\<^sub>2')) \<and> (\<forall> cms\<^sub>2' mem\<^sub>2'. (cmds, mem\<^sub>2) \<rightarrow>\<^bsub>sched\<^esub> (cms\<^sub>2', mem\<^sub>2') \<longrightarrow> map snd cms\<^sub>1' = map snd cms\<^sub>2' \<and> length cms\<^sub>2' = length cms\<^sub>1' \<and> (\<forall> x. dma mem\<^sub>1' x = Low \<and> (x \<in> \<C> \<or> (\<forall> i < length cms\<^sub>1'. x \<notin> snd (cms\<^sub>1' ! i) AsmNoReadOrWrite)) \<longrightarrow> mem\<^sub>1' x = mem\<^sub>2' x))))"
lemma eqExcPID2_imp2: assumes "reach s" and "eqExcPID2 s s1" and "pid \<noteq> PID \<or> PID \<noteq> pid" shows "getReviewersReviews s cid pid = getReviewersReviews s1 cid pid"
lemma analz_image_freshK [rule_format (no_asm)]: "evs \<in> bankerberos \<Longrightarrow> \<forall>K KK. KK \<subseteq> - (range shrK) \<longrightarrow> (Key K \<in> analz (Key`KK \<union> (spies evs))) = (K \<in> KK | Key K \<in> analz (spies evs))"
lemma cblinfun_of_mat_plus: defines "nA \<equiv> length (canonical_basis :: 'a::{basis_enum,complex_normed_vector} list)" and "nB \<equiv> length (canonical_basis :: 'b::{basis_enum,complex_normed_vector} list)" assumes [simp,intro]: "M \<in> carrier_mat nB nA" and [simp,intro]: "N \<in> carrier_mat nB nA" shows "(cblinfun_of_mat (M + N) :: 'a \<Rightarrow>\<^sub>C\<^sub>L 'b) = ((cblinfun_of_mat M + cblinfun_of_mat N))"
lemma ennreal_right_diff_distrib: fixes a b c :: ennreal assumes "a \<noteq> top" shows "a * (b - c) = a * b - a * c"
lemma zero_vector_sup_distributive: "zero_vector x \<Longrightarrow> sup_distributive x"
lemma refresh_1_apply[simp]: "fst (the (refresh_1 f p)) = fst (the (f p))"
lemma n_eq_0: "s \<in> S \<Longrightarrow> cfg \<in> cfg_on s \<Longrightarrow> v cfg = 0 \<Longrightarrow> n s = 0"
theorem complement_of_product_is_sum_of_complements: "O x y \<Longrightarrow> x \<oplus> y \<noteq> u \<Longrightarrow> \<midarrow>(x \<otimes> y) = (\<midarrow>x) \<oplus> (\<midarrow>y)"
lemma "filterlim (\<lambda>x::real. x powr (1 / sqrt x)) (at_right 1) at_top"
lemma wf_filterQuery: assumes "I \<subseteq> V" assumes "card I \<ge> 1" assumes "rwf_query n V Qp Qn" assumes "QQp = filterQuery I Qp" assumes "QQn = filterQueryNeg I Qn" shows "wf_query n I QQp QQn" "non_empty_query QQp" "covering I QQp"
lemma is_unit_i [simp]: \<open>\<i> dvd 1\<close>
lemma b_e_check_single_weaken_type: assumes "check_single \<C> e (Type tn) = (Type tm)" shows "check_single \<C> e (Type (ts@tn)) = Type (ts@tm)"
lemma contour_integrable_subpath_refl [iff]: "f contour_integrable_on (subpath u u g)"
lemma le_combine_matrix: assumes "f 0 0 = 0" "\<forall>a b c d. a <= b & c <= d \<longrightarrow> f a c <= f b d" "A <= B" "C <= D" shows "combine_matrix f A C <= combine_matrix f B D"
lemma propositions[PLM]: "[\<^bold>\<exists> p . \<^bold>\<box>(p \<^bold>\<equiv> p') in v]"
lemma (in Ring) r_apow_Suc:"ideal R I \<Longrightarrow> I\<^bsup>R (an (Suc 0))\<^esup> = I"
lemma retract_cancel1_aux: assumes "cancel1 ys (map f xs)" shows "\<exists>zs. cancel1 zs xs \<and> ys = map f zs \<and> set zs \<subseteq> set xs"
lemma sing_pow_fac': assumes "a \<noteq> b" and "w \<in> [a]*" shows "\<not> ([b] \<le>f w)"
lemma arctan_upper_12: assumes "x \<le> 0" shows "arctan(x) \<le> arctan_upper_12 x"
lemma rbt_comp_union_with_key: "rbt_comp_union_with_key = ord.rbt_union_with_key (lt_of_comp c)"
lemma component_edges_subset: "edges (component_of g r) \<subseteq> edges g"
lemma last_prog_append_Prog\<^sub>s\<^sub>b: "\<And>x. last_prog x (sb@[Prog\<^sub>s\<^sub>b p p' mis]) = p'"
lemma(in ring_functions) function_smult_assoc1: assumes "a \<in> carrier R" assumes "b \<in> carrier R" assumes "f \<in> carrier F" shows "b \<odot>\<^bsub>F\<^esub> (a \<odot>\<^bsub>F\<^esub> f) = (b \<otimes> a)\<odot>\<^bsub>F\<^esub>f"
lemma unfold_plussub_lift2: "e1 +_(lift2 f) e2 == lift2 f e1 e2"
lemma convex_condition_imp_convex: assumes "is_convex_condition I" shows "is_convex (I \<alpha> \<beta>)"
lemma Jacobi_mult_left [simp]: "Jacobi (a * b) n = Jacobi a n * Jacobi b n"
lemma (in group) r_inv [simp]: "x \<in> carrier G ==> x \<otimes> inv x = \<one>"
lemma "(12::nat) * 11 = 132"
lemma (in graph) graph_block_size: assumes "bl \<in># arcs_blocks" shows "card bl = 2"
lemma G_af_simp[simp]: "\<^bold>G (af \<phi> w) = \<^bold>G \<phi>"
lemma WHILET_refine[refine]: assumes R0: "(x,x')\<in>R" assumes COND_REF: "\<And>x x'. \<lbrakk> (x,x')\<in>R \<rbrakk> \<Longrightarrow> b x = b' x'" assumes STEP_REF: "\<And>x x'. \<lbrakk> (x,x')\<in>R; b x; b' x' \<rbrakk> \<Longrightarrow> f x \<le> \<Down>R (f' x')" shows "WHILET b f x \<le>\<Down>R (WHILET b' f' x')"
lemma invpst_baliL: "invpst l \<Longrightarrow> invpst r \<Longrightarrow> invpst (baliL l a r)"
lemma disjE2: "\<lbrakk> P \<or> Q; \<lbrakk>P; \<not>Q\<rbrakk> \<Longrightarrow> R; Q \<Longrightarrow> R \<rbrakk> \<Longrightarrow> R"
lemma (in lbv) bottom_le [simp, intro!]: "\<bottom> \<sqsubseteq>\<^sub>r x"
lemma push_bit_Suc [simp]: "push_bit (Suc n) a = push_bit n (a * 2)"
lemma normalize_smult: fixes c :: "'a :: {normalization_semidom_multiplicative, idom_divide}" shows "normalize (smult c p) = smult (normalize c) (normalize p)"
lemma has_derivative_sequence_Lipschitz: fixes f :: "nat \<Rightarrow> 'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" assumes "convex S" and "\<And>n x. x \<in> S \<Longrightarrow> ((f n) has_derivative (f' n x)) (at x within S)" and nle: "\<And>e. e > 0 \<Longrightarrow> \<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. \<forall>h. norm (f' n x h - g' x h) \<le> e * norm h" and "e > 0" shows "\<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. \<forall>x\<in>S. \<forall>y\<in>S. norm ((f m x - f n x) - (f m y - f n y)) \<le> e * norm (x - y)"
lemma vint_struct_\<A>[vint_struct_simps]: "\<SS>\<^sub>\<int>\<lparr>\<A>\<rparr> = \<int>\<^sub>\<circ>"
lemma power_diff': assumes "m \<ge> n" "x \<noteq> 0" shows "x ^ (m - n) = (x ^ m div x ^ n :: 'a :: unique_euclidean_semiring)"
lemma vec_count_MV_Rel_direct: assumes "MV_Rel v1 v2" shows "count_vec v2 i = count_vec (vec_mod v1) (to_int_mod_ring i)"
lemma omega_sum_aux_less: "omega_sum_aux k ms < \<omega> \<up> k"
lemma not_\<S>_reps: "(l, R) \<notin> \<S> \<Longrightarrow> reps (l, R) \<notin> S"
lemma is_unit_hom_iff[simp]: "hom x dvd 1 \<longleftrightarrow> x dvd 1"
lemma pathVertices_edge_old: "isPath u p v \<Longrightarrow> e \<in> set p \<Longrightarrow> \<exists>vs1 vs2. pathVertices u p = vs1 @ fst e # snd e # vs2"
lemma disc_I [simp]: assumes "in_ocircline H z" shows "z \<in> disc H"
lemma (in cring) assumes "x \<in> carrier R" "y \<in> carrier R" shows "(x \<oplus> y) [^] (3::nat) = x [^] (3::nat) \<oplus> y [^] (3::nat) \<oplus> \<guillemotleft>3\<guillemotright> \<otimes> x [^] (2::nat) \<otimes> y \<oplus> \<guillemotleft>3\<guillemotright> \<otimes> y [^] (2::nat) \<otimes> x"
lemma noDAsep[rule_format]: "noDenyAll p \<Longrightarrow> noDenyAll (separate p)"
lemma row_to_poly_zeroD: assumes "distinct ts" and "dim_vec r = length ts" and "row_to_poly ts r = 0" shows "r = 0\<^sub>v (length ts)"
lemma fixes e :: "('a, 'b, 'addr) exp" and es :: "('a, 'b, 'addr) exp list" shows D_None [iff]: "\<D> e None" and Ds_None [iff]: "\<D>s es None"
lemma substitutes_on_antimono: assumes "substitutes_on B f" assumes "A \<subseteq> B" shows "substitutes_on A f"
lemma (in Interpretation) FunctionalExpr: "\<And>i j A B.\<lbrakk>L\<lbrakk>Vx : A \<turnstile> e : B\<rbrakk> \<rightarrow> i; L\<lbrakk>Vx : A \<turnstile> e : B\<rbrakk> \<rightarrow> j\<rbrakk> \<Longrightarrow> i = j"
lemma point_in_vector_sup: assumes "point p" and "vector v" and "regular v" and "p \<le> v \<squnion> w" shows "p \<le> v \<or> p \<le> w"
lemma tkt_thread_eq: assumes R: "A.reachable (c,n,ts)" assumes A: "t<N" "has_ticket (ts t) k" shows "tkt_thread ts k = t"
lemma comp_lassocr\<^sub>C: "((conv1 |\<^sub>= conv2) |\<^sub>= conv3) \<odot> lassocr\<^sub>C = lassocr\<^sub>C \<odot> (conv1 |\<^sub>= conv2 |\<^sub>= conv3)"
lemma bidual_embedding_apply[simp]: \<open>(bidual_embedding *\<^sub>V x) *\<^sub>V f = f *\<^sub>V x\<close>
lemma uint_word_of_int_eq: \<open>uint (word_of_int k :: 'a::len word) = take_bit LENGTH('a) k\<close>
lemma ord_elems: assumes "finite (carrier G)" "a \<in> carrier G" shows "{a[^]x | x. x \<in> (UNIV :: nat set)} = {a[^]x | x. x \<in> {0 .. ord a - 1}}" (is "?L = ?R")
lemma (in group) generate_one_switched_eqI: assumes "A \<subseteq> carrier G" "a \<in> A" "B = (A - {a}) \<union> {b}" and "b \<in> generate G A" "a \<in> generate G B" shows "generate G A = generate G B"
lemma good_context_2 : "good_context (s::(('a::len) sparc_state)) \<and> fetch_instruction (delayed_pool_write s) = Inr v1 \<and> \<not>(\<exists>v2. (decode_instruction v1::(Exception list + instruction)) = Inr v2) \<Longrightarrow> False"
lemma clop_Inf_closed_var: fixes f :: "'a::complete_lattice \<Rightarrow> 'a" shows "clop f \<Longrightarrow> f \<circ> Inf \<circ> (`) f = Inf \<circ> (`) f"
lemma(in padic_fields) prod_equal_val_imp_equal_val: assumes "a \<in> nonzero Q\<^sub>p" assumes "b \<in> carrier Q\<^sub>p" assumes "c \<in> carrier Q\<^sub>p" assumes "val (a \<otimes> b) = val (a \<otimes> c)" shows "val b = val c"
lemma incomplete_block_proper_subset: "incomplete_block bl \<Longrightarrow> bl \<subset> \<V>"
lemma G_in_rell: "rell_G L1 L2 = (\<lambda>x y. \<exists>z. (set1_G z \<subseteq> {(x, y). L1 x y} \<and> set2_G z \<subseteq> {(x, y). L2 x y}) \<and> mapl_G fst fst z = x \<and> mapl_G snd snd z = y)"
lemma no_zero_height_Exec_derivs1: "(M,l,(os,S,H),0,h,v):Exec \<Longrightarrow> False"
lemma extended_hyperb_ineq_4_points' [mono_intros]: "Min {extended_Gromov_product_at (e::'a::Gromov_hyperbolic_space) x y, extended_Gromov_product_at e y z, extended_Gromov_product_at e z t} \<le> extended_Gromov_product_at e x t + 2 * deltaG(TYPE('a))"
lemma fresh_star_set_eq: "set xs \<sharp>* c = xs \<sharp>* c"
lemma B_id_secure: assumes "\<And>tr vl vl1. B (V tr) vl1 \<Longrightarrow> validSystemTrace tr \<Longrightarrow> B_id (V tr) vl1" shows "secure"
lemma spmf_bind: "spmf (p \<bind> f) y = \<integral> x. spmf (f x) y \<partial>measure_spmf p"
lemma \<Z>_srngE[elim]: assumes "\<Z>_srng \<alpha> \<SS>" obtains "\<Z>_vfsequence \<alpha> \<SS>" and "vcard \<SS> = 3\<^sub>\<nat>" and "\<Z>_csgrp \<alpha> [\<SS>\<lparr>\<A>\<rparr>, \<SS>\<lparr>vplus\<rparr>]\<^sub>\<circ>" and "\<Z>_sgrp \<alpha> [\<SS>\<lparr>\<A>\<rparr>, \<SS>\<lparr>vmult\<rparr>]\<^sub>\<circ>" and "\<And>a b c. \<lbrakk> a \<in>\<^sub>\<circ> \<SS>\<lparr>\<A>\<rparr>; b \<in>\<^sub>\<circ> \<SS>\<lparr>\<A>\<rparr>; c \<in>\<^sub>\<circ> \<SS>\<lparr>\<A>\<rparr> \<rbrakk> \<Longrightarrow> (a +\<^sub>\<circ>\<^bsub>\<SS>\<^esub> b) *\<^sub>\<circ>\<^bsub>\<SS>\<^esub> c = (a *\<^sub>\<circ>\<^bsub>\<SS>\<^esub> c) +\<^sub>\<circ>\<^bsub>\<SS>\<^esub> (b *\<^sub>\<circ>\<^bsub>\<SS>\<^esub> c)" and "\<And>a b c. \<lbrakk> a \<in>\<^sub>\<circ> \<SS>\<lparr>\<A>\<rparr>; b \<in>\<^sub>\<circ> \<SS>\<lparr>\<A>\<rparr>; c \<in>\<^sub>\<circ> \<SS>\<lparr>\<A>\<rparr> \<rbrakk> \<Longrightarrow> a *\<^sub>\<circ>\<^bsub>\<SS>\<^esub> (b +\<^sub>\<circ>\<^bsub>\<SS>\<^esub> c) = (a *\<^sub>\<circ>\<^bsub>\<SS>\<^esub> b) +\<^sub>\<circ>\<^bsub>\<SS>\<^esub> (a *\<^sub>\<circ>\<^bsub>\<SS>\<^esub> c)"
lemma change_eval_lt: fixes x y:: "real" assumes "((aEvalUni (LessUni (a,b,c)) x \<noteq> aEvalUni (LessUni (a,b,c)) y) \<and> x < y)" shows "(\<exists>w. x \<le> w \<and> w \<le> y \<and> a*w^2 + b*w + c = 0)"
lemma GF_advice_a2: "\<lbrakk>X \<subseteq> \<G>\<F> \<phi> w; w \<Turnstile>\<^sub>n \<phi>[X]\<^sub>\<nu>\<rbrakk> \<Longrightarrow> w \<Turnstile>\<^sub>n \<phi>"
lemma NSBseq_isUb: "NSBseq X \<Longrightarrow> \<exists>U::real. isUb UNIV {x. \<exists>n. X n = x} U"
lemma t_heap_of_A_log_bound: "t_heap_of_A xs \<le> length xs * (nlog2 (length xs + 1) + 1)"
lemma L\<^sub>a_bounded: "bounded (range (\<lambda>a. L\<^sub>a a (apply_bfun v) s))"