Statement:
stringlengths
7
24.3k
lemma abs_ge_iff: "((x::real) \<le> abs y) = (x \<le> y \<or> x \<le> -y)"
lemma honest_verifier_ZK: shows "Schnorr_\<Sigma>.HVZK"
lemma splitFace_edges_incr: "pre_splitFace g ram1 ram2 f vs \<Longrightarrow> (f\<^sub>1, f\<^sub>2, g') = splitFace g ram1 ram2 f vs \<Longrightarrow> edges g \<subseteq> edges g'"
lemma f_Exec_Stream_expand_aggregate_map_nth: " \<lbrakk> 0 < k; n < length xs \<rbrakk> \<Longrightarrow> f_aggregate (map f (f_Exec_Comp_Stream trans_fun (xs \<odot>\<^sub>f k) c)) k ag ! n = ag (map f (f_Exec_Comp_Stream trans_fun (xs ! n # \<NoMsg>\<^bsup>k - Suc 0\<^esup>) (f_Exec_Comp trans_fun (xs \<down> n \<odot>\<^sub>f k) c)))"
lemma set_sort_on [simp]: shows "set (sort_key_on r f xs) = set xs"
lemma hpair_neq_Ord': assumes k: "Ord k" shows "k \<noteq> \<langle>x,y\<rangle>"
lemma thermostat: assumes "a > 0" and "0 < Tmin" and "Tmax < L" shows "(\<lambda>s. Tmin \<le> s$1 \<and> s$1 \<le> Tmax \<and> s$4 = 0) \<le> |LOOP \<comment> \<open>control\<close> ((2 ::= (\<lambda>s. 0));(3 ::= (\<lambda>s. s$1)); (IF (\<lambda>s. s$4 = 0 \<and> s$3 \<le> Tmin + 1) THEN (4 ::= (\<lambda>s.1)) ELSE (IF (\<lambda>s. s$4 = 1 \<and> s$3 \<ge> Tmax - 1) THEN (4 ::= (\<lambda>s.0)) ELSE skip)); \<comment> \<open>dynamics\<close> (IF (\<lambda>s. s$4 = 0) THEN (x\<acute>= f a 0 & (\<lambda>s. s$2 \<le> - (ln (Tmin/s$3))/a)) ELSE (x\<acute>= f a L & (\<lambda>s. s$2 \<le> - (ln ((L-Tmax)/(L-s$3)))/a))) ) INV (\<lambda>s. Tmin \<le>s$1 \<and> s$1 \<le> Tmax \<and> (s$4 = 0 \<or> s$4 = 1))] (\<lambda>s. Tmin \<le> s$1 \<and> s$1 \<le> Tmax)"
lemma distinct_zipI1: assumes "distinct xs" shows "distinct (zip xs ys)"
lemma invar_get_min_rest: assumes "get_min_rest ts = (t',ts')" assumes "ts\<noteq>[]" assumes "invar ts" shows "bheap t'" and "invar ts'"
lemma Sup_eq_maximum_componentwise: fixes s::"'a set" assumes i: "\<And>b. b \<in> Basis \<Longrightarrow> X \<bullet> b = i b \<bullet> b" assumes sup: "\<And>b x. b \<in> Basis \<Longrightarrow> x \<in> s \<Longrightarrow> x \<bullet> b \<le> X \<bullet> b" assumes i_s: "\<And>b. b \<in> Basis \<Longrightarrow> (i b \<bullet> b) \<in> (\<lambda>x. x \<bullet> b) ` s" shows "Sup s = X"
lemma plus_inverse_ge_2: fixes x :: real assumes "x > 0" shows "x + inverse x \<ge> 2"
lemma next_map_generator [simp]: "list.next (map_generator g) = apfst f \<circ> list.next g"
lemma PO_m1_refines_a0ii_ri [iff]: "refines (R_a0iim1_ri \<inter> a0i_inv1_iagree \<times> (m1_inv1r_cache \<inter> m1_inv0_fin)) med_a0iim1_ri a0i m1"
lemma below_Cinf[simp]: "r \<sqsubseteq> C\<^sup>\<infinity>"
lemma exec_eval_mono [rule_format]: "(s -c -n\<rightarrow> t \<longrightarrow> (\<forall>m. n \<le> m \<longrightarrow> s -c -m\<rightarrow> t)) \<and> (s -e\<succ>v-n\<rightarrow> t \<longrightarrow> (\<forall>m. n \<le> m \<longrightarrow> s -e\<succ>v-m\<rightarrow> t))"
lemma region_set_id: fixes X k defines "\<R> \<equiv> {region X I r |I r. valid_region X k I r}" assumes "R \<in> \<R>" "v \<in> R" "finite X" "0 \<le> c" "c \<le> k x" "x \<in> X" shows "[v(x := c)]\<^sub>\<R> = region_set R x c" "[v(x := c)]\<^sub>\<R> \<in> \<R>" "v(x := c) \<in> [v(x := c)]\<^sub>\<R>"
lemma sum_list_listset_dirsum : "add_independentS As \<Longrightarrow> as \<in> listset As \<Longrightarrow> sum_list as \<in> (\<Oplus>A\<leftarrow>As. A)"
lemma l1_implements_a0i [iff]: "implements med01ia a0i l1"
lemma per_exp: "u \<le>p r\<^sup>\<omega> \<Longrightarrow> u \<le>p r\<^sup>@k \<cdot> u"
lemma converse_product_overlap: "O x y \<Longrightarrow> O z (x \<otimes> y) \<Longrightarrow> O z y"
lemma truncate_up_shift_nat: "truncate_up p (x * 2 powr real k) = truncate_up p x * 2 powr k"
lemma eOp_nchotomy: "(\<exists> inp binp. einp = OKI inp \<and> igWlsInp MOD delta inp \<and> ebinp = OKI binp \<and> igWlsBinp MOD delta binp) \<or> (eOp MOD delta einp ebinp = ERR)"
lemma res_to_fun_monom: assumes "a \<in> carrier Zp" assumes "b \<in> carrier Zp" assumes "c \<in> carrier Zp" assumes "a k = b k" shows "(monom Zp_x c n \<bullet> a) k = (monom Zp_x c n \<bullet> b) k"
lemma inj_Pair_const2: "inj (\<lambda>k. (k, C))"
lemma "foldr\<cdot>trand\<cdot>TT = the_and"
lemma verts_reachable_connected: "verts G \<noteq> {} \<Longrightarrow> (\<forall>x\<in>verts G. \<forall>y\<in>verts G. x \<rightarrow>\<^sup>* y) \<Longrightarrow> connected G"
lemma nth_subst: "n < length A \<Longrightarrow> ($ S A)!n = $S (A!n)"
lemma dgrad_set_le_Un: "dgrad_set_le d (S \<union> T) U \<longleftrightarrow> (dgrad_set_le d S U \<and> dgrad_set_le d T U)"
lemma seqp_assignTE [elim]: "\<lbrakk>((\<xi>, {l}\<lbrakk>u\<rbrakk> p), a, (\<xi>', q)) \<in> seqp_sos \<Gamma>; \<lbrakk>a = \<tau>; \<xi>' = u \<xi>; q = p\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
lemma auto_split_lemma: "\<And>q ps res. auto_split A (delta A ps q) res ps xs = maxsplit (\<lambda>ys. fin A (delta A ys q)) res ps xs"
lemma constraint_model_Val_is_Value_term: assumes "welltyped_constraint_model I A" and "t \<cdot> I = Fun (Val n) []" shows "t = Fun (Val n) [] \<or> (\<exists>m. t = Var (TAtom Value, m))"
lemma deg_le_sectD: assumes "t \<in> deg_le_sect X d" shows "t \<in> .[X]" and "deg_pm t \<le> d"
lemma symm_trans: assumes "symp R" shows "symp R^++"
lemma eval_mod_exp_aux [simp]: "mod_exp_aux m y x 0 = y" "mod_exp_aux m y x (Suc 0) = (x * y) mod m" "mod_exp_aux m y x (numeral (num.Bit0 n)) = mod_exp_aux m y (x\<^sup>2 mod m) (numeral n)" "mod_exp_aux m y x (numeral (num.Bit1 n)) = mod_exp_aux m ((x * y) mod m) (x\<^sup>2 mod m) (numeral n)"
lemma none_MT_rulessep[rule_format]: "none_MT_rules C p \<longrightarrow> none_MT_rules C (separate p)"
lemma sq_mtx_minus_diag_diag[simp]: "sq_mtx_diag f - sq_mtx_diag g = (\<d>\<i>\<a>\<g> i. f i - g i)"
lemma (in category) id_arrow [intro]: assumes "A \<in> Ob" shows "Id A \<in> Ar"
lemma cs_sym: assumes "x \<down>\<^sup>* y" shows "y \<down>\<^sup>* x"
lemma F_UU: "F \<bottom> = {(s,X). front_tickFree s}"
lemma ESem_subst: shows "\<lbrakk> e \<rbrakk>\<^bsub>\<sigma>(x := \<sigma> y)\<^esub> = \<lbrakk> e[x::= y] \<rbrakk>\<^bsub>\<sigma>\<^esub>"
lemma [simp]: fixes r s::real shows is_interval_io: "is_interval {..<r}" and is_interval_oi: "is_interval {r<..}" and is_interval_oo: "is_interval {r<..<s}" and is_interval_oc: "is_interval {r<..s}" and is_interval_co: "is_interval {r..<s}"
lemma prior_in_space: "prior \<in> qbs_space (monadP_qbs (\<real>\<^sub>Q \<Rightarrow>\<^sub>Q \<real>\<^sub>Q))"
lemma common_decision: assumes run: "SHORun Ate_M rho HOs SHOs" and comm: "SHOcommPerRd Ate_M (HOs r) (SHOs r)" and nvp: "decide (rho r p) \<noteq> Some v" and vp: "decide (rho (Suc r) p) = Some v" and nwq: "decide (rho r q) \<noteq> Some w" and wq: "decide (rho (Suc r) q) = Some w" shows "w = v"
lemma pop_array_rule' [hoare_triple]: "n > 0 \<Longrightarrow> n \<le> length xs \<Longrightarrow> <dyn_array_raw (xs, n) p> pop_array p <\<lambda>(x, r). dyn_array_raw (xs, n - 1) r * \<up>(x = xs ! (n - 1))>"
lemma atm_imp_pos_or_neg_lit: "A \<in> atms_of C \<Longrightarrow> Pos A \<in># C \<or> Neg A \<in># C"
lemma cf_const_if_HomDom_is_cat_1: assumes "\<KK> : cat_1 \<aa> \<ff> \<mapsto>\<mapsto>\<^sub>C\<^bsub>\<alpha>\<^esub> \<CC>" shows "\<KK> = cf_const (cat_1 \<aa> \<ff>) \<CC> (\<KK>\<lparr>ObjMap\<rparr>\<lparr>\<aa>\<rparr>)"
lemma presCons_fromIMor[simp]: assumes "ipresCons h hA (fromMOD MOD)" shows "presCons (fromIMor h) (fromIMorAbs hA) MOD"
lemma singular_relboundary_ss: "singular_relboundary p X S x \<Longrightarrow> Poly_Mapping.keys x \<subseteq> singular_simplex_set p X"
lemma SFD_validTrans: assumes "validTrans trn" and "UID' \<in>\<in> friendIDs (tgtOf trn) UID" shows "\<not> SFD UID UID' trn \<and> \<not> SFD UID' UID trn"
lemma simple_cg_closure_phase_1_helper'_validity_fst : assumes "observable M1" and "observable M2" and "\<And> u v . u |\<in>| x \<Longrightarrow> v |\<in>| x \<Longrightarrow> u \<in> L M1 \<Longrightarrow> u \<in> L M2 \<Longrightarrow> converge M1 u v \<and> converge M2 u v" and "\<And> u v . u |\<in>| x1 \<Longrightarrow> v |\<in>| x1 \<Longrightarrow> u \<in> L M1 \<Longrightarrow> u \<in> L M2 \<Longrightarrow> converge M1 u v \<and> converge M2 u v" and "\<And> x2 u v . x2 \<in> list.set xs \<Longrightarrow> u |\<in>| x2 \<Longrightarrow> v |\<in>| x2 \<Longrightarrow> u \<in> L M1 \<Longrightarrow> u \<in> L M2 \<Longrightarrow> converge M1 u v \<and> converge M2 u v" and "u |\<in>| fst (snd (simple_cg_closure_phase_1_helper' x x1 xs))" and "v |\<in>| fst (snd (simple_cg_closure_phase_1_helper' x x1 xs))" and "u \<in> L M1" and "u \<in> L M2" shows "converge M1 u v \<and> converge M2 u v"
lemma cont_pathsCard[THEN cont_compose, cont2cont, simp]: "cont pathsCard"
lemma sat_push_edge_action_bound': assumes "((f,l),p,(f',l')) \<in> trcl pr_algo_lts'" shows "length (filter ((=) (SAT_PUSH' e)) p) \<le> 2*card V"
lemma free_after_alloc: assumes "alloc h c s = Success (h', cap)" shows "\<exists>! ret. free h' cap = Success ret"
lemma lnth_subset_Sup_llist: "enat i < llength Xs \<Longrightarrow> lnth Xs i \<subseteq> Sup_llist Xs"
lemma UP_smult_zero [simp]: "p \<in> carrier P ==> \<zero> \<odot>\<^bsub>P\<^esub> p = \<zero>\<^bsub>P\<^esub>"
lemma (in group) generate_is_subgroup: assumes "H \<subseteq> carrier G" shows "subgroup (generate G H) G"
lemma vars_mset_psubset_uniflessI [intro]: "vars_mset M \<subset> vars_mset N \<Longrightarrow> (M, N) \<in> unifless"
lemma star_n_L_split_equal: "n(x * y) \<le> n(y) \<Longrightarrow> x\<^sup>\<star> * n(y) * L = x\<^sup>\<star> * bot \<squnion> n(y) * L"
lemma sublist_el': \<open>i \<le> j \<Longrightarrow> j < length xs \<Longrightarrow> x \<in> set (sublist xs i j) \<equiv> (\<exists> k. i\<le>k\<and>k\<le>j \<and> xs!k=x)\<close>
lemma WeakCojunctive_Healthy_Refinement: assumes "WeakConjunctive(HC)" and "P is HC" shows "HC(P) \<sqsubseteq> P"
lemma log_floor_sound: assumes "b > 1" "x > 0" "log_floor b x = y" shows "b^y \<le> x" "x < b^(Suc y)"
lemma enabled_ex_taken: assumes \<open>epath steps\<close> \<open>Saturated steps\<close> \<open>enabled r (fst (shd steps))\<close> shows \<open>\<exists>k. takenAtStep r (shd (sdrop k steps))\<close>
lemma id_simps: "(vid1 = vid2) = False" "(vid2 = vid3) = False" "(vid1 = vid3) = False" "(fid1 = fid2) = False" "(fid2 = fid3) = False" "(fid1 = fid3) = False" "(pid1 = pid2) = False" "(pid2 = pid3) = False" "(pid1 = pid3) = False" "(pid1 = pid4) = False" "(pid2 = pid4) = False" "(pid3 = pid4) = False" "(vid2 = vid1) = False" "(vid3 = vid2) = False" "(vid3 = vid1) = False" "(fid2 = fid1) = False" "(fid3 = fid2) = False" "(fid3 = fid1) = False" "(pid2 = pid1) = False" "(pid3 = pid2) = False" "(pid3 = pid1) = False" "(pid4 = pid1) = False" "(pid4 = pid2) = False" "(pid4 = pid3) = False"
lemma fixed_point_congruence: assumes "order G = p ^ a" assumes "prime p" assumes finM:"finite M" shows "card M mod p = card fixed_points mod p"
lemma lowlink_path_complex: assumes "(u,v) \<in> (tree_edges s)\<^sup>+" and "u \<in> dom (finished s) \<or> (stack s \<noteq> [] \<and> u = hd (stack s))" and "(v,w) \<in> cross_edges s \<union> back_edges s" shows "\<exists>p. lowlink_path s u p w"
lemma add\<^sub>O': "\<langle>addO n m\<rangle>\<^sub>O = add\<^sub>O \<langle>n\<rangle>\<^sub>O \<langle>m\<rangle>\<^sub>O"
lemma real_lim_then_eventually_real: assumes "(u \<longlongrightarrow> ereal l) F" shows "eventually (\<lambda>n. u n = ereal(real_of_ereal(u n))) F"
lemma eventually_nat_real: assumes "eventually P (at_top :: real filter)" shows "eventually (\<lambda>x. P (real x)) (at_top :: nat filter)"
lemma ground_iff_no_vars: "ground (M::('a,'b) terms) \<longleftrightarrow> (\<forall>v. Var v \<notin> (\<Union>m \<in> M. subterms m))"
lemma prefix_fin_prefix_fininf_trans[trans, intro]: "u \<le> v \<Longrightarrow> v \<le>\<^sub>F\<^sub>I w \<Longrightarrow> u \<le>\<^sub>F\<^sub>I w"
lemma lang_lang_trad: "lang = to_language (lang_trad G)"
lemma norm_respects_equiv: assumes "equiv t u" shows "\<^bold>\<parallel>t\<^bold>\<parallel> = \<^bold>\<parallel>u\<^bold>\<parallel>"
lemma after_exists: "|~ (\<exists> x. P x)` = (\<exists> x. (P x)`)"
theorem ltl_FG_logical_characterization: "w \<Turnstile> F G \<phi> \<longleftrightarrow> (\<exists>\<G> \<subseteq> \<^bold>G (F G \<phi>). G \<phi> \<in> \<G> \<and> closed \<G> w)" (is "?lhs \<longleftrightarrow> ?rhs")
lemma sources_cod [simp]: assumes "arr \<mu>" shows "sources (cod \<mu>) = sources \<mu>"
lemma (in qmpt) qmpt_factorI: assumes "proj \<in> quasi_measure_preserving M M2" "AE x in M. proj (T x) = T2 (proj x)" "qmpt M2 T2" shows "qmpt_factor proj M2 T2"
lemma osubst_preserves_semBV: shows "semBV I (OsubstFO ODE \<sigma>) = semBV (adjointFO I \<sigma> \<nu>) ODE"
lemma has_integral_divide: fixes c :: "_ :: real_normed_div_algebra" shows "(f has_integral y) S \<Longrightarrow> ((\<lambda>x. f x / c) has_integral (y / c)) S"
lemma count_space_PiM_finite: fixes B :: "'a \<Rightarrow> 'b set" assumes "finite A" "\<And>i. countable (B i)" shows "PiM A (\<lambda>i. count_space (B i)) = count_space (PiE A B)"
lemma Cons_listrel1E2[elim!]: assumes "(xs, y # ys) \<in> listrel1 r" and "\<And>x. xs = x # ys \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> R" and "\<And>zs. xs = y # zs \<Longrightarrow> (zs, ys) \<in> listrel1 r \<Longrightarrow> R" shows R
lemma Poly_snoc: "Poly (xs @ [x]) = Poly xs + monom x (length xs)"
lemma stake_pos_minWait: assumes rs: "fair rs" and m: "minWait rs s < pos rs r" and r: "r \<in> R" and s: "s \<in> S" shows "pos (stl (trim rs s)) r = pos rs r - Suc (minWait rs s)"
lemma mod_eq_imp_eq: "\<lbrakk>b \<le> x; x < b + N; b \<le> y; y < b + N; x mod N = y mod N \<rbrakk> \<Longrightarrow> x=y"
lemma ufa_init_correct: "ufa_\<alpha> [0..<n] = {(x,x) | x. x<n}"
lemma isLimOrd_aboveS: assumes l: isLimOrd and i: "i \<in> Field r" shows "aboveS i \<noteq> {}"
lemma option2set_None: "option2set None = {}"
lemma Diff1_foldSetD: "\<lbrakk>(A - {x}, y) \<in> foldSetD D f e; x \<in> A; f x y \<in> D\<rbrakk> \<Longrightarrow> (A, f x y) \<in> foldSetD D f e"
lemma Qp_times_basic_semialg_left: assumes "a \<in> carrier (Q\<^sub>p[\<X>\<^bsub>n\<^esub>])" shows "cartesian_product (carrier (Q\<^sub>p\<^bsup>m\<^esup>)) (basic_semialg_set n k a) = basic_semialg_set (n+m) k (shift_vars n m a)"
lemma ecut_apply: "y \<^bold>\<in> eclose x \<Longrightarrow> ecut f x y = f y"
lemma run_reachable[simp]: "reachable (s i)"
lemma hd_im_comm_eq: assumes "g w = h w" and "w \<noteq> \<epsilon>" and comm: "g\<^sup>\<C> (hd w) \<cdot> h\<^sup>\<C>(hd w) = h\<^sup>\<C> (hd w) \<cdot> g\<^sup>\<C>(hd w)" shows "g\<^sup>\<C> (hd w) = h\<^sup>\<C> (hd w)"
lemma ball_simps [simp, no_atp]: "\<And>A P Q. fBall A (\<lambda>x. P x \<or> Q) = (fBall A P \<or> Q)" "\<And>A P Q. fBall A (\<lambda>x. P \<or> Q x) = (P \<or> fBall A Q)" "\<And>A P Q. fBall A (\<lambda>x. P \<longrightarrow> Q x) = (P \<longrightarrow> fBall A Q)" "\<And>A P Q. fBall A (\<lambda>x. P x \<longrightarrow> Q) = (fBex A P \<longrightarrow> Q)" "\<And>P. fBall {||} P = True" "\<And>a B P. fBall (finsert a B) P = (P a \<and> fBall B P)" "\<And>A P f. fBall (f |`| A) P = fBall A (\<lambda>x. P (f x))" "\<And>A P. (\<not> fBall A P) = fBex A (\<lambda>x. \<not> P x)"
lemma matches_iff: "matches t p \<longleftrightarrow> (\<exists>\<sigma>. p \<cdot> \<sigma> = t)"
lemma integrable_continuous: fixes f :: "'b::euclidean_space \<Rightarrow> 'a::banach" assumes "continuous_on (cbox a b) f" shows "f integrable_on cbox a b"
lemma wpo_ns_refl: shows "s \<succeq> s"
lemma find_index_append: "find_index P (xs @ ys) = (if \<exists>x\<in>set xs. P x then find_index P xs else size xs + find_index P ys)"
lemma has_integral_localized_vector_derivative: "((\<lambda>x. f (g x) * vector_derivative p (at x within {a..b})) has_integral i) {a..b} \<longleftrightarrow> ((\<lambda>x. f (g x) * vector_derivative p (at x)) has_integral i) {a..b}"
lemma cf_const_is_tiny_functor: assumes "tiny_category \<alpha> \<CC>" and "tiny_category \<alpha> \<DD>" and "a \<in>\<^sub>\<circ> \<DD>\<lparr>Obj\<rparr>" shows "cf_const \<CC> \<DD> a : \<CC> \<mapsto>\<mapsto>\<^sub>C\<^sub>.\<^sub>t\<^sub>i\<^sub>n\<^sub>y\<^bsub>\<alpha>\<^esub> \<DD>"
lemma alphaAbs_qAbs_imp_alphaAbs_all_distinct_qAFresh: assumes "qGood X" and "qAbs xs x X $= qAbs xs' x' X'" shows "alphaAbs_all_distinct_qAFresh xs x X xs' x' X'"
lemma primitive_iff_separable_lemma: assumes prod: "(\<forall>n. \<chi> n = \<Phi> n * \<chi>\<^sub>1 n) \<and> primitive_dchar d \<Phi>" assumes \<open>d > 1\<close> \<open>0 < k\<close> \<open>d dvd k\<close> \<open>k > 1\<close> shows "(\<Sum>m | m \<in> {1..k} \<and> coprime m k. \<Phi>(m) * unity_root d m) = (totient k div totient d) * (\<Sum>m | m \<in> {1..d} \<and> coprime m d. \<Phi>(m) * unity_root d m)"