Statement:
stringlengths 7
24.3k
|
---|
lemma Suc_length_remove1: "x \<in> set xs \<Longrightarrow> Suc (length (remove1 x xs)) = length xs" |
lemma fold_conv_fold_keys: "RBT_Set2.fold f rbt b = List.fold f (RBT_Set2.keys rbt) b" |
lemma D\<^sub>i: "\<^bold>\<forall>x.\<^bold>\<exists>j. ID j \<^bold>\<and> x\<cdot>j \<cong> x" |
lemma trans_S_point: "\<And> x y z. (x, y) \<in> S \<Longrightarrow> (y, z) \<in> S \<Longrightarrow> (x, z) \<in> S" |
lemma (in finite_boolean_algebra) UNIV_card:
"card (UNIV::'a set) = card (Pow \<J>)" |
lemma neg_Idef: "\<forall>A. \<^bold>\<not>A \<^bold>\<approx> \<I>(\<^bold>\<midarrow>A) \<^bold>\<or> Q" |
lemma bits_div_by_0 [simp]:
\<open>a div 0 = 0\<close> |
lemma while_sup_one_left_unfold:
"1 \<le> x \<Longrightarrow> x * (x \<star> y) = x \<star> y" |
lemma proj4_eq_flag: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>4(the (rt dip)) = the (flag rt dip)" |
lemma L4_2c:
assumes run: "ipath gba.E \<sigma>"
and "\<mu> R\<^sub>r \<eta> \<in> old (\<sigma> 0)"
shows "\<forall>i. \<eta> \<in> old (\<sigma> i) \<or> (\<exists>j<i. \<mu> \<in> old (\<sigma> j))" |
lemma filtermap_eq_append:
assumes "filtermap pred func tr = al1 @ al2"
shows "\<exists> tr1 tr2. tr = tr1 @ tr2 \<and> filtermap pred func tr1 = al1 \<and> filtermap pred func tr2 = al2" |
lemma lbisimulation_this: "lbisimulation R A B" |
lemma (in kat) "test p \<Longrightarrow> test q \<Longrightarrow> p \<cdot> x \<cdot> y \<le> x \<cdot> y \<cdot> q \<Longrightarrow>(\<exists>r. test r \<and> p \<cdot> x \<le> x \<cdot> r \<and> r \<cdot> y \<le> y \<cdot> q)" |
lemma abs_conv_abscissa_prod_le:
assumes "\<And>x. x \<in> A \<Longrightarrow> abs_conv_abscissa (f x :: 'a :: dirichlet_series fds) \<le> d"
shows "abs_conv_abscissa (prod f A) \<le> d" |
lemma sleq_refl: "sleq x x" |
lemma [simp]: "pc\<^sub>1 + size(compE\<^sub>2 e\<^sub>1) \<le> pc\<^sub>2 \<Longrightarrow> pcs(compxE\<^sub>2 e\<^sub>1 pc\<^sub>1 d\<^sub>1) \<inter> pcs(compxE\<^sub>2 e\<^sub>2 pc\<^sub>2 d\<^sub>2) = {}" |
lemma analz_Un: "analz G \<union> analz H \<subseteq> analz (G \<union> H)" |
lemma "\<not> p2 n" |
lemma ideal_generated_pair_exists_UNIV:
shows "(ideal_generated {a,b} = ideal_generated {1}) = (\<exists>p q. p*a+q*b = 1)" (is "?lhs = ?rhs") |
lemma (in Order) fTo_conditional_Un_Chain_mem2:" \<lbrakk>C \<in> carrier (fTo D);
Chain (Iod (fTo D) {S \<in> carrier fTo D. C \<subseteq> S}) Ca; Ca = {}\<rbrakk> \<Longrightarrow>
C \<in> upper_bounds (Iod (fTo D) {S \<in> carrier (fTo D). C \<subseteq> S}) Ca" |
lemma simpleDefs_phiDefs_var_disjoint:
assumes "v \<in> phiDefs g n" "n \<in> set (\<alpha>n g)"
shows "var g v \<notin> oldDefs g n" |
lemma subst_psubst: "\<lbrakk> closed_env \<rho>; FV v = {} \<rbrakk> \<Longrightarrow>
subst x v (psubst ((x, EVar x) # \<rho>) e) = psubst ((x, v) # \<rho>) e" |
lemma sseq_imp_seq:
shows "sseq t u \<Longrightarrow> seq t u" |
lemma E_nonneg_fun: fixes f::"'a\<Rightarrow>real"
shows "(\<forall>x\<in>set_pmf X. 0\<le>f x) \<Longrightarrow> 0 \<le> E (map_pmf f X)" |
lemma (in Group) Qg_i:"G \<triangleright> N \<Longrightarrow>
\<forall>x \<in> set_rcs G N. c_top G N (c_iop G N x) x = N" |
lemma \<tau>Exec_1_dt_preserves_correct_state:
assumes wf: "wf_jvm_prog\<^bsub>\<Phi>\<^esub> P"
and exec: "\<tau>Exec_1_dt P t \<sigma> \<sigma>'"
shows "\<Phi> |- t:\<sigma> [ok] \<Longrightarrow> \<Phi> |- t:\<sigma>' [ok]" |
lemma CK_nf_pos_neg_disjoint:
assumes "CK_nf_pos f"
assumes "CK_nf_neg g"
shows "f \<noteq> g" |
lemma uncurry0_add_app_tag: "uncurry0 (RETURN c) = uncurry0 (RETURN$c)" |
lemma totatives_subset: "totatives n \<subseteq> {0<..n}" |
lemma SpecAnnoNoAbrupt:
"\<lbrakk>P \<subseteq> {s. \<exists> Z. s\<in>P' Z \<and>
(\<forall>t. t \<in> Q' Z \<longrightarrow> t \<in> Q)};
\<forall>Z. \<Gamma>,\<Theta>\<turnstile>\<^sub>t\<^bsub>/F\<^esub> (P' Z) (c Z) (Q' Z),{};
\<forall>Z. c Z = c undefined
\<rbrakk> \<Longrightarrow>
\<Gamma>,\<Theta>\<turnstile>\<^sub>t\<^bsub>/F\<^esub> P (specAnno P' c Q' (\<lambda>s. {})) Q,A" |
lemma keys_of_delete [rewrite]:
"keys_of (delete_map x M) = keys_of M - {x}" |
lemma "(Node (3::int) Leaf Leaf) \<otimes> (Node (1::int) Leaf Leaf) = (Node 4 Leaf Leaf)" |
lemma append_eq_symm: "t2 @ t1 \<sim> t1 @ t2" |
lemma Diff_triv_mset: "M \<inter># N = {#} \<Longrightarrow> M - N = M" |
lemma Lp_infinity_zero_space:
assumes "p > (0::ennreal)"
shows "zero_space\<^sub>N (\<LL> p M) = {f \<in> borel_measurable M. AE x in M. f x = 0}" |
lemma in_hhomI [intro, simp]:
assumes "arr \<mu>" and "src \<mu> = a" and "trg \<mu> = b"
shows "\<guillemotleft>\<mu> : a \<rightarrow> b\<guillemotright>" |
lemma analz_insert_Pan [simp]:
"analz (insert (Pan A) H) = insert (Pan A) (analz H)" |
lemma not_equiv_funI:
assumes "\<And>c\<^sub>1 c\<^sub>2 n. c\<^sub>1 > 0 \<Longrightarrow> c\<^sub>2 > 0 \<Longrightarrow>
\<exists>m>n. c\<^sub>1 * f m < g m \<or> c\<^sub>2 * g m < f m"
shows "\<not> f \<cong> g" |
lemma Cod_dom [simp]:
assumes "arr f"
shows "Cod (dom f) = Dom f" |
lemma local_lipschitz_therm_dyn:
assumes "0 < (a::real)"
shows "local_lipschitz UNIV UNIV (\<lambda>t::real. f a L)" |
lemma first_t_fusion [simp]: "last x = first y \<Longrightarrow> first (t_fusion x y) = first x" |
lemma map_getOneIp_distinct: assumes
distinct: "distinct xs"
and disjoint: "(\<forall>x1 \<in> set xs. \<forall>x2 \<in> set xs. x1 \<noteq> x2 \<longrightarrow> wordinterval_to_set x1 \<inter> wordinterval_to_set x2 = {})"
and notempty: "\<forall>x \<in> set xs. \<not> wordinterval_empty x"
shows "distinct (map getOneIp xs)" |
lemma lower_triangular_mult:
assumes "lower_triangular_mat X" "lower_triangular_mat Y"
shows "lower_triangular_mat (X ** Y)" |
lemma min_plus_max:
shows "(min a b) + (max a b) = a + b" |
lemma odd_real_root_pow: "odd n \<Longrightarrow> root n x ^ n = x" |
lemma DomainHierarchyNG_offending_set: "SecurityInvariant_withOffendingFlows.set_offending_flows sinvar = DomainHierarchyNG_offending_set" |
lemma impl_of_delete [code abstract]:
"impl_of (delete k al) = AList.delete_aux k (impl_of al)" |
lemma (in ShareRep_impl) ShareRep_modifies:
shows "\<forall>\<sigma>. \<Gamma>\<turnstile>{\<sigma>} PROC ShareRep (\<acute>nodeslist, \<acute>p)
{t. t may_only_modify_globals \<sigma> in [rep]}" |
lemma hermitean_det_zero_trace_zero:
assumes "mat_det A = 0" and "mat_trace A = (0::complex)" and "hermitean A"
shows "A = mat_zero" |
lemma delete_index_ge_length: "n \<ge> length xs \<Longrightarrow> delete_index n xs = xs" |
lemma ennreal_mult_eq_top_iff:
fixes a b :: ennreal
shows "a * b = top \<longleftrightarrow> (a = top \<and> b \<noteq> 0) \<or> (b = top \<and> a \<noteq> 0)" |
lemma pair_subst_ident[intro]: "(fv t \<union> fv t') \<inter> subst_domain \<theta> = {} \<Longrightarrow> (t,t') \<cdot>\<^sub>p \<theta> = (t,t')" |
lemma foldl_map_append_is_some_if:
assumes "b x = Some y \<or> (\<exists>m \<in> set ms. m x = Some y)"
and "\<forall>m' \<in> set ms. m' x = Some y \<or> m' x = None"
shows "foldl (++) b ms x = Some y" |
lemma triangle_set_graph_edge_ss_bound:
fixes G :: "ugraph" and Gnew :: "ugraph"
assumes "uwellformed G" "finite (uverts G)" "uedges Gnew \<subseteq> uedges G" "uverts Gnew = uverts G"
shows "card (triangle_set G) \<ge> card (triangle_set Gnew)" |
lemma n_omega_mult:
"n(x\<^sup>\<omega> * y) = n(x\<^sup>\<omega>)" |
lemma assign_local_skip:
"\<lbrace>\<lambda>\<sigma>. exec_stop \<sigma> \<and> P \<sigma> \<rbrace> upd :==\<^sub>L rhs \<lbrace>\<lambda>r \<sigma>. exec_stop \<sigma> \<and> P \<sigma> \<rbrace>" |
lemma mkeps_flat:
assumes "nullable(r)"
shows "flat (mkeps r) = []" |
lemma finite_gpv_lift_spmf [simp]: "finite_gpv (lift_spmf p)" |
lemma
assumes "lockstep_backward_simulation step1 step2 match"
shows "plus_backward_simulation step1 step2 match" |
lemma ub_exp_nonneg: "real_of_float (ub_exp prec x) \<ge> 0" |
lemma in_trancl_closure_iff_in_trancl_fun:
"(a,b) \<in> (set TI)\<^sup>+ \<longleftrightarrow> in_trancl TI a b" (is "?A TI a b \<longleftrightarrow> ?B TI a b") |
lemma matchCases[consumes 1, case_names cMatch]:
fixes a :: name
and b :: name
and P :: pi
and Rs :: residual
and F :: "name \<Rightarrow> name \<Rightarrow> bool"
assumes "[a\<frown>b]P \<longmapsto> Rs"
and "\<lbrakk>P \<longmapsto> Rs; a = b\<rbrakk> \<Longrightarrow> F a a"
shows "F a b" |
lemma ground_aux_simps[simp]:
"ground_aux zer S = True"
"ground_aux (Var k) S = (if atom k \<in> S then True else False)"
"ground_aux (suc t) S = (ground_aux t S)"
"ground_aux (pls t u) S = (ground_aux t S \<and> ground_aux u S)"
"ground_aux (tms t u) S = (ground_aux t S \<and> ground_aux u S)" |
lemma lambda_predicates_3_2[axiom]:
"[[(\<^bold>\<lambda>\<^sup>2 (\<lambda> x y . \<lparr>F, x\<^sup>P, y\<^sup>P\<rparr>)) \<^bold>= F]]" |
lemma Un_set_offending_flows_bound_minus_subseteq:
assumes wfG: "wf_graph \<lparr> nodes = V, edges = E \<rparr>"
and Foffending: "\<Union> (set_offending_flows \<lparr>nodes = V, edges = E\<rparr> nP) \<subseteq> X"
shows "\<Union> (set_offending_flows \<lparr>nodes = V, edges = E - E'\<rparr> nP) \<subseteq> X - E'" |
lemma add_root[simp]: "z \<cdot> w \<in> z* \<longleftrightarrow> w \<in> z*" |
lemma ltln_Release_alterdef:
"w \<Turnstile>\<^sub>n \<phi> R\<^sub>n \<psi> \<longleftrightarrow> w \<Turnstile>\<^sub>n (G\<^sub>n \<psi>) or\<^sub>n (\<psi> U\<^sub>n (\<phi> and\<^sub>n \<psi>))" |
theorem encode_problem_serializable_sound:
assumes "is_valid_problem_strips \<Pi>"
and "\<A> \<Turnstile> \<Phi>\<^sub>\<forall> \<Pi> t"
shows "is_parallel_solution_for_problem \<Pi> (\<Phi>\<inverse> \<Pi> \<A> t)"
and "\<forall>k < length (\<Phi>\<inverse> \<Pi> \<A> t). are_all_operators_non_interfering ((\<Phi>\<inverse> \<Pi> \<A> t) ! k)" |
lemma prodinf_power: "convergent_prod f \<Longrightarrow> prodinf (\<lambda>i. f i ^ n) = prodinf f ^ n" |
lemma sas_plus_formalism_and_induced_strips_formalism_are_equally_expressive_ii_b:
assumes "is_valid_problem_sas_plus \<Psi>"
shows "finite (bounded_solution_set_strips' (\<phi> \<Psi>) k)" |
lemma (in wide_subsemicategory) wide_subsemicategory_axioms'[smc_cs_intros]:
assumes "\<alpha>' = \<alpha>" and "\<BB>' = \<BB>"
shows "\<BB>' \<subseteq>\<^sub>S\<^sub>M\<^sub>C\<^sub>.\<^sub>w\<^sub>i\<^sub>d\<^sub>e\<^bsub>\<alpha>'\<^esub> \<CC>" |
lemma covib:"ov^-1 O b \<subseteq> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1" |
lemma nemp_exp_pos[intro]: "w \<noteq> \<epsilon> \<Longrightarrow> r\<^sup>@k = w \<Longrightarrow> k \<noteq> 0" |
lemma PO_m2_inv2_trans [iff]:
"{m2_inv1_auth} trans m2 {> m2_inv1_auth}" |
lemma equal_pow_resI''':
assumes "n > 0"
assumes "a \<in> nonzero Q\<^sub>p"
assumes "b \<in> nonzero Q\<^sub>p"
assumes "c \<in> nonzero Q\<^sub>p"
assumes "pow_res n (c \<otimes> a) = pow_res n (c \<otimes> b)"
shows "pow_res n a = pow_res n b" |
lemma smaller_compatible_core:
assumes "y \<succeq> x"
shows "x ## |y|" |
lemma NonUniformExecutionBase:
fixes
cfg
assumes
Cfg: "initial cfg" "nonUniform cfg"
shows
"execution trans sends start [cfg] []
\<and> nonUniform (last [cfg])
\<and> (\<exists> cfgList' msgList'. nonUniform (last cfgList')
\<and> prefixList [cfg] cfgList'
\<and> prefixList [] msgList'
\<and> (execution trans sends start cfgList' msgList')
\<and> (\<exists> msg'. execution.minimalEnabled [cfg] [] msg'
\<and> msg' \<in> set msgList'))" |
theorem hoaret_complete: "\<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> \<turnstile>\<^sub>t {P}c{Q}" |
lemma eq_scheduler_refl[intro]: "eq_scheduler sc sc" |
lemma scene_space_compats [simp]: "pairwise (##\<^sub>S) (set Vars)" |
lemma nonneg_Reals_cases:
assumes "x \<in> \<real>\<^sub>\<ge>\<^sub>0"
obtains r where "x = of_real r" "r \<ge> 0" |
lemma Card_gcard [iff]: "Card (gcard X)" |
lemma wf_greater_bounded[simp, intro!]: "wf (greater_bounded N)" |
lemma div_reals [simp]:
assumes "is_real a" and "is_real b"
shows "is_real (a / b)" |
lemma phi_coset_eq_self:
assumes "a \<in> G // K"
shows "\<phi> a \<cdot>| K = a" |
lemma zipRT_identity: "Done\<cdot>ID \<diamondop> r = r" |
lemma rel_spmf_simps:
"rel_spmf R p q \<longleftrightarrow> (\<exists>pq. (\<forall>(x, y)\<in>set_spmf pq. R x y) \<and> map_spmf fst pq = p \<and> map_spmf snd pq = q)" |
lemma surj_exception_of_option [simp]: "surj exception_of_option" |
lemma square_subset:
"[| square R S T U; T \<le> T' |] ==> square R S T' U" |
lemma N2_enabled_at_b: "\<turnstile> pc2 = #b \<longrightarrow> Enabled (<N2>_(x,y,sem,pc1,pc2))" |
lemma inext_mono2_infin_fin: "
\<lbrakk> n \<in> I; n \<noteq> Max I \<or> infinite I \<rbrakk> \<Longrightarrow> n < inext n I" |
lemma psubst_ode:
assumes good_interp:"is_interp I"
shows "ODE_sem I ODE = ODE_sem (PFadjoint I \<sigma>) ODE" |
lemma InvariantImpliedLiteralsAndFormulaFalseThenFormulaAndDecisionsAreNotSatisfiable:
fixes M :: LiteralTrail and F :: Formula
assumes "InvariantImpliedLiterals F M" and "formulaFalse F (elements M)"
shows "\<not> satisfiable (F @ val2form (decisions M))" |
lemma nth_imp_genPrefix:
"length xs <= length ys \<Longrightarrow>
(\<forall>i. i < length xs \<longrightarrow> (xs ! i, ys ! i) \<in> r) \<Longrightarrow>
(xs, ys) \<in> genPrefix r" |
lemma sim_refl: "E,E: s \<sqsubseteq>\<^sub>id s" |
lemma a_redu_NotL_elim:
assumes a: "NotL <a>.M x \<longrightarrow>\<^sub>a R"
shows "\<exists>M'. R = NotL <a>.M' x \<and> M\<longrightarrow>\<^sub>aM'" |
lemma SD_implies_BSD :
"(SD \<V> Tr\<^bsub>ES\<^esub>) \<Longrightarrow> BSD \<V> Tr\<^bsub>ES\<^esub> " |
lemma drinks_0_rejects:
"\<not> (fst a = STR ''select'' \<and> length (snd a) = 1) \<Longrightarrow>
(possible_steps drinks 0 r (fst a) (snd a)) = {||}" |
lemma eval_subst:
"eval \<phi> = Yes \<Longrightarrow> eval (subst \<phi> m) = Yes"
"eval \<phi> = No \<Longrightarrow> eval (subst \<phi> m) = No" |
lemma lNact_notActive:
fixes c t n k
assumes "k\<ge>\<langle>c \<Leftarrow> t\<rangle>\<^bsub>n\<^esub>"
and "k<n"
shows "\<not>\<parallel>c\<parallel>\<^bsub>t k\<^esub>" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.