Statement:
stringlengths 7
24.3k
|
---|
lemma two_step_zero [simp]: "two_step 0 = 0" |
lemma tMap_tLast_inv:
assumes M: "tMap f t = tMap f' t'"
shows "f (tLast t) = f' (tLast t')" |
lemma jvm_InitDP:
"\<lbrakk> ics_of f = Calling C Cs;
sh C = \<lfloor>(sfs,i)\<rfloor>; i = Done \<or> i = Processing \<rbrakk>
\<Longrightarrow> P \<turnstile> (None,h,f#frs,sh) -jvm\<rightarrow> (None,h,(calling_to_scalled f)#frs,sh)"
(is "\<lbrakk> ?P; ?Q; ?R \<rbrakk> \<Longrightarrow> P \<turnstile> ?s1 -jvm\<rightarrow> ?s2") |
lemma clearjunk_map:
assumes "\<And>kv. fst (f kv) = fst kv"
shows "clearjunk (map f ps) = map f (clearjunk ps)" |
lemma
assumes \<D>: "\<D> division_of S"
shows lmeasurable_division: "S \<in> lmeasurable" (is ?l)
and content_division: "(\<Sum>k\<in>\<D>. measure lebesgue k) = measure lebesgue S" (is ?m) |
lemma fiter_induct_nil: "x \<sqsubseteq> nil \<sqinter> c;x \<Longrightarrow> x \<sqsubseteq> c\<^sup>\<star>" |
lemma NEQ_DEP_IMP_IN_DOM:
fixes PROB :: "(('a, 'b) fmap \<times> ('a, 'b) fmap) set" and v v'
assumes "\<not>(v = v')" "(dep PROB v v')"
shows "(v \<in> (prob_dom PROB) \<and> v' \<in> (prob_dom PROB))" |
lemma entries_rbtreeify_g [simp]:
"n \<le> Suc (length kvs) \<Longrightarrow>
entries (fst (rbtreeify_g n kvs)) = take (n - 1) kvs" |
lemma satisfies_bounded_nFEx: "\<AA> \<Turnstile>\<^sub>b nFEx b \<phi> \<longleftrightarrow> \<AA> \<Turnstile>\<^sub>b FEx b \<phi>" |
lemma anga_out_anga:
assumes "QCongAAcute a" and
"a A B C" and
"B Out A A'" and
"B Out C C'"
shows "a A' B C'" |
lemma convex_halfspace_Re_gt: "convex {x. Re x > b}" |
lemma (in Order) segment_inc_less:"\<lbrakk>W \<subseteq> carrier D; a \<in> carrier D;
y \<in> W; x \<in> segment (Iod D W) a; y \<prec> x\<rbrakk> \<Longrightarrow> y \<in> segment (Iod D W) a" |
lemma createSInt_id_g0:
fixes b::nat
and v::int
assumes "v \<ge> 0"
and "v < 2^(b-1)"
and "b > 0"
shows "createSInt b v = ShowL\<^sub>i\<^sub>n\<^sub>t v" |
lemma cont2cont_abs_ccache[cont2cont,simp]:
assumes "cont f"
shows "cont (\<lambda>x. abs_ccache(f x))" |
lemma (in order) mono_onI [intro?]:
fixes f :: "'a \<Rightarrow> 'b::order"
shows "(\<And>x y. x \<in> X \<Longrightarrow> y \<in> X \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono_on f X" |
theorem (in graph) stack_not_nil [simp]:
"(mrk, S) \<in> Loop \<Longrightarrow> x \<in> S \<Longrightarrow> x \<noteq> nil" |
lemma effect_lengthI [effect_intros]:
assumes "h' = h" "r = length h a"
shows "effect (len a) h h' r" |
lemma sum_list_filter_dense_list_of_pdevs[symmetric]:
"sum_list (map snd (filter (p o snd) (list_of_pdevs x))) =
sum_list (filter p (dense_list_of_pdevs x))" |
lemma lens_comp_right_id [simp]: "X ;\<^sub>L 1\<^sub>L = X" |
lemma not_coprime_imp_fermat_witness:
fixes n :: nat
assumes "n > 1" "\<not>coprime a n"
shows "fermat_witness a n" |
lemma msb_uint16_code [code]: "msb x \<longleftrightarrow> uint8_test_bit x 7" |
lemma OUTfromChCorrect_data15: "OUTfromChCorrect data15" |
lemma trivial_cartesian: assumes "trivial X" "trivial Y"
shows "trivial (X \<times> Y)" |
lemma span_image_scale_eq_image_scale: "span ((*s) q ` F) = (*s) q ` span F" (is "?A = ?B") |
theorem completeness_countable:
assumes inf_uni: "infinite (UNIV :: ('u :: countable) set)"
assumes finite_cs: "finite Cs" "\<forall>C\<in>Cs. finite C"
assumes unsat: "\<forall>(F::'u fun_denot) (G::'u pred_denot). \<not>eval\<^sub>c\<^sub>s F G Cs"
shows "\<exists>Cs'. resolution_deriv Cs Cs' \<and> {} \<in> Cs'" |
lemma taut_refine_impl: "\<lbrakk> Q \<sqsubseteq> P; `P` \<rbrakk> \<Longrightarrow> `Q`" |
lemma bet_cop2__cop:
assumes "Coplanar A B C U" and
"Coplanar A B C W" and
"Bet U V W"
shows "Coplanar A B C V" |
lemma collinear:
fixes S :: "'a::{perfect_space,real_vector} set"
shows "collinear S \<longleftrightarrow> (\<exists>u. u \<noteq> 0 \<and> (\<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *\<^sub>R u))" |
lemma smaller_interp_applies_cons:
assumes "smaller_interp (applies_eq A \<Delta>) (applies_eq A \<Delta>')"
and "a, s, \<Delta> \<Turnstile> A"
shows "a, s, \<Delta>' \<Turnstile> A" |
lemma Or_propos:
"propos (Or xs) = \<Union>{propos x| x. x \<in> set xs}" |
lemma comp_Rel_vsv[dg_Rel_shared_cs_intros, dg_Rel_cs_intros]:
"vsv (S \<circ>\<^sub>R\<^sub>e\<^sub>l T)" |
lemma g_inter_impl: "set_inter s1.\<alpha> s1.invar s2.\<alpha> s2.invar s3.\<alpha> s3.invar
g_inter" |
lemma possible_states_set_ii_b:
fixes s x v
assumes "(v \<notin> fmdom' s)"
shows "(fmdom' ((\<lambda>s. fmupd v x s) s) = fmdom' s \<union> {v})" |
lemma measure_eqI_finite:
assumes [simp]: "sets M = Pow A" "sets N = Pow A" and "finite A"
assumes eq: "\<And>a. a \<in> A \<Longrightarrow> emeasure M {a} = emeasure N {a}"
shows "M = N" |
lemma num_params_tm_abs_le: "num_params (tm_poly (tm_abs prec I a t)) \<le> X" if "num_params (tm_poly t) \<le> X" |
lemma
shows all_countings_set: "all_countings a b = card {V\<in>Pow {0..<a+b}. card V = a}"
(is "_ = card ?A")
and valid_countings_set: "valid_countings a b =
card {V\<in>Pow {0..<a+b}. card V = a \<and> (\<forall>m\<in>{1..a+b}. card ({0..<m} \<inter> V) > m - card ({0..<m} \<inter> V))}"
(is "_ = card ?V") |
lemma if_SE_execE':
assumes A: "\<sigma> \<Turnstile> ((if\<^sub>S\<^sub>E P then B\<^sub>1 else B\<^sub>2 fi);-M)"
and B: "P \<sigma> \<Longrightarrow> \<sigma> \<Turnstile> (B\<^sub>1;-M) \<Longrightarrow> Q"
and C: "\<not> P \<sigma>\<Longrightarrow> \<sigma> \<Turnstile> (B\<^sub>2;-M) \<Longrightarrow> Q"
shows "Q" |
lemma compute_monom_mult_poly_mapping [code]:
"monom_mult c t (Pm_fmap xs) = Pm_fmap (if c = 0 then fmempty else shift_map_keys t ((*) c) xs)" |
lemma reachable_state_fragmentsLS:
assumes "reachable_state sys sh"
shows "fragmentsLS (GST sh p) \<subseteq> fragments (PGMs sys p) {}" |
lemma mat_kernel_mult_eq: assumes A: "A \<in> carrier_mat nr nc"
and B: "B \<in> carrier_mat nr nr"
and C: "C \<in> carrier_mat nr nr"
and inv: "C * B = 1\<^sub>m nr"
shows "mat_kernel (B * A) = mat_kernel A" |
lemma HMA_Hermite_reduce_above[transfer_rule]:
assumes "n<CARD('m)"
shows "((Mod_Type_Connect.HMA_M :: _ \<Rightarrow> int ^ 'n :: mod_type ^ 'm :: mod_type \<Rightarrow> _)
===> (Mod_Type_Connect.HMA_I) ===> (Mod_Type_Connect.HMA_I) ===> (Mod_Type_Connect.HMA_M))
(\<lambda>A i j. Hermite_reduce_above A n i j)
(\<lambda>A i j. Hermite.Hermite_reduce_above A n i j res_int)" |
lemma compare_expansions_same_exp:
assumes "e1 - e2 = 0" "compare_expansions C1 C2 = res"
shows "compare_expansions (MS (MSLCons (C1, e1) xs) f) (MS (MSLCons (C2, e2) ys) g) = res" |
lemma lex_ext_SN_2:
assumes compat: "\<And> x y z. \<lbrakk>snd (g x y); fst (g y z)\<rbrakk> \<Longrightarrow> fst (g x z)"
and SN: "SN {(s, t). fst (g s t)}"
shows "SN { (ys, xs). fst (lex_ext g m ys xs) }" |
lemma pos_pred:
assumes "x \<noteq> first_el"
shows "pos (pred x) = pos x - 1" |
lemma num_succtran_zero: "\<lbrakk>succ_tran G v = {}\<rbrakk> \<Longrightarrow> num_reachable G v = 0" |
lemma \<open>M, g, w \<Turnstile> \<^bold>\<top>\<close> |
theorem(in Order_Rule) Seg_density :
assumes "\<not> Eq (Geos (Poi A) add Emp) (Geos (Poi C) add Emp)"
shows "\<exists>p. Bet_Point (Se A C) p" |
lemma frestriction_vinsert_in:
assumes "a \<in>\<^sub>\<circ> A" and "b \<in>\<^sub>\<circ> A"
shows "(vinsert [a, b]\<^sub>\<circ> r) \<restriction>\<^sub>\<bullet> A = vinsert [a, b]\<^sub>\<circ> (r \<restriction>\<^sub>\<bullet> A)" |
lemma invar_empty_step:
assumes "bfs_invar' src dst (False, V, {}, N, d)"
shows "bfs_invar' src dst (False, V, N, {}, Suc d)" |
lemma perp_in_perp_bis:
assumes "X PerpAt A B C D"
shows "X B Perp C D \<or> A X Perp C D" |
lemma inf_implies [simp]:
"(x \<sqinter> y) \<leadsto> x = top" |
lemma "bind_fv (x,\<tau>) (mk_eq' \<tau>' s t) = mk_eq' \<tau>' (bind_fv (x,\<tau>) s) (bind_fv (x,\<tau>) t)" |
lemma I2c:
assumes nxt: "HNext s s'"
and inv: "HInv1 s \<and> HInv2 s \<and> HInv3 s"
shows "HInv3 s'" |
lemma (in linorder) rbt_lookup_RBT_Impl_diag:
"ord.rbt_lookup (less_prod (\<le>) (<) (<)) (RBT_Impl_diag t) =
(\<lambda>(k, k'). if k = k' then ord.rbt_lookup (<) t k else None)" |
lemma Vv_is_Vv1_union_Vv2: "V\<^bsub>\<V>\<^esub> = V\<^bsub>\<V>1\<^esub> \<union> V\<^bsub>\<V>2\<^esub>" |
lemma det_echelon_form:
fixes A::"'a::{bezout_domain}^'n::{mod_type}^'n::{mod_type}"
assumes ef: "echelon_form A"
shows "det A = prod (\<lambda>i. A $ i $ i) (UNIV:: 'n set)" |
lemma finite_states[simp, intro!]: "finite (ta_rstates TA)" |
lemma content_pos_lt: "\<forall>i\<in>Basis. a\<bullet>i < b\<bullet>i \<Longrightarrow> 0 < content (cbox a b)" |
lemma succ_ne_self [simp]: "i \<noteq> succ i" |
lemma enat_times_less:
"enat c * enat lst < y * enat c \<Longrightarrow> lst < y" |
lemma get_host_wf_is_l_get_host_wf [instances]: "l_get_host_wf heap_is_wellformed known_ptr
known_ptrs type_wf get_host" |
lemma check_ipresIGCons:
"ipresIGCons check check (errMOD MOD) MOD" |
lemma [def_pat_rules]:
"FOREACHc \<equiv> PR_CONST (FOREACHoci (\<lambda>_ _. True) (\<lambda>_ _. True))"
"FOREACHci$I \<equiv> PR_CONST (FOREACHoci (\<lambda>_ _. True) I)"
"FOREACHi$I \<equiv> \<lambda>\<^sub>2s. PR_CONST (FOREACHoci (\<lambda>_ _. True) I)$s$(\<lambda>\<^sub>2x. True)"
"FOREACH \<equiv> FOREACHi$(\<lambda>\<^sub>2_ _. True)" |
lemma ta_bisim0_extNTA2J_extNTA2J0:
"\<lbrakk> wwf_J_prog P; P,t \<turnstile> \<langle>a'\<bullet>M'(vs), h\<rangle> -ta\<rightarrow>ext \<langle>va, h'\<rangle> \<rbrakk>
\<Longrightarrow> ta_bisim0 (extTA2J P ta) (extTA2J0 P ta)" |
lemma Diagonalize_Comp_Cod_Arr:
assumes "Arr t"
shows "\<^bold>\<lfloor>Cod t \<^bold>\<cdot> t\<^bold>\<rfloor> = \<^bold>\<lfloor>t\<^bold>\<rfloor>" |
lemma ROI_init:
assumes "CNV_ANNOT a a' R"
assumes "(c,a')\<in>R"
shows "(c,a)\<in>R" |
lemma sint_up_scast:
\<open>sint (SCAST w) = sint w\<close> if \<open>is_up SCAST\<close> |
lemma valid5[simp]: "\<upsilon> \<upsilon> X = true" |
lemma prefixI':
assumes "length vs = Suc n" and "\<And>x. x < Suc n \<Longrightarrow> f x \<down>= vs ! x"
shows "prefix f n = vs" |
lemma lsorted_LCons':
"lsorted (LCons x xs) \<longleftrightarrow> (\<not> lnull xs \<longrightarrow> x \<le> lhd xs \<and> lsorted xs)" |
lemma top_mult_annil [simp]: "\<top> \<cdot> x = \<top>" |
lemma hom_map1[autoref_hom]:
"CONSTRAINT Map.empty (\<langle>Rk,Rv\<rangle>Rm)"
"CONSTRAINT map_of (\<langle>\<langle>Rk,Rv\<rangle>prod_rel\<rangle>list_rel \<rightarrow> \<langle>Rk,Rv\<rangle>Rm)"
"CONSTRAINT (++) (\<langle>Rk,Rv\<rangle>Rm \<rightarrow> \<langle>Rk,Rv\<rangle>Rm \<rightarrow> \<langle>Rk,Rv\<rangle>Rm)" |
lemma exec_appendL_if [intro]:
fixes i i' j :: int
shows "\<lbrakk>size P' \<le> i; P \<turnstile> (i - size P', s, stk) \<rightarrow>* (j, s', stk');
i' = size P' + j\<rbrakk> \<Longrightarrow>
P' @ P \<turnstile> (i, s, stk) \<rightarrow>* (i', s', stk')" |
lemma row_elems_ss01:"i < dim_row M \<Longrightarrow> vec_set (row M i) \<subseteq> {0, 1}" |
lemma complete_join_all:
"\<forall>t \<in> trees ts. complete t \<and> height t = n \<Longrightarrow> complete (join_all ts)" |
lemma simulation_steps:
"\<exists> bs. B.steps (b # bs) \<and> list_all2 (\<lambda> a b. a \<sim> b \<and> PA a \<and> PB b) as bs"
if "A.steps (a # as)" "a \<sim> b" "PA a" "PB b" |
lemma [simp,code_unfold]: "\<delta> \<zero>.\<zero> = true" |
lemma stepfun_imp_chainp:
assumes "\<forall>i\<ge>n::nat. f i > i \<and> P (S i) (S (f i))"
shows "chainp P (\<lambda>i. S ((f ^^ i) n))" (is "chainp P ?T") |
lemma collect_suc_eq_lt[simp]:
"{f i |i::nat. i < Suc n} = {f i |i. i = 0} \<union> {f (Suc i) |i. i < n}" |
lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n" |
lemma bernoulli_in_Rats: "bernoulli n \<in> \<rat>" |
lemma norm_unsigned_result: "norm_unsigned xs = [] \<or> bv_msb (norm_unsigned xs) = \<one>" |
lemma intersect_segment_xline:
assumes "intersect_segment_xline prec (p0, p1) x = Some (m, M)"
shows "closed_segment p0 p1 \<inter> {p. fst p = x} \<subseteq> {(x, m) .. (x, M)}" |
theorem process_coind[elim, consumes 1, case_names iss Action Choice, induct pred: "HOL.eq"]:
assumes phi: "\<phi> p p'" and
iss: "\<And>p p'. \<phi> p p' \<Longrightarrow> (isAction p \<longleftrightarrow> isAction p') \<and> (isChoice p \<longleftrightarrow> isChoice p')" and
Act: "\<And> a a' p p'. \<phi> (Action a p) (Action a' p') \<Longrightarrow> a = a' \<and> \<phi> p p'" and
Ch: "\<And> p q p' q'. \<phi> (Choice p q) (Choice p' q') \<Longrightarrow> \<phi> p p' \<and> \<phi> q q'"
shows "p = p'" |
lemma no_cross_apath:
"\<lbrakk>matching_rels t; no_cross_products t; x \<in> relations t; y \<in> relations t\<rbrakk>
\<Longrightarrow> \<exists>p. apath x p y \<and> set (awalk_verts x p) \<subseteq> relations t" |
lemma the_set_union [simp]:
"the_set (A \<union> B) = the_set A \<union> the_set B" |
lemma sums_offset:
fixes f g :: "nat \<Rightarrow> 'a :: {t2_space, topological_comm_monoid_add}"
assumes "(\<lambda>n. f (n + i)) sums l" shows "f sums (l + (\<Sum>j<i. f j))" |
lemma class_name_mem_map[rule_format]:
"(ctx, cld, class_name_f cld) \<in> set ctx_cld_dcl_list
\<Longrightarrow> (ctx, class_name_f cld)
\<in> ((\<lambda>(ctx, cld). (ctx, class_name_f cld)) \<circ> (\<lambda>(ctx, cld, dcl). (ctx, cld))) `
set ctx_cld_dcl_list" |
lemma RSpan_contains_spanset_append_left :
"set ms \<subseteq> M \<Longrightarrow> set ns \<subseteq> M \<Longrightarrow> set ms \<subseteq> RSpan (ms@ns)" |
lemma in_store_sops_conv:
"(sop \<in> store_sops xs) = ((\<exists>volatile a A L R W. Write volatile a sop A L R W \<in> set xs) \<or>
(\<exists>a t cond ret A L R W. RMW a t sop cond ret A L R W \<in> set xs))" |
lemma (in encoding) enc_reflects_binary_pred_iff_indRelR_reflects_binary_pred:
fixes Pred :: "('procS, 'procT) Proc \<Rightarrow> 'b \<Rightarrow> bool"
shows "enc_reflects_binary_pred Pred = rel_reflects_binary_pred indRelR Pred" |
lemma fixpoints_on_finite :
assumes "finite A"
shows "finite (fixpoints_on A \<phi>)" |
lemma (in conservative) induced_function_birkhoff_sum:
fixes f::"'a \<Rightarrow> real"
assumes "A \<in> sets M"
shows "birkhoff_sum f (qmpt.birkhoff_sum (induced_map A) (return_time_function A) n x) x
= qmpt.birkhoff_sum (induced_map A) (induced_function A f) n x" |
lemma if_pred_holds:
"if_pred (holds P) = P" |
lemma word_no_log_defs [simp]:
"NOT (numeral a) = word_of_int (NOT (numeral a))"
"NOT (- numeral a) = word_of_int (NOT (- numeral a))"
"numeral a AND numeral b = word_of_int (numeral a AND numeral b)"
"numeral a AND - numeral b = word_of_int (numeral a AND - numeral b)"
"- numeral a AND numeral b = word_of_int (- numeral a AND numeral b)"
"- numeral a AND - numeral b = word_of_int (- numeral a AND - numeral b)"
"numeral a OR numeral b = word_of_int (numeral a OR numeral b)"
"numeral a OR - numeral b = word_of_int (numeral a OR - numeral b)"
"- numeral a OR numeral b = word_of_int (- numeral a OR numeral b)"
"- numeral a OR - numeral b = word_of_int (- numeral a OR - numeral b)"
"numeral a XOR numeral b = word_of_int (numeral a XOR numeral b)"
"numeral a XOR - numeral b = word_of_int (numeral a XOR - numeral b)"
"- numeral a XOR numeral b = word_of_int (- numeral a XOR numeral b)"
"- numeral a XOR - numeral b = word_of_int (- numeral a XOR - numeral b)" |
lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" |
lemma gauss_jordan_row_echelon:
assumes A: "A \<in> carrier_mat nr nc"
and res: "gauss_jordan A B = (A', B')"
shows "row_echelon_form A'" |
lemma poly_shift_eq_0:
assumes "f \<in> carrier P"
shows "f n = (ctrm f \<oplus>\<^bsub>P\<^esub> X \<otimes>\<^bsub>P\<^esub> poly_shift f) n" |
lemma N_vector_top [simp]:
"N(x * top) * top = x * top" |
lemma self_codomain_iff_ide:
shows "a \<in> codomains a \<longleftrightarrow> ide a" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.