Statement:
stringlengths 7
24.3k
|
---|
lemma subterms_singleton:
assumes "(\<exists>v. t = Var v) \<or> (\<exists>f. t = Fun f [])"
shows "subterms t = {t}" |
lemma insert_prefix_trie_same:
"insert ps (prefix_trie ps (Nd b lr)) = prefix_trie ps (Nd True lr)" |
lemma Ch_XH_largest_Xd:
assumes "x \<in> Ch h XH_largest"
shows "Xd x \<in> ds" |
lemma start_end_implies_terminating:
assumes "has_start_points x"
and "has_end_points x"
shows "terminating x" |
lemma smc_Set_composable_arrs_dg_Set:
"composable_arrs (dg_Set \<alpha>) = composable_arrs (smc_Set \<alpha>)" |
lemma \<J>_induct[consumes 1, case_names Induct]:
assumes "x \<in> \<J> k u"
assumes induct: "\<And> x k u . (\<And> x' k' u'. x' \<in> \<J> k' u' \<Longrightarrow> indexlt k' u' k u \<Longrightarrow> P x' k' u')
\<Longrightarrow> x \<in> \<J> k u \<Longrightarrow> P x k u"
shows "P x k u" |
lemma ide_char':
shows "ide a \<longleftrightarrow> arr a \<and> (dom a = a \<or> cod a = a)" |
lemma member_paperIDAsStr_iff[simp]: "str \<in> paperIDAsStr ` paperIDs \<longleftrightarrow> PaperID str \<in> paperIDs" |
lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)" |
lemma find_policy_QR_error_bound:
assumes "eps > 0" "2 * QR_disc * dist v (\<L>\<^sub>b_split v) < eps * (1-QR_disc)"
assumes am: "\<And>s. is_arg_max (\<lambda>d. L_split d (\<L>\<^sub>b_split v) s) (\<lambda>d. d \<in> D\<^sub>D) d"
shows "dist (\<nu>\<^sub>b (mk_stationary_det d)) \<nu>\<^sub>b_opt < eps" |
lemma OF_spm3_noa_none:
assumes no: "no_overlaps \<gamma> ft"
shows "OF_priority_match \<gamma> ft p = NoAction \<Longrightarrow> \<forall>e \<in> set ft. \<not>\<gamma> (ofe_fields e) p" |
lemma ahm_invar_auxE:
assumes "ahm_invar_aux bhc n a"
obtains "\<forall>h. h < array_length a \<longrightarrow>
bucket_ok bhc (array_length a) h (array_get a h) \<and>
list_map_invar (array_get a h)" and
"n = array_foldl (\<lambda>_ n kvs. n + length kvs) 0 a" and
"array_length a > 1" |
lemma ex_conga_ts:
assumes "\<not> Col A B C" and
"\<not> Col A' B' P"
shows "\<exists> C'. A B C CongA A' B' C' \<and> A' B' TS C' P" |
lemma distinctPermSimps[simp]:
fixes p :: "name prm"
and a :: name
and b :: name
shows "distinctPerm([]::name prm)"
and "(distinctPerm((a, b)#p)) = (distinctPerm p \<and> a \<noteq> b \<and> a \<sharp> p \<and> b \<sharp> p)" |
lemma in_mktop: "(x,y) \<in> mktop L z \<longleftrightarrow> x\<noteq>z \<and> (if y=z then x\<noteq>y else (x,y) \<in> L)" |
lemma used_Gets_rev: "used (evs @ [Gets B X]) = used evs" |
lemma [sepref_fr_rules]: "
hn_refine
(hn_ctxt (is_graph n R) G Gi * hn_ctxt (node_assn n) v vi)
(succi Gi vi)
(hn_ctxt (is_graph n R) G Gi * hn_ctxt (node_assn n) v vi)
(pure (\<langle>R \<times>\<^sub>r node_rel n\<rangle>list_set_rel))
(RETURN$(succ$G$v))" |
lemma xor_identity2[simp]: "xor {||} xs = xs" |
lemma final_simulation2:
"\<lbrakk> s1 \<approx> s2; s2 -\<tau>2-tls2\<rightarrow>* s2'; final2 s2' \<rbrakk>
\<Longrightarrow> \<exists>s1' tls1. s1 -\<tau>1-tls1\<rightarrow>* s1' \<and> s1' \<approx> s2' \<and> final1 s1' \<and> tls1 [\<sim>] tls2" |
lemma Gen_Shleg_n_0 [simp]: "Gen_Shleg n 0 = fact n" |
lemma wf_measures[simp]: "wf (measures fs)" |
lemma Skip_is_action:
"(R (true \<turnstile> \<lambda>(A, A'). tr A' = tr A \<and> \<not>wait A' \<and> more A = more A')) \<in> {p. is_CSP_process p}" |
lemma (in Ring) n_prod_idealTr:
"(\<forall>k \<le> n. ideal R (J k)) \<longrightarrow> ideal R (ideal_n_prod R n J)" |
lemma lm148:
assumes "card (Pow X) = 1 \<or> card (Pow X) = 2"
shows "trivial X" |
lemma indicator_image: "inj f \<Longrightarrow> indicator (f ` X) (f x) = (indicator X x::_::zero_neq_one)" |
lemma unique_Poincare:
defines "\<Sigma> \<equiv> {(1::real, 2.25::real) .. (2, 2.25)}"
shows "\<exists>!x. x \<in> {(1.41::real, 2.25::real) .. (1.42, 2.25)} \<and> vdp.poincare_map \<Sigma> x = x" |
lemma gauss_int_norm_eq_0_iff [simp]: "gauss_int_norm z = 0 \<longleftrightarrow> z = 0" |
lemma impl_of_empty [code abstract]: "impl_of empty = empty_trie" |
lemma div_const_unit_poly: "is_unit c \<Longrightarrow> p div [:c:] = smult (1 div c) p" |
lemma "rec_BitList nil bit0 bit1 (Bit1 xs) = bit1 xs (rec_BitList nil bit0 bit1 xs)" |
lemma sum_to_zero:
"(a :: 'a :: ring) + b = 0 \<Longrightarrow> a = (- b)" |
lemma is_subprob_density_imp_has_density:
"\<lbrakk>is_subprob_density N f; M = density N f\<rbrakk> \<Longrightarrow> has_density M N f" |
lemma normal_drop [simp]: "normal (dropWhile (\<lambda>n. n=0) ns)" |
lemma below_meet2[simp]:
fixes x y :: "'a :: Finite_Meet_cpo"
assumes "z \<sqsubseteq> x"
shows "(x \<sqinter> z) = z" |
lemma hfset_hinsert: "hfset (b \<triangleleft> a) = insert a (hfset b)" |
lemma emp_to_emp[simp]: "f \<epsilon> = \<epsilon>" |
lemma HNatInfinite_inverse_Infinitesimal [simp]:
assumes "n \<in> HNatInfinite"
shows "inverse (hypreal_of_hypnat n) \<in> Infinitesimal" |
lemma liftWT_return:
"liftWT\<cdot>(return\<cdot>x) = unitWT\<cdot>x" |
lemma "\<lfloor>D\<rfloor>" |
lemma lfinite_lmap[simp]: "lfinite (lmap f xs) = lfinite xs" |
lemma alluopairs_ex:
"\<forall>x y. P x y = P y x \<Longrightarrow>
(\<exists>x \<in> set xs. \<exists>y \<in> set xs. P x y) = (\<exists>(x, y) \<in> set (alluopairs xs). P x y)" |
theorem chain_union_closed:
assumes \<open>finite_char C\<close> and \<open>is_chain f\<close> and \<open>\<forall>n. f n \<in> C\<close>
shows \<open>(\<Union>n. f n) \<in> C\<close> |
lemma Leaf_mirror[simp]: "\<langle>\<rangle> = mirror t \<longleftrightarrow> t = \<langle>\<rangle>" |
lemma lp_monom_code[code]: "linear_poly_map (lp_monom c x) = (if c = 0 then fmempty else fmupd x c fmempty)" |
lemma extr_mono_chan [dest]: "G \<subseteq> H \<Longrightarrow> extr bad IK G \<subseteq> extr bad IK H" |
lemma add_A_FactGroup [simp]: "X \<otimes>\<^bsub>(G A_Mod H)\<^esub> X' = X <+>\<^bsub>G\<^esub> X'" |
lemma whn_eq_\<omega>m1: "hypreal_of_hypnat whn = \<omega> - 1" |
lemma lowner_le_antisym:
assumes A: "A \<in> carrier_mat n n" and B: "B \<in> carrier_mat n n"
and L1: "A \<le>\<^sub>L B" and L2: "B \<le>\<^sub>L A"
shows "A = B" |
lemma subtensor0:
assumes "ds \<noteq> []" and "i<hd ds"
shows "subtensor (tensor0 ds) i = tensor0 (tl ds)" |
lemma parts_preserves_unaffected:
assumes \<open>\<not> affects r p\<close> \<open>z' \<in> set (parts A r p)\<close>
shows \<open>p \<in> set z'\<close> |
lemma gauss_jordan_complete:
"m \<le> n \<Longrightarrow> usolution A m n x \<Longrightarrow> \<exists>B. gauss_jordan A m = Some B" |
lemma simple_resolution_sound:
assumes C\<^sub>1sat: "eval\<^sub>c F G C\<^sub>1"
assumes C\<^sub>2sat: "eval\<^sub>c F G C\<^sub>2"
assumes l\<^sub>1inc\<^sub>1: "l\<^sub>1 \<in> C\<^sub>1"
assumes l\<^sub>2inc\<^sub>2: "l\<^sub>2 \<in> C\<^sub>2"
assumes comp: "l\<^sub>1\<^sup>c = l\<^sub>2"
shows "eval\<^sub>c F G ((C\<^sub>1 - {l\<^sub>1}) \<union> (C\<^sub>2 - {l\<^sub>2}))" |
lemma convert_extTA_eq_conv:
"convert_extTA f ta = ta' \<longleftrightarrow>
\<lbrace>ta\<rbrace>\<^bsub>l\<^esub> = \<lbrace>ta'\<rbrace>\<^bsub>l\<^esub> \<and> \<lbrace>ta\<rbrace>\<^bsub>c\<^esub> = \<lbrace>ta'\<rbrace>\<^bsub>c\<^esub> \<and> \<lbrace>ta\<rbrace>\<^bsub>w\<^esub> = \<lbrace>ta'\<rbrace>\<^bsub>w\<^esub> \<and> \<lbrace>ta\<rbrace>\<^bsub>o\<^esub> = \<lbrace>ta'\<rbrace>\<^bsub>o\<^esub> \<and> \<lbrace>ta\<rbrace>\<^bsub>i\<^esub> = \<lbrace>ta'\<rbrace>\<^bsub>i\<^esub> \<and> length \<lbrace>ta\<rbrace>\<^bsub>t\<^esub> = length \<lbrace>ta'\<rbrace>\<^bsub>t\<^esub> \<and>
(\<forall>n < length \<lbrace>ta\<rbrace>\<^bsub>t\<^esub>. convert_new_thread_action f (\<lbrace>ta\<rbrace>\<^bsub>t\<^esub> ! n) = \<lbrace>ta'\<rbrace>\<^bsub>t\<^esub> ! n)" |
lemma test_comp_anti_iff: "test p \<Longrightarrow> test q \<Longrightarrow> p \<le> q \<longleftrightarrow> !q \<le> !p" |
lemma termMOD_igOpIPresIGWls: "igOpIPresIGWls termMOD" |
lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)" |
lemma reduce_element_mod_D_preserves_dimensions:
shows [simp]: "dim_row (reduce_element_mod_D A a j D m) = dim_row A"
and [simp]: "dim_col (reduce_element_mod_D A a j D m) = dim_col A"
and [simp]: "dim_row (reduce_element_mod_D_abs A a j D m) = dim_row A"
and [simp]: "dim_col (reduce_element_mod_D_abs A a j D m) = dim_col A" |
lemma Count:
"\<turnstile> Count
\<lbrace>\<acute>Proper \<and> Roots\<subseteq>Blacks \<acute>M
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> length \<acute>Ma=length \<acute>M
\<and> (\<acute>obc < Blacks \<acute>Ma \<or> \<acute>Safe)\<rbrace>" |
lemma of_nat_diff [simp]: "n \<le> m \<Longrightarrow> \<guillemotleft>m - n\<guillemotright>\<^sub>\<nat> = \<guillemotleft>m\<guillemotright>\<^sub>\<nat> \<ominus> \<guillemotleft>n\<guillemotright>\<^sub>\<nat>" |
lemma in_set_left: "y \<in> set_of l \<Longrightarrow> y \<in> set_of (Node l x False r)" |
lemma eefm_clean_mem:
assumes "si' \<le> si"
and "eq_except_for_mem (\<sigma> with updates) (\<sigma> with updates') a si v b"
shows "eq_except_for_mem (\<sigma> with ((\<lbrakk>a,si'\<rbrakk> :=\<^sub>m v')#updates)) (\<sigma> with updates') a si v b" |
lemma args_are_strictly_lower:
assumes "is_compound t"
shows "(lhs t,t) \<in> trm_ord \<and> (rhs t,t) \<in> trm_ord" |
lemma obj_ty_widenD:
"G\<turnstile>obj_ty obj\<preceq>RefT t \<Longrightarrow> (\<exists>C. tag obj = CInst C) \<or> (\<exists>T k. tag obj = Arr T k)" |
lemma res_uminus:
assumes "k > 0"
assumes "f \<in> carrier Z\<^sub>p"
assumes "c \<in> carrier (Zp_res_ring k)"
assumes "c = \<ominus>\<^bsub>Zp_res_ring k\<^esub> (f k)"
shows "c = ((\<ominus>\<^bsub>Z\<^sub>p\<^esub> f) k)" |
lemma \<pi>_is_natural_transformation:
shows "natural_transformation CC.comp CC.comp \<Delta>o\<Pi>.map CC.map \<pi>" |
lemma distinct_permutations_of_list_impl_aux:
"distinct (permutations_of_list_impl_aux acc xs)" |
lemma lipschitz_on_cong[cong]:
"C-lipschitz_on U g \<longleftrightarrow> D-lipschitz_on V f"
if "C = D" "U = V" "\<And>x. x \<in> V \<Longrightarrow> g x = f x" |
lemma heaps_eq_DagI1:
"\<lbrakk>Dag p l r t; \<forall>x\<in>set_of t. l x = l' x \<and> r x = r' x\<rbrakk>
\<Longrightarrow> Dag p l' r' t" |
lemma vrestriction_vempty[simp]: "0 \<restriction>\<^sub>\<circ> A = 0" |
lemma sup_loc_some [rule_format]:
"\<forall>y n. (G \<turnstile> b <=l y) \<longrightarrow> n < length y \<longrightarrow> y!n = OK t \<longrightarrow>
(\<exists>t. b!n = OK t \<and> (G \<turnstile> (b!n) <=o (y!n)))" |
lemma drinks_rejects_future: "\<not> recognises_execution drinks 2 d ((l, i)#t)" |
lemma (in is_ntcf) ntcf_of_ntcf_arrow_is_ntcf':
assumes "\<NN>' = ntcf_arrow \<NN>" and "\<AA>' = \<AA>" and "\<BB>' = \<BB>"
shows "ntcf_of_ntcf_arrow \<AA> \<BB> \<NN>' : \<FF> \<mapsto>\<^sub>C\<^sub>F \<GG> : \<AA>' \<mapsto>\<mapsto>\<^sub>C\<^bsub>\<alpha>\<^esub> \<BB>'" |
lemma Nonce_secrecy_lemma:
"P \<longrightarrow> (X \<in> analz (G \<union> H)) \<longrightarrow> (X \<in> analz H) \<Longrightarrow>
P \<longrightarrow> (X \<in> analz (G \<union> H)) = (X \<in> analz H)" |
lemma fps_right_inverse:
fixes f :: "'a::ring_1 fps"
assumes f0: "f$0 * y = 1"
shows "f * fps_right_inverse f y = 1" |
lemma New_correct:
"\<lbrakk> wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins!pc = New X;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state' = exec (G, None, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi \<turnstile>JVM (None, hp, (stk,loc,C,sig,pc)#frs)\<surd>;
fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = None \<rbrakk>
\<Longrightarrow> G,phi \<turnstile>JVM state'\<surd>" |
lemma add_row_to_multiple_index_unchanged [simp]:
"i < dim_row A \<Longrightarrow> j < dim_col A \<Longrightarrow> i \<notin> set ks \<Longrightarrow> add_row_to_multiple a ks l A $$ (i,j) = A $$(i,j)" |
lemma staticSecretA_notin_parts_initStateB:
"m \<in> staticSecret A \<Longrightarrow> m \<in> parts(initState B) = (A=B)" |
theorem compliant_stateful_ACS_no_side_effects:
"\<forall> E \<subseteq> backflows (flows_state \<T>). \<forall> F \<in> get_offending_flows(get_ACS M) \<lparr> nodes = hosts \<T>, edges = flows_fix \<T> \<union> E \<rparr>. F \<subseteq> E" |
lemma card1_eE: "finite S \<Longrightarrow> \<exists>y. y \<in> S \<Longrightarrow> 1 \<le> card S" |
lemma distinct_mtf[simp]: "distinct (mtf x xs) = distinct xs" |
lemma perm_ty[simp]:
fixes T::"ty"
and pi::"name prm"
shows "pi\<bullet>T = T" |
lemma insert_body_stop_iteration:
assumes "fst e > fst x"
shows "insert_body (x#xs) e = e#x#xs" |
lemma le_defined:
fixes x :: Integer
shows
"le\<cdot>x\<cdot>y = TT \<Longrightarrow> (x \<noteq> \<bottom> \<and> y \<noteq> \<bottom>)"
"le\<cdot>x\<cdot>y = FF \<Longrightarrow> (x \<noteq> \<bottom> \<and> y \<noteq> \<bottom>)" |
lemma size_simp6:
"s \<in> set ss \<Longrightarrow> s \<unrhd> t \<Longrightarrow> size t \<le> size s \<Longrightarrow> size t \<le> Suc (size_list size ss)" |
lemma DERIV_inverse_function:
fixes f g :: "real \<Rightarrow> real"
assumes der: "DERIV f (g x) :> D"
and neq: "D \<noteq> 0"
and x: "a < x" "x < b"
and inj: "\<And>y. \<lbrakk>a < y; y < b\<rbrakk> \<Longrightarrow> f (g y) = y"
and cont: "isCont g x"
shows "DERIV g x :> inverse D" |
lemma mono2mono_enat_minus1 [THEN lfp.mono2mono, cont_intro, simp]:
shows monotone_enat_minus1: "monotone (\<le>) (\<le>) (\<lambda>n. n - m :: enat)" |
lemma wlp_Seq:
assumes ent_a: "P \<tturnstile> wlp a Q"
and ent_b: "Q \<tturnstile> wlp b R"
and wa: "well_def a"
and wb: "well_def b"
and u_Q: "unitary Q"
and u_R: "unitary R"
shows "P \<tturnstile> wlp (a ;; b) R" |
lemma generalise_all:
assumes i: "PROP Pure.prop (\<And>s. PROP Pure.prop (PROP P s) \<Longrightarrow> PROP Pure.prop (PROP Q s))"
shows "PROP Pure.prop ((PROP Pure.prop (\<And>s. PROP P s)) \<Longrightarrow> (PROP Pure.prop (\<And>s. PROP Q s)))" |
lemma at_ds6:
fixes a :: "'x"
and b :: "'x"
and c :: "'x"
assumes at: "at TYPE('x)"
and a: "distinct [a,b,c]"
shows "[(a,c),(a,b)] \<triangleq> [(b,c),(a,c)]" |
lemma ring_transfer[transfer_rule]:
assumes[transfer_rule]: "bi_unique A" "right_total A"
shows
"(
(A ===> A ===> A) ===>
A ===>
(A ===> A ===> A) ===>
(A ===> A) ===>
(A ===> A ===> A) ===>
(=)
)
(ring_ow (Collect (Domainp A))) class.ring" |
lemma reach_snoc: "reach tr p bs q \<Longrightarrow> reach tr p (bs @ [b]) (tr q b)" |
lemma vinsert_iff[simp]: "x \<in>\<^sub>\<circ> vinsert y A \<longleftrightarrow> x = y \<or> x \<in>\<^sub>\<circ> A" |
lemma float_eq_refl [simp]: "a \<doteq> a \<longleftrightarrow> \<not> is_nan a" |
lemma subst_typ'_AList_clearjunk: "subst_typ' insts t = subst_typ' (AList.clearjunk insts) t" |
lemma VARusefulSYSTEM_holds:
"VARusefulSYSTEM" |
lemma hom_f: "homogeneous f" |
lemma fold_invalid_means_one_invalid:
"gval (fold gAnd G (Bc True)) s = invalid \<Longrightarrow>
\<exists>g \<in> set G. gval g s = invalid" |
lemma other_net_tree_ips_par_right:
assumes "other U (net_tree_ips (p\<^sub>1 \<parallel> p\<^sub>2)) \<sigma> \<sigma>'"
and "\<And>\<xi>. U \<xi> \<xi>"
shows "other U (net_tree_ips p\<^sub>2) \<sigma> \<sigma>'" |
lemma is_parser_exactly [intro]:
"is_parser (exactly xs)" |
lemma infinite_int_iff_infinite_nat_abs: "infinite S \<longleftrightarrow> infinite ((nat \<circ> abs) ` S)"
for S :: "int set" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.