Statement:
stringlengths 7
24.3k
|
---|
lemma mono_Retr:
"mono Sretr"
"mono ZOretr" "mono ZOretrT"
"mono Wretr" "mono WretrT"
"mono RetrT" |
theorem fk_asymptotic_space_complexity:
"fk_space_usage \<in>
O[at_top \<times>\<^sub>F at_top \<times>\<^sub>F at_top \<times>\<^sub>F at_right (0::rat) \<times>\<^sub>F at_right (0::rat)](\<lambda> (k, n, m, \<epsilon>, \<delta>).
real k * real n powr (1-1/ real k) / (of_rat \<delta>)\<^sup>2 * (ln (1 / of_rat \<epsilon>)) * (ln (real n) + ln (real m)))"
(is "_ \<in> O[?F](?rhs)") |
lemma length_Residx1:
shows "length (T \<^sup>*\\\<^sup>1 u) \<le> length T" |
lemma Abs_formula_inverse [simp]:
assumes "hereditarily_fs t\<^sub>\<alpha>"
shows "Rep_formula (Abs_formula t\<^sub>\<alpha>) = t\<^sub>\<alpha>" |
lemma get_elment_ptr_simp1 [simp]:
"get\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr (put\<^sub>E\<^sub>l\<^sub>e\<^sub>m\<^sub>e\<^sub>n\<^sub>t element_ptr element h) = Some element" |
theorem Crypt_Crypt_eq [iff]: "(Crypt K X = Crypt K X') = (X=X')" |
lemma finite_Prefixes:
shows "finite (Prefixes s)" |
lemma mst_subgraph_inv:
assumes "e \<le> v * -v\<^sup>T \<sqinter> g"
and "t \<le> g"
and "v\<^sup>T = r\<^sup>T * t\<^sup>\<star>"
shows "e \<le> (r\<^sup>T * g\<^sup>\<star>)\<^sup>T * (r\<^sup>T * g\<^sup>\<star>) \<sqinter> g" |
lemma (in orset) rem_rem_commute:
shows "\<langle>Rem i1 e1\<rangle> \<rhd> \<langle>Rem i2 e2\<rangle> = \<langle>Rem i2 e2\<rangle> \<rhd> \<langle>Rem i1 e1\<rangle>" |
lemma vec_0[simp]: "vec 0 = 0" |
lemma monad_writer_stateT' [locale_witness]:
"monad_writer return (bind :: ('a \<times> 's, 'm) bind) (tell :: ('w, 'm) tell)
\<Longrightarrow> monad_writer return (bind :: ('a, ('s, 'm) stateT) bind) (tell :: ('w, ('s, 'm) stateT) tell)" |
lemma C1_differentiable_imp_piecewise:
"f C1_differentiable_on S \<Longrightarrow> f piecewise_C1_differentiable_on S" |
lemma invoke_split: "P (invoke ((Pred, f) # xs) ptr args) =
((\<not>(Pred ptr) \<longrightarrow> P (invoke xs ptr args))
\<and> (Pred ptr \<longrightarrow> P (do {check_in_heap ptr; f ptr args})))" |
lemma restrictionVsIntersection:
"{(x, f x)| x. x \<in> X2} || X1 = {(x, f x)| x. x \<in> X2 \<inter> X1}" |
lemma linkageD: "\<lbrakk> linkage \<Gamma> f; x \<in> A \<Gamma> \<rbrakk> \<Longrightarrow> d_OUT f x = weight \<Gamma> x" |
lemma li_minus:
assumes "locally_irrefl R A"
shows "locally_irrefl R (A - B)" |
lemma measurable_if_split[measurable (raw)]:
"(c \<Longrightarrow> Measurable.pred M f) \<Longrightarrow> (\<not> c \<Longrightarrow> Measurable.pred M g) \<Longrightarrow>
Measurable.pred M (if c then f else g)" |
lemma eq_tpoly_refl[simp]: "p =\<^sub>p p" |
lemma fac_acc_body2_body1_eq: "fac_acc_body2 = fac_acc_body1" |
lemma (in VectorSpaceEnd) VectorSpaceHom: "VectorSpaceHom smult V smult T" |
lemma order_refl_sum :
fixes x :: "'a + 'b"
shows "x \<le> x" |
lemma instInp_fmla[simp,intro]:
assumes "\<phi> \<in> fmla" and "t \<in> trm"
shows "instInp \<phi> t \<in> fmla" |
lemma vec_to_lin_poly_coeff_access:
assumes "x < dim_vec y"
shows "y $ x = coeff (vec_to_lpoly y) x" |
lemma solves_ode_on_subset_domain:
assumes sol: "(x solves_ode f) S Y" and iv: "x t0 = x0"
and ivl: "t0 \<in> S" "is_interval S" "S \<subseteq> T"
shows "(x solves_ode f) S X" |
lemma sub_inc_sysI[intro]: "incidence_system \<U> \<A> \<Longrightarrow> \<U> \<subseteq> \<V> \<Longrightarrow> \<A> \<subseteq># \<B> \<Longrightarrow>
sub_incidence_system \<U> \<A> \<V> \<B>" |
lemma Ex_omega_sum: "\<gamma> \<in> elts (\<omega>\<up>n) \<Longrightarrow> \<exists>ns. \<gamma> = omega_sum ns \<and> length ns = n" |
lemma cexpr_typing_cong:
assumes "\<And>x. x \<in> free_vars e \<Longrightarrow> \<Gamma> x = \<Gamma>' x"
shows "\<Gamma> \<turnstile>\<^sub>c e : t \<longleftrightarrow> \<Gamma>' \<turnstile>\<^sub>c e : t" |
lemma openin_interior_of [simp]: "openin X (X interior_of S)" |
lemma and_wf_dfa:
assumes "wf_dfa M n"
and "wf_dfa N n"
shows "wf_dfa (and_dfa M N) n" |
lemma subst_typ'_simulates_tsubst_gen': "distinct pairs \<Longrightarrow> tvs t \<subseteq> set pairs
\<Longrightarrow> tsubst t \<rho> = subst_typ' (map (\<lambda>(x,y).((x,y), \<rho> x y)) pairs) t" |
lemma if_redT_known_addrs_new:
assumes redT: "mthr.if.redT s (t, ta) s'"
shows "if.known_addrs_state s' \<subseteq> if.known_addrs_state s \<union> new_obs_addrs_if \<lbrace>ta\<rbrace>\<^bsub>o\<^esub>" |
lemma (in is_cf_adjunction) is_cf_adjunction_axioms'[adj_cs_intros]:
assumes "\<alpha>' = \<alpha>" and "\<CC>' = \<CC>" and "\<DD>' = \<DD>" and "\<FF>' = \<FF>" and "\<GG>' = \<GG>"
shows "\<Phi> : \<FF>' \<rightleftharpoons>\<^sub>C\<^sub>F \<GG>' : \<CC>' \<rightleftharpoons>\<rightleftharpoons>\<^sub>C\<^bsub>\<alpha>'\<^esub> \<DD>'" |
lemma "(sep_empty imp ((A \<longrightarrow>* (B imp C)) \<longrightarrow>* ((A \<longrightarrow>* B) imp (A \<longrightarrow>* C))))
(h::'a::heap_sep_algebra)" |
lemma ContraProve: "H \<turnstile> B \<Longrightarrow> insert (Neg B) H \<turnstile> A" |
lemma ball_biholomorphism_exists:
assumes "a \<in> ball 0 1"
obtains f g where "f a = 0"
"f holomorphic_on ball 0 1" "f ` ball 0 1 \<subseteq> ball 0 1"
"g holomorphic_on ball 0 1" "g ` ball 0 1 \<subseteq> ball 0 1"
"\<And>z. z \<in> ball 0 1 \<Longrightarrow> f (g z) = z"
"\<And>z. z \<in> ball 0 1 \<Longrightarrow> g (f z) = z" |
lemma (in comm_group) finite_sub_comp_iff_card_eq_mult:
assumes "subgroup H G" "subgroup J G" "finite H" "finite J"
shows "card (H <#> J) = card J * card H \<longleftrightarrow> complementary H J" |
theorem soundness:
assumes \<open>([], 0 \<turnstile> \<Psi> \<triangleright> []) \<hookrightarrow>\<^bsup>k\<^esup> \<S>\<close>
shows \<open>\<lbrakk>\<lbrakk> \<Psi> \<rbrakk>\<rbrakk>\<^sub>T\<^sub>E\<^sub>S\<^sub>L \<supseteq> \<lbrakk> \<S> \<rbrakk>\<^sub>c\<^sub>o\<^sub>n\<^sub>f\<^sub>i\<^sub>g\<close> |
theorem bernoulli_altdef:
"bernoulli n = (\<Sum>m\<le>n. \<Sum>k\<le>m. (-1)^k * real (m choose k) * real k^n / real (Suc m))" |
lemma singleton_union_fset_right:
shows "S |\<union>| {|a|} = insert_fset a S" |
lemma t_fusion_leftneutral [simp]: "t_fusion (first x, []) x = x" |
lemma to_prime_props :
"L (to_prime M) = L M"
"observable (to_prime M)"
"minimal (to_prime M)"
"reachable_states (to_prime M) = states (to_prime M)"
"inputs (to_prime M) = inputs M"
"outputs (to_prime M) = outputs M" |
lemma deriv_j_ladder_shift_j:
"index < length L \<Longrightarrow> deriv_j (ladder_shift_j d L ! index) = deriv_j (L ! index) - d" |
lemma setsum_cut_off_less:
fixes f::"nat \<Rightarrow> nat"
assumes h1: "m \<le> n"
and h2: "\<forall>i \<in> {m..<n}. f i = 0"
shows "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)" |
lemma accessible_unsat_core:
shows "\<U>\<^sub>c ` {s'. s \<succ>\<^sup>* s'} = {\<U>\<^sub>c s}" |
lemma balance_rbt_less[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)" |
lemma adv_not_knows1:
assumes "out P \<subseteq> ins A"
and "\<not> knows A [kE m]"
shows "\<not> eout P (kE m)" |
lemma var_update_out [simp]: "lens_put (out_var x) (A, A') v = (A, lens_put x A' v)" |
lemma delta_split: "delta (R \<union> S) bs = delta R bs \<union> delta S bs" |
lemma sorted_list_drop: "sorted_list xs \<Longrightarrow> sorted_list (drop n xs)" |
lemma seq_one_simp:
"\<one>\<^bsub>R\<^bsup>\<omega>\<^esup>\<^esub> k = \<one>" |
lemma closure_invariant_termination:
assumes WF: "wf n r" "wf n s"
and result: "closure_invariant ([([], init r, init s)], [], {(post (init r), post (init s))}) = None"
(is "closure_invariant ([([], ?r, ?s)], _) = None" is "?cl = None")
shows "False" |
lemma before_vs:
"distinct vs \<Longrightarrow> before vs ram1 ram2 \<Longrightarrow> vs = fst (splitAt ram1 vs) @ ram1 # fst (splitAt ram2 (snd (splitAt ram1 vs))) @ ram2 # snd (splitAt ram2 vs)" |
lemma ubx_invertible: "ubx opinl xs = Some opubx \<Longrightarrow> deubx opubx = opinl" |
lemma
assumes "prime n"
shows prime_card_primitive_roots: "card {x\<in>totatives n. ord n x = n - 1} = totient (n - 1)"
"card {x\<in>{..<n}. ord n x = n - 1} = totient (n - 1)"
and prime_primitive_root_exists: "\<exists>x. residue_primroot n x" |
theorem secure_equals_c_secure:
"refl I \<Longrightarrow> secure (c_process step out s\<^sub>0) I (c_dom D) = c_secure step out s\<^sub>0 I D" |
lemma powser_ms_aux'_MSSCons:
"powser_ms_aux' (MSSCons c cs) xs =
MSLCons (const_expansion c, 0) (times_ms_aux xs (powser_ms_aux' cs xs))" |
lemma quad_next4_id:
"\<lbrakk> |vertices f| = 4; distinct(vertices f); v \<in> \<V> f \<rbrakk> \<Longrightarrow>
f \<bullet> (f \<bullet> (f \<bullet> (f \<bullet> v))) = v" |
lemma cond_wf_Elem:
assumes hyps:"\<forall>x. (\<forall>y. Elem y x \<longrightarrow> Elem y U \<longrightarrow> P y) \<longrightarrow> Elem x U \<longrightarrow> P x" "Elem a U"
shows "P a" |
lemma closed_seqs_memE:
assumes "s \<in> closed_seqs R"
shows "s k \<in> carrier R" |
lemma substitute_either: "substitute f T (t \<oplus>\<oplus> t') = substitute f T t \<oplus>\<oplus> substitute f T t'" |
lemma iwlsFSbSwTR_imp_iwlsFSb:
"iwlsFSbSwTR MOD \<Longrightarrow> iwlsFSb MOD" |
lemma binA_neq_cases_swap: assumes neq: "a \<noteq> (b :: binA)"
obtains "a = c" and "b = 1 - c" | "a = 1 - c" and "b = c" |
lemma ordered_list_distinct_rev :
fixes xs :: "('a::preorder) list"
assumes "\<And> i . Suc i < length xs \<Longrightarrow> (xs ! i) > (xs ! (Suc i))"
shows "distinct xs" |
lemma last_subset:
assumes "A \<subseteq> {a,b}"
and "a\<noteq> b"
and "A \<noteq> {a, b}"
and "A\<noteq> {}"
and "A \<noteq> {a}"
shows "A = {b}" |
lemma(in UP_cring) one_over_poly_monom_add:
assumes "a \<in> carrier R"
assumes "a \<noteq> \<zero>"
assumes "p \<in> carrier P"
assumes "degree p < n"
shows "one_over_poly (p \<oplus>\<^bsub>P\<^esub> monom P a n) = monom P a 0 \<oplus>\<^bsub>P\<^esub> monom P \<one> (n - degree p) \<otimes>\<^bsub>P\<^esub> one_over_poly p" |
lemma form_of_lit_is_lit[simp,intro!]: "is_lit_plus (form_of_lit x)" |
lemma \<psi>D_im :
"T \<in> GRepHomSet (\<star>) W \<Longrightarrow> map (map (\<psi> T)) indVfbasis
= aezfun_scalar_mult.negGorbit_list (\<star>) H_rcoset_reps T Vfbasis" |
lemma var_dist_subst_Var:
"(var_dist vs s)[Var i/j] = var_dist (map (\<lambda>v. vsubst v i j) vs) (s[Var i/j])" |
lemma gen_lossless_gpvI [intro?]:
"\<lbrakk> lossless_spmf (the_gpv gpv);
\<And>out c input. \<lbrakk> IO out c \<in> set_spmf (the_gpv gpv); input \<in> responses_\<I> \<I> out \<rbrakk>
\<Longrightarrow> gen_lossless_gpv (c input) \<rbrakk>
\<Longrightarrow> gen_lossless_gpv gpv" |
lemma sets_pair_measure:
"sets (A \<Otimes>\<^sub>M B) = sigma_sets (space A \<times> space B) {a \<times> b | a b. a \<in> sets A \<and> b \<in> sets B}" |
lemma remdups_insort[simp]: "a \<in> set xs \<Longrightarrow> remdups (insort a xs) = remdups xs" |
lemma stk_convert:
"Listn.le (subtype G) a b = G \<turnstile> map OK a <=l map OK b" |
lemma "\<not> all_security_requirements_fulfilled security_invariants policy" |
lemma (in simplification) rb_INV_finite[simp]: "rb_INV x Q \<Q> \<Longrightarrow> finite \<Q>" |
lemma m_s2_rep: assumes "finite(X)" and "S1 = S2 on -X" and "\<forall>x. S1 x \<le> S2 x" and "S1 \<noteq> S2"
shows "(\<Sum>x\<in>X. m (S2 x)) < (\<Sum>x\<in>X. m (S1 x))" |
lemma bind_case_type_cong [fundef_cong]:
assumes "x = x'"
and "\<And>t. x = Value t \<Longrightarrow> f t s = f' t s"
and "\<And>t. x = Calldata t \<Longrightarrow> g t s = g' t s"
and "\<And>t. x = Memory t \<Longrightarrow> h t s = h' t s"
and "\<And>t. x = Storage t \<Longrightarrow> i t s = i' t s"
shows "(case x of Value t \<Rightarrow> f t | Calldata t \<Rightarrow> g t | Memory t \<Rightarrow> h t | Storage t \<Rightarrow> i t ) s
= (case x' of Value t \<Rightarrow> f' t | Calldata t \<Rightarrow> g' t | Memory t \<Rightarrow> h' t | Storage t \<Rightarrow> i' t) s" |
lemma indicator_sum_eq:
fixes m::real and f :: "'a \<Rightarrow> real"
assumes "\<bar>m\<bar> \<le> 2 ^ (2*n)" "m/2^n \<le> f x" "f x < (m+1)/2^n" "m \<in> \<int>"
shows "(\<Sum>k::real | k \<in> \<int> \<and> \<bar>k\<bar> \<le> 2 ^ (2*n).
k/2^n * indicator {y. k/2^n \<le> f y \<and> f y < (k+1)/2^n} x) = m/2^n"
(is "sum ?f ?S = _") |
lemma pmf_of_alist_aux:
assumes "(s, \<mu>) \<in> set K"
shows
"pmf (pmf_of_alist \<mu>) t = (case map_of \<mu> t of
None \<Rightarrow> 0
| Some p \<Rightarrow> p)" |
lemma ucast_ucast_eq:
"\<lbrakk> ucast x = (ucast (ucast y::'a word)::'c::len word); LENGTH('a) \<le> LENGTH('b);
LENGTH('b) \<le> LENGTH('c) \<rbrakk> \<Longrightarrow>
x = ucast y" for x :: "'a::len word" and y :: "'b::len word" |
lemma emeasure_SUP_chain:
assumes sets: "\<And>i. i \<in> A \<Longrightarrow> sets (M i) = sets N" "X \<in> sets N"
assumes ch: "Complete_Partial_Order.chain (\<le>) (M ` A)" and "A \<noteq> {}"
shows "emeasure (SUP i\<in>A. M i) X = (SUP i\<in>A. emeasure (M i) X)" |
lemma dom_locals_eval_mono:
assumes eval: "G\<turnstile> s0 \<midarrow>t\<succ>\<rightarrow> (v,s1)"
shows "dom (locals (store s0)) \<subseteq> dom (locals (store s1)) \<and>
(\<forall> vv. v=In2 vv \<and> normal s1
\<longrightarrow> (\<forall> s val. dom (locals (store s))
\<subseteq> dom (locals (store ((snd vv) val s)))))" |
lemma size_pf_formula14: "sum_list (map size_pf (pf_formula14 n m)) = m + 3 * n + m * (n * 16 - 21) + n * (m * 16 - 21)" |
lemma nDAcharn[rule_format]: "noDenyAll p = (\<forall> r \<in> set p. \<not> member DenyAll r)" |
lemma mk_deriv_intro_n[simp]: "deriv_n (mk_deriv_intro i n j) = n" |
lemma vrestriction_vlrestriction[simp]: "(r \<restriction>\<^sub>\<circ> A) \<restriction>\<^sup>l\<^sub>\<circ> A = r \<restriction>\<^sub>\<circ> A" |
lemma vcomp_assoc [simp]:
assumes "natural_transformation A B F G \<rho>"
and "natural_transformation A B G H \<sigma>"
and "natural_transformation A B H K \<tau>"
shows "vertical_composite.map A B (vertical_composite.map A B \<rho> \<sigma>) \<tau>
= vertical_composite.map A B \<rho> (vertical_composite.map A B \<sigma> \<tau>)" |
lemma triangle_F':
assumes "D.ide b"
shows "C.inverse_arrows (F (\<eta> b)) (\<epsilon> (F b))" |
lemma af\<^sub>G_keeps_F_and_S:
assumes "ys \<noteq> []"
assumes "S \<Turnstile>\<^sub>P af\<^sub>G \<phi> ys"
shows "S \<Turnstile>\<^sub>P af\<^sub>G (F \<phi>) (xs @ ys)" |
lemma sum_assn_id[simp]: "sum_assn id_assn id_assn = id_assn" |
lemma tna_ant:" tna (ant z) = z" |
lemma fmdom'_add[simp]: "fmdom' (m ++\<^sub>f n) = fmdom' m \<union> fmdom' n" |
lemma apply_guards_condense: "\<exists>g. apply_guards G s = (gval g s = true)" |
lemma unitarily_equiv_conjugate:
assumes "A\<in> carrier_mat n n"
and "V\<in> carrier_mat n n"
and "U \<in> carrier_mat n n"
and "B\<in> carrier_mat n n"
and "unitarily_equiv (mat_conj (Complex_Matrix.adjoint V) A) B U"
and "unitary V"
shows "unitarily_equiv A B (V * U)" |
lemma norm_bound_elements_mat: "norm_bound A b = (\<forall> x \<in> elements_mat A. norm x \<le> b)" |
lemma eq_0_height[simp]:
"0 = height kdt \<longleftrightarrow> (\<exists>p. kdt = Leaf p)" |
theorem HEndPhase2_HInv4b:
assumes act: "HEndPhase2 s s' p"
and inv: "HInv4b s q"
shows "HInv4b s' q" |
lemma append_rows_le: assumes A: "A \<in> carrier_mat nr1 nc"
and B: "B \<in> carrier_mat nr2 nc"
and a: "a \<in> carrier_vec nr1"
and v: "v \<in> carrier_vec nc"
shows "(A @\<^sub>r B) *\<^sub>v v \<le> (a @\<^sub>v b) \<longleftrightarrow> A *\<^sub>v v \<le> a \<and> B *\<^sub>v v \<le> b" |
lemma MP: "\<forall>a b. a \<^bold>\<and> (a \<^bold>\<Rightarrow> b) \<^bold>\<preceq> b" |
lemma exec_instr_xcpt:
"(fst (exec_instr i G hp stk vars Cl sig pc frs) = Some xcp)
= (\<exists>stk'. exec_instr i G hp stk vars Cl sig pc frs =
(Some xcp, hp, (stk', vars, Cl, sig, pc)#frs))" |
lemma (in list_to_set) to_set_autoref[autoref_rules]:
"PREFER_id Rk \<Longrightarrow> (to_set,set)\<in>\<langle>Rk\<rangle>list_rel \<rightarrow> \<langle>Rk\<rangle>rel" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.