Statement:
stringlengths 7
24.3k
|
---|
lemma ifbd_inj_iff: "Sup_pres \<phi> \<Longrightarrow> Sup_pres \<psi> \<Longrightarrow> (bd\<^sup>-\<^sub>\<F> \<phi> = bd\<^sup>-\<^sub>\<F> \<psi>) = (\<phi> = \<psi>)" |
lemma measurable_count_space_insert[measurable (raw)]:
"s \<in> S \<Longrightarrow> A \<in> sets (count_space S) \<Longrightarrow> insert s A \<in> sets (count_space S)" |
lemma inverse_of_nat_tendsto_zero:
"(\<lambda>x. inverse (of_nat x :: 'a :: real_normed_div_algebra)) \<longlonglongrightarrow> 0" |
lemma map_entry_parametric [transfer_rule]:
assumes [transfer_rule]: "bi_unique A"
shows "(A ===> (B ===> B) ===> (A ===> rel_option B) ===> A ===> rel_option B)
(\<lambda>k f m. (case m k of None \<Rightarrow> m
| Some v \<Rightarrow> m (k \<mapsto> (f v)))) (\<lambda>k f m. (case m k of None \<Rightarrow> m
| Some v \<Rightarrow> m (k \<mapsto> (f v))))" |
lemma safe_only_owner_enter_normal_aux[simp]:
"\<lbrakk> s : reach; safe s r; (k',roomk s r) \<in> cards s g \<rbrakk> \<Longrightarrow> owns s r = Some g" |
lemma min_Suc_gt[simp]:
"a<b \<Longrightarrow> min (Suc a) b = Suc a"
"a<b \<Longrightarrow> min b (Suc a) = Suc a" |
lemma H_loop: "\<^bold>{P\<^bold>} X \<^bold>{P\<^bold>} \<Longrightarrow> \<^bold>{P\<^bold>} (LOOP X INV I) \<^bold>{P\<^bold>}" |
lemma (in deutsch) adjoint_of_deutsch_transform:
shows "(U\<^sub>f)\<^sup>\<dagger> = U\<^sub>f" |
lemma atd_lem: "take n xs = t \<Longrightarrow> drop n xs = d \<Longrightarrow> xs = t @ d" |
lemma field_differentiable_compose:
"f field_differentiable at z \<Longrightarrow> g field_differentiable at (f z)
\<Longrightarrow> (g o f) field_differentiable at z" |
lemma two: "(2::nat) = Suc 1" |
lemma reduce_below_abs_0_case_m1:
assumes A': "A' \<in> carrier_mat m n" and a: "a<m" and j: "0<n"
and A_def: "A = A' @\<^sub>r (D \<cdot>\<^sub>m (1\<^sub>m n))"
and Aaj: "A $$ (a,0) \<noteq> 0"
and mn: "m\<ge>n"
assumes "distinct xs" and "\<forall>x \<in> set xs. x < m \<and> a < x"
and "m\<noteq>a"
and "D>0"
shows "reduce_below_abs a (xs @ [m]) D A $$ (m,0) = 0" |
lemma
"(t \<in> B h \<longrightarrow> ins x t \<in> Bp h) \<and> (t \<in> U h \<longrightarrow> ins x t \<in> T h)" |
lemma "Oc\<up>(0+1) = [Oc]" |
lemma (in uprio_pop) autoref_prio_pop_min[autoref_rules]:
"\<And>Re Ra. \<lbrakk>PREFER_id Re; PREFER_id Ra \<rbrakk>
\<Longrightarrow> (\<lambda>s. RETURN (pop s),prio_pop_min)\<in>\<langle>Re,Ra\<rangle>rel\<rightarrow>\<langle>\<langle>Re,\<langle>Ra,\<langle>Re,Ra\<rangle>rel\<rangle>prod_rel\<rangle>prod_rel\<rangle>nres_rel" |
lemma bin_split_minus1 [simp]:
"bin_split n (- 1) = (- 1, (take_bit :: nat \<Rightarrow> int \<Rightarrow> int) n (- 1))" |
lemma prv_eqv_prv:
assumes "\<phi> \<in> fmla" and "\<chi> \<in> fmla"
assumes "prv \<phi>" and "prv (eqv \<phi> \<chi>)"
shows "prv \<chi>" |
lemma circuit_in_elim:
assumes "circuit_in \<E> C\<^sub>1" "circuit_in \<E> C\<^sub>2" "C\<^sub>1 \<noteq> C\<^sub>2" "x \<in> C\<^sub>1 \<inter> C\<^sub>2"
shows "\<exists>C\<^sub>3 \<subseteq> (C\<^sub>1 \<union> C\<^sub>2) - {x}. circuit_in \<E> C\<^sub>3" |
lemma post_meas0_index_0_alice:
assumes "state 1 \<phi>" and "\<alpha> = \<phi> $$ (0,0)" and "\<beta> = \<phi> $$ (1,0)"
shows "post_meas0 3 (alice \<phi>) 0 =
mat_of_cols_list 8 [[\<alpha>/sqrt(2), \<beta>/sqrt(2), \<beta>/sqrt(2), \<alpha>/sqrt(2), 0, 0, 0, 0]]" |
lemma in_singleton:" m \<^bold>\<in> Abs_nat_int{n} \<longrightarrow> m = n" |
lemma infinite_times_eqpoll_self:
assumes "infinite A" shows "A \<times> A \<approx> A" |
lemma progress_le: "progress \<sigma> Map.empty \<phi> j \<le> j" |
lemma ordst_trans:
assumes As1: "ordst X Y" and As2: "ordst Y Z"
shows "ordst X Z" |
lemma wlp_skip_eq: "wlp SKIP Q s = Q s" |
lemma strong_del_point_incidence_wf: "incidence_system (del_point p) (str_del_point_blocks p)" |
lemma SplitGuards_sound:
assumes valid_c1: "\<Gamma>,\<Theta>\<Turnstile>\<^sub>t\<^bsub>/F\<^esub> P c\<^sub>1 Q,A"
assumes valid_c2: "\<Gamma>,\<Theta>\<Turnstile>\<^bsub>/F\<^esub> P c\<^sub>2 UNIV,UNIV"
assumes c: "(c\<^sub>1 \<inter>\<^sub>g c\<^sub>2) = Some c"
shows "\<Gamma>,\<Theta>\<Turnstile>\<^sub>t\<^bsub>/F\<^esub> P c Q,A" |
lemma ImplLeadsto_simple: "\<And>F G. \<turnstile> F \<longrightarrow> G \<Longrightarrow> \<turnstile> F \<leadsto> G" |
lemma vsubset_vdiff:
assumes "A \<subseteq>\<^sub>\<circ> B -\<^sub>\<circ> C"
shows "A \<subseteq>\<^sub>\<circ> B" |
lemma qp_D3_post:
"is_quantum_predicate (adjoint exM0 * P' * exM0 + adjoint exM1 * Q * exM1)" |
lemma lsl_top [simp]: "\<nu> \<top> = (\<top>::'a::unital_quantale)" |
lemma fixbound_in: "Q \<in> fixbound \<Q> x \<Longrightarrow> Q \<in> \<Q>" |
lemma tree_edge_disc:
"(v,w) \<in> tree_edges s \<Longrightarrow> \<delta> s v < \<delta> s w" |
lemma elementsButlastTrailIsButlastElementsTrail [simp]:
shows "elements (butlast M) = butlast (elements M)" |
lemma (in field) npepow_correct:
"in_carrier xs \<Longrightarrow> peval xs (npepow e n) = peval xs (PExpr2 (PPow e n))" |
lemma abupd_def2 [simp]: "abupd f (x,s) = (f x,s)" |
lemma dom_empty [simp]: "dom empty = {}" |
lemma "when" [simp]:
"P \<Longrightarrow> (a when P) = a"
"\<not> P \<Longrightarrow> (a when P) = 0" |
lemma rbt_lookup_from_in_tree:
assumes "rbt_sorted t1" "rbt_sorted t2"
and "\<And>v. (k, v) \<in> set (entries t1) \<longleftrightarrow> (k, v) \<in> set (entries t2)"
shows "rbt_lookup t1 k = rbt_lookup t2 k" |
lemma fun_eq_on_cong: "fun_eq_on f h A \<Longrightarrow> fun_eq_on g h A \<Longrightarrow> fun_eq_on f g A" |
lemma class_add_widens:
"\<lbrakk> P \<turnstile> Ts [\<le>] Ts'; \<not> is_class P C \<rbrakk>
\<Longrightarrow> (class_add P (C, cdec)) \<turnstile> Ts [\<le>] Ts'" |
lemma alphas_abs_eqvt:
shows "(bs, x) \<approx>abs_set (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs_set (p \<bullet> cs, p \<bullet> y)"
and "(bs, x) \<approx>abs_res (cs, y) \<Longrightarrow> (p \<bullet> bs, p \<bullet> x) \<approx>abs_res (p \<bullet> cs, p \<bullet> y)"
and "(ds, x) \<approx>abs_lst (es, y) \<Longrightarrow> (p \<bullet> ds, p \<bullet> x) \<approx>abs_lst (p \<bullet> es, p \<bullet> y)" |
lemma scalingI[intro]:
"\<lbrakk> \<And>P c x. \<lbrakk> sound P; 0 \<le> c \<rbrakk> \<Longrightarrow> c * t P x = t (\<lambda>x. c * P x) x \<rbrakk> \<Longrightarrow> scaling t" |
lemma nonzero_fstI[intro, simp]: "fst x \<noteq> 0 \<Longrightarrow> x \<noteq> 0"
and nonzero_sndI[intro, simp]: "snd x \<noteq> 0 \<Longrightarrow> x \<noteq> 0" |
lemma cpx_length_of_vec_of_list [simp]:
"\<parallel>vec_of_list l\<parallel> = sqrt(\<Sum>i<length l. (cmod (l ! i))\<^sup>2)" |
lemma OclInt1_non_null [simp,code_unfold]: "(\<one> \<doteq> null) = false" |
lemma ND0aux3[rule_format]: "AllowPortFromTo x y p \<in> set b \<Longrightarrow>
x \<in> set (net_list_aux b)" |
lemma semialg_intersect:
assumes "A \<in> semialg_sets n"
assumes "B \<in> semialg_sets n"
shows "(A \<inter> B) \<in> semialg_sets n " |
lemma box_import_shunting:
"-p * -q \<le> |x](-r) \<longleftrightarrow> -q \<le> |-p * x](-r)" |
lemma big_step_CS: "(c,s) \<Rightarrow> t \<Longrightarrow> t \<in> post(CS c)" |
lemma nn_set_integral_cong:
assumes "AE x in M. f x = g x"
shows "(\<integral>\<^sup>+x \<in> A. f x \<partial>M) = (\<integral>\<^sup>+x \<in> A. g x \<partial>M)" |
lemma rule_\<alpha>_type[simp]: "(N, \<alpha>) \<in> \<RR> \<Longrightarrow> is_sentence \<alpha>" |
lemma weakPsiCongE:
fixes \<Psi> :: 'b
and P :: "('a, 'b, 'c) psi"
and Q :: "('a, 'b, 'c) psi"
and \<Psi>' :: 'b
assumes "\<Psi> \<rhd> P \<doteq> Q"
shows "\<Psi> \<rhd> P \<approx> Q"
and "\<Psi> \<rhd> P \<leadsto>\<guillemotleft>weakBisim\<guillemotright> Q"
and "\<Psi> \<rhd> Q \<leadsto>\<guillemotleft>weakBisim\<guillemotright> P" |
lemma liftE_def2:
"liftE f = (\<lambda>s. ((\<lambda>(v,s'). (Inr v, s')) (fst (f s)), snd (f s)))" |
lemma HMA_V_diff [transfer_rule]: "(HMA_V ===> HMA_V ===> HMA_V) (-) (-)" |
lemma dvd_associated2:
fixes a::"'a::idom"
assumes ab: "a dvd b" and ba: "b dvd a" and a: "a\<noteq>0"
shows "\<exists>u. u dvd 1 \<and> a = u*b" |
lemma has_bochner_integral_imp_has_integral':
"has_bochner_integral lborel (\<lambda>x. indicator S x *\<^sub>R f x) I \<Longrightarrow>
(f has_integral (I :: 'b :: euclidean_space)) S" |
lemma value_class_inhabitants:
"(\<forall>x. typeof x = CClassT typeId \<longrightarrow> P x) = (\<forall> a. P (objV typeId a))"
(is "(\<forall> x. ?A x) = ?B") |
lemma Assign_is_state_update_before: "ASSIGN x e = state_update_before (\<lambda> (s, s') . s' = (update x (\<lambda>_. (e s))) s) Skip" |
lemma expand_prop_all:
assumes "expand_assm_incoming n_ns \<and> expand_name_ident (snd n_ns)" (is "?Q n_ns")
shows "expand n_ns \<le> SPEC (expand_rslt_all \<xi> n_ns)"
(is "_ \<le> SPEC (?P n_ns)") |
lemma subst_simps [simp]:
"subst x t x = t"
"subst x (Var x) = Var" |
lemma enforce_option_bot [simp]: "enforce_option \<bottom> = (\<lambda>_. None)" |
lemma path_vertices_shift:
assumes "path v v' pth"
shows "map fst (map fst pth)@[v'] = v#map fst (map snd pth)" |
lemma extends_subst_cong_lit:
"extends_subst \<sigma> \<tau> \<Longrightarrow> vars_lit L \<subseteq> dom \<sigma> \<Longrightarrow> L \<cdot>lit subst_of_map Var \<sigma> = L \<cdot>lit subst_of_map Var \<tau>" |
lemma signed_drop_bit_word_numeral [simp]:
\<open>signed_drop_bit (numeral n) (numeral k) =
(word_of_int (drop_bit (numeral n) (signed_take_bit (LENGTH('a) - 1) (numeral k))) :: 'a::len word)\<close> |
lemma l2norm_lmult:
"f square_integrable S \<Longrightarrow> l2norm S (\<lambda>x. c * f x) = \<bar>c\<bar> * l2norm S f" |
lemma open_chart_last_domain: "open (Collect chart_last_domainP)" |
lemma mono_ndet_ref: " \<lbrakk>P \<sqsubseteq> P'; S \<sqsubseteq> S'\<rbrakk> \<Longrightarrow> (P \<sqinter> S) \<sqsubseteq> (P' \<sqinter> S')" |
lemma parts_insert_subset_Un: "X \<in> G \<Longrightarrow> parts(insert X H) \<subseteq> parts G \<union> parts H" |
lemma evaluate_iff_sym:
"evaluate True env st e r \<longleftrightarrow> (eval env e st = r)"
"evaluate_list True env st es r' \<longleftrightarrow> (eval_list env es st = r')"
"evaluate_match True env st v pes v' r \<longleftrightarrow> (eval_match env v pes v' st = r)" |
lemma insert_if: "finite A \<Longrightarrow> F g (insert x A) = (if x \<in> A then F g A else g x \<^bold>* F g A)" |
lemma valid_UV_lists_alt:
assumes "P = (\<lambda>x. (\<exists>as bs cs. as@U@bs@V@cs = x) \<and> set x = xs \<and> distinct x)"
shows "{x. (\<exists>as bs cs. as@U@bs@V@cs = x) \<and> set x = xs \<and> distinct x} = {ys. P ys}" |
lemma bind_map_spmf: "map_spmf f p \<bind> g = p \<bind> g \<circ> f" |
lemma rreq_rrep_fresh [simp]:
"\<And>hops dip dsn dsk oip osn sip handled.
rreq_rrep_fresh crt (Rreq hops dip dsn dsk oip osn sip handled) =
(sip \<noteq> oip \<longrightarrow> oip\<in>kD(crt)
\<and> (sqn crt oip > osn
\<or> (sqn crt oip = osn
\<and> the (dhops crt oip) \<le> hops
\<and> the (flag crt oip) = val)))"
"\<And>hops dip dsn oip sip. rreq_rrep_fresh crt (Rrep hops dip dsn oip sip) =
(sip \<noteq> dip \<longrightarrow> dip\<in>kD(crt)
\<and> sqn crt dip = dsn
\<and> the (dhops crt dip) = hops
\<and> the (flag crt dip) = val)"
"\<And>dests sip. rreq_rrep_fresh crt (Rerr dests sip) = True"
"\<And>d dip. rreq_rrep_fresh crt (Newpkt d dip) = True"
"\<And>d dip sip. rreq_rrep_fresh crt (Pkt d dip sip) = True" |
lemma point_surj [simp]:
"Point (abscissa M) (ordinate M) = M" |
lemma execute_of_list [execute_simps]:
"execute (of_list xs) h = Some (alloc xs h)" |
lemma CondReds2T:
assumes e_steps: "P \<turnstile> \<langle>e,s\<^sub>0\<rangle> \<rightarrow>* \<langle>true,s\<^sub>1\<rangle>"
and e\<^sub>1_steps: "P \<turnstile> \<langle>e\<^sub>1, s\<^sub>1\<rangle> \<rightarrow>* \<langle>e',s\<^sub>2\<rangle>"
shows "P \<turnstile> \<langle>if (e) e\<^sub>1 else e\<^sub>2, s\<^sub>0\<rangle> \<rightarrow>* \<langle>e',s\<^sub>2\<rangle>"
(*<*)(is "(?x, ?z) \<in> (red P)\<^sup>*") |
lemma infsum_bounded_linear:
assumes \<open>bounded_linear f\<close>
assumes \<open>g summable_on S\<close>
shows \<open>infsum (f \<circ> g) S = f (infsum g S)\<close> |
lemma HNatInfinite_upward_closed: "x \<in> HNatInfinite \<Longrightarrow> x \<le> y \<Longrightarrow> y \<in> HNatInfinite" |
lemma cms:"m O s \<subseteq> m" |
lemma bpred_eval[simp]: "bpred p\<cdot>(box\<cdot>x)\<cdot>(box\<cdot>y) = (if p x y then TT else FF)" |
lemma ineM_L1:
assumes "ch \<in> M"
and "ch \<in> ins P"
and "exprChannel ch E"
shows "ineM P M E" |
lemma sign_r_pos_0[simp]:"\<not> sign_r_pos 0 (x::real)" |
lemma ln_prod: "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i > 0) \<Longrightarrow> ln (prod f I) = sum (\<lambda>x. ln(f x)) I"
for f :: "'a \<Rightarrow> real" |
lemma ideal_Union:
fixes I::"nat => 'a set"
defines S: "S\<equiv>{I n|n. n\<in>UNIV}"
assumes all_ideal: "\<forall>A\<in>S. ideal A"
and inc: "\<forall>n. I(n) \<subseteq> I(n+1)"
shows "ideal (\<Union>S)" |
lemma toProcess_start:
"toProcess sidx p = (ss,a,n,l,idx,start,r)
\<Longrightarrow> \<exists>s. start = Index s \<and> s < IArray.length ss" |
lemma image_diff_atMost: "(\<lambda>i. (n::nat) - i) ` {..n} = {..n}" (is "?l = ?r") |
lemma Some_Sup:
"A \<noteq> {} \<Longrightarrow> Some (\<Squnion>A) = \<Squnion>(Some ` A)" |
lemma no_plus_overflow_uint_size: "x \<le> x + y \<longleftrightarrow> uint x + uint y < 2 ^ size x"
for x y :: "'a::len word" |
lemma MGT_lemma:
assumes MGT_Calls:
"\<forall>p \<in> dom \<Gamma>. \<forall>Z. \<Gamma>,\<Theta> \<turnstile>\<^sub>t\<^bsub>/F\<^esub>
{s. s=Z \<and> \<Gamma>\<turnstile>\<langle>Call p,Normal s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` (-F)) \<and>
\<Gamma>\<turnstile>(Call p)\<down>Normal s}
(Call p)
{t. \<Gamma>\<turnstile>\<langle>Call p,Normal Z\<rangle> \<Rightarrow> Normal t},
{t. \<Gamma>\<turnstile>\<langle>Call p,Normal Z\<rangle> \<Rightarrow> Abrupt t}"
shows "\<And>Z. \<Gamma>,\<Theta>\<turnstile>\<^sub>t\<^bsub>/F\<^esub> {s. s=Z \<and> \<Gamma>\<turnstile>\<langle>c,Normal s\<rangle> \<Rightarrow>\<notin>({Stuck} \<union> Fault ` (-F)) \<and>
\<Gamma>\<turnstile>c\<down>Normal s}
c
{t. \<Gamma>\<turnstile>\<langle>c,Normal Z\<rangle> \<Rightarrow> Normal t},{t. \<Gamma>\<turnstile>\<langle>c,Normal Z\<rangle> \<Rightarrow> Abrupt t}" |
lemma subst_atmss_id_subst[simp]: "AAA \<cdot>ass id_subst = AAA" |
lemma continuous_on_imp_set_integrable_cbox:
fixes h :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space"
assumes "continuous_on (cbox a b) h"
shows "set_integrable lborel (cbox a b) h" |
lemma continuous_on_infnorm[continuous_intros]:
"continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. infnorm (f x))" |
lemma linepath_le_1:
fixes a::"'a::linordered_idom" shows "\<lbrakk>a \<le> 1; b \<le> 1; 0 \<le> u; u \<le> 1\<rbrakk> \<Longrightarrow> (1 - u) * a + u * b \<le> 1" |
lemma cont_at': "(f \<longlongrightarrow> f x) (at' x) \<longleftrightarrow> f \<midarrow>x\<rightarrow> f x" |
lemma \<Gamma>\<^sub>v_Var_image:
"\<Gamma>\<^sub>v ` X = \<Gamma> ` Var ` X" |
lemma n_add_distr: "n x + (n y \<cdot> n z) = (n x + n y) \<cdot> (n x + n z)" |
lemma card_differenceset_singleton_mem_eq:
assumes "a \<in> G" and "A \<subseteq> G"
shows "card A = card (differenceset A {a})" |
lemma "(make_foo a b) \<lparr> field_1 := y \<rparr> = make_foo y b" |
lemma lnth_lappend[simp]:
assumes "lfinite xs"
and "\<not> lnull ys"
shows "lnth (xs @\<^sub>l ys) (the_enat (llength xs)) = lhd ys" |
lemma state_cover_transition_converges :
assumes "observable M"
and "is_state_cover_assignment M V"
and "t \<in> transitions M"
and "t_source t \<in> reachable_states M"
shows "converge M ((V (t_source t)) @ [(t_input t,t_output t)]) (V (t_target t))" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.