Statement:
stringlengths 7
24.3k
|
---|
lemma inv2_rbt_joinR: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l \<ge> bheight r \<Longrightarrow> inv2 (rbt_joinR l a b r)" |
lemma poincare_map_has_derivative_step:
assumes Deriv: "(poincare_map P has_derivative blinfun_apply D) (at (flow0 x0 h))"
assumes ret: "returns_to P x0"
assumes cont: "continuous (at x0 within S) (return_time P)"
assumes less: "0 \<le> h" "h < return_time P x0"
assumes cP: "closed P" and x0: "x0 \<in> S"
shows "((\<lambda>x. poincare_map P x) has_derivative (D o\<^sub>L Dflow x0 h)) (at x0 within S)" |
lemma
has_derivative_Blinfun:
assumes "(f has_derivative f') F"
shows "(f has_derivative Blinfun f') F" |
lemma a_sum_le_U_sum: "wf ot \<Longrightarrow> acost_sum ot \<le> U_sum ot" |
lemma op_cf_comma_is_functor:
assumes "\<GG> : \<AA> \<mapsto>\<mapsto>\<^sub>C\<^bsub>\<alpha>\<^esub> \<CC>" and "\<HH> : \<BB> \<mapsto>\<mapsto>\<^sub>C\<^bsub>\<alpha>\<^esub> \<CC>"
shows "op_cf_comma \<GG> \<HH> :
op_cat (\<GG> \<^sub>C\<^sub>F\<down>\<^sub>C\<^sub>F \<HH>) \<mapsto>\<mapsto>\<^sub>C\<^bsub>\<alpha>\<^esub> (op_cf \<HH>) \<^sub>C\<^sub>F\<down>\<^sub>C\<^sub>F (op_cf \<GG>)" |
lemma wf_interp_for_formula_any_Inr: "wf_interp_for_formula (w, Inr P # I) \<phi> \<Longrightarrow>
\<forall>P \<subseteq> {0 .. length w - 1}. wf_interp_for_formula (w, Inr P # I) \<phi>" |
lemma ind_is_open_S [iff]: "ind_is_open S" |
lemma set_compre_subset: "B \<subseteq> A \<Longrightarrow> {x \<in> B. P x} \<subseteq> {x \<in> A. P x}" |
lemma ik\<^sub>s\<^sub>t_assignment_rhs\<^sub>s\<^sub>t_wfrestrictedvars_subset:
"fv\<^sub>s\<^sub>e\<^sub>t (ik\<^sub>s\<^sub>t A \<union> assignment_rhs\<^sub>s\<^sub>t A) \<subseteq> wfrestrictedvars\<^sub>s\<^sub>t A" |
lemma "\<lbrakk>test p; test q\<rbrakk> \<Longrightarrow> p \<cdot> x = p \<cdot> x \<cdot> q \<longleftrightarrow> p \<cdot> x \<le> x \<cdot> q" |
lemma ord_strict_pI:
assumes "lookup p v = 0" and "lookup q v \<noteq> 0" and "\<And>u. v \<prec>\<^sub>t u \<Longrightarrow> lookup p u = lookup q u"
shows "p \<prec>\<^sub>p q" |
lemma swap_triple:
assumes "a \<noteq> b" and "c \<noteq> b"
assumes "sort_of a = sort_of b" "sort_of b = sort_of c"
shows "(a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c) = (a \<rightleftharpoons> b)" |
lemma (in Group) compseries_is_tW_cmpser:"\<lbrakk>0 < r; compseries G r f\<rbrakk> \<Longrightarrow>
tW_cmpser G r f" |
lemma monom_eval_add:
assumes "closed_fun R g"
shows "monom_eval R (add_mset x M) g = (g x) \<otimes> (monom_eval R M g)" |
lemma pre_post_left_sub_dist:
"-p\<squnion>-q\<stileturn>-r \<le> -p\<stileturn>-r" |
lemma tso_lock_invL[intro]:
"\<lbrace> tso_lock_invL \<rbrace> mutator m" |
lemma box_an_an_same:
"|an(x)]an(x) = 1" |
lemma an_neq_inf:"an n \<noteq> \<infinity>" |
lemma good_mapI:
assumes surj_h: "surj h"
and prem: "!! x x' y y'. h(x,y) = h(x',y') ==> x=x'"
shows "good_map h" |
lemma pivot_unsat_core_id: "\<lbrakk>\<triangle> (\<T> s); x\<^sub>i \<in> lvars (\<T> s); x\<^sub>j \<in> rvars_of_lvar (\<T> s) x\<^sub>i\<rbrakk> \<Longrightarrow> \<U>\<^sub>c (pivot x\<^sub>i x\<^sub>j s) = \<U>\<^sub>c s" |
lemma not_convr [simp]: "(\<not> p)\<^sup>- = (\<not> p\<^sup>-)" |
theorem (* Detailed proof *)
fixes f:: "'a::complete_lattice \<Rightarrow> 'a"
assumes CONT: "cont f"
shows "lfp f = (SUP i. (f^^i) bot)" |
lemma lfilter_id_conv: "lfilter P xs = xs \<longleftrightarrow> (\<forall>x\<in>lset xs. P x)" (is "?lhs \<longleftrightarrow> ?rhs") |
lemma preal_sup:
assumes le: "\<And>X. X \<in> P \<Longrightarrow> X \<le> Y" and "P \<noteq> {}"
shows "cut (\<Union>X \<in> P. Rep_preal(X))" |
lemma [trans] : "P' \<subseteq> P \<Longrightarrow> \<Gamma>,\<Theta>\<turnstile>\<^bsub>/F\<^esub> P c Q,A \<Longrightarrow> \<Gamma>,\<Theta>\<turnstile>\<^bsub>/F\<^esub> P' c Q,A" |
lemma vector_to_cblinfun_apply_one_dim[simp]:
shows "vector_to_cblinfun \<phi> *\<^sub>V \<gamma> = one_dim_iso \<gamma> *\<^sub>C \<phi>" |
lemma typ_of1_decr_gen': "typ_of1 (Ts@Ts') (decr (length Ts) t) = tyo\<Longrightarrow> \<not> loose_bvar1 t (length Ts)
\<Longrightarrow> typ_of1 (Ts@[T]@Ts') t = tyo" |
lemma Accessible_right_lang_eq [simp]:
"q \<in> accessible \<Longrightarrow> Accessible.right_lang q = right_lang q" |
lemma repeatable_both_both_nxt:
assumes "t' \<otimes>\<otimes> t = t'"
shows "t' \<otimes>\<otimes> t'' \<otimes>\<otimes> t = t' \<otimes>\<otimes> t''" |
lemma projection_on_union:
"l \<upharpoonleft> Y = [] \<Longrightarrow> l \<upharpoonleft> (X \<union> Y) = l \<upharpoonleft> X" |
lemma lappend_is_LNil_conv [iff]:
"(s @@ t = LNil) = (s = LNil \<and> t = LNil)" |
lemma distinct_RS2[rule_format,simp]: "distinct p \<longrightarrow>
distinct (removeShadowRules2 p)" |
lemma Failures_implies_Traces: " \<lbrakk>is_process P; (s, X) \<in> FAILURES P\<rbrakk> \<Longrightarrow> s \<in> TRACES P" |
lemma push_push_aux: "peval (push_param P (Suc m)) (push a n) = peval (push_param P m) a" |
lemma zero_notin_vpair: "0 \<notin> elts \<langle>x,y\<rangle>" |
lemma concat_pp_less: assumes "concat (take k ws) <p concat (take n ws)" shows "k < n" |
lemma Inter_eqvt [eqvt]:
shows "p \<bullet> \<Inter>S = \<Inter>(p \<bullet> S)" |
lemma pell_valuation_solution_pos_nat:
fixes z :: "nat \<times> nat"
assumes "solution z"
shows "pell_valuation z > 0" |
lemma parts_trans: "\<lbrakk> X\<in> parts G; G \<subseteq> parts H \<rbrakk> \<Longrightarrow> X\<in> parts H" |
lemma modifies_lhsv'_gen:
assumes "lhsv\<pi> \<pi> \<subseteq> vs"
assumes "lhsv' c \<subseteq> vs"
assumes "\<pi>: (c,s) \<Rightarrow> t"
shows "modifies vs t s" |
lemma filtermap_nhds_minus: "filtermap (\<lambda>x. - x) (nhds a) = nhds (- a)"
for a :: "'a::real_normed_vector" |
lemma uset_laws [simp]:
"x \<in>\<^sub>u {}\<^sub>u = false"
"x \<in>\<^sub>u {m..n}\<^sub>u = (m \<le>\<^sub>u x \<and> x \<le>\<^sub>u n)" |
lemma wellformed_items_Scan:
"wellformed_items I \<Longrightarrow> T \<subseteq> \<X> k \<Longrightarrow> wellformed_items (Scan T k I)" |
lemma real_greaterThanLessThan_minus_infinity_eq:
"real_of_ereal ` {-\<infinity><..<N::ereal} =
(if N = \<infinity> then UNIV else if N = -\<infinity> then {} else {..<real_of_ereal N})" |
lemma reduce'_semantics:
assumes \<open>static q\<close>
shows \<open>(M, w \<Turnstile>\<^sub>! [p]\<^sub>! q) = (M, w \<Turnstile>\<^sub>! reduce' p q)\<close> |
lemma gexp_max_input_In: "max_input (In v l) = AExp.max_input (V v)" |
lemma if_doesnt_read:
"x \<notin> bexp_vars e \<Longrightarrow> \<C>_vars x \<inter> bexp_vars e = {} \<Longrightarrow> doesnt_read_or_modify (If e c\<^sub>1 c\<^sub>2 \<otimes> annos) x" |
lemma (in dup)
shows "s<a := i>\<cdot>x = s\<cdot>x" |
lemma containsI: "x \<in> A ==> contains A x" |
lemma holdsIstate_paperIDs_geq_subPH: "holdsIstate paperIDs_geq_subPH" |
lemma OUTfromChCorrect_data22: "OUTfromChCorrect data22" |
lemma ts_ord_add_isol: "n x \<sqsubseteq> n y \<Longrightarrow> n z \<oplus> n x \<sqsubseteq> n z \<oplus> n y" |
lemma psubst_lcnj[simp]:
"set \<phi>s \<subseteq> fmla \<Longrightarrow> snd ` (set txs) \<subseteq> var \<Longrightarrow> fst ` (set txs) \<subseteq> trm \<Longrightarrow>
distinct (map snd txs) \<Longrightarrow>
psubst (lcnj \<phi>s) txs = lcnj (map (\<lambda>\<phi>. psubst \<phi> txs) \<phi>s)" |
lemma coeff_mult_C[simp]: "coeff (a * C x) n = coeff a n * x" |
lemma closed_UNIV [simp]: "closed UNIV f" |
lemma dual_inv2 [simp]: "\<partial> \<circ> \<partial>\<^sup>- = id" |
lemma product_language_state[simp]: "LS (product A B) (q1,q2) = LS A q1 \<inter> LS B q2" |
lemma acquired_reads_no_pending_write_in:
"x \<in> acquired_reads False xs A \<Longrightarrow> x \<in> acquired_reads False xs B" |
lemma step2: "gdpr_scenario' \<rightarrow>\<^sub>n gdpr_scenario''" |
lemma i_Exec_Comp_Stream_Acc_Output__Init__eq_Msg_iSince_conv: "
\<lbrakk> 0 < k; m \<noteq> \<NoMsg>; s = (output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) =
(s t2 = \<NoMsg>. t2 \<S> t1 [Suc (t * k)\<dots>,k - Suc 0]. s t1 = m)" |
lemma reachFrom_step_induct[consumes 1, case_names Refl Step]:
assumes s: "reachFrom s s'"
and refl: "P s"
and step: "\<And>s' a ou s''. reachFrom s s' \<Longrightarrow> P s' \<Longrightarrow> step s' a = (ou, s'') \<Longrightarrow> P s''"
shows "P s'" |
lemma omega_induct[consumes 1, case_names 0 succ]:
assumes "n \<in>\<^sub>\<circ> \<omega>" and "P 0" and "\<And>n. \<lbrakk> n \<in>\<^sub>\<circ> \<omega>; P n \<rbrakk> \<Longrightarrow> P (succ n)"
shows "P n" |
lemma subst_ev_var_flip[simp]:
fixes e::e and y::x and x::x
assumes "atom y \<sharp> e"
shows "(y \<leftrightarrow> x) \<bullet> e = e [x::=V_var y]\<^sub>e\<^sub>v" |
lemma permutes_iff: "p permutes {..<n} \<Longrightarrow> i < n \<Longrightarrow> j < n \<Longrightarrow> p i = p j \<longleftrightarrow> i = j" |
lemma between_distinct_r12:
"distinct vs \<Longrightarrow> ram1 \<noteq> ram2 \<Longrightarrow> distinct (ram1 # between vs ram1 ram2 @ [ram2])" |
lemma less_add_order_eq_0:
assumes "a+^k = 0" "k < add_order a"
shows "k = 0" |
lemma resInputFreeTrans[dest]:
fixes x :: name
fixes a :: name
and y :: name
and P :: pi
and \<alpha> :: freeRes
and P' :: pi
assumes "<\<nu>x>a<y>.P \<longmapsto>\<alpha> \<prec> P'"
shows False |
theorem preservation: assumes v: "v \<in> E e \<rho>" and rr: "e \<longrightarrow>* e'" shows "v \<in> E e' \<rho>" |
lemma preserves_arr:
shows "A.arr T \<Longrightarrow> B.arr (map T)" |
lemma iter: "\<forall>a. (iter g (g a) n) = (g (iter g a n))" |
lemma appGetStatic[simp]:
"app\<^sub>i (Getstatic C F D,P,pc,mxs,T\<^sub>r,s) =
(\<exists> vT ST LT. s = (ST, LT) \<and> length ST < mxs \<and> P \<turnstile> C sees F,Static:vT in D)" |
lemma root_primitive_part [simp]:
fixes p :: "'a :: {semiring_gcd, semiring_no_zero_divisors} poly"
shows "poly (primitive_part p) x = 0 \<longleftrightarrow> poly p x = 0" |
lemma contour_integral_reversepath:
assumes "valid_path g"
shows "contour_integral (reversepath g) f = - (contour_integral g f)" |
lemma degree_rebase_poly_le: "degree (#p) \<le> degree p" |
lemma negative_len_shortest:
"length xs = n \<Longrightarrow> len m i i xs < 0
\<Longrightarrow> \<exists> j ys. distinct (j # ys) \<and> len m j j ys < 0 \<and> j \<in> set (i # xs) \<and> set ys \<subseteq> set xs" |
lemma strictly_between_implies_angle_eq_pi:
assumes "between (A, C) B"
assumes "A \<noteq> B" "B \<noteq> C"
shows "angle A B C = pi" |
lemma (in weak_partial_order) greatest_Lower_cong_l:
assumes "x .= x'"
and "x \<in> carrier L" "x' \<in> carrier L"
shows "greatest L x (Lower L A) = greatest L x' (Lower L A)" |
lemma [transfer_rule]: "(pcr_fmap (=) (=) ===> pcr_linear_poly) (\<lambda> f x. case f x of None \<Rightarrow> 0 | Some x \<Rightarrow> x) LinearPoly" |
lemma items_le_fix_D:
assumes items_le_fix: "items_le k I = I"
assumes x_dom: "x \<in> I"
shows "item_end x \<le> k" |
lemma lossless_complete_game:
assumes lossless_init: "\<forall> h w. lossless_spmf (init h w)"
and lossless_response: "\<forall> r w e. lossless_spmf (response r w e)"
shows "lossless_spmf (completeness_game h w e)" |
lemma out_subseqs1_set_as_out_subseqs2_set:
"out_subseqs1_set ((i,v) # prevs) =
{ f head v } \<union> out_subseqs1_set prevs \<union> out_subseqs2_set v [0..<i]" |
lemma row_echelon_form_berlekamp_resulting_mat: "row_echelon_form (berlekamp_resulting_mat u)" |
lemma tp_correct':
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
and abc_halt: "abc_steps_l (0, lm) ap stp = (length ap, am)"
shows "\<exists> stp k. steps (Suc 0, l, r) (tp, 0) stp = (start_of ly (length ap), Bk # Bk # ires, <am> @ Bk\<up>k)" |
lemma inter_guards_sym: "\<And>c. (c1 \<inter>\<^sub>g c2) = Some c \<Longrightarrow> (c2 \<inter>\<^sub>g c1) = Some c" |
lemma(in padic_integers) val_Zp_not_equal_ord_plus_minus:
assumes "x \<in> carrier Zp"
assumes "y \<in> carrier Zp"
assumes "val_Zp x \<noteq> (val_Zp y)"
shows "val_Zp (x \<ominus> y) = val_Zp (x \<oplus> y)" |
lemma distinct_edgesI:
assumes "distinct p" shows "distinct (walk_edges p)" |
lemma bigo_plus_eq: "\<forall>x. 0 <= f x \<Longrightarrow> \<forall>x. 0 <= g x \<Longrightarrow> O(f + g) = O(f) + O(g)" |
lemma normalize_src_ports_preserves_normalized_not_has_disc_negated:
assumes n: "normalized_nnf_match m" and nodisc: "\<not> has_disc_negated disc2 False m"
and disc2_noProt: "(\<forall>a. \<not> disc2 (Prot a)) \<or> \<not> has_disc_negated is_Src_Ports False m"
shows "m'\<in> set (normalize_src_ports m)
\<Longrightarrow> \<not> has_disc_negated disc2 False m'" |
lemma [code_unfold]: "((x::OclAny) \<doteq> y) = StrictRefEq\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t x y" |
lemma T_eq: "\<Gamma> \<turnstile> t : T \<Longrightarrow> T = T' \<Longrightarrow> \<Gamma> \<turnstile> t : T'" |
lemma inext_nth_iNext_Suc: "(\<circle> t (I \<rightarrow> n) I. P t) = P (I \<rightarrow> Suc n)" |
lemma "rec_list nil cons [] = nil" |
lemma lift_simulation_eval:
"L1.eval s1 s1' \<Longrightarrow> match i s1 s2 \<Longrightarrow> \<exists>i' s2'. L2.eval s2 s2' \<and> match i' s1' s2'" |
lemma
assumes "<P> c <Q>"
assumes "(h,as)\<Turnstile>P"
shows hoare_triple_success: "success c h"
and hoare_triple_effect: "\<exists>h' r. effect c h h' r \<and> (h',new_addrs h as h')\<Turnstile>Q r" |
lemma updates_conv': "map_of (updates ks vs al) = (map_of al)(ks[\<mapsto>]vs)" |
lemma distinct_merge_distinct[simp]: "\<lbrakk>sorted xs; distinct xs; sorted ys; distinct ys\<rbrakk> \<Longrightarrow>
distinct (merge_distinct xs ys)" |
lemma BinOpRedsVal:
assumes e\<^sub>1_steps: "P \<turnstile> \<langle>e\<^sub>1,s\<^sub>0\<rangle> \<rightarrow>* \<langle>Val v\<^sub>1,s\<^sub>1\<rangle>"
and e\<^sub>2_steps: "P \<turnstile> \<langle>e\<^sub>2,s\<^sub>1\<rangle> \<rightarrow>* \<langle>Val v\<^sub>2,s\<^sub>2\<rangle>"
and op: "binop(bop,v\<^sub>1,v\<^sub>2) = Some v"
shows "P \<turnstile> \<langle>e\<^sub>1 \<guillemotleft>bop\<guillemotright> e\<^sub>2, s\<^sub>0\<rangle> \<rightarrow>* \<langle>Val v,s\<^sub>2\<rangle>"
(*<*)(is "(?x, ?z) \<in> (red P)\<^sup>*") |
lemma infinite_hyp_changes_not_Lim:
assumes "f \<in> U" and "\<forall>n. \<exists>m\<^sub>1>n. \<exists>m\<^sub>2>n. s (f \<triangleright> m\<^sub>1) \<noteq> s (f \<triangleright> m\<^sub>2)"
shows "\<not> learn_lim \<psi> U s" |
lemma adj_to_edge_set_card_lim:
assumes "e \<in> edge_set"
shows "card e > 0 \<and> card e \<le> 2" |
lemma lF_char:
assumes "C.ide f"
shows "\<guillemotleft>lF f : F (trg\<^sub>C f) \<star>\<^sub>D F f \<Rightarrow>\<^sub>D F f\<guillemotright>"
and "F (trg\<^sub>C f) \<star>\<^sub>D lF f = (\<i>[trg\<^sub>C f] \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F (trg\<^sub>C f), F (trg\<^sub>C f), F f]"
and "\<exists>!\<mu>. \<guillemotleft>\<mu> : F (trg\<^sub>C f) \<star>\<^sub>D F f \<Rightarrow>\<^sub>D F f\<guillemotright> \<and>
F (trg\<^sub>C f) \<star>\<^sub>D \<mu> = (\<i>[trg\<^sub>C f] \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F (trg\<^sub>C f), F (trg\<^sub>C f), F f]" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.