Statement:
stringlengths 7
24.3k
|
---|
lemma (in semiring_1) last_linear_mul:
assumes p: "p \<noteq> []"
shows "last ([a, 1] *** p) = last p" |
lemma llist_of_tllist_tappend:
"llist_of_tllist (tappend xs f) = lappend (llist_of_tllist xs) (llist_of_tllist (f (terminal xs)))" |
lemma complete_digraph_pair_def: "K\<^bsub>n\<^esub> (with_proj G)
\<longleftrightarrow> finite (pverts G) \<and> card (pverts G) = n \<and> parcs G = {(u,v). (u,v) \<in> (pverts G \<times> pverts G) \<and> u \<noteq> v}" (is "_ = ?R") |
lemma SkipRule: "p \<subseteq> q \<Longrightarrow> Valid p (Basic id) q" |
lemma add_leaf_is_leaf:
assumes "T' = \<lparr>verts = V, arcs = A, tail = t, head = h\<rparr>"
and "T = \<lparr>verts = V \<union> {v}, arcs = A \<union> {a}, tail = t(a := u), head = h(a := v)\<rparr>"
and "u \<in> V"
and "v \<notin> V"
and "a \<notin> A"
and "directed_tree T' root'"
shows "leaf v" |
lemma upright_obtain_support:
assumes "upright a"
and "zcount a t > 0"
obtains s where "s < t" "zcount a s < 0" "nonpos_upto a s" |
lemma SA: "Fr_1b \<F> \<Longrightarrow> Fr_2 \<F> \<Longrightarrow> Fr_3 \<F> \<Longrightarrow> \<forall>a b c. (a \<^bold>\<Rightarrow> c) \<^bold>\<Rightarrow> ((a \<^bold>\<and> b) \<^bold>\<Rightarrow> c) \<^bold>\<approx> \<^bold>\<top>" |
lemma m2pi_less_pi: "- (2*pi) < pi" |
lemma interesting_subst1:
assumes a: "x\<noteq>y" "x\<sharp>P" "y\<sharp>P"
shows "N{y:=<c>.P}{x:=<c>.P} = N{x:=<c>.Ax y c}{y:=<c>.P}" |
lemma E_thm13:
"Lift \<in> (moving \<inter> Req n \<inter> {s. metric n s = N} \<inter> {s. floor s \<in> req s})
LeadsTo (stopped \<inter> Req n \<inter> {s. metric n s = N} \<inter> {s. floor s \<in> req s})" |
lemma sdp_SetPC:
fixes p::"'a \<Rightarrow> 's prog"
assumes sdp: "\<And>s a. a \<in> supp (P s) \<Longrightarrow> sub_distrib_pconj (p a)"
and fin: "\<And>s. finite (supp (P s))"
and nnp: "\<And>s a. 0 \<le> P s a"
and sub: "\<And>s. sum (P s) (supp (P s)) \<le> 1"
shows "sub_distrib_pconj (SetPC p P)" |
lemma K_in_space[simp]: "K x \<in> space (prob_algebra S)" |
lemma sumResRight:
fixes x :: name
and P :: pi
and Q :: pi
assumes Id: "Id \<subseteq> Rel"
and Eqvt: "eqvt Rel"
shows "<\<nu>x>(P \<oplus> Q) \<leadsto>[Rel] (<\<nu>x>P) \<oplus> (<\<nu>x>Q)" |
lemma cat_comma_Hom_def':
"cat_comma_Hom \<GG> \<HH> A B \<equiv> set
{
[A, B, [g, h]\<^sub>\<circ>]\<^sub>\<circ> | g h.
A \<in>\<^sub>\<circ> cat_comma_Obj \<GG> \<HH> \<and>
B \<in>\<^sub>\<circ> cat_comma_Obj \<GG> \<HH> \<and>
g : A\<lparr>0\<rparr> \<mapsto>\<^bsub>\<AA>\<^esub> B\<lparr>0\<rparr> \<and>
h : A\<lparr>1\<^sub>\<nat>\<rparr> \<mapsto>\<^bsub>\<BB>\<^esub> B\<lparr>1\<^sub>\<nat>\<rparr> \<and>
B\<lparr>2\<^sub>\<nat>\<rparr> \<circ>\<^sub>A\<^bsub>\<CC>\<^esub> \<GG>\<lparr>ArrMap\<rparr>\<lparr>g\<rparr> = \<HH>\<lparr>ArrMap\<rparr>\<lparr>h\<rparr> \<circ>\<^sub>A\<^bsub>\<CC>\<^esub> A\<lparr>2\<^sub>\<nat>\<rparr>
}" |
lemma ni_thin_locs_keep_atE:
"\<lbrakk>at proc l s \<longrightarrow> P; AT s' = (AT s)(p := lfn, q := lfn'); at proc l s'; proc \<noteq> p; proc \<noteq> q; P \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
"\<lbrakk>at proc l s \<longrightarrow> P; AT s' = (AT s)(p := lfn); at proc l s'; proc \<noteq> p; P \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" |
lemma lzip_ltakeWhile_snd: "lzip xs (ltakeWhile P ys) = ltakeWhile (P \<circ> snd) (lzip xs ys)" |
lemma stable_pair_on_allocation:
assumes "stable_pair_on ds XD_XH"
shows "allocation (match XD_XH)" |
lemma mult_left_isotone:
"x \<le> y \<Longrightarrow> x * z \<le> y * z" |
lemma \<phi>_zero: "x \<notin> {real_of_int (i - 1) / 2^(l + 1) <..< real_of_int (i + 1) / 2^(l + 1)} \<Longrightarrow> \<phi> (l,i) x = 0" |
lemma fempty_ffilter[simp]: "ffilter (\<lambda>_. False) A = {||}" |
lemma product_run:
assumes "length rs = length AA" "length ps = length AA"
assumes "b.run (product AA) (w ||| stranspose rs) ps"
shows "k < length AA \<Longrightarrow> a.run (AA ! k) (w ||| rs ! k) (ps ! k)" |
lemma lemma_2_9_i1:
"b \<in> supremum A \<Longrightarrow> b * a \<in> supremum ((\<lambda> x . x * a) ` A)" |
lemma eval_v_restrict:
fixes c::v and B::"bv fset"
assumes "i = i' |` d" and "supp c \<subseteq> atom ` d \<union> supp B " and "i' \<lbrakk> c \<rbrakk> ~ s"
shows "i \<lbrakk> c \<rbrakk> ~ s" |
lemma eval_monom_mult[simp]: "eval_monom \<alpha> (m * n) = eval_monom \<alpha> m * eval_monom \<alpha> n" |
lemma build_append[simp]: "(w @ a # u) \<frown> v = w \<frown> a ## u \<frown> v" |
lemma ANR_imp_closed_neighbourhood_retract:
fixes S :: "'a::euclidean_space set"
assumes "ANR S" "closedin (top_of_set U) S"
obtains V W where "openin (top_of_set U) V"
"closedin (top_of_set U) W"
"S \<subseteq> V" "V \<subseteq> W" "S retract_of W" |
lemma t_buildup_cnt: "T\<^sub>b\<^sub>u\<^sub>i\<^sub>l\<^sub>d\<^sub>u\<^sub>p n \<le> cnt (vebt_buildup n) * 13" |
lemma of_nat_monomial: "of_nat p = monomial p 0" |
lemma bconfs_map_throw[iff]:
"P,sh \<turnstile>\<^sub>b (map Val vs @ throw e # es',b) \<surd> \<longleftrightarrow> P,sh \<turnstile>\<^sub>b (e,b) \<surd>" |
lemma unique_awalk_All: "\<exists>p. awalk u p v \<Longrightarrow> \<exists>!p. awalk u p v" |
lemma infinite_part1: "infinite V \<Longrightarrow> infinite (part1 V)" |
lemma algebraic_power_iff [simp]:
assumes "n > 0"
shows "algebraic (x ^ n) \<longleftrightarrow> algebraic x" |
lemma mult_col_div_row_similar: assumes A: "A \<in> carrier_mat n n" and ak: "k < n" "a \<noteq> 0"
shows "similar_mat (mult_col_div_row a k A) A" |
lemma col_elems_ss01:
assumes "j < dim_col M"
shows "vec_set (col M j) \<subseteq> {0, 1}" |
lemma in_interval_interval_bij:
fixes a b u v x :: "'a::euclidean_space"
assumes "x \<in> cbox a b"
and "cbox u v \<noteq> {}"
shows "interval_bij (a, b) (u, v) x \<in> cbox u v" |
lemma memberid_pair_simp1: "memberid p = memberid (snd p)" |
lemma cong:
"(\<And>s. P s = P' s) \<Longrightarrow> \<lceil>P\<rceil> = \<lceil>P'\<rceil>"
"(\<And>\<sigma>. P \<sigma> = P' \<sigma>) \<Longrightarrow> (\<box>P) = (\<box>P')"
"(\<And>\<sigma>. P \<sigma> = P' \<sigma>) \<Longrightarrow> (\<diamond>P) = (\<diamond>P')"
"(\<And>\<sigma>. P \<sigma> = P' \<sigma>) \<Longrightarrow> (\<circle>P) = (\<circle>P')"
"\<lbrakk>\<And>\<sigma>. P \<sigma> = P' \<sigma>; \<And>\<sigma>. Q \<sigma> = Q' \<sigma>\<rbrakk> \<Longrightarrow> (P \<U> Q) = (P' \<U> Q')"
"\<lbrakk>\<And>\<sigma>. P \<sigma> = P' \<sigma>; \<And>\<sigma>. Q \<sigma> = Q' \<sigma>\<rbrakk> \<Longrightarrow> (P \<W> Q) = (P' \<W> Q')" |
theorem "DA.accepts (na2da(rexp2na r)) w = (w : lang r)" |
lemma cblinfun_power_Suc: \<open>cblinfun_power A (Suc n) = cblinfun_power A n o\<^sub>C\<^sub>L A\<close> |
lemma [quot_preserve]:
assumes a: "Quotient3 R abs1 rep1"
shows "(list_all2 ((rep1 ---> rep1 ---> id) R) l m) = (l = m)" |
lemma hd_lq_conv_nth: assumes "u <p v" shows "hd(u\<inverse>\<^sup>>v) = v!\<^bold>|u\<^bold>|" |
lemma par_qmsg_oreachable_statelessassm:
assumes "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg)
(\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>) (other (\<lambda>_ _. True) {i})"
and ustutter: "\<And>\<xi>. U \<xi> \<xi>"
shows "(\<sigma>, fst \<zeta>) \<in> oreachable A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>) (other (\<lambda>_ _. True) {i})
\<and> snd \<zeta> \<in> reachable qmsg (recvmsg R)
\<and> (\<forall>m\<in>set (fst (snd \<zeta>)). R m)" |
lemma (in pseudo_hoop_lattice_a) supremum_pair [simp]:
"supremum {a, b} = {a \<squnion> b}" |
lemma foundation20 : "\<tau> \<Turnstile> (\<delta> X) \<Longrightarrow> \<tau> \<Turnstile> \<upsilon> X" |
lemma ta_det'_ground_id:
"t |\<in>| ta_der' \<A> s \<Longrightarrow> ground t \<Longrightarrow> t = s" |
lemma ces_append_one :
"ces v1 (es @ [e]) v2 subs = (ces v1 es (src e) subs \<and> ces (src e) [e] v2 subs)" |
lemma less_eq_bot_Bot_is_Bot: "x \<le> Bot \<Longrightarrow> x = Bot" |
lemma step_augmenter_eval :
assumes steph : "\<And>xs var L F \<Gamma>. length xs = var \<Longrightarrow> (\<exists>x. eval (list_conj (map fm.Atom L @ F)) (xs @ x # \<Gamma>)) = (\<exists>x. eval (step var L F) (xs @ x # \<Gamma>))"
assumes heuristic: "\<And>n var L F. heuristic n L F = var \<Longrightarrow> var \<le> n"
shows "\<And>var amount L F \<Gamma>.
amount \<le> var + 1 \<Longrightarrow>
(\<exists>xs. length xs = var + 1 \<and> eval (list_conj (map fm.Atom L @ F)) (xs @ \<Gamma>)) =
(\<exists>xs. (length xs = (var + 1)) \<and> eval (step_augment step heuristic amount var L F) (xs @ \<Gamma>))" |
lemma compatible_refl:
assumes coms_secure: "list_all com_sifum_secure cmds"
assumes low_eq: "mem\<^sub>1 =\<^sup>l mem\<^sub>2"
shows "makes_compatible (cmds, mem\<^sub>1)
(cmds, mem\<^sub>2)
(replicate (length cmds) (mem\<^sub>1, mem\<^sub>2))" |
lemma of_class_linorder:
\<open>OFCLASS('a, linorder_class)\<close> |
lemma heap_clone_NewHeapElemD:
assumes "heap_clone P h a h' \<lfloor>(obs, a')\<rfloor>"
and "ad \<in> allocated h'"
and "ad \<notin> allocated h"
shows "\<exists>CTn. NewHeapElem ad CTn \<in> set obs" |
lemma iMODb_div_self: "
0 < m \<Longrightarrow> [r, mod m, c] \<oslash> m = [r div m\<dots>,c]" |
lemma unitarily_equiv_commute:
assumes "unitarily_equiv A B U"
and "A*C = C*A"
shows "B * (Complex_Matrix.adjoint U * C * U) =
Complex_Matrix.adjoint U * C * U * B" |
lemma flatten_fcall [simp]: "flatten (fcall init p return result c) = [fcall init p return result c]" |
lemma Abort_refines[intro]:
"well_def a \<Longrightarrow> Abort \<sqsubseteq> a" |
lemma \<R>\<^sub>SI [intro]:
assumes
bij_\<beta>: "bij \<beta>" and
none_case: "\<And>l. \<sigma> l = None \<Longrightarrow> \<sigma>' (\<beta> l) = None" and
some_case: "\<And>l v. \<sigma> l = Some v \<Longrightarrow> \<sigma>' (\<beta> l) = Some (\<R>\<^sub>V \<alpha> \<beta> v)"
shows
"\<R>\<^sub>S \<alpha> \<beta> \<sigma> = \<sigma>'" |
lemma proves_eq_abstract_rule_derived_rule:
assumes thy: "wf_theory \<Theta>"
assumes x: "(x, \<tau>) \<notin> FV \<Gamma>" "typ_ok \<Theta> \<tau>"
assumes ctxt: "finite \<Gamma>" "\<forall>A\<in>\<Gamma>. term_ok \<Theta> A" "\<forall>A\<in>\<Gamma>. typ_of A = Some propT"
assumes eq: "\<Theta>, \<Gamma> \<turnstile> mk_eq s t"
shows "\<Theta>, \<Gamma> \<turnstile> mk_eq (Abs \<tau> (bind_fv (x, \<tau>) s)) (Abs \<tau> (bind_fv (x, \<tau>) t))" |
lemma STAR_subset_closed: "x \<in> *s* A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> x \<in> *s* B" |
lemma cat_parallel_composable_\<aa>\<aa>[cat_parallel_cs_intros]:
assumes "g = \<aa>" and "f = \<aa>"
shows "[g, f]\<^sub>\<circ> \<in>\<^sub>\<circ> cat_parallel_composable \<aa> \<bb> F" |
lemma steps_SCons_iff:
"steps (x # y # xs) \<longleftrightarrow> E x y \<and> steps (y # xs)" |
lemma phi_equiv_mappingE:
assumes "g \<turnstile> m\<^sub>1 \<approx>\<^sub>\<phi> ssa.phiNodes_of g" and "b \<in> Mapping.keys (phis g)"
and "Mapping.lookup (phis g) x = Some vs" and "snd b \<in> set vs"
obtains ns where "Mapping.lookup m\<^sub>1 (snd b) = Some {n \<in> Mapping.keys (phis g). snd b \<in> set (the (Mapping.lookup (phis g) n))}" |
lemma adm_subst2: "cont f \<Longrightarrow> cont g \<Longrightarrow> adm (\<lambda>x. f (fst x) = g (snd x))" |
lemma kparts_insert_Key [iff]: "kparts (insert (Key K) H)
= insert (Key K) (kparts H)" |
lemma int_conseq_seq: " {(m::nat)..n} \<inter> {n+1..l} = {}" |
lemma mult_le_cancel_iff2: "0 < z \<Longrightarrow> z * x \<le> z * y \<longleftrightarrow> x \<le> y"
for x y z :: "'a::linordered_idom" |
lemma powrat_add_neg_pos:
assumes pos_x: "0 < x" and
neg_r: "r < 0" and
pos_s: "0 < s"
shows "x pow\<^sub>\<rat> (r + s) = (x pow\<^sub>\<rat> r) * (x pow\<^sub>\<rat> s)" |
lemma
\<open>- (1705 :: int) AND 1 = 1\<close> |
lemma object_clean_fields_twice [simp]:
"(object_clean_fields (object_clean_fields obj cmp') cmp) = object_clean_fields obj (cmp \<inter> cmp')" |
lemma normFace_neq:
"a \<in> \<V> f \<Longrightarrow> a \<notin> \<V> f' \<Longrightarrow> vertices f' \<noteq> [] \<Longrightarrow> normFace f \<noteq> normFace f'" |
lemma (in lbvc) wti_mono:
assumes less: "s2 <=_r s1"
assumes pc: "pc < length \<phi>"
assumes s1: "s1 \<in> A"
assumes s2: "s2 \<in> A"
shows "wti c pc s2 <=_r wti c pc s1" (is "?s2' <=_r ?s1'") |
lemma col_of_dagger [simp]:
assumes "j < dim_row M"
shows "col (M\<^sup>\<dagger>) j = vec (dim_col M) (\<lambda>i. cnj (M $$ (j,i)))" |
lemma assign_eval\<^sub>w_load\<^sub>A:
shows "(\<langle>x \<leftarrow> Load y, mds, mem\<rangle>\<^sub>A, \<langle>Stop, mds, mem (x := mem y)\<rangle>\<^sub>A) \<in> A.eval\<^sub>w" |
lemma ran_ran_restrict [simp]: "ran(f\<upharpoonleft>\<^bsub>B\<^esub>) = ran(f) \<inter> B" |
lemma replacefacesAt2_in:
"i \<in> set is \<Longrightarrow> distinct is \<Longrightarrow> i < |Fss| \<Longrightarrow>
(replacefacesAt2 is olfF newFs Fss)!i = replace olfF newFs (Fss !i)" |
lemma card_equiv_class_restricted_same_size:
assumes "equiv A R"
assumes "P respects R"
assumes "\<And>F. F \<in> {x \<in> A. P x} // R \<Longrightarrow> card F = k"
shows "card {x \<in> A. P x} = k * card ({x \<in> A. P x} // R)" |
theorem impl_model_check_correct_no_ce:
assumes "(sysi,sys)\<in>sa_rel"
assumes SA: "sa sys" "finite ((g_E sys)\<^sup>* `` g_V0 sys)"
shows "impl_model_check cfg sysi \<phi> = None
\<longleftrightarrow> sa.lang sys \<subseteq> language_ltlc \<phi>" |
lemma ArrayIndexOutOfBounds_not_Object[simp]: "ArrayIndexOutOfBounds \<noteq> Object" |
lemma OclNot_defargs:
"\<tau> \<Turnstile> (not P) \<Longrightarrow> \<tau> \<Turnstile> \<delta> P" |
lemma sints32:"sints 32 = {i. - (2 ^ 31) \<le> i \<and> i < 2 ^ 31}" |
lemma T_eq_T': "T s = T' (K s)" |
lemma
"\<turnstile> \<lbrace>i = \<acute>I \<and> \<acute>time = 0\<rbrace>
(timeit
(WHILE \<acute>I \<noteq> 0
INV \<lbrace>2 *\<acute> time + \<acute>I * \<acute>I + 5 * \<acute>I = i * i + 5 * i\<rbrace>
DO
\<acute>J := \<acute>I;
WHILE \<acute>J \<noteq> 0
INV \<lbrace>0 < \<acute>I \<and> 2 * \<acute>time + \<acute>I * \<acute>I + 3 * \<acute>I + 2 * \<acute>J - 2 = i * i + 5 * i\<rbrace>
DO \<acute>J := \<acute>J - 1 OD;
\<acute>I := \<acute>I - 1
OD))
\<lbrace>2 * \<acute>time = i * i + 5 * i\<rbrace>" |
lemma signed_mod_arith:
"sint ((a::('a::len) word) smod b) = signed_take_bit (LENGTH('a) - 1) (sint a smod sint b)" |
lemma [code_unfold]: "((x::Person) \<doteq> y) = StrictRefEq\<^sub>O\<^sub>b\<^sub>j\<^sub>e\<^sub>c\<^sub>t x y" |
lemma weak_ranking_unique:
assumes "is_weak_ranking As" "of_weak_ranking As = le"
shows "As = weak_ranking le" |
lemma renaming_distr_global [simp]:
"bij \<alpha> \<Longrightarrow> \<R>\<^sub>G \<alpha> \<beta> (s(r \<mapsto> ls)) = \<R>\<^sub>G \<alpha> \<beta> s(\<alpha> r \<mapsto> \<R>\<^sub>L \<alpha> \<beta> ls)"
"bij \<alpha> \<Longrightarrow> \<R>\<^sub>G \<alpha> \<beta> (s(r := None)) = (\<R>\<^sub>G \<alpha> \<beta> s)(\<alpha> r := None)" |
lemma image_image_id_if[simp]: "(\<And>x. f(f x) = x) \<Longrightarrow> f ` f ` M = M" |
lemma rewrite_MultiportPorts_removes_MultiportsPorts:
assumes n: "normalized_nnf_match m"
shows "m' \<in> set (rewrite_MultiportPorts m) \<Longrightarrow> \<not> has_disc is_MultiportPorts m'" |
lemma wf_sig_iff_exe_wf_sig': "exe_sig_conds \<Sigma> \<Longrightarrow>
wf_sig (translate_signature \<Sigma>) \<longleftrightarrow>
exe_wf_sig \<Sigma>" |
lemma not_authKeys_not_AKcryptSK:
"\<lbrakk> K \<notin> authKeys evs;
K \<notin> range shrK; evs \<in> kerbIV \<rbrakk>
\<Longrightarrow> \<forall>SK. \<not> AKcryptSK K SK evs" |
lemma Says_Tgs_AKcryptSK:
"\<lbrakk> Says Tgs A (Crypt authK \<lbrace>Key servK, Agent B, Number Ts, X \<rbrace>)
\<in> set evs;
authK' \<noteq> authK; evs \<in> kerbIV_gets \<rbrakk>
\<Longrightarrow> \<not> AKcryptSK authK' servK evs" |
lemma job_lower_bound_makespan:
assumes "lb T A j" "x \<in> {1..j}"
shows "t x \<le> makespan T" |
lemma conv_radius_eqI_smallomega_smallo:
fixes f :: "nat \<Rightarrow> 'a :: {real_normed_div_algebra, banach}"
assumes "\<And>\<epsilon>. \<epsilon> > l \<Longrightarrow> \<epsilon> < inverse C \<Longrightarrow> (\<lambda>n. norm (f n)) \<in> \<omega>(\<lambda>n. \<epsilon> ^ n)"
assumes "\<And>\<epsilon>. \<epsilon> < u \<Longrightarrow> \<epsilon> > inverse C \<Longrightarrow> (\<lambda>n. norm (f n)) \<in> o(\<lambda>n. \<epsilon> ^ n)"
assumes C: "C > 0" and lu: "l > 0" "l < inverse C" "u > inverse C"
shows "conv_radius f = ereal C" |
lemma add_replicate:
"foldl (+) k (replicate m n) = k + m * n" |
lemma Infinitesimal_diff: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x - y \<in> Infinitesimal" |
theorem VSLuckiestRepeat : "\<forall>xs. eval (VSLuckiestRepeat \<phi>) xs = eval \<phi> xs" |
lemma inverse_less_iff_less_neg [simp]:
"a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a" |
lemma arc_expanded_1:
"arc e \<Longrightarrow> e * x * e\<^sup>T \<le> 1" |
lemma abs_conv_abscissa_mono:
assumes "\<And>s. fds_abs_converges g s \<Longrightarrow> fds_abs_converges f s"
shows "abs_conv_abscissa f \<le> abs_conv_abscissa g" |
lemma cop_not_par_other_side:
assumes "C \<noteq> D" and
"Col A B I" and
"Col C D I" and
"\<not> Col A B C" and
"\<not> Col A B P" and
"Coplanar A B C P"
shows "\<exists> Q. Col C D Q \<and> A B TS P Q" |
lemma iT_Plus_inext_nth: "I \<noteq> {} \<Longrightarrow> (I \<oplus> k) \<rightarrow> n = (I \<rightarrow> n) + k" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.