Statement:
stringlengths 7
24.3k
|
---|
lemma (in Ring) ele_n_prodTr0:"\<lbrakk>\<forall>k \<le> (Suc n). ideal R (J k);
a \<in> i\<Pi>\<^bsub>R,(Suc n)\<^esub> J \<rbrakk> \<Longrightarrow> a \<in> (i\<Pi>\<^bsub>R,n\<^esub> J) \<and> a \<in> (J (Suc n))" |
lemma (in \<Z>) M\<alpha>_Rel_arrow_lr_is_cat_Par_arr:
assumes "A \<in>\<^sub>\<circ> cat_Par \<alpha>\<lparr>Obj\<rparr>"
and "B \<in>\<^sub>\<circ> cat_Par \<alpha>\<lparr>Obj\<rparr>"
and "C \<in>\<^sub>\<circ> cat_Par \<alpha>\<lparr>Obj\<rparr>"
shows "M\<alpha>_Rel_arrow_lr A B C : (A \<times>\<^sub>\<circ> B) \<times>\<^sub>\<circ> C \<mapsto>\<^bsub>cat_Par \<alpha>\<^esub> A \<times>\<^sub>\<circ> (B \<times>\<^sub>\<circ> C)" |
lemma le_replicateI: "\<forall>x\<in>set xs. x \<le> b \<Longrightarrow> xs \<le>\<^sub>v replicate (length xs) b" |
lemma prog_not_eq_in_par_ctran [simp]: "\<not> (P,s) -pc\<rightarrow> (P,t)" |
lemma crename_coname_eqvt[eqvt]:
fixes pi::"coname prm"
shows "pi\<bullet>(M[d\<turnstile>c>e]) = (pi\<bullet>M)[(pi\<bullet>d)\<turnstile>c>(pi\<bullet>e)]" |
lemma ghole_poss_num_gholes_zero:
"ghole_poss D = {} \<Longrightarrow> num_gholes D = 0" |
lemma higher_differentiable_Taylor:
fixes f::"'a::real_normed_vector \<Rightarrow> 'b::banach"
and H::"'a"
and Df::"'a \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b"
assumes "n > 0"
assumes hd: "higher_differentiable_on S f n" "open S"
assumes cs: "closed_segment X (X + H) \<subseteq> S"
defines "i \<equiv> \<lambda>x. ((1 - x) ^ (n - 1) / fact (n - 1)) *\<^sub>R nth_derivative n f (X + x *\<^sub>R H) H"
shows "(i has_integral f (X + H) - (\<Sum>i<n. (1 / fact i) *\<^sub>R nth_derivative i f X H)) {0..1}" (is ?th1)
and "f (X + H) = (\<Sum>i<n. (1 / fact i) *\<^sub>R nth_derivative i f X H) + integral {0..1} i" (is ?th2)
and "i integrable_on {0..1}" (is ?th3) |
lemma supset_glbound_in_of_lcoset_shift:
fixes P :: "'a::group_add set set"
assumes "supset_glbound_in_of P X Y B"
shows "supset_glbound_in_of ((+o) a ` P) (a +o X) (a +o Y) (a +o B)" |
lemma rbt_sorted_rbt_join2: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow>
\<forall>x \<in> set (RBT_Impl.keys l). \<forall>y \<in> set (RBT_Impl.keys r). x < y \<Longrightarrow> rbt_sorted (rbt_join2 l r)" |
lemma p2ndf_simps[simp]:
"\<lceil>P\<rceil> \<le> \<lceil>Q\<rceil> = (\<forall>s. P s \<longrightarrow> Q s)"
"(\<lceil>P\<rceil> = \<lceil>Q\<rceil>) = (\<forall>s. P s = Q s)"
"(\<lceil>P\<rceil> \<cdot> \<lceil>Q\<rceil>) = \<lceil>\<lambda>s. P s \<and> Q s\<rceil>"
"(\<lceil>P\<rceil> + \<lceil>Q\<rceil>) = \<lceil>\<lambda>s. P s \<or> Q s\<rceil>"
"\<tt>\<tt> \<lceil>P\<rceil> = \<lceil>P\<rceil>"
"n \<lceil>P\<rceil> = \<lceil>\<lambda>s. \<not> P s\<rceil>" |
lemma invimage_of_vempty[simp]: "r -`\<^sub>\<circ> 0 = 0" |
lemma partition_on_transform:
assumes P: "partition_on A P"
assumes F_UN: "\<Union>(F ` P) = F (\<Union>P)" and F_disjnt: "\<And>p q. p \<in> P \<Longrightarrow> q \<in> P \<Longrightarrow> disjnt p q \<Longrightarrow> disjnt (F p) (F q)"
shows "partition_on (F A) (F ` P - {{}})" |
lemma complete_dual:
"UNIV-complete A (\<sqsubseteq>) \<Longrightarrow> UNIV-complete A (\<sqsupseteq>)" |
lemma is_constant_seqI:
fixes a
assumes "s \<in> closed_seqs R"
assumes "\<And>k. s k = a"
shows "is_constant_seq R s" |
lemma mono_prover_monoI[refine_mono]:
"monotone (fun_ord (\<le>)) (fun_ord (\<le>)) B \<Longrightarrow> mono B" |
lemma development_map_App_1:
shows "\<lbrakk>development t T; \<Lambda>.Arr u\<rbrakk> \<Longrightarrow> development (t \<^bold>\<circ> u) (map (\<lambda>x. x \<^bold>\<circ> \<Lambda>.Src u) T)" |
lemma range_vars_alt_def: "range_vars s \<equiv> fv\<^sub>s\<^sub>e\<^sub>t (subst_range s)" |
lemma itop_sub_ttop_base:
fixes A :: "'a set"
and B :: "'a llist set set"
and C :: "'a llist set set"
defines [simp]: "B \<equiv> \<Union>s\<in>A\<^sup>\<star>. {suff A s}" and [simp]: "C \<equiv> \<Union>s\<in>A\<^sup>\<star>. {infsuff A s}"
shows "C = (\<Union> t\<in>B. {t \<inter> \<Union>C})" |
lemma frameChainEqSuppEmpty[dest]:
fixes xvec :: "name list"
and \<Psi> :: "'a::fs_name"
and yvec :: "name list"
and \<Psi>' :: "'a::fs_name"
assumes "\<langle>xvec, \<Psi>\<rangle> = \<langle>yvec, \<Psi>'\<rangle>"
and "supp \<Psi> = ({}::name set)"
shows "\<Psi> = \<Psi>'" |
lemma lcs_adds_fun:
assumes "s adds u" and "t adds (u::'a \<Rightarrow> 'b)"
shows "(lcs s t) adds u" |
lemma concrete_edge_rel_list_set_rel:
"(a, b) \<in> \<langle>concrete_edge_rel\<rangle>list_set_rel \<Longrightarrow> \<alpha> ` (set a) = b" |
lemma bv_sadd_type1 [simp]: "bv_sadd (norm_signed w1) w2 = bv_sadd w1 w2" |
lemma fps_divide_nth_0 [simp]:
"g $ 0 \<noteq> 0 \<Longrightarrow> (f div g) $ 0 = f $ 0 / (g $ 0 :: _ :: division_ring)" |
lemma iteratei_rule_P:
assumes
"I S0 \<sigma>0"
"\<And>S \<sigma> x. \<lbrakk> c \<sigma>; x \<in> S; I S \<sigma>; S \<subseteq> S0;
\<forall>y\<in>S - {x}. R x y; \<forall>y\<in>S0 - S. R y x\<rbrakk>
\<Longrightarrow> I (S - {x}) (f x \<sigma>)"
"\<And>\<sigma>. I {} \<sigma> \<Longrightarrow> P \<sigma>"
"\<And>\<sigma> S. \<lbrakk> S \<subseteq> S0; S \<noteq> {}; \<not> c \<sigma>; I S \<sigma>;
\<forall>x\<in>S. \<forall>y\<in>S0-S. R y x \<rbrakk> \<Longrightarrow> P \<sigma>"
shows "P (iti c f \<sigma>0)" |
lemma (in group) int_pow_diff:
"x \<in> carrier G \<Longrightarrow> x [^] (n - m :: int) = x [^] n \<otimes> inv (x [^] m)" |
lemma set_pred_eq_transfer[transfer_rule]:
assumes "right_total A"
shows
"((rel_set A ===> (=)) ===> (rel_set A ===> (=)) ===> (=))
(\<lambda>X Y. \<forall>s\<subseteq>Collect (Domainp A). X s = Y s)
((=)::['b set \<Rightarrow> bool, 'b set \<Rightarrow> bool] \<Rightarrow> bool)" |
lemma fls_left_inverse_idempotent_comm_ring1:
fixes f :: "'a::comm_ring_1 fls"
assumes "x * f $$ fls_subdegree f = 1"
shows "fls_left_inverse (fls_left_inverse f x) (f $$ fls_subdegree f) = f" |
lemma n_omega_L_below_zero:
"n(x\<^sup>\<omega>) * L \<le> x * x\<^sup>\<star> * bot \<squnion> x * n(x\<^sup>\<omega>) * L" |
lemma fresh_star_unit_elim:
shows "((a::'a set)\<sharp>*() \<Longrightarrow> PROP C) \<equiv> PROP C"
and "((b::'a list)\<sharp>*() \<Longrightarrow> PROP C) \<equiv> PROP C" |
lemma normal_upper_triangular_matrix_is_diagonal:
fixes A :: "'a::conjugatable_ordered_field mat"
assumes "A \<in> carrier_mat n n"
and tri: "upper_triangular A"
and norm: "A * adjoint A = adjoint A * A"
shows "diagonal_mat A" |
lemma pad_disjoint:
assumes A: "A \<subseteq> carrier_vec n" and A0: "0\<^sub>v n \<notin> A" and B: "B \<subseteq> carrier_vec m"
shows "padr m ` A \<inter> padl n ` B = {}" (is "?A \<inter> ?B = _") |
lemma ntsmcf_hcomp_components:
shows
"(\<MM> \<circ>\<^sub>N\<^sub>T\<^sub>S\<^sub>M\<^sub>C\<^sub>F \<NN>)\<lparr>NTMap\<rparr> =
(
\<lambda>a\<in>\<^sub>\<circ>\<NN>\<lparr>NTDGDom\<rparr>\<lparr>Obj\<rparr>.
(
\<MM>\<lparr>NTCod\<rparr>\<lparr>ArrMap\<rparr>\<lparr>\<NN>\<lparr>NTMap\<rparr>\<lparr>a\<rparr>\<rparr> \<circ>\<^sub>A\<^bsub>\<MM>\<lparr>NTDGCod\<rparr>\<^esub>
\<MM>\<lparr>NTMap\<rparr>\<lparr>\<NN>\<lparr>NTDom\<rparr>\<lparr>ObjMap\<rparr>\<lparr>a\<rparr>\<rparr>
)
)"
and [dg_shared_cs_simps, smc_cs_simps]:
"(\<MM> \<circ>\<^sub>N\<^sub>T\<^sub>S\<^sub>M\<^sub>C\<^sub>F \<NN>)\<lparr>NTDom\<rparr> = \<MM>\<lparr>NTDom\<rparr> \<circ>\<^sub>S\<^sub>M\<^sub>C\<^sub>F \<NN>\<lparr>NTDom\<rparr>"
and [dg_shared_cs_simps, smc_cs_simps]:
"(\<MM> \<circ>\<^sub>N\<^sub>T\<^sub>S\<^sub>M\<^sub>C\<^sub>F \<NN>)\<lparr>NTCod\<rparr> = \<MM>\<lparr>NTCod\<rparr> \<circ>\<^sub>S\<^sub>M\<^sub>C\<^sub>F \<NN>\<lparr>NTCod\<rparr>"
and [dg_shared_cs_simps, smc_cs_simps]:
"(\<MM> \<circ>\<^sub>N\<^sub>T\<^sub>S\<^sub>M\<^sub>C\<^sub>F \<NN>)\<lparr>NTDGDom\<rparr> = \<NN>\<lparr>NTDGDom\<rparr>"
and [dg_shared_cs_simps, smc_cs_simps]:
"(\<MM> \<circ>\<^sub>N\<^sub>T\<^sub>S\<^sub>M\<^sub>C\<^sub>F \<NN>)\<lparr>NTDGCod\<rparr> = \<MM>\<lparr>NTDGCod\<rparr>" |
lemma appMEnter[simp]:
"app\<^sub>i (MEnter,P,pc,mxs,T\<^sub>r,s) = (\<exists>T ST LT. s=(T#ST,LT) \<and> is_refT T)" |
lemma Vars_indep_foldr:
assumes "x \<in> set Vars" "set xs \<subseteq> set Vars"
shows "x \<bowtie>\<^sub>S \<Squnion>\<^sub>S (removeAll x xs)" |
lemma last_index_eq_index_conv[simp]: "x \<in> set xs \<or> y \<in> set xs \<Longrightarrow>
(last_index xs x = last_index xs y) = (x = y)" |
lemma maxLemma:
assumes "x \<in> X" "finite X"
shows "Max (f`X) >= f x"
(is "?L >= ?R") |
lemma config_config_length: "length (fst (config A init qs)) = length init" |
lemma sdp_Bind:
"\<lbrakk> \<And>s. sub_distrib_pconj (p (f s)) \<rbrakk> \<Longrightarrow> sub_distrib_pconj (Bind f p)" |
lemma cones_map_is_composition:
assumes "\<guillemotleft>g : a' \<rightarrow> a\<guillemotright>" and "cone J C D a \<chi>"
shows "J_C.MkArr (constant_functor.map J C a') D (diagram.cones_map J C D g \<chi>)
= J_C.MkArr (constant_functor.map J C a) D \<chi> \<cdot>\<^sub>[\<^sub>J\<^sub>,\<^sub>C\<^sub>] map g" |
lemma RUN_subset_DT: "A \<subseteq> B \<Longrightarrow> RUN B \<sqsubseteq>\<^sub>D\<^sub>T RUN A" |
lemma rcut_eq: "rcut = tr0 \<longleftrightarrow> reg H tr0" |
lemma iT_Div_not_empty: "I \<noteq> {} \<Longrightarrow> I \<oslash> k \<noteq> {}" |
lemma PO_m1a_step3_refines_m1x_step3:
"{R1x1a}
(m1x_step3 Rs A B Kab), (m1a_step3 Rs A B Kab nls)
{> R1x1a}" |
lemma HFun_Sigma_subst [simp]: "(HFun_Sigma r)(i::=t) = HFun_Sigma (subst i t r)" |
lemma root_in_start_points_2:
assumes "backward_finite_path_root r x"
and "start_points x \<noteq> 0"
shows "r \<le> start_points x" |
lemma fls_regpart_const [simp]: "fls_regpart (fls_const c) = fps_const c" |
lemma blinfunpow_nonneg:
assumes "\<And>v. 0 \<le> v \<Longrightarrow> 0 \<le> blinfun_apply (f :: ('b :: {ord, real_normed_vector} \<Rightarrow>\<^sub>L 'b)) v"
shows "0 \<le> v \<Longrightarrow> 0 \<le> (f^^n) v" |
lemma before_C_unique:
assumes \<omega>: "before_C I1 \<omega>" "before_C I2 \<omega>" shows "I1 \<inter> I2 \<noteq> {}" |
lemma permutes_empty [simp]:
\<open>p permutes {} \<longleftrightarrow> p = id\<close> |
lemma alwaysWFI: "\<turnstile> WF(A)_v \<longrightarrow> \<box>WF(A)_v" |
lemma divide_poly_list[code]: "f div g = divide_poly_list f g" |
lemma the_elemI:
assumes "is_singleton A"
shows "the_elem A \<in> A" |
lemma deleteMin_correct_aux:
assumes I: "invar q"
assumes NE: "q\<noteq>[]"
shows
"invar (deleteMin q)"
"queue_to_multiset_aux (deleteMin q) = queue_to_multiset_aux q -
{# (findMin q, eprio (findMin q)) #}" |
lemma assert_disch3 :" \<not> P \<sigma> \<Longrightarrow> \<not> (\<sigma> \<Turnstile> (assert\<^sub>S\<^sub>E P))" |
lemma right_commute: "f (f a b) c = f (f a c) b" |
lemma norm_pair_fst0[simp]: "norm (0, x) = norm x" |
lemma finite_llast_V [simp]: "lfinite P \<Longrightarrow> llast P \<in> V" |
lemma sup_apx_left_isotone_2:
assumes "x \<sqsubseteq> y"
shows "x \<squnion> z \<sqsubseteq> y \<squnion> z" |
lemma unit_quasi_borel_terminal:
"\<exists>! f. f \<in> X \<rightarrow>\<^sub>Q unit_quasi_borel" |
lemma snd_sum_list: "snd (sum_list xs) = sum_list (map snd xs)" |
lemma LIST_FRAG_DICHOTOMY:
fixes l la x lb
assumes "sublist l (la @ [x] @ lb)" "\<not>ListMem x l"
shows "sublist l la \<or> sublist l lb" |
lemma borel_measurable_power_ennreal [measurable (raw)]:
fixes f :: "_ \<Rightarrow> ennreal"
assumes f: "f \<in> borel_measurable M"
shows "(\<lambda>x. (f x) ^ n) \<in> borel_measurable M" |
lemma extensional_arb: "f \<in> extensional A \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = undefined" |
lemma bdoubleton_eq_iff[simp]:
"bdoubleton x y = bdoubleton z w \<longleftrightarrow> (x = z \<and> y = w \<or> x = w \<and> y = z)" |
lemma clop_preorder: "clop f \<Longrightarrow> class.preorder (\<lambda>x y. f {x} \<subseteq> f {y}) (\<lambda>x y. f {x} \<subset> f {y})" |
lemma (in ring) subdomain_iff:
assumes "H \<subseteq> carrier R"
shows "subdomain H R \<longleftrightarrow> domain (R \<lparr> carrier := H \<rparr>)" |
lemma ok'_conv: "\<sigma>t OKAY' = true" |
lemma kp_5x7_ul: "knights_path b5x7 kp5x7ul" |
lemma VarP_sf [iff]: "Sigma_fm (VarP x)" |
lemma normalize1_hd_root_eq[simp]:
assumes "root t1 \<noteq> []"
shows "hd (root (normalize1 t1)) = hd (root t1)" |
lemma not_in_pow : "var\<notin>(vars(p::real mpoly)) \<Longrightarrow> var\<notin>(vars(p^i))" |
lemma [code]:
"enum 0 = {}"
"enum (Suc n) = insert n (enum n)" |
lemma path_decomp: assumes "path (xs @ ys)" shows "path xs" "path ys" |
lemma exp_times_has_integral:
"((\<lambda>t. exp (c * t)) has_integral (if c = 0 then t else exp (c * t) / c) - (if c = 0 then t0 else exp (c * t0) / c)) {t0 .. t}"
if "t0 \<le> t"
for c t::real |
lemma (in bar) bar1:
shows "(s\<langle>b:=True\<rangle>)\<cdot>c = s\<cdot>c" |
lemma idempotent_subset:
assumes "idempotent R" "S \<subseteq> R"
shows "S O R \<subseteq> R" "R O S \<subseteq> R" "S O R O S \<subseteq> R" |
lemma monad_state_alt_stateT' [locale_witness]:
"monad_alt return (bind :: ('a \<times> 's, 'm) bind) alt
\<Longrightarrow> monad_state_alt return (bind :: ('a, ('s, 'm) stateT) bind) (get :: ('s, ('s, 'm) stateT) get) put alt" |
lemma Confidentiality_Kas_lemma [rule_format]:
"\<lbrakk> authK \<in> symKeys; A \<notin> bad; evs \<in> kerbIV \<rbrakk>
\<Longrightarrow> Says Kas A
(Crypt (shrK A)
\<lbrace>Key authK, Agent Tgs, Number Ta,
Crypt (shrK Tgs) \<lbrace>Agent A, Agent Tgs, Key authK, Number Ta\<rbrace>\<rbrace>)
\<in> set evs \<longrightarrow>
Key authK \<in> analz (spies evs) \<longrightarrow>
expiredAK Ta evs" |
lemma IF_alg_derivable_from_If:
"\<lbrakk>(G,b,p):HS_B; (p,G,c1,H):HS; (p,G,c2,H):HS\<rbrakk>
\<Longrightarrow> (p,G,Iff b c1 c2,H):HS" |
lemma map_us_func1: "map_us id = (id::'a::complete_lattice_with_dual upset \<Rightarrow> 'a upset)" |
lemma class_add_relevant_entries:
"\<not> is_class P C
\<Longrightarrow> set (relevant_entries P i pc xt) \<subseteq> set (relevant_entries (class_add P (C, cdec)) i pc xt)" |
lemma "\<^bold>\<exists>\<pi>\<^sup>c = \<^bold>\<midarrow>(\<^bold>\<forall>\<pi>)" |
theorem wf_termi_call_steps: "wf (termi_call_steps \<Gamma>)" |
lemma enum_match_cong[sepref_frame_match_rules]:
"\<lbrakk>\<And>x y. \<lbrakk>x\<in>set_enum e; y\<in>set_enum e'\<rbrakk> \<Longrightarrow> hn_ctxt A x y \<Longrightarrow>\<^sub>t hn_ctxt A' x y\<rbrakk> \<Longrightarrow> hn_ctxt (enum_assn A) e e' \<Longrightarrow>\<^sub>t hn_ctxt (enum_assn A') e e'" |
lemma dtree_from_list_root_r[simp]: "root (dtree_from_list r xs) = r" |
lemma member_inv:
assumes "vebt_member (Node (Some (mi, ma)) deg treeList summary) x "
shows "deg \<ge> 2 \<and>
(x = mi \<or> x = ma \<or> (x < ma \<and> x > mi \<and> high x (deg div 2) < length treeList \<and>
vebt_member (treeList ! ( high x (deg div 2))) (low x (deg div 2))))" |
lemma del_emp_concat: "concat us = concat (filter (\<lambda>x. x \<noteq> \<epsilon>) us)" |
lemma llist_of_tllist_transfer2 [transfer_rule]:
"(tllist_all2 A B ===> llist_all2 A) llist_of_tllist llist_of_tllist" |
lemma diamond_n_an:
"|n(x)>an(y) = n(x) * an(y)" |
lemma path_entry_append:
"\<lbrakk> path_entry E l v; (v,w)\<in>E \<rbrakk> \<Longrightarrow> path_entry E (v#l) w" |
lemma prodrg_mOp:"\<forall>k\<in>I. Ring (A k) \<Longrightarrow>
mop (prodrg I A) = prod_mOp I A" |
lemma range_None:
assumes "MaxR_opt A = None"
shows "A \<inter> Field r = {}" |
lemma Checkcast_correct:
"\<lbrakk> wf_jvm_prog\<^bsub>\<Phi>\<^esub> P;
P \<turnstile> C sees M:Ts\<rightarrow>T=(mxs,mxl\<^sub>0,ins,xt) in C;
ins!pc = Checkcast D;
P,T,mxs,size ins,xt \<turnstile> ins!pc,pc :: \<Phi> C M;
Some \<sigma>' = exec (P, None, h, (stk,loc,C,M,pc)#frs) ;
P,\<Phi> \<turnstile> (None, h, (stk,loc,C,M,pc)#frs)\<surd>;
fst (exec_instr (ins!pc) P h stk loc C M pc frs) = None \<rbrakk>
\<Longrightarrow> P,\<Phi> \<turnstile> \<sigma>'\<surd>" |
lemma mangoldt_primepow' [simp]: "prime p \<Longrightarrow> k > 0 \<Longrightarrow> mangoldt (p ^ k) = of_real (ln (real p))" |
lemma NSLIMSEQ_inverse_zero: "\<forall>y::real. \<exists>N. \<forall>n \<ge> N. y < f n \<Longrightarrow> (\<lambda>n. inverse (f n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0" |
lemma pred_pmf_of_set [simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> pred_pmf P (pmf_of_set A) = Ball A P" |
lemma (in Group) rcs_Unit2:"\<lbrakk>G \<guillemotright> H; h \<in> H\<rbrakk> \<Longrightarrow> H \<bullet> h = H" |
lemma fds_shift_inverse [simp]:
"fds_shift (a :: 'a :: {field, nat_power}) (inverse f) = inverse (fds_shift a f)" |
lemma subprob_space_bind:
assumes "subprob_space M" "f \<in> measurable M (subprob_algebra N)"
shows "subprob_space (M \<bind> f)" |
lemma mapRuleI: "[| A = map f a; B = (map f) ` b |] ==> (A,B) = mapRule f (a,b)" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.